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ABSTRACT

Development of formal proofs of correctness of programs
can increase actual and perceived reliability and facilitate
better understanding of program specifications and their
underlying assumptions. Tools supporting such development
have been available for over 40 years, but have only recently
seen wide practical use. Projects based on construction of
machine-checked formal proofs are now reaching an unprece-
dented scale, comparable to large software projects, which
leads to new challenges in proof development and mainte-
nance. Despite its increasing importance, the field of proof
engineering is seldom considered in its own right; related
theories, techniques, and tools span many fields and venues.
This survey of the literature presents a holistic understand-
ing of proof engineering for program correctness, covering
impact in practice, foundations, proof automation, proof
organization, and practical proof development.
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1

Introduction

A formal proof of program correctness can show that for all possible
inputs, the program behaves as expected. This theoretical guarantee can
provide practical benefits. For example, the formally verified optimizing
C compiler CompCert (Leroy, 2006) is empirically more reliable than
GCC and LLVM: the test generation tool Csmith (Yang et al., 2011)
found 79 bugs in GCC and 202 bugs in LLVM, but was unable to find
any bugs in the verified parts of CompCert.

Methodologies for developing proofs of program correctness are as
old as the proofs themselves (Turing, 1949; Floyd, 1967; Hoare, 1971).
These proofs were on paper and of simple programs; tools to support
their development followed soon after (Milner, 1972) and have continued
to evolve for over 40 years (Bjgrner and Havelund, 2014). Projects based
on construction of formal, machine-checked proofs using these tools are
now reaching a scale comparable to that of large software engineering
projects. For example, the initial correctness proofs for an operating
system kernel took around 20 person years to develop (Klein et al.,
2009), and as of 2014 consisted of 480,000 lines of specifications and
proof scripts (Klein et al., 2014).
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This survey covers the timeline and research literature concerning
proof development for program verification, including theories, lan-
guages, and tools. It emphasizes challenges and breakthroughs at each
stage in history and highlights challenges that are currently present due
to the increasing scale of proof developments.

1.1 Challenges at Scale

Scaling up leads to new challenges and additional demand for tool
support in proof development and maintenance. For example, users may
have to reformulate properties to facilitate library reuse (Hales et al.,
2017), or to encode data structures in specific ways to aid in automation
of proofs about them (Gonthier, 2008). Proof development environments
need to allow users to efficiently write, check, and share proofs (Faithfull
et al., 2018); proof libraries need to allow easy search and seamless
integration of results into local developments (Gauthier and Kaliszyk,
2015). Evolving projects face the possibility of previous proofs breaking
due to seemingly unrelated changes, justifying design principles (Woos
et al., 2016) as well as support for quick error detection (Celik et al.,
2017) and repair (Ringer et al., 2018).

The research community has answered these challenges with theories,
techniques, and tools for proofs of program correctness that scale—all
of which fall under the umbrella of proof engineering, or software en-
gineering for proofs. Many of these techniques draw inspiration from
work in software engineering on large-scale development practices and
tools (Klein, 2014). However, even with close conceptual ties between
construction of programs and proofs, research in software engineering
requires careful translation to the world of formal proofs. For exam-
ple, proof engineers can benefit from regression testing techniques by
considering lemmas and their proofs in place of tests, as in regression
proving (Celik et al., 2017); yet, the standard metric used to prioritize
regression tests—statement coverage—has no clear analogue for lemmas
with complex conditions and quantification.

This survey serves to gather these theories, techniques, and tools into
a single place, drawing parallels to software engineering, and pointing
out challenges that are especially pronounced in proof development.
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It discusses the problems engineers encounter when verifying large
systems, existing solutions to these problems, and future opportunities
for research to address underserved problems.

1.2 Scope: Domain and Literature

We consider proof engineering research in the context of interactive
theorem provers (ITPs) or proof assistants (used interchangeably with
ITPs in this survey) that satisfy the de Bruijn criterion (Barendregt and
Barendsen, 2002; Barendregt and Wiedijk, 2005), which requires that
they produce proof objects that a small proof-checking kernel can verify;
the general workflow of such tools is illustrated in Figure 1.1. That is,
we consider proof assistants such as Coq (Coq Development Team, 1989-
2019), Isabelle/HOL (Isabelle Development Team, 1994-2019), HOL
Light (HOL Light Development Team, 1996-2019), and Agda (Agda
Development Team, 2007-2019); we do not consider program verifiers,
theorem provers, and constraint solvers such as Dafny (Leino, 2010),
ACL2 (ACL2 Development Team, 1990-2019), and Z3 (Z3 Development
Team, 2008-2019) except when contributions carry over. We focus on
proof engineering for software verification, but consider contributions
from mathematics and other domains when relevant.

Sometimes, the key design principles in engineering a large program
verification effort are not the focus of the most well-known publica-
tions on the effort. Instead, they can be in less standard references
such as workshop papers (Komendantskaya et al., 2012; Paulson and
Blanchette, 2012; Pit-Claudel and Courtieu, 2016; Mulhern, 2006), in-
vited talks (Wenzel, 2017a), blog posts ( Verified cryptography for Firefox
57 n.d.), and online documents (Leroy, 2017; Wenzel, 2017b). One pur-
pose of this survey is to bring such design principles front-and-center.
Naturally, we shall aim to survey the relevant literature with our best
effort to provide accurate and thorough citations. To that end, we
will not hesitate to cite both traditional research papers in well-known
venues and relevant discussions in less traditional forms, without further
distinction among them.
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1.3 Overview

tactics proof assistant v
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Figure 1.1: Typical proof assistant workflow, adapted from Geuvers (2009).

After motivating chapters (Chapters 2 and 3), this survey discusses
the history and foundations of proof assistants (Chapter 4). It then
surveys proof engineering research under three headings: languages and
automation (Chapter 5), proof organization and scalability (Chapter 6),
and practical proof development and evolution (Chapter 7). At a glance,
Chapter 5 concerns proof automation approaches and languages, Chap-
ter 6 concerns methods to express and organize programs and proofs,
and Chapter 7 concerns development processes and tools. Each of these
three chapters is divided into sections; each section surveys a more gran-
ular area of proof engineering research, then concludes with a discussion
of opportunities for future work within that area when applicable. The
survey concludes (Chapter 8) with a discussion of opportunities for
future work within proof engineering more broadly. In the case of factual
errors, an errata may be found on https://proofengineering.org.

1.4 Reading Guide

This survey aims to reach a broad audience of researchers, proof engi-
neers, and community members who are interested in understanding,
using, or contributing to proof engineering research. Readers need not
be deterred for lack of background knowledge. It is not always necessary
to understand previous chapters in order to understand later chapters;
readers should feel free to skip sections or chapters, or to consult later
chapters or cited resources for more information. This guide lists topics
with which basic familiarity is helpful in order to get the most out of
the referenced chapters (all chapters unless otherwise specified), along
with resources (cited next to BX< icons) for the interested reader:
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e Programming languages, type systems, and metatheory < (Pierce,
2002; Harper, 2016), including:
— ITPs DX (Geuvers, 2009; Harrison et al., 2014), especially:

« Coq DX (Chlipala, 2013a; Pierce et al., 2014; Bertot and
Casteran, 2004)

« Isabelle/HOL &< (Wenzel et al., 2004; Nipkow and Klein,
2014)

— Automated reasoning DX (Bradley and Manna, 2007; Kroen-
ing and Strichman, 2008) (Chapters 3 and 5)

— The Curry-Howard correspondence DX (Pfenning, 2010; Sgren-
sen and Urzyczyn, 2006)

— Dependent and inductive types DX (Chlipala, 2013a)

— Equality B4 (Chlipala, 2013a; nLab authors, 2019a) (Chap-
ters 3 and 4)

— Compilers P (Cooper and Torczon, 2011) (Chapters 3, 4,
and 6)

e Software engineering B4 (Shaw et al., 2015)

e Systems DX (Anderson and Dahlin, 2014; Cachin et al., 2011)
(Chapters 3 and 6)

e Formalized mathematics DX (American Mathematical Society,
2008; nLab authors, 2019b) (Chapter 3)
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2

Proof Engineering by Example

To make our notion of engineering of machine-checked proofs of pro-
gram correctness more concrete, we consider the classic problem of
constructing a program that decides whether a string (say, “aaab”)
matches a regular expression (say, a*b). This problem has been used to
demonstrate the usefulness of rigorous proofs of program properties by
induction (Harper, 1999; Yi, 2006).

Specification A necessary step towards a correct program is to obtain
a suitable specification (Section 6.1) of functional correctness, in this
case, what it means for a string to match a regular expression. We
adopt the usual meaning in terms of the theory of regular languages.
Consider an enumerable alphabet 3 of characters ¢, where it is decidable
whether two characters are equal. A string s is an element of the set %*,
consisting of 0 or more characters from the alphabet. We call any such
set of strings (subset of ¥*) a regular language, and refer to the special
empty string of 0 letters as e. We then define regular expression syntax:

ruo= 0|1 c|r+re | ri-re | 7

We next define a matching relation between regular expressions and
strings informally using inductive rules:
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CRNS] ST
e<ql cdc §4Ar1 4+ 12 §4Ar1 4+ 12
s<ary s <arg sar s <ar*
s <ar;-ro ear® ss ar*

The intended interpretation of s< r, “s matches r,” is that s belongs
to the regular language defined by r. One way to convince ourselves
that < is adequate is by proving that it holds for some cases where we
expect s to be in the language of r (e.g., “aaab” and a*b), and that
it does not hold for cases where we do not expect this (e.g., “ab” and
b*). Yi (2006) defines equationally a function which purports to decide
whether s <r. We write r!s for the application of this function to given
r and s, omitting cases that include the Kleene star (r*):

0!s &f false 1lsdef s = ¢ clsEfs=c¢ 1+ 1ols & rils VvV rgls

€-males ¥igles c-roles pols (1) - rh) - moles &l - (rh - 1mo)les

r1-role ¥ rile Argle (7“1 + 7“'2) -roles &f rl roles V ré -1r9les
Encoding Our approach to specifying and verifying this function in
an ITP is to make a deep embedding (Section 6.2.5) of the language of
regular expressions. Specifically, we encode the language as an inductive
datatype (Section 4.3.4) in the Coq proof assistant, parameterized by
an arbitrary type char of characters:

Inductive r : Type := r_zero : r | r_unit : r | r_char : char — r
| rplus : r - r - r | r_times : r - r - r | r_star : r — r.

We consider strings to be simple lists with elements in char, i.e., to have
type list char. This allows us to define s’ appended to s (s s’) as regular
list concatenation (s ++ s’). The matching relation becomes:

Inductive r_match : list char —+ r — Prop :=

r_match_plus2 : V s rl r2, r_match s r2 — r_match s (r_plus rl r2)
r_match_times : V s s’ rl r2,
r_match s r1 — r_match s’ r2 — r_match (s ++ s’) (r_times rl r2)
| r_match_starl : V r0, r_match [] (r_star r0)
| r_match_star2 : V s s’ r0,
r_match s’ (r_star r0) — r_match (s ++ s’) (r_star r0).

| r_match_unit : r_match [] r_unit

| r_match_char : V ¢, r_match (c :: [1) (r_char c)

| r_match_plus’ : V s rl r2, r_match s rl — r_match s (r_plus rl r2)
|

|
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We can now define the specification (type) acc_t of a function acc
that decides the matching relation:

Definition acc_p (rs : r char * list char) := r_match (snd rs) (fst rs).
Definition acc_t (rs : r char * list char) {acc_p rs}+{— acc_p rs}.

Verified Implementation Directly writing a computable function with
this specification (with the type acc_t) requires us to immediately
establish termination (Section 4.3.5). However, we more conveniently
use a definitional extension (Section 4.3.4) to encode the function and
prove partial correctness and termination separately (Sozeau, 2010)
using a well-founded relation acc_1t whose definition we omit:

Equations acc (rs : re char * list char) : acc_t rs by wf rs acc_lt :=

acc (re_zero, _) := right _;
acc (re_unit, []) := left _; acc (re_unit, _ :: _) := right _;
acc (re_char c, [c’]) := match char_eq_dec c ¢’ with
left _ = left _ | right _ = right _ end;
acc (re_char _, []) := right _; acc (re_char _, _ :: _) := right _;
acc (re_plus rl r2, s) :=
match acc (rl, s) with left _= left _ | right _ =
match acc (r2, s) with left _ = left _ | right _ = right _ end end;
(x ... re_times/re_star cases and proof scripts omitted ... *)

While our certified matching function follows the equational defini-
tion provided by Yi quite closely, we may have made some mistakes. One
way to ensure the adequacy of our proof (Section 4.4.1) is to connect
it to a Coq theory of regular languages (Doczkal and Smolka, 2018).
We use this theory’s notion of language given by a regular expression
(re_lang) to build a matcher that uses our original acc function, by
converting from the theory’s notion of a regular expression:

Program Definition acc’ (r : regexp char) (w : list char) :

{w € re_lang r}+{w ¢ re_lang r} :=

match acc (@eq_comparable char) (regexp2re r, w) with

left _ = left _ | right _ = right _ end.
Executable Code Finally, we can extract (Section 4.4.2) the Coq code
for the function acc to a practical programming language such as OCaml
and run it on example regexp-string pairs where we have an intuition
whether they should match or not. We could also refine (Section 6.1.2)
the code to more performant Coq code, or to an imperative language
(Section 6.2.5) embedded in Coq, making it possible to use certified
compilation (Section 3.1.1) to assembly language.
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Why Proof Engineering Matters

Formal verification of a program can improve actual and perceived
reliability. It can help the programmer think about the desired and
actual behavior of the program, perhaps finding and fixing bugs in the
process (Murray and Oorschot, 2018). It can make explicit which parts
of the system are trusted, and further decrease the burden of trust as
more of the system is verified.

One noteworthy program verification success story is the Com-
pCert (Leroy, 2006; Leroy, 2009) verified optimizing C compiler. Both
the back-end and front-end compilation passes of CompCert have been
verified, ensuring the correctness of their composition (Késtner et al.,
2017). CompCert has stood up to the trials of human trust: it has
been used, for example, to compile code for safety-critical flight control
software (Franga et al., 2011). It has also stood up to rigorous testing:
while the test generation tool Csmith (Yang et al., 2011) found 79 bugs
in GCC and 202 bugs in LLVM, it was unable to find any bugs in the
verified parts of CompCert.

CompCert, however, was not a simple endeavor: The original develop-
ment comprised of approximately 35,000 lines of Coq code; functionality
accounted for only 13% of this, while specifications and proofs accounted
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for the other 87%. This is not unusual for large proof developments.
The initial correctness proofs for an operating system (OS) kernel in
Isabelle/HOL, for example, consisted of 480,000 lines of specifications
and proofs (Klein et al., 2014).

Much like software engineering theories, techniques, and tools help
software engineers deal with the challenges of programming for scale, so
proof engineering helps proof engineers. To highlight the importance of
proof engineering, we start by surveying a sample of domains in which
proof engineering for program verification has been particularly influen-
tial (Section 3.1). We then discuss proof engineering for other domains
(Section 3.2), as the lessons learned from those domains transfer to
program verification as well. We conclude by describing some examples
of practical impact from program verification (Section 3.3).

3.1 Proof Engineering for Program Verification

We discuss a sample of the domains in which proof engineering has had
a large impact: certified compilers (Section 3.1.1), low-level systems soft-
ware (Section 3.1.2), concurrent and distributed systems (Section 3.1.3),
and ceritified solvers and checkers (Section 3.1.4).

3.1.1 Certified Compilers

Development of certified compilers is a classic application of proof
assistants (Section 4.2). In spite of their long history, however, certified
compilers for practical and widely used programming languages have
only started to appear in the last decade. This is mainly due to the sheer
size and complexity of the semantics of these languages—challenges
that have necessitated developments in proof engineering.

The inertia for those developments came in 2006 with the help
of CompCert. This project was a pivotal moment in the history of
program verification. Leroy (2006) received the POPL test of time
award in 2016 (ACM SIGPLAN, 2016), with the release noting its
pivotal role:
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The paper was (and still is) groundbreaking in that it demon-
strates the feasibility of using an interactive theorem prover—
specifically, Coq—to both program and formally verify a
realistic compiler ... [it] made a convincing case that theorem-
proving technology is mature enough to be applied to the
full functional verification of realistic systems, and in so
doing heralded a new age of “big verification.”

Many projects built on CompCert by, for example, using its C
semantics, or by targeting C or any of its intermediate representations.
Appel (2011b) developed a program logic based on CompCert’s C
semantics, allowing Coq users to prove properties of deeply embedded
C programs in Coq. These properties then hold for machine code
generated by CompCert, via CompCert’s main correctness result (Appel
et al., 2014). Kéastner et al. (2017) described many extensions and
enhancements to the basic compilation toolchain of CompCert, e.g.,
translation validation of the process of linking machine code to produce
object files and executable files. Cao et al. (2018) presented a CompCert-
based C program verification environment called VST-Floyd in Coq
based on separation logic, simplifying the process of specifying and
verifying properties that hold down to machine code.

Certified compilers now span broad applications: For example, the
COGENT language for system programming and verification is accompa-
nied a certifying compiler (O’Connor et al., 2016) in Isabelle/HOL that
produces a proof that the generated C code is correct. The compiler
uses a refinement framework (Section 6.1.2) to automate relating the
COGENT semantics to the generated code (Rizkallah et al., 2016). The
Standard ML language variant CakeML (Kumar et al., 2014) has a
verified compiler in HOL4 with a certified machine-code implemen-
tation produced by bootstrapping (applying the compiler to itself).
Using the Vellvm (Zhao et al., 2012) framework in Coq, proof engineers
can reason about transformations on the LLVM intermediate language
representation.

Certified compilers have also covered new ground with respect to
modularity and compositionality. The IMM (Podkopaev et al., 2019)
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memory model modularizes certified compilation from high-level con-
current programming languages to different hardware models. The
Bedrock (Chlipala, 2013b) intermediate language and verification envi-
ronment in Coq for low-level programming contains a notion of macros
that can be reasoned about modularly. The Pilsner (Neis et al., 2015)
certified compiler in Coq from a higher-order ML-like language to ma-
chine code supports programs that can, in contrast to CompCert, be
compositionally verified. Compositional CompCert (Stewart et al., 2015)
is a variant of CompCert with a correctness theorem that can be applied
compositionally.

Proof engineering for certified compilers has had applications directly
to the languages these compilers are verified in. For example, there
are certified compilers both from HOL4 (Myreen and Owens, 2012)
and from Isabelle/HOL (Hupel and Nipkow, 2018) to CakeML; it is
possible to produce machine code by composing these compilers with
the certified CakeML compiler. Both CertiCoq (Anand et al., 2017)
and (Buf (Mullen et al., 2018) describe certified compilers for Coq’s
specification language Gallina. CertiCoq is an ongoing project to build
a certified compiler from Gallina to machine code, using a hierarchy of
custom intermediate languages. (Euf presents a certified compiler from
a subset of Gallina to assembly code. Both compilers target CompCert
intermediate languages: CertiCoq targets Clight, while (Euf targets
Cminor. Each of these compilers provide an alternative to untrusted
program extraction (Section 4.4.2).

3.1.2 Low-Level Systems Software

In addition to compilers, low-level software such as operating systems,
file systems, and network stacks are building blocks of large software
systems. In turn, such software relies on interfaces to hardware, and on
hardware behavior. Through considerable effort, proof engineers have
specified and verified important pieces of systems software and their
hardware bases.

In pioneering work, Klein et al. (2009) and Klein et al. (2014)
developed a small general-purpose OS kernel, called sel4, in the C
programming language, with correctness proofs in Isabelle/HOL. The
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proven properties include correctness of interprocess communication,
access-control enforcement, and information-flow noninterference. Many
verified extensions to sel.4 have been proposed since its inception, e.g.,
to ensure hard deadlines are met for system calls, which is required for
applications in real-time systems (Sewell et al., 2017).

Verification of OS kernels has brought new developments in proof
engineering. For example, as part of the CertiKOS project, Gu et
al. (2015) presented a framework in Coq for specifying and verifying
abstraction layers, which they used to develop several certified OS
kernels. In doing so, they introduced the idea of a deep specification
(Section 6.2.3). Gu et al. (2016) designed and verified a concurrent
kernel for the x86 architecture with fine-grained locking.

An Instruction Set Architecture (ISA) provides an important inter-
face to hardware for, .e.g., compilers. Fox and Myreen (2010) developed
formal specifications (semantics) of the ISA for ARMv7 in HOL4. Arm-
strong et al. (2019) later used a domain-specific language to provide
ISA specifications for Isabelle/HOL, HOL4, and Coq for the ARMvS,
RISC-V, and CHERI-MIPS architectures. Morrisett et al. (2012) mod-
eled a subset of the x86 ISA in Coq, and used it to build a verified
checker for a sandbox policy.

Security policies of systems software are apt targets for verification
due to the importance of them being correct. Along these lines, Dam
et al. (2013) proposed a separation kernel (hypervisor) based on the
ARMvT processor architecture and its formalization by Fox and Myreen,
and proved, in HOL4, an information flow security property that ensures
OS instances can only communicate via explicit channels. Guanciale
et al. (2016) proved memory virtualization security in HOL4 for ARMv7.

OS kernel subsystems and formats are additional formalization
targets: Bishop et al. (2006) and Bishop et al. (2018) defined and
validated executable specifications in HOL4 for the TCP/IP stack,
and Kell et al. (2016) formalized the ELF binary format in HOL4 for
executables used in Unix-like operating systems such as Linux.

Verification has also reached file systems, such as FSCQ (Chen et al.,
2015), a file system with guarantees about crash safety that have been
verified in Coq, and DFSCQ (Chen et al., 2017), an efficient crash-
safe file system with several verified optimizations. Using the COGENT
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language and its certifying compiler (Section 3.1.1), Amani et al. (2016)
developed a file system called BilbyFS in Isabelle/HOL with executable
code in C; they also implemented and verified the legacy Linux file
system ext2. Ridge et al. (2015) developed a specification of POSIX
file systems in HOL4, which they tested against real-world file system
behavior.

3.1.3 Concurrent and Distributed Systems

Concurrent and distributed systems can be difficult to develop, under-
stand, and debug. Researchers have developed many different theories
and frameworks for reasoning about such systems in proof assistants.
For example, FCSL (Sergey et al., 2015) is a framework in Coq for
reasoning about fine-grained concurrency, based on a shallow embedding
of concurrent programs. The DISEL (Sergey et al., 2017) framework
for distributed separation logic in Coq builds on this, using the shal-
low embedding approach from FCSL. The formalization is extracted
to executable OCaml code and run on real hardware. Two different
frameworks (Zeller et al., 2014; Gomes et al., 2017) in Isabelle/HOL
exist for verifying two different models of CRDTs, replicated datatypes
which provide strong eventual consistency guarantees.

Progress in proof engineering for verification of concurrent and dis-
tributed systems has had implications for the formalization of practical
programming languages and protocols. This is illustrated by the Jung
et al. (2017) formalization of the imperative and threaded Rust pro-
gramming language using the Iris (Jung et al., 2018) framework for
concurrent separation logic in Coq, and by the Woos et al. (2016) imple-
mentation and verification of the key correctness property of the Raft
consensus algorithm using the Verdi (Wilcox et al., 2015) framework
for verification of asynchronous message-passing distributed systems.

3.1.4 Certified Solvers and Checkers

Proof engineers have formalized and proven correct automated solvers
for first-order logic and other more restricted logics. Blanchette et al.
(2018) verified a SAT solver in Isabelle/HOL with conventional features
such as clause learning. Schlichtkrull et al. (2019) verified a purely
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functional first-order superposition-based solver in Isabelle/HOL and
obtained executable code in Standard ML.

Another line of work in Isabelle/HOL formalizes various model
checkers, for example for Linear Temporal Logic (Esparza et al., 2013)
and for timed automata (Wimmer and Lammich, 2018).

3.2 Proof Engineering for Other Domains

While this survey focuses on proof engineering for program verification,
domains outside of program verification encounter similar proof engi-
neering challenges. The solutions that these communities develop have
implications for proof engineering for program verification. We discuss
these impliciations for two domains: mathematics (Section 3.2.1) and
programming languages metatheory (Section 3.2.2).

3.2.1 Mathematics

Mathematics is a natural application domain for proof assistants. For-
malized mathematics is the attempt to formalize mathematical theories
in part or in whole using proof assistants, so that proofs can be me-
chanically checked. Formalized mathematics was one of the first major
application domains for proof assistants; several early I'TPs and their
predecessors were designed with this domain in mind (Section 4.2).

Early formal developments in mathematics arose in the 1990s (Zucker,
1994; Benthem Jutting, 1994; Bancerek, 1990; Boyer, 1994). Since then,
there have been many notable developments for formalized mathematics,
including the Four Color Theorem (Gonthier, 2008), the Kepler conjec-
ture (Hales et al., 2011; Hales et al., 2017), the fundamental theorem of
algebra (Geuvers et al., 2002b), Godel-Rosser incompleteness (O’Connor,
2005), and the Jorden curve theorem (Hales, 2007). Other interesting
mathematical proofs can be found in a comparative overview of dif-
ferent proof assistants for mathematics (Wiedijk, 2006). The QED
manfesto (Boyer, 1994) called for a complete database of formalized
mathematics. The UniMath (Voevodsky et al., 2011-2019) library is an
ongoing attempt to formalize foundations of mathematics (Voevodsky,
2015) in Coq, using homotopy type theory (Section 4.3.2).



The version of record is available at: http://dx.doi.org/10.1561/2500000045

118 Why Proof Engineering Matters

This section samples tools and design principles for formalized math-
ematics, and discusses how they are relevant to program verification.

Design Principles Many proof developments in mathematics are ma-
ture and involve a large community of contributors. Several of these
developments have style guides for contributors. For example, UniMath
library has a style guide that serves to make proofs rigorous, easy to
port to other proof assistants, and less fragile, and to standardize and
improve appearance and readability. Among other things, the style guide
prohibits the addition of new axioms, and encourages the use of tactics
whose semantics are well-defined. Similarly, the HoTT library (Bauer et
al., 2017) for homotopy type theory contains a style guide which, among
other things, encourages uniform naming principles, outlines methods
for defining equivalences, describes how to use axioms uniformly, and
encourages the use of tactics that have well-defined relationships with
the terms they produce.

In addition to style guides, proof engineers have developed design
principles to handle certain kinds of problems common in mathematics.
Gonthier et al. (2013), for example, outlines a number of techniques
used in the proof of the Odd Order Theorem.

Wiedijk (2006) compares the styles of seventeen different proof
assistants for mathematics. The book is a collection of proofs of the
irrationality of v/2 from users of each of the proof assistants, and a
discussion of each of the proof assistants and the proofs in those proof
assistants. This comparison can be useful for understanding the tradeoffs
of and design considerations in each of the proof assistants.

Tooling Formalized mathematics has also seen the development of
tooling to support entire classes of proofs. Notable examples include
autarktic computations for algebraic reasoning (Barendregt and Barend-
sen, 2002), special support for equational reasoning in proof check-
ers (Barthe et al., 1996), decision procedures for fragments of arithemic
(Section 5.2.1), techniques for reasoning modulo associativity and com-
mutativity (Braibant and Pous, 2011), transport methods (Sections 6.4.2
and 6.4.3), and theory exploration (Section 5.2.1).
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Beyond Mathematics In formalized mathematics, user communities
of certain frameworks or libraries adhere to style guides and design
principles. These style guides and design principles have different em-
phases. Proof engineers in communities outside of mathematics may
similarly benefit from standardizing some elements of style depending
on the desired outcome. On a project-by-project basis, this may make
collaboration between proof engineers easier, and limit the accidental
introduction of untrusted code.

Style guides and design principles also have implications for proof
understanding. Mathematicians are the original proof checkers, so it’s
perhaps unsurprising that many mathematics communities emphasize
proof understanding by humans. Beyond mathematics, human under-
standing of proofs communicates information to the reader beyond the
theorem statement itself. Furthermore, just like in software engineer-
ing, effective collaboration between proof engineers hinges on mutual
understanding of the underlying code.

Standardizing style may also make automation easier. For example,
by limiting the set of tactics used within a community, the produced
proofs are more clearly defined, which may make higher-level automation
such as refactoring and repair tools (Section 7.2) less challenging.

Proof engineers in communities outside of mathematics may also
benefit from comparitive studies across different proof assistants, similar
to Wiedijk (2006) but for other domains.

Finally, much of the tooling developed for mathematics addresses
problems that occur in proof developments outside of mathematics. For
example, dealing with equivalences and isomorphisms is a problem that
is not exclusive to the domain of mathematics. Many of the techniques
and tooling from mathematics that solve this problem may be useful
for proof engineers who encounter this same problem in other domains.

3.2.2 Programming Language Metatheory

One large domain of focus is mechanized metatheory: proofs about
programming languages. The desire to mechanize theory led to the
introduction of the Edinburgh Logical Framework (LF) by Harper et al.
(1987) (and later in more detail, Harper et al. (1993)), building on
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ideas from Automath. LF defined a methodology for encoding and
reasoning about a simpler programming language from within the
higher-order dependently typed lambda calculus. Mechanizations of
metatheory followed shortly after, both in Nuprl (for example, Howe
(1988)) and in LF (see Harper and Licata (2007) for an overview of
mechanized metatheory in LF, and Harrison (1995) for an early history
of mechanized metatheory more broadly).

Since then, the domain has grown to reach practical languages:
The mechanization (Crary and Harper, 2014) of Standard ML in
Twelf formalized the metatheory of a practical language in its entirety.
WebAssembly has had a formal semantics from the very beginning,
which has been mechanized (Watt, 2018) in Isabelle/HOL. Simplified
languages representing the core underlying theories of Scala (Rompf and
Amin, 2016; Amin and Rompf, 2017) and of OCaml (Owens, 2008) have
been verified. Results from mechanized metatheory have also influenced
verification of real compilers, like CakeML (Section 3.1.1).

The success of metatheory has brought with it benchmark suites and
design principles. In addition, mechanized metatheory has influenced
new additions to the core languages of ITPs. This section describes
a small sample of those benchmark suites, design principles, and lan-
guage features, and discusses how the lessons learned from mechanized
metatheory generalize beyond this domain.

Benchmark Suites Some of the success of mechanized metatheory
is attributable to benchmark suites that have clearly established the
importance of the domain and set out to define how to measure progress
within it. The POPLMARK challenge (Aydemir et al., 2005) has been
particularly influential.

The benchmarks in the POPLMARK challenge are proofs of prop-
erties of the language System F-Sub (Cardelli et al., 1994), which has
parametric polymorphism and subtyping. POPLMARK highlights spe-
cific problems in proof engineering for metatheory, and outlines criteria
for evaluating the success of technology that addresses these problems.

15 solutions to the POPLMARK challenge remain accessible on-
line (Aydemir et al., 2005-2019). Of these solutions, 8 are in Coq, 2 are
in Isabelle/HOL, and the remaining 5 are spread across 5 other I'TPs.
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The solutions cover 8 different ways to represent variable binders, one
of the problems that POPLMARK highlights.

Personal communications (Harper and Crary, 2019; Pierce, 2019)
suggest that the solution using Twelf (Pfenning and Schiirmann, 1999)
(an LF implementation) was the first solution to solve all of the difficult
parts of the challenge. The website notes that this solution demonstrated
the benefits of using that framework, including the style of binders it
supports, while also sparking an interesting discussion on different ways
of specifying the problem across different frameworks. Only Arthur
Charguéraud attempted the same solution in the same proof assistant
with different styles of binders; while his solutions were inconclusive,
they inspired later work on making binders easier to represent (Aydemir
et al., 2008; Charguéraud, 2011).

The POPLMARK solutions may be thought of as a springboard for
later work. They provided information about what the state-of-the-art
was at the time, which enabled later researchers to measure progress.
Over 300 papers have cited POPLMARK since its introduction in 2005.

Still, there is some dissatisfaction with the outcomes of POPLMARK.
For example, mst papers that cite POPLMARK focus on the diffi-
culty of dealing with binders, which is just one challenge that proof
engineers face when mechanizing metatheory (Pierce, 2017). The List-
machine Benchmark (Appel et al., 2012), developed in parallel with
POPLMARK, deemphasizes binders and instead emphasizes connections
between proofs and real implementations of compilers. POPLMARK
Reloaded (Abel et al., 2017a) emphasizes logical relations proofs. The
ORBI (Felty et al., 2018; Felty et al., 2015) benchmarks focus on
the tradeoffs of design decisions of different systems for mechanizing
metatheory, rather than on different approaches using a given system.

Design Principles Many papers that cite POPLMARK focus on dif-
ficulties of dealing with binders. Paper proofs typically use a named
representation, where variables are represented by names. These are
easy for humans to reason about, but make it difficult for tools to reason
about alpha-equivalence. Nominal logics (Aydemir et al., 2006; Urban,
2008) encode names such that equivalent terms are alpha-equivalent.
These representations have the benefits of named representations, but
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without the cost of difficulty reasoning about alpha-equivalence. While
the nominal approach is common in Isabelle (Urban, 2008), only prelim-
inary approaches exist in Coq (Aydemir et al., 2006). Developing such a
tool in Coq may be difficult due to the differences in logics between Coq
and Isabelle/HOL, as Nominal Isabelle makes use (Urban and Kaliszyk,
2011) of quotient types (Homeier, 2005) in HOL.

In the absence of a nominal tool for Coq, proof engineers may explore
tradeoffs between de Bruijn indezes (introduced by de Bruijn (1972)
and explored by Owens (2008) and Schéfer et al. (2015), among others)
and a locally nameless representation (introduced by Gordon (1994)
and explored by Leroy (2007), Aydemir et al. (2008), and Charguéraud
(2011), among others). De Bruijn indexes make reasoning about alpha-
equivalence simple because alpha-equivalence is definitional equality
(Section 4.3.2), but they require shifting operations in the code, which
complicates human understanding; Berghofer and Urban (2007) detail
the tradeoffs between de Bruijn indices and names. Locally nameless
attempts to capture the best of both worlds: it uses names for free
variables and de Bruijn indexes for bound variables. Consequentially,
locally nameless requires reasoning about indexes and shifting operations
only for locally closed terms.

LF-based systems like Twelf (Pfenning and Schiirmann, 1999), Del-
phin (Poswolsky and Schiirmann, 2009), Beluga (Pientka and Dunfield,
2008) use higher-order abstract syntax (HOAS) (Pfenning and Elliott,
1988) to simplify reasoning about binders. HOAS gives an encoding of
binders in the object language (the language that is reasoned about) as
binders in the meta-language (the language of reasoning—in the case of
LF, the higher-order dependently typed lambda calculus). Beluga uses
ideas from contextual modal type theory (Nanevski et al., 2008b) to
further simplify reasoning about HOAS encodings. The Hybrid (Ambler
et al., 2002) tool makes it possible to use HOAS within Isabelle/HOL;
Capretta and Felty (2007) describe a version of Hybrid for Coq, and
Felty and Momigliano (2012) describe how to use Hybrid to reason about
an object language in a manner similar to Twelf. Felty and Pientka
(2010) compare Twelf, Beluga, and Hybrid on case studies of metatheory
using HOAS, and presents a set of challenge problems which highlights
the differences between these systems. Variants of HOAS such as weak
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HOAS (Ciaffaglione and Scagnetto, 2012) and parametric higher-order
abstract syntax (PHOAS) (Chlipala, 2008) make HOAS more tractable
in general-purpose I'TPs like Coq.

There is a small amount of work on design principles that address
the concerns of POPLMARK beyond dealing with binders. For example,
Engineering Formal Metatheory (Aydemir et al., 2008) identifies specific
lemmas that are useful and discusses the organization of theorems,
proofs, and automation. It also introduces cofinite quantification of
free variables in inductive relations—defining relations that hold on all
but finitely many variables, rather than for some fresh variable. This
strengthens the premise of the relations, which in turn strengthens
inductive hypotheses for proofs.

Design principles for mechanized metatheory often go hand-in-hand
with high-level frameworks such as 3MT (Section 6.3.2), or with domain-
specific languages such as Ott and Lem (Section 6.1). Other work in
design principles for mechanized metatheory includes an overview of
different ways of formalizing language semantics in an ITP for the
same language (Bertot, 2009), and the use of the coinductive partial-
ity monad (Capretta, 2005) in Agda to define denotational seman-
tics (Danielsson, 2012).

Beyond Metatheory Few domains have seen as much movement in
the development of design principles for proof engineering as mechanized
metatheory. Opinions on the role that POPLMARK played in this are
mixed (Pierce, 2017; Appel, 2017). There is little disagreement that
POPLMARK was timely: Proof assistants were becoming more usable,
and the ongoing development of CompCert (Section 3.1.1) inspired
confidence in their usefulness. At the same time, the properties that
researchers wanted to prove about their languages were becoming larger
and more complex. It was becoming difficult to know that these proper-
ties were actually correct, and to maintain confidence in correctness in
the face of changes.

POPLMARK gave a common platform for experimentation and
offered a concrete criteria for success in a timely domain. The bench-
marks were difficult enough to stress technology, but simple enough
that they were easy to understand and that experts could prove them
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in a few weeks. The work in metatheory that followed POPLMARK
demonstrated that general-purpose proof assistants really were usable
to prove these properties that researchers cared about.

Work to this day continues to use POPLMARK as an evaluation
metric. Amin and Rompf (2017), for example, introduce a proof tech-
nique using definitional interpreters that addresses the open challenge of
scaling type soundness proofs to realistic languages, and evaluate the suc-
cess of this technique using the F-Sub language from the POPLMARK
benchmarks. This highlights that sometimes, proving a slightly different
property and then showing how that relates to the original property
can be much simpler than proving the original property directly.

POPLMARK suggests that timely benchmark suites are instrumen-
tal in bringing the challenges of design for proof engineering to the
attention of the research community; in doing so, however, they can
narrow the focus to one particularly difficult problem, sometimes to
the exclusion of the bigger picture. Domains outside of metatheory can
take this into consideration.

In addition, the success of experts using LF and Twelf on the
POPLMARK benchmarks and in mechanizing a practical programming
language suggests that it is worth weighing carefully the tradeoffs of
using different I'TPs, including I'TPs with special support for a given
domain. Along those lines, Miller (2018) argues that handling of variable
bindings should be built into ITPs. It is also worth considering the
barriers to adoption by non-experts of tools with which experts have
demonstrated success within a domain, and how to overcome those
barriers. SASyLF (Aldrich et al., 2008), for example, is one attempt to
make LF-based I'TPs more accessible to students.

3.3 Practical Impact

Proof engineering has already had a large impact on program verifica-
tion in many domains, including those from Section 3.1. Proof engineers
have in recent years verified operating system (Klein et al., 2009) and
web browser (Jang et al., 2012) kernels, machine learning systems (Sel-
sam et al., 2017), distributed systems (Woos et al., 2016), quantum
circuits (Rand et al., 2017), constraint solvers (Blanchette et al., 2018;
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Schlichtkrull et al., 2019), compilers (Leroy, 2006; Kumar et al., 2014),
and file systems (Chen et al., 2015; Amani et al., 2016).

So far, proof assistants have had the strongest practical impact in
systems software. The CompCert verified compiler, sold as a commercial
product, is finding applications in embedded systems, such as those
used in aviation (Késtner et al., 2018). The BoringSSL library, used in
the popular Google Chrome Web browser, recently started to include
high-performance cryptographic code in C verified in Coq (Erbsen et al.,
2019). The sel4 verified operating system kernel is used in SCADA
systems, and aviation and automotive systems (Klein et al., 2018).
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Foundations and Trusted Bases

We give a short overview of the pre-history (Section 4.1) and early history
(Section 4.2) of proof assistants, and then discuss their foundations
(Section 4.3) and trusted bases (Section 4.4).

4.1 Proof Assistant Pre-History

Specification and verification of software systems can be viewed as
reducing human, informal notions and reasoning to systematic applica-
tion of logical principles and axioms. From this perspective, Aristotle’s
systematization of the principles of correct reasoning (Aristotle, 1926;
Smith, 2018) is arguably the oldest precursor. The proposal of Leibniz
(1685) to reduce human reasoning to mathematical calculation is a
second important step. Leibniz also laid the foundations for symbolic
propositional logic, although this was also done independently by, e.g.,
Boole.

A later important development was the introduction of predicate
logic (or predicate calculus) by Frege in the late 19th century (Frege,
1893; Zalta, 2018b). Two key innovations in Frege’s logical system were
(1) the introduction of quantifiers of expressions in propositions, and (2)
a notion of proof (sequences of valid inferences) for propositions with

126
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quantifiers. Frege was able to capture and prove concepts from number
theory in his system from first principles. However, his system included
an axiom later shown by Russell to make the system inconsistent (Zalta,
2018a). Nevertheless, the logics of I'TPs based on higher-order logic are
reminiscent of Frege’s logic (which included second-order quantification),
and his notion of proof is similar to the modern conception.

In the early 20th century, Russell and Whitehead continued Frege’s
work of putting mathematics on a firm logical basis. Crucially, this
included developing methods for avoiding inconsistencies, e.g., due to
unrestricted formation of sets of entities (Russell, 1918). In the end,
they proved many significant theorems of arithmetic and set theory
in their logical system by rigorous inference (Whitehead and Russell,
1997), but relied on axioms that were considered questionable at the
time (Irvine, 2016); this is echoed in more recent concerns for philo-
sophical justification of the basis for the logical system underpinning a
proof assistant (Barras, 2010). Godel (1930) established the connection
between truth and provability for first-order predicate logic, showing
that proofs of true propositions can always be constructed, in principle
(systems of inference rules can be made complete). However, he then
subsequently established that even modest extensions of expressibility
in first-order logic lead to incompleteness (Godel, 1931): there can be no
system that allows constructing proofs for all true propositions. Together
with other negative results, e.g., by Tarski (1936), this ended the search
for a single universal logical system as a foundation for mathematics
and all mathematical endeavors.

At roughly the same time, a theoretical basis for computation and
computer programs was given by Church (1936) in the A-calculus, and
computers were developed more practically by von Neumann and others
in the 1940s (von Neumann, 1993). As pointed out by Backus (1978),
the A-calculus and computers as described by von Neumann gave rise
to two distinct program styles: the functional style is characterized by
computational steps as reductions of expressions and an absence of state,
and the imperative style is characterized by computation as transitions
between complex states and statements that effect such transitions.

Also around that time, Curry (1934) observed a connection between
axioms and type systems. This and later observations culminated in 1969
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(published in Howard (1980)) with the principle of formulae-as-types,
also known as propositions as types, the Curry-Howard correspondence,
or the Curry-Howard isomorphism. This principle established the con-
nection between programs and proofs, which provided groundwork for
the later development of I'TPs.

Turing (1949) first considered the problem of correctness for an
imperative program that computes the factorial of its input by repeated
additions. He described how full correctness could be decomposed into
verifying assertions associated with certain points in the code (today
called invariants), and how to ensure program termination by finding
a consistently decreasing quantity (today called a variant or ranking
function). However, this work remained obscure, and more systematic
approaches for reasoning about imperative programming languages were
presented only late in the 1960s (Floyd, 1967; Hoare, 1969).

McCarthy (1960) proposed a practical realization of the functional
style of programming in the form of the Lisp language. McCarthy (1963)
also highlighted the problem of putting computing and programs on
a formal foundation. To this end, he proposed several formalisms for
capturing different classes of functions, and showed how to reason about
the equivalence of such functions. He also described how datatypes
could be constructed recursively and be subject to inductive reasoning.
Burstall (1969) showed how to reason about more practical programs
in the functional style using the principle of structural induction.

Research on logical reasoning using computers initially took two
main forms (Warden and Biancuzzi, 2009): (1) fully automated proofs
of propositions in simple proof systems such as Robinson’s resolution
system (Robinson, 1965), and (2) computer checking of the validity
of single steps in human-constructed mathematical proofs, as in the
Automath system by de Bruijn (de Bruijn, 1970; de Bruijn, 1994);
Automath is notable for representing both propositions and proofs in the
same formal system (a variant of the A-calculus). The former approach
is limited by the difficulty (and resulting long machine time) of finding
proofs algorithmically and its bounds on expressiveness of propositions,
while the latter is limited by the ingenuity (and labor supply) of the
humans that construct the proofs that the system checks. The legacy of
Automath includes the de Bruijn principle (Barendregt and Barendsen,
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2002), which states that proof-checking programs should be as small
and simple as possible to facilitate high assurance and trustworthiness.

4.2 Proof Assistant Early History

In the early 1970s, Milner proposed an approach to computer proofs
in between full automation and basic inference checking. One of his
insights was that fine-grained automation can be directed by human
ingenuity through so-called proof tactics (Section 5.1.1), alleviating
the burden on users in Automath-style systems. He also chose an un-
derlying formal system (Scott’s logic of computable functions (Scott,
1993)) that could represent concepts familiar to computer scientists
and programmers, such as integers, lists, and computer programs them-
selves (Gordon, 2000). The first implementation of his approach, called
Stanford LCF (Milner, 1972), provided a workflow still used in sev-
eral modern proof assistants, where the user inputs a command (e.g.,
a single tactic to apply to attempt to reach the current proof goal)
and the system executes the command, resulting in a complete proof
or in a number of subgoals. Although tactics could be complex, the
system guaranteed that a proof reported as finished could be exported
and verified independently by an Automath-style checker (Warden and
Biancuzzi, 2009).

Limitations on the flexibility and scalability of Stanford LCF prompted
Milner to develop ML (Meta Language), a programming language for
use in a new version of LCF. ML was a typed language, and Milner
defined a theorem in LCF as an abstract data type whose predefined
values were instances of axioms and whose operations were inference
rules. This technique, which persists in some proof assistants today, is
usually referred to as the “LCF approach,” and it in effect reduces the
soundness of inferences in an embedded logical system to the sound-
ness of the type system (and type checking mechanism) of the host
language. Adventurous and flexible tactics could be implemented in
ML and applied without concern for affecting soundness, although, e.g.,
termination was not guaranteed.

The resulting implementation of LCF in ML was called Edinburgh
LCF (Gordon et al., 1979), and was further developed mainly by Paulson
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and Huet, who enhanced its reasoning capabilities and wrote a compiler
for ML to avoid the overhead of interpretation (Gordon, 2000). Paulson
then went on to develop the Isabelle proof assistant framework (Paulson,
1994; Paulson, 1993), and Huet to develop, with Coquand, the first
version of the Coq proof assistant (Coquand and Huet, 1985). Gordon
used the last version of the LCF system, called Cambridge LCF, as a
basis for the HOL proof assistant (Gordon and Melham, 1993). The
Nuprl proof assistant (Constable et al., 1986) also followed in the LCF
tradition. Together, these proof assistants comprise the LCF' family, and
their recent incarnations are now widely used in the research community.
Recently developed proof assistants such as RedPRL (RedPRL Devel-
opment Team, 2015-2018) and Lean (de Moura et al., 2015) have also
joined the LCF family. ML was standardized as Standard ML (Milner
et al., 1997), and it and its dialects are widely used as implementation
languages for proof assistants.

While Automath targetted mathematics, the initial applications
of LCF-style systems for verification was in the area of programming
languages and compilers. Stanford LCF had case studies for verified
compilation of an imperative language to a stack-based language (Mil-
ner and Weyhrauch, 1972), and equational theories on integers and
lists (Newey, 1973). Edinburgh LCF had case studies for verified pro-
gramming language implementations (Cohn, 1983), and an important
use case of HOL was hardware verification (Boulton et al., 1992).

Geuvers (2009) and Harrison et al. (2014) provide a more compre-
hensive description of the history of ITPs.

4.3 Proof Assistant Foundations

The foundational theories of many I'TPs are based on some variation
of the theory of types, which goes back to Russell and his attempt in
the early 1900s to avoid inconsistency in formal systems by forbidding
pathological cases such as the set of all sets with some arbitrary prop-
erty (Irvine and Deutsch, 2016). Specifically, Church (1940) introduced
the simply typed A-calculus to avoid inconsistencies in the original A-
calculus. This typed calculus, also referred to as Higher-Order Logic
(HOL), is the basis of the proof assistants HOL4 and HOL Light.
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While A-calculus gives an account of computation, the principle of
propositions-as-types was a later development, related to the conception
of intuitionistic mathematics by Brouwer, Heyting, Kolmogorov, and
others (Heyting, 1956). A basic tenet of intuitionism (or constructivism)
is to only admit mathematical objects that can be mentally construed
from basic principles; postulation of existence or axiomatization is not
enough. At the level of logical reasoning, this leads to intuitionists
rejecting certain proofs established by an appeal to the law of excluded
middle (LEM)—that all propositions are either true or false. Moreover,
intuitionists interpret functions as effective methods of computation
rather than, say, relations that satisfy some set of equations. Conse-
quently, many classical mathematical theorems do not hold as typically
formulated with such a restricted logic. However, similar theorems turn
out to be possible to prove in many cases, as shown, e.g., by Bishop and
Bridges (1985). Widely used proof assistants based on intuitionistic type
theories, following the tradition of Martin-Lof (1984) and Martin-Lof
(1982), include Coq, Agda, and Lean.

Logical frameworks (Harper et al., 1993) support reasoning about
many different logics from within a single system. Automath is a logical
framework, as is LF (Section 3.2.2). The popular general-purpose proof
assistant Isabelle similarly supports many logics, as long as they can be
made to conform to underlying framework for simply-typed higher-order
natural deduction. While HOL is the most commonly used logic for
Isabelle, other bundled logics include first-order logic with Zermelo-
Fraenkel set theory, and constructive type theory (Paulson, 1993).

4.3.1 Proof Objects

Barendregt (2013) characterizes proof assistants according to how they
deal with proof objects, i.e., the certificates that some property is true
according to the underlying logic. In proof assistants closely related to
LCF such as Isabelle, HOL4, and HOL Light, proof objects are normally
not represented in full, but constructed and checked piece by piece, i.e.,
they are ephemeral. In contrast, Coq and Agda produce complete proof
objects, although such objects are usually not kept in memory once
constructed, but are stored on disk.
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The time to construct and validate proof objects (piecemeal) in
Isabelle, HOL4, and HOL Light is directly proportional to the object’s
size. However, checking proofs in Coq, Agda, and other proof assistants
that support reflection (Boutin, 1997), i.e., computational steps in
proofs, may not be proportional to proof object size. In effect, one
computional step can take as long as all conventional steps combined.

Barendregt (2007) uses a formula of the following kind to illustrate
the usefulness of reflection and its relation to proof object sizes:

Apospeop@eo@e@eo@e@e@e (@en)))))

Proving A directly requires repeated and tedious use of basic derivation
rules. In addition, even if rule application is automated, the proof object
will be large. Instead, it is possible to perform the proof indirectly by
using computation. To this end, we define:

B(1)¥p  B(n+1)%pe Bn)

We then prove by induction on n that whenever n > 1, we have B(2xn).
We conclude the proof of A by rewriting using two equalities, A = B(10)
and 10 = 2 x 5, and apply the fact about B that we just proved. In proof
assistants that support reflection, the final proof object contains no
trace of the proofs of the two equalities, since they are established using
reductions in the logic engine. In proof assistants without reflection, full
proofs must be provided for the equalities before they can be used for
rewriting, resulting in large proof objects. For example, proof objects in
Isabelle/HOL are typically large, but this does not necessarily mean that
proof checking is slower overall, since they are ephemeral (Wenzel, 2015).
In effect, large proof objects in Isabelle can be viewed as a consequence
of deliberate design decisions, e.g., concerning how to perform rewriting,
computation, and proof checking.

4.3.2 Equality

In logical systems and type theories, there is a conceptual difference
between definitional equality, used for proof checking (type checking),
and propositional equality, used in expressing statements to prove.

In intensional type theories, such as the early intuitionistic type the-
ory by Martin-Lof (1984) and the Calculus of Constructions (Coquand
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and Huet, 1988) (CoC), these concepts are completely distinct, which
can limit what can conveniently be proven to be equal. For example, in
Coq, 0+ n = n follows by definitional equality, while n 4+ 0 = n requires
inductive reasoning. In contrast, in extensional type theories, such as
that implemented in Nuprl (Constable et al., 1986), definitional and
propositional equality coincide. However, this means that proof checking
is inherently undecidable, since propositional equality can be used to
specify undecidable problems. Intuitively, intensionally equal entities are
such that they are “constructed in the same way,” while extensionally
equal entities “behave in the same way.” Proofs in extensional systems
can sometimes be translated into intensional theories after adding a few
axioms (Oury, 2005).

Even within intensional type theories, not all notions of proposi-
tional equality are created equal. Homotopy type theory (Univalent
Foundations Program, 2013) (HoTT), for example, is an intensional
type theory (nLab authors, 2019¢) in which the notion of propositional
equality corresponds to type equivalence. A type equivalence between
types A and B is a function:

f: A — B.

for which there exists some function:

g: B — A.

that is a mutual inverse:

section :V(@a: A, g a=a.
retraction : V (b : B), £ (g b) = b.

Univalence in HoT'T states that propositional equality between types is
equivalent to type equivalence between those types. Consequentially, in
HoTT, it is possible to treat equivalent types as being the same.

Both CoC and HoTT are intensional. In both of these type theories,
propositional equality corresponds to inhabitance of the identity type.
However, in HoT'T, univalence provides a means of constructing a term
of the identity type (Escardd, 2018) that is not present in CoC. This
has implications for other properties of these intensional type theories.
For example, in HoTT, as a consequence of univalence, functional
extensionality holds: functions can be proven equal merely from the fact



The version of record is available at: http://dx.doi.org/10.1561/2500000045

134 Foundations and Trusted Bases

that they always return the same values for the same arguments. This
is not true in CoC, though it may be consistently assumed as an axiom.

There are many other weaker equalities than propositional equality
that can be useful for reasoning about programs and systems. McBride
(2002) proposes a heterogenous equality relation for type theories where
terms can be considered equal despite having different types. As Chlipala
(2013a) remarks, researchers are continually discovering new ways for
entities such as functions and data to be equal.

4.3.3 Predicativity

The term predicative was first used by Russell (1906) to describe so-
called propositional functions ¢(x) that define a class, i.e., for which the
class {z : ¢(z)} actually exists. He distinguished such functions from
impredicative functions for which no such class exists (Feferman, 2005).
For example, the propositional function specifying that a class has itself
as member does not define a class, and is thus impredicative. In modern
logical systems, enforcing predicativity means that when objects are
defined using quantifiers, no such quantifier may be instantiated with
the object itself (see Chapter 12 of Chlipala (2013a)).

Isabelle’s meta-logic stays within predicative simple type theory (Paul-
son, 1993). In Coq, the Type universe (including set) is predicative, but
Prop is impredicative. Including both of these provides a balance to users
of consistency with common axioms and expressivity: Impredicative
Type with large elimination (pattern matching that returns terms of
type Type) would not be consistent with LEM, which can be added as
an axiom in Coq (cody, 2015). On the other hand, there is an informal
consensus that the impredicativity of Prop adds expressivity which is
useful for expressing most mathematical proofs (cody, 2015). Other-
wise, in predicative logic, some proofs are more complex (Avigad, 2004),
though it is not known to what extent this has practical implications
on what it is possible to express in each logic. Thus, Coq includes an
impredicative Prop universe in which large elimination is disabled.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

4.3. Proof Assistant Foundations 135

4.3.4 Definitional Mechanisms

Programs of interest to computer scientists and engineers often involve
classic data structures such as lists, trees, and natural numbers. These
data structures can be described, e.g., by initial algebras in category
theory or in fixpoint theory (Scott, 1970). Most proof assistants provide
mechanisms for defining such data structures; these mechanisms take one
of three forms (Berghofer and Wenzel, 1999): (1) axiomatic, (2) inherent,
and (3) definitional.

In the first approach, taken by early users of the LCF system,
datatype constructors are defined by introducing new axioms, from
which induction principles are proved (Paulson, 1984). In the second
approach, the underlying logic is extended to support custom datatypes,
which requires metatheoretic investigation, e.g., as carried out by Co-
quand and Paulin-Mohring (1990) for inductive types in CoC, and then
implemented in Coq by Paulin-Mohring (1993). In the third approach,
datatype support is added on top of already existing mechanisms; this
is done by Pfenning and Paulin-Mohring (1990) for the CoC and by
Berghofer and Wenzel (1999) for HOL. Church’s classic encoding of
numbers as functions repeatedly applying an argument function in the
A-calculus may be considered an example of the definitional approach.

Initial support for datatypes in proof assistants only included induc-
tive datatypes, i.e., the minimal solutions to fixpoint equations. Induc-
tive datatypes are arguably the most important, since they facilitate
proofs by the fundamental technique of structural induction (Burstall,
1969; Harper, 2016). However, some applications require coinductive
datatypes (maximal solutions), which can be accounted for in most
type theories (Coquand, 1994). Giménez (1995) initially implemented
support for coinductive and corecursive functions in Coq, while Paulson
(1997) did the same for Isabelle/HOL.

A long-standing issue in proof assistants is developing mechanisms
for quotient types, which are defined by dividing members of an existing
type into equivalence classes. Quotients are widely used in mathematical
reasoning, in particular in algebra. An initial approach to quotients in
Isabelle/HOL was proposed by Slotosch (1997), with later alternatives by
Paulson (2006) and Huffman and Kuncar (2013). Cohen (2013) proposed
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an approach to quotient types in Coq which elides the conventional
approach using setoids (Geuvers et al., 2002a) that significantly restricts
the scope of rewriting tactics.

The dependently-typed language Cedille (Stump, 2017) makes it
possible to define induction principles in a language based on Church-
encodings (Church, 1941), and encodes datatypes in terms of induction
principles. This allows for, among other things, zero-cost reuse of func-
tions and proofs across certain datatypes (Section 6.4).

Research on definitional mechanisms is still an active topic. Sozeau
(2010) designed and implemented a Coq extension for defining functions
equationally which compiles definitions down to eliminators for induc-
tive types; this extensions was used for the function acc in Chapter 2.
Biendarra et al. (2017) presented a redesigned Isabelle/HOL library,
following the definitional approach, for writing and reasoning about
inductive and coinductive datatypes. While Coq and Agda inherently
allow nonuniform datatypes, i.e., recursive types whose arguments vary
recursively, HOL systems did not support them until the advent of this
library, which reduces such definitions to uniform counterparts.

4.3.5 Totality of Functions and Termination

The logic of Church’s simply-typed A-calculus, HOL, is a logic of total
functions. This means that partial functions cannot be directly described
in proof assistants based on HOL, such as Isabelle/HOL. Similarly, the
Calculus of Inductive Constructions (CIC), which Coq is based on,
supports only total functions. Partial functions can still be indirectly
encoded in CIC and HOL, for example by (a) returning values in a
monad (McBride, 2015), such as the coinductive delay monad described
by Capretta (2005), (b) requiring proofs of argument value subset
membership as function arguments (Bertot and Casteran, 2004), (c)
letting functions return values in the option type, or (d) capturing
functions as inductive relations between input and output.

Functions in proof assistants based on intuitionistic type theories
like CIC need to be terminating for the sake of consistency. When a
function is defined in Coq, for example, termination is automatically
proven for cases where functions recurse on a subterm of the input and
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in other simple cases; in more advanced cases, users must manually
prove termination or rely on approaches that use, e.g., sizes of argument
terms (Abel et al., 2017b). In contrast, functions in HOL are not required
to be computable at the outset, and thus do not need to be accompanied
by termination witnesses. On the other hand, the uses of functions with
unproven termination are somewhat limited.

Requirements for totality and termination are two hurdles that
new users of I'TPs face. They are constraints even to users familiar
with functional programming languages, where no such requirements
are typically imposed. For certain functions, arguing and formally
proving termination may not even be a key concern. In that spirit,
Zombie (Casinghino et al., 2014) separates out a logical, terminating
fragment from a programmatic, possibly non-terminating fragment, that
way the programmer can move freely between those fragments.

In other languages, a common technique to encode such functions in
a total setting is to define a “fuel” argument, such as a natural number.
Either the fuel argument is empty (0) and the function terminates, or
there is enough fuel to continue to, e.g., perform recursive calls. This
allows for proving termination by a simple structural argument on the
fuel type. When calling the function in some other context, passing
“infinite fuel” may be possible, which implicitly trusts that the function
always terminates. Jourdan et al. (2012) provide a detailed description
of the fuel technique in the context of a verified parsing function on a
potentially infinite stream of tokens in Coq.

4.4 Trusted Computing Bases of Proofs and Programs

The concept of a Trusted Computing Base (TCB) was introduced by
Rushby (1981) in the context of security of computer systems. The basic
idea is that the security of a system may be reduced to the security of a
proper subset of all system components. If these components behave as
expected, the system as a whole is secure. For verified software, security
is replaced with correctness, e.g., functional correctness. Kumar (2015)
divides the TCB into the following categories:

e formal models of system components (e.g., model of a processor);
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e system components for which there are no explicit formal models
(e.g., linker or operating system);

e tools used to check proofs about the system (e.g., proof assistant).

4.4.1 TCB of Proofs

Pollack (1998) considers the question of how to trust specific machine-
checked proofs, and by extension, programs that such proofs pertain to.
He divides the question into a purely formal part—whether a provided
proof is derivable in a given formal system—and an informal part that
asks whether the proof has a purported meaning as expressed outside
any formal system.

As to the formal part, trusting the proof can be reduced, by computer,
to trusting the (implementation of) the proof checker of the formal
system; the source code for such proof checkers can be compact and
readable. However, Pollack argues that a complicated semantics of the
checker’s implementation language can still provide serious obstacle
to trust, and proposes that the language itself should be a logical
framework designed to represent formal systems, such as LF (Harper
et al., 1993) or Isabelle (Paulson, 1994). As to the informal part, Pollack
points to that understanding specific pieces of mathematics relies on
acceptance of previous mathematics, whose trust may be partly due to
its wide acceptance.

Based on Pollack’s investigation, Wiedijk (2012) defined the notion
of Pollack-inconsistency, which is expressed in terms of the mechanisms
a proof checker uses to print and parse its formulas (which are what the
user ultimately must intepret informally). In particular, Wiedijk argues
that a system should always be able to parse formulas it outputs. He
then demonstrates that current proof assistants are Pollack-inconsistent
to some extent, but outlines how this can be addressed by modifying
the implementations of printing and parsing.

With the goal of determining how small a trusted proof checker
can be for a practical application, Appel et al. (2003) attempted to
minimize the size of a proof checker for proof-carrying machine code.
The result was less than 2700 lines of code. The Lean theorem prover
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attempted to minimize the size of the proof-checking kernel from the
start (de Moura et al., 2015).

Barras and Werner (1997) encoded a limited version of the formal
system underlying Coq in Coq itself, and proved strong normalization
of its type system. Barras (2010) addressed the problem of providing
set-theoretical models of CoC, the logic that underpins Coq, with the
ultimate goal of ensuring that Coq’s theory is consistent with the theory
implicitly or explicitly assumed by most mathematicians. Anand and
Rahli (2014) encoded and verified the foundations of the Nuprl proof
assistant in Coq. Davis and Myreen (2015) certified the Milawa theorem
prover. Kuncar and Popescu (2018) proved the relative consistency
of extensions made to the foundations of Isabelle/HOL. Anand et al.
(2018) encoded Coq’s internal data structures in Coq itself and gave a
semantics for type checking, leading up to the MetaCoq project (Sozeau
et al., 2019) for building verified checking and extraction for Coq.

4.4.2 TCB of Programs

Coq and other similar proof assistants contain logic engines that can
execute functions that have been verified. However, execution inside
such a logic engine is generally slow compared to execution of native
functional programs (Leroy, 2015), and does not directly support han-
dling of input and output. Instead, to obtain practical verified programs,
proof assistant users rely on mechanisms such as program extraction to
produce programs that can be integrated into larger systems or executed
in conventional runtime environments. However, these mechanisms may
increase the trusted base of verified programs.

Program Extraction Paulin-Mohring (1989b) and Paulin-Mohring
(1989a) proposed realizability for CoC to F,. To obtain practical ex-
ecutable programs from Coq functions, Paulin-Mohring and Werner
(1993) extended the realizability from F,, to ML. Letouzey (2003) and
Letouzey (2004) later introduced a new extraction mechanism for Coq
which removed several restrictions. This introduced an intermediate lan-
guage called MiniML, which can be translated to OCaml, Haskell, and
Scheme. The new mechanism, argued correct by a conventional proof,
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was evaluated on several large projects (Berger et al., 2005; Cruz-Filipe
and Letouzey, 2006; Letouzey, 2008).

Berghofer and Nipkow (2002) identified a subset of HOL that can
be translated to practical functional languages and implemented code
generation for Isabelle/HOL. Haftmann and Nipkow (2010) proposed a
redesign of the code generation mechanism in Isabelle/HOL; their ap-
proach is based on translating HOL to an intermediate language called
Mini-Haskell, and then further to Standard ML, Haskell, and OCaml.
The correctness argument is reminiscent of that for Coq’s extraction
mechanism. Haftmann et al. (2013) proposed a data refinement (Sec-
tion 6.1.2) framework which replaces abstract datatypes with concrete
ones, which widens the scope of code generation.

Beyond Extraction and Code Generation Practical functional pro-
gramming languages such as OCaml and Haskell lack a fully formal
(and machine-checked) semantics. Proof assistant users who want to
avoid trusting extraction may use deep embeddings (Section 6.2.5) of
target practical programming languages along with language semantics.
These embeddings and semantics can then be used in certified compilers
(Section 3.1.1), which may include formal models of system components
such as processors, to produce verified machine code. However, these
approaches may have more restrictions and inconveniences than ex-
traction. Removing or circumventing these restrictions may be fruitful.
Continuing to develop and improve certified compilers for Coq like (Euf
and CertiCoq, for example, may help proof engineers circumvent ex-
traction to OCaml and Haskell altogether. Instead, proof engineers may
be able to directly compile certified programs to machine or assembly
code and run those programs directly.
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Between the Engineer and the Kernel:
Languages and Automation

At the core of every I'TP that meets the de Bruijn criterion is a proof
object that a small kernel can check. Directly constructing this proof
object may be too low-level to provide for a positive user experience,
and in some cases the proof object may not be exposed to the end-user
at all. Typically, several layers of languages and automation act as an
interface between the proof engineer and the kernel.

Automation is all about finding a proof—what the proof object
(Section 4.3.1) is can differ by ITP. Because of this, and because of the
different philosophies and needs of different communities, I'TPs have
different approaches to automation. We consider two commonly used
ITPs as examples: Coq and Isabelle/HOL.

In Coq, a proof is a term in the language Gallina, which the kernel
type-checks. The Coq proof engineer can write proofs in Gallina directly,
but it is common to write proofs using high-level tactics, or proof
search procedures. In Coq, these tactics search for and ultimately
produce a Gallina term, which the kernel then type-checks. Users can
combine existing tactics, or write their own, either in the general-purpose
programming language OCaml or in the tactic language Ltac.

141
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In contrast, in Isabelle/HOL, a proof is a term in the language ML
with a specific type, combined with the guarantee that this term must
have been produced using the axioms of the logic.! It is not possible
to directly write a term of this type, since correctness hinges on the
guarantees about its construction. Instead, users commonly write proofs
in Isabelle/Isar, which is a high-level proof language: a language for
structuring and composing propositions, facts, and proof goals.

Ltac and Isabelle/Isar are examples of two languages which embody
different styles of automation. This chapter discusses these and other
styles of automation (Section 5.1), then concludes with a discussion of
automation in practice (Section 5.2) built in these different styles.

5.1 Styles of Automation

Proof engineers can construct proofs of theorems in a wide variety
of ways. There are three common styles of proof automation: writing
sequences of proof search tactics (which can be defined either using a
metalanguage like Standard ML or a specialized tactic language like
Ltac), writing high-level programs in a structured proof language, and
using reflection to write proof-checking procedures within the host
language itself. When executed, all expressions or commands reduce to
primitive inference rule applications in the proof-checking kernel.

Ltac and Isabelle/Isar are examples of a tactic language and a proof
language, respectively. Some proof assistants (for example, both Coq
and Isabelle) have support for all three styles of automation, either
natively or through extensions. However, not all do; Agda, for example,
takes a minimilistic approach, supporting only reflection (it is possible
to imitate tactics using reflection). Table 5.1 references examples of
supported styles of automation for a sample of major proof assistants.

These styles often merge, and the lines between them can be blurry.
It is possible, for example, to write proofs in the high-level proof language
SSReflect in Coq, or to combine this language with Ltac tactics. It is
possible to write ML tactics in Isabelle/HOL, and to write tactic-style
proofs in Isabelle/HOL that look similar to Ltac proofs in Cogq.

Tt is possible to explicitly produce proof terms that can be checked with a small
kernel using Isabelle/HOL-Proofs, but it is not common to explicitly do so.
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Tactics
Metalanguage | Tactic Lang. | Proof Lang. | Reflection
Agda Possible
Coq OCaml Ltac SSReflect Possible
Isabelle | ML Eisbach Isar Possible
Nuprl ML Possible

Table 5.1: Examples of styles of automation a sample of major proof assistants
support, including some external developments.

This section explores the design space and uses in common proof
assistants of languages for different styles of automation: Tactics and
tactic languages (Section 5.1.1), proof languages (Section 5.1.2), and
reflection (Section 5.1.3). It then concludes with a discussion of future
styles of automation (Section 5.1.4).

5.1.1 Tactics & Tactic Languages

LCF introduced the language ML (metalanguage) to let users write
high-level proof automation (Gordon et al., 1978). In LCF, theorems
are represented using the abstract type thm in ML; the only way to
construct an inhabitant of thm is using the axioms and inference rules
of the logic. A proof in LCF has the following type in ML:

type proof = thm list — thm

In other words, a proof is a function that takes a list of hypotheses and,
from them, proves the conclusion.
A basic unit in LCF proof automation is the tactic:

type tactic = goal — (goal list X proof)

The goal type (not shown) represents proof goals. Thus, a tactic is a
function that takes a proof goal and then produces a list of new goals
which the goal reduces to; such goals are conventionally called subgoals.
When no more goals remain, the tactic produces a value of type proot.

Based on this tactic definition, it is possible to define higher-order
functions that take tactics as arguments and return new tactics. Mil-
ner called such functions tacticals. For example, a collection of tactic
combinators may include the tactical repeat with type tactic — tactic,
which repeatedly applies its argument tactic to the proof goal. In Coq,
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the composition tactical t1; t2 runs the first tactic t1, then runs the
second tactic on all goals produced by the first tactic t2.

However, the LCF representation of tactics means that, by defini-
tion, the outputted goals are mutually independent—a proof for one
is unrelated to proofs for others. In practice, constraints during proof
search can apply across subgoals (Spiwack, 2016). For this reason, Coq
previously used, up to at least version 8.3 in 2010 (Spiwack, 2010), a
tactic type definition along the following lines:

type proof = thm list — thm
type tactic = goal x state — (goal list X state X proof)

Here, the state returned from a tactic call can be used to figure out
dependencies between subgoals, such as shared variables.

In the early days of proof assistants, users combined custom tactics
written in an ML dialect with built-in tactics and tactical combinators
to write custom automation (Constable et al., 1986; Cornes et al., 1995;
Paulson, 1988; Paulson, 1983). This tradition for programming proof
automation is the default workflow in the HOL4 and HOL Light proof
assistants, and remains a possibility in Coq and Isabelle. However, Coq
and Isabelle also support writing tactics in tactic languages rather than
in the tool’s implementation language.

Tactic-Based Proofs

The original proof development workflow in LCF was to write sequences
of tactic calls until no proof goals were left. This style is still prevalent
in modern proof assistants. Consider an inductive proof of the theorem
app_nil_r in Coq, which states that appending the empty list to any list
produces the original list. We can write this using tactics and tacticals:
Theorem app_nil_r : V (A : Type) (1 : list A), 1 ++ [1 = 1.

Proof.

intros. induction 1; auto. simpl. rewrite IHl. auto.
Qed.

Executing these tactics produces a Gallina proof term:

(fun (A : Type) (1 : list A) = (* hypotheses *)
list_ind (* induction principle for lists *)
(fun (1o : list A) = 19 ++ [1 = 1o) (* motive to prove *)
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eq_refl (* base case (by reflexivity) *)
(fun (a : A) (Lo : 1list A) (IH1l : 1o ++ [1 = 10) =
(* inductive case (by rewriting) *)
eq_ind_r (fun (1; : 1list A) = a :: 1; = a :: 1lg) eq_refl IH1)
1) (* argument to induction *)
:V (A : Type) (1 : list A), 1 ++ [] = 1. (* theorem type *)

There is an analogous in the Isabelle/HOL standard library:

lemma append_Nil2 : "append xs [] = xs"
by (induct xs) auto

While it is not typical to do so, using Isabelle/HOL-Proofs, it is possible
to reconstruct and inspect a proof object for this proof.

Tactic Languages

Tactic languages allow proof engineers to write custom tactics alongside
specifications and proofs, rather than in an implementation language
such as Standard ML. We describe two tactic languages—Ltac for Coq
and Eisbach for Isabelle—in detail, then conclude with a brief discussion
of other tactic languages.

Ltac Nearly 20 years ago, Coq introduced the Ltac tactic language (De-
lahaye, 2000), which has since become the standard for tactic devel-
opment in Coq. Ltac is an untyped domain-specific language with
support for pattern matching on terms and goals, as well as writing
custom tactics and tacticals. The Ltac manual can be found in the Coq
documentation (Inria, 1999-2018).

To understand Ltac, consider the break_match tactic from the Struct-
Tact (StructTact Development Team, 2016-2019) library:

Ltac break_match := break_match_goal || break_match_hyp.

This tactic breaks down match statements, both in goals:

Ltac break_match_goal := match goal with
| [ |- context [ match ?X with _ = _end ] ] =
match type of X with
| sumbool _ _ = destruct X
| _ = destruct X eqn:?
end

end.
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and in hypotheses:

Ltac break_match_hyp := match goal with
| [ H: context [ match ?X with _ = _end ] |- _]1 =
match type of X with
| sumbool _ _ = destruct X
| _ = destruct X eqn:?
end
end.

Both tactics perform syntactic pattern matching over the goal, using
the syntax name : cpattern |- cpattern, where the left cpattern repre-
sents hypotheses and the right cpattern represents the conclusion. In
break_match_goal, pattern matching looks only in the conclusion; in
break_match_hyp, pattern matching looks only in the hypotheses. Both
tactics use the context syntax to find all subterms of the term that are
match statements, then pattern match on the type of the result, using
the destruct tactic to break down those match statements.

The effect of break_match is to simplify tedious but conceptually
simple proofs by case analysis, and to do so without relying on the
names of hypotheses, which can make proofs likely to break as specifica-
tions change (Woos et al., 2016). Consider, for example, an interpreter
correctness proof:

Lemma interp_eval : V op v v’, interp op v = Some v’ — eval op v v’.
Proof.
unfold interp. intros. destruct op; destruct v;

try discriminate; inversion H; constructor.
Qed.

Here, the intros tactic introduces hypotheses named op, v, v’, and H. The
destruct op; destruct v sequence of tactics then does case analysis on op
and v. We can use repeat break_match instead of destruct op; destruct v
to simplify this proof:
Proof.

unfold interp. intros. repeat break_match;

try discriminate; inversion H; constructor.
Qed.

The resulting proof is more concise. It is also less likely to break as
specifications change, since it does not depend on the automatically
generated names op and v, which may later change (Section 6.2.3).
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Ltac was designed to achieve a balance between the flexibility of
writing tactics in a powerful language like OCaml, and the ease of
flexibility from using built-in combinators to write custom tactics di-
rectly inside of the Coq proof assistant. Like ML and OCaml, it is
Turing-complete (see Chapter 16 of Chlipala (2013a)). However, it gives
proof engineers limited access to underlying features like environment
management. This means that proof engineers do not have to deal with
low-level issues in OCaml such as managing de Bruijn indexes; proof
engineers who want that level of control may write plugins in OCaml.

Ltac2 (Pédrot, 2019), the next generation of Ltac, is in development.
It comes full circle, returning to the ML family of languages.

Eisbach The tactic language Eisbach (Matichuk et al., 2015b) for Is-
abelle was inspired by Ltac. Eisbach is tactic language that is integrated
into the proof language Isabelle/Isar. Using Eisbach, proof engineers
write tactics (called proof methods) directly in Isar syntax. The Eisbach
manual can be found in Matichuk et al. (2015c).
To understand Eisbach, consider an example proof method from the

Eisbach manual for solving existentials:
method solve_ex =

(match conclusion in 3 x. Q x for Q =

<match premises in U : Q y for y =
<rule exI [where P = Q and x = y, OF U]>>)

This matches the current conclusion with the Q in 3 x. Q x, then looks in
the hypotheses for a term that matches q y for the matched q and some y,
and then calls the introduction rule for existentials with that hypothesis.
In other words, if some hypothesis is @ y and the goal is 3 x. Q x, then
solve_ex will automatically prove the goal from the hypothesis. The
manual shows an example of calling this proof method to solve a proof:
lemma halts p = 3 x . halts x
by solve_ex
Like Ltac, Eisbach provides limited access to low-level details. Is-

abelle proof engineers who want access to these details may write proof
methods directly in Isabelle/ML.
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Other Tactic Languages The untyped nature of languages like Ltac
may make it difficult to debug custom automation and to provide strong
guarantees on custom tactics. Typed tactic languages such as those of
the Delphin (Poswolsky and Schirmann, 2009) and Beluga (Pientka
and Dunfield, 2008) logical frameworks, the tactic language for Ver-
iML (Stampoulis and Shao, 2010), and Mtac (Ziliani et al., 2015) and
Mtac2 (Kaiser et al., 2018) in Coq address these problems.

PSGraph (Lin et al., 2016) is a graphical tactic language which aims
to make debugging and refactoring of tactics easier. In PSGraph, tactics
are flow graphs for proof subgoals, and executing tactics amounts to
following the flow graph directly.

The Matita (Asperti et al., 2007) proof assistant introduces a lan-
guage of tinycals to address some challenges that tacticals pose for user
interaction. In particular, proof assistants traditionally execute tacticals
atomically. This makes it difficult to communicate how the tactical is
executed to the user, as well as to debug tacticals and provide useful
error messaging when they fail. Tinycals, in contrast, act like traditional
tacticals, except that they allow for more fine-grained execution.

Some tactic languages merge the tactic approach with metaprogram-
ming constructs, so that users can write tactics in the proof language
itself. In Idris (Brady, 2013), it is possible to implement tactics using
the elaboration monad, which exposes elaboration to users and enables
metaprogramming within Idris (Christiansen and Brady, 2016). Agda
recently replaced its reflection mechanism with one based on Idris’
elaborator reflection (Norell, 2016).

Similarly, Lean exposes several metaprogramming constructs (in-
cluding a tactic monad), which enable users to write tactics in Lean
itself, to access proof state, and to access internal methods in the under-
lying C++ codebase (Ebner et al., 2017); this enables proof engineers
to write powerful procedures.

Some tools merge the approach of proof by reflection with a tactic
language; we discuss these in Section 5.1.3.
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5.1.2 Proof Languages

A proof language is a mechanism for structuring and composing propo-
sitions, facts, and proof goals. Proof languages generally allow both
backward reasoning, going from the proof goal to a new set of goals,
and forward reasoning, where new facts are added to the proof context
but the goal remains the same. When formulating reasoning steps in
a proof language, procedures in lower-level languages, such as tactics,
can be invoked explicitly or implicitly. In turn, these procedures can
invoke specialized external proof search programs. In contrast to plain
unstructured sequences of commands (“tactic soups”), proofs written
in proof languages are usually meant to convey key proof ideas, i.e., to
be understandable by humans. To ensure readability, proof languages
take inspiration from traditional mathematical vernacular. We consider
two proof languages—Coq/SSReflect and Isabelle/Isar—in detail, and
then briefly discuss other proof languages.

Coq/SSReflect Coq/SSReflect is a proof language for Coq that em-
phasizes reasoning by rewriting using equalities and proofs by com-
putation via small-scale reflection (Gonthier and Mahboubi, 2010). It
was originally developed by Gonthier in the context of his proof of the
four-color theorem (Gonthier, 2008). Idiomatic proofs in Coq/SSReflect
make use of “bullets” (-, %, or +) to structure proofs similarly to how
Isabelle/Isar uses indentation of blocks to indicate structure.

The basis of Coq/SSReflect is that a step in a proof is one of the
following;:

e a deduction step that directly constructs parts of a proof, either
by backwards or forwards reasoning;

e a bookkeeping step that performs a management operation on the
proof context, e.g., introducing or renaming assumptions;

e a rewriting step that changes parts of the proof goal or some
assumption, either by way of some equality lemma or by compu-
tation.
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In idiomatic proofs, these kinds of steps are interleaved and tend to be
used in equal proportions.

The reflect part of SSReflect refers to the convention of performing
deduction steps that translate between symbolic representations, such
as expressions involving boolean functions, and logical representations,
such as inductive predicates. For example, when a proof goal can be
solved by reasoning in propositional logic, we can convert the proof
goal to boolean form and perform computation in Coq’s logic engine
instead of applying multiple propositional derivations manually. In
contrast to general proofs by reflection (Section 5.1.3), which focus
on computational efficiency and managing the sizes of proof objects,
SSReflect leverages reflection for convenience and user productivity. For
example, a conjunct can be reflected to a boolean value that directly
computes to true, saving the manual effort of applying tactics.

The proof language contains special syntax for translating between
representations, which is called application of view lemmas. Moreover,
Coq users traditionally use different commands for rewriting, definition
expansion, and partial evaluation. In Coq/SSReflect, all of these tasks
are performed via parameters to the rewrite tactic. Rewriting operations
can pinpoint specific subterms in the current proof goal through the
use of pattern expressions (Gonthier and Tassi, 2012) that may mention
some constant names for disambiguation but leave others implicit.

Consider the following lemma from the Mathematical Components
project whose proof is written in idiomatic SSReflect:

Lemma edivnP : V m d, edivn_spec m d (edivn m d).

Proof.

rewrite /edivn = m [|d] //=; rewrite -{1}[m]/(0 * d.+1 + m).

elim: m {-2}m O (leqnn m) = [|n IHn] [Im] q //=; rewrite 1tnS = le_mn.
rewrite subn_if_gt; case: (1tnP m d) = [// | le_dm].

rewrite -{1}(subnK le_dm) -addSn addnA -mulSnr; apply: IHn.

apply: leq_trans le_mn; exact: leq_subr.
Qed.

Here, the first rewrite unfolds the edivn definition, while the last rewrite
performs chained rewriting using facts arithmetic, such as that addition
is associative (addnA). Explicit names for quantified variables are given
after the operator =, which reduces the chance of brittleness due to
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reliance of machine-generated variable names. The tactic elim performs
induction on the natural number m.

Isabelle/Isar Isabelle/Isar is a proof language for Isabelle that aims for
human readability while retaining some symbolism of formal deduction
systems (Wenzel, 2007). It is built on the Isabelle/Pure logic, which is
an intuitionistic fragment of HOL. Isabelle/Isar can be understood as
an interpreter for block-structured syntax capturing the flow of facts
and proof goals (Wenzel, 2006).

As an example, the Isabelle/Isar manual (Wenzel et al., 2004) con-
tains a definition of a group that assumes only a left identity element,
along with the following proof that for any group, the identity element
of the group is a right identity (we expand the term ... notation from
the version in the reference manual for clarity):
theorem right_unit : x o 1 = x
proof - )

have 1 = x*~ o x by (rule left_inv [symmetric])

also have x o (x ! 0 x) = (x 0 x° %) o x by (rule assoc [symmetric])

also have x o x ' = 1 by (rule right_inv)

also have 1 o x = x by (rule left_unit)

finally show x o 1 = x.
qed
Translated directly into English, we can think of this as the following
proof (with implicit symmetry of equality):

Theorem 5.1 (Right unit). zol =2

Proof. By left inverse, 1 = 2! o 2. By associativity, z o (z7! o) =

(roxz~!)ox. By right inverse, zox~! = 1. By left unit, 1 o x = x. Then
by the above, z o1 = x. O

Isabelle/Isar completes and checks this proof much like a human
reader would, by making all of the appropriate substitutions. We could
render an alternate English proof with all of these substitutions explicit,
rather than leaving them to the reader:

Proof. We can write zo1 = x as zo (z~ ! ox) = z by left inverse, which
is (x oz 1) o x = & by associativity, which is 1 o 2 = z by right inverse,

which holds by left unit. Thus, x o1 = z. 0
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At this point, we are much closer to proof by a sequence of commands.
The key difference for readability is that the intermediate goals are
explicit in the proof language, so to reconstruct an English proof, the
reader does not need to step through tactics one-by-one and track the
transformation of the goal.

Other Proof Languages Mathematically-inclined proof languages such
as Isar for Isabelle and Czar for Coq (Corbineau, 2008) were influenced
by the language of the Mizar proof system (Trybulec and Blair, 1985),
which tilts more towards natural language than logical symbolism for
representing deduction steps. Many proof assistants following the LCF
tradition now have Mizar modes; for example, Mizar modes have been
implemented in HOL (Harrison, 1996) and HOL light (Wiedijk, 2001),
as well as in Coq (Giero et al., 2003).

Building a proof system specifically for human-readability means
that there is less of a barrier for humans and computers to check
the same proofs. Following in this spirit, the Formalized Mathematics
journal consists entirely of mathematical properties and proofs in Mizar
that are automatically translated into English and generated as PDFs,
such as the properties of sets (Darmochwal, 1990), naturals (Bancerek,
1990), and reals (Kaliszyk and O’Connor, 2009).

While most proof languages were designed with mathematics in
mind, their use has not been confined to mathematics. For example,
using Isar is recommended style for submission to the Isabelle Archive of
Formal Proofs (Klein et al., 2004-2019), which consists of more computer
science than mathematics formalizations (Blanchette et al., 2015).

The language PSL (Nagashima and Kumar, 2017) for Isabelle/HOL
allows expressing high-level proof strategies. PSL generates efficient Isar
proof scripts from user-written strategies.

5.1.3 Proofs by Reflection

Writing proofs by reflection, that is, calling certified procedures within
the host language itself (Allen et al., 1990), can be viewed as an alter-
native to writing proofs in a proof language or using tactics.
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Chapter 15 of CPDT (Chlipala, 2013a) illustrates this style of proof
in Coq and demonstrates its benefits on a proof that a natural number
is even; we present a slightly modified version of that example that is
self-contained. Given some inductive predicate for evenness:

Inductive isEven : nat — Prop :=
| Even_0 : isEven O
| Even_SS : V n, isEven n — isEven (S (S n)).

we construct a verified function to check evenness:

Fixpoint check_even (n : nat) : option (isEven n) := match n with
| 0 = Some Even_0
| 1 = None
| 8 (8§ n’) =
match check_even n’ with
| Some p = Some (Even_SS n’ p)
| _ = None
end
end.

For a given n, check_even returns an optional a proof of isEven n (None
when n is not even). As CPDT notes, this type signature guarantees
that it only returns a proof when n actually is even.

Our goal is to write a tactic that uses check_even to prove evenness.
To write this tactic, we need to extract the proof from the option type
above when possible. We define a dependently-typed function optionOut
that does this:

Definition optionOutType (P : Prop) (o : option P) :=
match o with
| Some _ = P

| _ = True
end.

Definition optionOut (P : Prop) (o : option P) : optionOutType P o :=
match o with
| Some pf = pf
Il _=1
end.

We then write a tactic that extracts the proof that check_even returns:

Ltac prove_even_reflective :=
match goal with
| [ |- isEven ?N] = exact (optionQut (isEven N) (check_even N))
end.
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With this, the following proof goes through:

Theorem even_256 : isEven 256.
Proof.

prove_even_reflective.
Qed.

and similarly for any other even number; the tactic fails (as expected)
for odd numbers. As CPDT notes, the size of the resulting proof term
is manageable even for large numbers. This is a particular advantage of
this style of proof.

The concept of computational reflection predates I'TPs; an early
history of reflection can be found in Demers and Malenfant (1995), and
an early history of its use in theorem proving can be found in Harrison
(1995). Accordingly, it is one of the oldest styles of proof automation.
Its use in modern proof assistants with support for higher-order logics
can be traced back to the 1990s, starting with a proof of the existence
of this class of proofs in Nuprl (Allen et al., 1990), and following soon
after in other ITPs such as LEGO (Pollack, 1995) and Coq (Boutin,
1997); in Coq, this approach predates Ltac (Delahaye, 2000).

Idris recently replaced its specialized tactic language with a mecha-
nism for reflection called elaborator reflection (Christiansen and Brady,
2016). This mechanism exposes Idris’ elaborator directly to the pro-
grammer, which allows for powerful proof automation. For example,
Christiansen and Brady (2016) demonstrates how to use elaborator
reflection to write a mush tactic, which can be used to dispatch many
goals in the Idris standard library:
mush : Elab ()
mush =

do attack

x <- gensym "x"

intro x

try intros

induction (Var x) ‘andThen‘ auto
solve

Proof by reflection is also the dominant style of proof automation
in Agda, which does not support tactics. Van Der Walt and Swierstra
(2012) demonstrate the isEven example from earlier using Agda’s old
mechanism for reflection. This mechanism was replaced in 2016 with a
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reflection mechanism based on Idris’ elaborator reflection. Other proof
assistants that support proofs by reflection include HOL4 (Fallenstein
and Kumar, 2015), Isabelle/HOL (Chaieb and Nipkow, 2008), and
Milawa (Davis and Myreen, 2015).

Nowadays, there is a trend of integrating the approach of proof by
reflection with tactic languages. For example, Cybele (Claret et al.,
2013) is a plugin for writing reflective tactics in Coq, with support for
effects and non-termination. Rtac (Malecha and Bengtson, 2016) is a
reflective tactic language for Coq, which contains specialized automation
to make it simpler to write soundness proofs of decision procedures
when writing reflective tactics. These mixed approaches enable proof
engineers to take advantage of the benefits of both approaches to more
easily build efficient automation.

5.1.4 Future Styles of Automation

One drawback of using tactics is that they can sometimes impede
proof understanding. In the future, we expect more tools for proof
understanding (in addition to existing structured proof languages). For
example, a tool could use tactics to find proofs, then simplify the result,
or otherwise output a format that is easier to understand.

Along those lines, debugging tactics and tacticals can be difficult,
since the execution of tactics and tacticals often is not conducive to
fine-grained debugging, and since fully informative debugging of tactics
sometimes requires interfacing with multiple languages (such as Ltac
and OCaml). Future tactic languages should better support debugging.
The continued development of alternative tactic execution models as
well as typed and graphical tactic languages may help with both of
these problems.

Another opportunity for improvement with existing automation is
improved performance of tactics and tactic languages. We expect more
exploration of improving tactic performance, both by writing tactics
differently and by improving the performance of the underlying engine.

The continued development of tools that integrate several styles
of automation may help proof engineers better take advantage of the
benefits of each of these approaches.
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5.2 Automation in Practice

Both specialized and general-purpose automation help move the burden
of proof away from the proof engineer and toward the tooling with
which the proof engineer interacts. This section briefly discusses a non-
exhaustive sample of automation procedures (Section 5.2.1). It then
concludes with a discussion of the future of automation (Section 5.2.2).

5.2.1 Automation Procedures

Automation can be built using any of the various styles of automation
(Section 5.1); since these styles of automation overlap, we consider
automation by what it achieves, rather than by the style of automation
that it utilizes.

Domain-Specific Automation Domain-specific automation automates
proofs within particular domains. For example, the omega (Crégut, 1999-
2018) tactic in Coq implements a decision procedure for quantifier-free
Presburger arithmetic based on the Omega Test (Pugh, 1991), an inte-
ger programming algorithm. It can automatically prove mathematical
statements that can be difficult for Coq users to prove by hand.

Some domains include verifying programs within specific languages (Cao
et al., 2015; Ricketts et al., 2014), writing mathematical proofs (Nipkow,
1990; Slind, 1994; Braibant and Pous, 2011; Narboux, 2004; Grégoire and
Mahboubi, 2005; Pouillard, 2012), deciding regular expressions (Braibant
and Pous, 2012), and reasoning about embedded logics such as separa-
tion logic (Appel, 2006; McCreight, 2009; Krebbers et al., 2017).

General-Purpose Automation General-purpose automation is machin-
ery that is useful across many domains. For example, the break_match
tactic that we used as an example for the Ltac tactic language (Sec-
tion 5.1.1) contains useful machinery to make proofs by case analysis
simpler and more robust.

Many proof assistants ship with useful general-purpose automation;
third-party tools may build on these. For example, many proof assis-
tants come with automation for inversion and induction (Nipkow, 1989;
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McBride, 1996; Cornes and Terrasse, 1995). Isabelle/Isar has special sup-
port for performing induction proofs (Wenzel, 2006); besides specifying
the variable to perform induction on, and the induction principle (rule)
to use, a user can indicate that certain variables are to be arbitrary, i.e.,
that they are not bound in the resulting assumptions and proof goals.
For example, the following clause opens a proof by strong induction
for natural numbers on the expression x — y, where x and some other
variable z from the previous context are arbitrary:

proof (induct "x - y" arbitrary: z x rule:less_induct)

In Coq, a similar proof requires building a custom induction principle
as a separate lemma.

Hint databases (Coq Development Team, 1999-2018c) in Coq store
theorems that its other tactics (Coq Development Team, 1999-2018b)
such as auto and rewrite can use as hints. For example, the tactic
auto with arith tells auto to use the arithmetic theorems defined in the
arith database when it tries to solve the goal. Hints can help make
proofs not only simpler, but more robust (see Chapter 3.8 of CPDT),
though they may negatively impact proof search performance or even
cause it not to terminate (see Chapter 13 of CPDT).

Some third-party libraries such the StructTact library (StructTact
Development Team, 2016-2019) and the code distributed with CPDT
and FRAP (Chlipala, 2017) ship a variety of general-purpose automation
that builds on the standard library packaged in one place. Automation
from these libraries ranges from machinery to better handle induc-
tion such as prep_induction (StructTact Development Team, 2016-2019)
and induct (Chlipala, 2017) to powerful tactics like crush (Chlipala,
2013a), which can dispatch many proof obligations automatically. The
agda-prelude (Norell, 2015-2019) library provides efficient alternatives
to automation in the Agda standard library.

Theory exploration—the automatic discovery and sometimes proof
of theorems for a given theory—is a form of general-purpose automation
that first arose in the context of automated theorem proving for math-
ematics (Buchberger, 2000). This style of automation aims to mimic
the way that mathematicians explore theories when writing proofs by
hand. While theory exploration tooling began with the development
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of specialized tooling, specialized tools can be used in tandem with an
ITP; Dramnesc et al. (2015), for example, uses the theory exploration
tool Theorema (Buchberger et al., 2006) in combination with Coq to
explore the theory of binary trees. The tool Hipster (Johansson et al.,
2014; Valbuena and Johansson, 2015; Johansson, 2017) for Isabelle/HOL
integrates theory exploration directly with an ITP.

Other examples of useful general-purpose automation include simple
general-purpose proof automation (Coq Development Team, 1999-2018b;
Zhan, 2016; Lindblad and Benke, 2006), rewriting (Coq Development
Team, 1999-2018b; Nipkow, 1989), and solving logical fragments (Paul-
son, 1999; Lescuyer and Conchon, 2009; Hurd, 2003; Kumar et al.,
1991; Busch, 1994; Dahn et al., 1997; Hurd, 1999), and techniques for
reasoning about executable specficiations (Barthe and Courtieu, 2002),
as well as an implementation of a generalization of congruence closure
to dependent type theory (Selsam and de Moura, 2017). In addition,
Chapter 6 describes general-purpose automation and tooling for proof
reuse (Section 6.4.3), as well as general-purpose automation built on
type classes and canonical structures (Section 6.2.1).

Hammers Hammers are systems for general reasoning over large li-
braries of formal proofs (Blanchette et al., 2016b). Like the verifi-
cation language F* (Swamy et al., 2016) or the congruence closure
algorithm (Selsam and de Moura, 2017) in Lean, hammers leverage
automated theorem provers (ATPs) from within an ITP. Hammers
leverage ATPs while preserving the small trusted bases of ITPs. They
are able to learn from previous proof efforts. In proof assistants, a
hammer is exposed as a collection of tactics that in effect comprise a
brute-force method for discharging a proof goal.
A hammer for a proof assistant typically has three components:

1. a premise selector that selects facts (axioms) to be used by ATPs
from the large library available to the proof assistant;

2. a translator that converts the selected facts and proof goal to the
restricted logics of the ATPs;
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3. a proof reconstructor that builds proofs accepted by the proof
assistants from the evidence provided by the ATPs.

The premise selector arguably has the most challenging task, since
the database of facts can be large, and it is difficult to determine whether
a fact is relevant to the given proof goal. The standard approach is to
leverage machine learning techniques, such as naive Bayes and k-nearest
neighbors (Blanchette et al., 2016b; Czajka and Kaliszyk, 2018).

The translator must take into account the particular foundations
and features of the proof assistant, such as polymorphic or dependent
types, and provide faithful representation in target logics, which may
have no types or only monomorphic types.

The proof reconstructor, like the translator, is highly specific to
the proof assistant. Reconstructors can use many different approaches
of varying robustness, such as ATP proof replay, reflection, or proof
assistant source generation, augmented by various heuristics. As a result,
reconstruction may sometimes fail.

Implementations of hammers include Sledgehammer for Isabelle/HOL (Paul-
son and Blanchette, 2012), HOL(y)Hammer for HOL Light and HOL4 (Kaliszyk
and Urban, 2014), and CoqgHammer for Coq (Czajka and Kaliszyk, 2018;
Czajka et al., 2018). Invocations of hammers typically spawn many
parallel instances of different ATPs, such as Z3, Vampire, the E theorem
prover, and CVC4. Hammer services to proof assistants can also be
provided remotely, overcoming local limitations on processing power
and memory (Kaliszyk and Urban, 2015).

As an example of applying a hammer, consider a Coq lemma about
lists from the StructTact library:

Lemma app_cons_singleton_inv : V A xs (y : A) zs w,
xs HHy i zs=[w]l > xs=[0 Ay=wAzs=1[].

Invoking the CoqHammer hammer tactic finds a proof via Z3:

Extracting features...

Running provers (using 8 threads)...
Z3 (nbayes-32) succeeded

- dependencies: List.app_eq_unit

The output also gives the following tactic call to replace the hammer
invocation, yielding a proof of the lemma without ATPs:
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Proof. Reconstr.rcrush List.app_eq_unit Reconstr.Empty. Qed.

While CoqHammer generates sequences of calls to custom tactics
for reconstruction, Isabelle’s Sledgehammer typically results in calls to
the built-in superposition prover metis (Blanchette et al., 2011), which
works similarly to ATPs such as Vampire.

The usual way to evaluate the effectiveness of a hammer for a
particular proof assistant is to apply the hammer on a standard library
by replacing proof scripts with invocations of hammer tactics. For
example, CoqgHammer was able to reprove 44.5% of all results in the
Coq standard library (Czajka and Kaliszyk, 2018), which is in line
with success rates for HOL Light benchmarks (40%). Success rates for
benchmarks in Isabelle/HOL can be as high as 70%, for databases with
upwards of 100,000 facts (Blanchette et al., 2016b). However, these rates
do not reflect practical application of hammers in evolving projects,
where proof goals may be reformulated based on manual exploration
using certain proof strategies.

In contrast to property-based testing (Paraskevopoulou et al., 2015)
and counterexample generators (Blanchette and Nipkow, 2010), ham-
mers do not give feedback when ATPs are unable to discharge a proof
goal. Consequently, applying hammers does not necessarily lead to
progress. On the other hand, hammers do not require decidable proper-
ties, generation of datatype instances, or domain knowledge.

Augmentation of hammer components to increase effectiveness and
success rates is an active research topic (Blanchette et al., 2016a; Wang
et al., 2017; Peng and Ma, 2017).

5.2.2 Future of Automation in Practice

Hammers have been around in Isabelle for a long time, but until recently,
it was not known if a hammer could be implemented for a dependent
type theory. We expect more development to follow in the lines of
CoqHammer.

The existence of third-party libraries for general-purpose proof
automation in many ways mirrors the rise of third-party libraries for
other programming languages which supplement the standard library;
we expect more of these libraries to come into existence, and we expect
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existing libraries to grow in popularity. We also expect domain-specific
tactics for common domains to continue to develop, and to cover new
domains as they arise.
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6

Proof Organization and Scalability

As verification projects have grown in size, proof engineers have in-
creasingly stressed strategies and tools for organizing large proof de-
velopments and for dealing with the challenges of scale. This section
describes some of these strategies and tools: constructs for property
specification and encodings (Section 6.1), proof design principles (Sec-
tion 6.2), high-level frameworks (Section 6.3), and constructs and tools
for proof reuse (Section 6.4).

6.1 Property Specification and Encodings

Proof engineers leverage many constructs and notations to express
programs and their specifications. For example, Coq offers a single basic
language called Gallina for both logical formulas and (computable)
functions, while Isabelle offers both an object language (e.g., HOL) and
a metalogic with different operators and quantifiers. The specification
languages can be extended inside proof assistants by using notations,
which provides new syntax for existing concepts; this is crucial for
emulating mathematical vernacular, which can aid understanding of
formal definitions.

162
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On top of basic specification constructs, sophisticated properties
can be expressed using inductive predicates via familiar definitional
mechanisms (Section 4.3.4). These predicates can be interpreted as
higher-order Prolog programs (Bertot and Casteran, 2004). For general-
ity and reuse, collections of such specifications can be abstracted over
using mechanisms such as parametric polymorphism (Strachey, 2000),
modules, and type classes (Section 6.2).

6.1.1 Domain-Specific Specification Languages

Sewell et al. (2010) presented a domain-specific language called Ott
for expressing inductive definitions and inductive properties over such
definitions, suited in particular for formalizing programming language
semantics. Ott files can be exported to Isabelle/HOL, Coq, and HOLA4,
using specific annotations for each proof assistant. For example, the
regular expression datatype from Chapter 2 can be expressed in Ott as

regexp :: regexp_ ::= {{ com regexp }} {{ coq-universe Type }}
| 0 :: :: zero | 1 :: :: unit | ¢ :: :: char
| r+r> :: :: plus | rr’> :: :: times | r * :: :: star

while the last matching rule for the Kleene star becomes

sinL (r ) s’ inL (r *)
ss’>inL (r %)

Note that the extra spacing is necessary for Ott’s parser to properly
disambiguate the syntax.

The more general proof assistant-agnostic specification language
Lem (Mulligan et al., 2014) also includes definition of recursive functions
and other programming language constructs, as well as a standard library
useful for semantic definitions. Ott files can be exported to Lem format
and thus incorporated into larger definitions.

6.1.2 Refinement of Programs, Data, and Proofs

Stepwise program refinement is the construction of a program by a
sequence of refinement steps, where each refinement step breaks the
original problem into a subproblem (Wirth, 1971); these steps can be
verified in an I'TP. Each refinement can be a refinement of a program



The version of record is available at: http://dx.doi.org/10.1561/2500000045

164 Proof Organization and Scalability

without changing the datatypes, or a refinement of the datatypes them-
selves (data refinement (De Roever et al., 1998)). Via the principle of
propositions-as-types, similar approaches can be used to develop proofs
by stepwise proof refinement of an existing specification.

Program Refinement A proof of refinement formally relates an ab-
stract program to a concrete, refined version of that program. It estab-
lishes that all of the behaviors of the concrete program are contained in
the set of behaviors of the abstract program (De Roever et al., 1998).
This relation can also be stated and proven in terms of the program
specifications (as in the refinement calculus (Back, 1988)) or in terms
of a simulation relation (Section 6.2.4). Chlipala (2017) contains an
overview of using program refinement to derive verified correct programs
from their specificationss.

Back (1991) formalized the refinement calculus in HOL. von Wright
(1994) presented a tool for verified program refinement using the re-
finement calculus in HOL. Since then, there have been a number of
refinement tools in Isabelle/HOL with support for logic (Hemer et al.,
2001), object-oriented (Liu et al., 2011), functional (Lammich, 2013),
and imperative (Lammich, 2015) programs. Cohen et al. (2013) devel-
oped a framework for Coq called CoqEAL which automates key steps
of data refinement. Delaware et al. (2015) presented Fiat, a refinement
framework for deductive synthesis of abstract data types in Coq.

Proof engineers use proofs of program refinement to break down
large proof developments or to compose modular proof developments,
for example for the verification of storage systems (Chajed et al., 2019),
compilers (Leroy, 2009; Rizkallah et al., 2016; Kumar et al., 2014),
and OS kernels (Klein et al., 2014; Gu et al., 2015; Gu et al., 2016).
Refinement proofs can also help make proof developments robust to
changes (Section 6.2.3).

Proof Refinement Reasoning backwards in proof assistants, from
goals to premises, can be viewed as a form of proof refinement (Bates,
1979; Krafft, 1981), where the proof is the refinement of the specification.
The idea of proof refinement is to refine the goal to proofs of subgoals,
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then refine those subgoals further. Bates (1979), for example, describes
the rule for refining a conjunction A A B given hypotheses s:
S pr AN B by

S pr A

S pr B
In other words, A A B follows from s if each of A and B follow from s.
Each of A and B follow from s if they can be refined using other rules.

Refinement logics such as Nuprl (Constable et al., 1986) and Red-
PRL (Angiuli et al., 2018) as well as other proof assistants following
in the LCF tradition (Section 4.2) encourage this style of reasoning.
Sterling and Harper (2017) contains an overview of proof refinement.

6.2 Proof Design Principles

Good design principles can make proofs easier to develop and maintain.
These design principles mirror software engineering design principles in
many ways, but also address challenges unique to proof engineering.
Consider an example in Coq from Woos et al. (2016), which demon-
strates a design principle that addresses challenges unique to proof
engineering. In this example, we have a proof eg_proof of a theorem eg,
which shows that if two functions map equal inputs to equal outputs,
then any proposition that holds on all outputs of g must also hold on
all outputs of £:
Definition eg : Prop :=
V (AB : Type) (f g : A — B) (P : B — Prop),
Vx, P (gx)) —

Vzx, fx=gzx) —
vV x, P (f x)).

Lemma eg_proof : eg.
Proof.

unfold eg. intros. rewrite HO. auto.
Qed.

Suppose we later change eg (using orange to show changes):

Definition eg : Prop :=
V (AB: Type) (f g : A — B) (PQ : B — Prop),
¥V x, P (gx) —
(forall x, P (g x) > Q (g x)) —
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Vzx, £fx=gzx) —
~Vx, P(E=x)AQCE ).

As the authors note, our proof eg_proof no longer holds, since the
automatically generated hypothesis name Ho is now called Ht. One way
to address this is to change the hypothesis name in the proof as well:
Proof.

unfold eg. intros. rewrite H1l. auto.
Qed.

But if we continue changing eg, then we will need to keep making these
kinds of changes. Instead, the authors advocate for using the tactic
find_rewrite, since it does not depend on hypothesis names:

Proof.

unfold eg. intros. find_rewrite. auto.
Qed.

This proof goes through for both definitions of eg.

The design principle from this example addresses a challenge unique
to proof engineering, since it deals with the consequences of proof
automation. Other proof engineering design principles mirror software
engineering design principles. This section provides an overview of
design principles for proof engineering, drawing parallels to software
engineering when appropriate. It focuses on general-purpose design
principles, and discusses domain-specific design principles (beyond those
from Chapter 3) only when relevant more broadly.

6.2.1 Design Principles for Abstraction

As in software engineering, design principles for proof engineers prevent
changes in implementation from breaking dependencies that ought to
rely only on specifications. For example, much like a software engineer
may write an interface for a collection of functions so that he can
switch out implementation details such as the underlying data structure
without breaking functionality that depends on those functions, so a
proof engineer may write an interface for a collection of lemmas so that
changes to the proofs of those lemmas do not break other lemmas and
theorems that depend on those lemmas (Woos et al., 2016).
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There are many ways to achieve this sort of abstraction in ITPs,
some of which have different impliciations for proof automation. For
example, in Coq, it is possible to write interfaces using modules, type
classes, or canonical structures; Coq has special support for proof search
for type classes (Sozeau and Oury, 2008) and canonical structures (Saibi,
1999). This section describes some means of abstraction in an ITP.

Modules Modules, as manifested in languages such as Standard ML (Mac-
Queen, 1986) and proof assistants such as Coq (Chrzaszcz, 2003), are
collections of named components which may be types, values, or nested
modules. A central property is the separation of module interfaces (sig-
natures or module types) and module implementations (structures). The
interface-implementation relation is many-to-many; one signature can
be implemented by several structures, and one structure can implement
several signatures. A structure can choose to hide all information not
specified in the signatures it implements.

Parametric modules, called functors, take structures that implement
certain signatures as arguments. In proof assistants, functors can provide
abstraction and reuse of both functions and proofs. This approach is
taken to implement finite sets and maps in Coq using AVL trees (Fillidtre
and Letouzey, 2004), and later to implement balanced binary search
trees using red-black trees (Appel, 2011a).

Type Classes Type classes were first implemented in the Haskell
programming language (Wadler and Blott, 1989). In a proof assistant
context, type classes have notably been implemented for Coq (Sozeau
and Oury, 2008) and Isabelle/HOL (Haftmann and Wenzel, 2007);
instance arguments (Devriese and Piessens, 2011) are a similar feature
in Agda. Type classes can be viewed as a particular use of a module
system as in Standard ML, and type classes can coexist with such a
module system (Dreyer et al., 2007).

A type class can be viewed as an abstract data type that defines a
collection of functions by their parameter types, while not fixing function
implementations. The abstract data type can then be implemented in
different ways for different parameter types. For example, Volume 4 of
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Software Foundations (Pierce et al., 2014) describes an equality type
class with a single function eqb which, when provided two arguments
of the same type, returns a boolean:
Class Eq A :=
{

egb: A — A — bool;
}.
Different implementations (instances) of this class can then be provided
for different types; Software Foundations describes one for booleans:

Instance eqBool : Eq bool :=
{
egb := fun (b c : bool) =
match b, ¢ with
| true, true = true
| true, false = false
| false, true = false
| false, false = true
end

}.

and one for natural numbers:

Instance eqNat : Eq nat :=
{

egb := Nat.egb
.
A compiler can translate programs that use functions defined for type
classes to programs that do not by looking up and applying the appro-
priate function instances, using information about function invocation
types.

A key use of type classes in Haskell programs is as a way to structure
programs by abstracting certain code over appropriate type classes,
and concretizing the abstracted code with appropriate type instances
elsewhere, avoiding duplication and facilitating reuse; proof engineers
can use type classes similary to achieve both code and proof reuse.
However, type classes in ITPs also provide additional benefits beyond
those that type classes in other languages such as Haskell provide.
For example, one drawback of using only type classes for structuring
programs in Haskell is that a type can implement a type class in exactly
one way (Harper, 2011); it may be useful to define different type class
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instances for sorting of integers depending on the size of the input data,
or use different orders on integers for sorting. Unlike in Haskell, type
classes in Coq can support multiple instances.

The Coq implementation of type classes is first-class, meaning
that it is a thin layer on top of existing functionality (specifically,
implicit arguments and dependent records). In addition, Sozeau and
Oury (2008) added specific support for type class resolution into Coq’s
proof search mechanism. In contrast to Coq’s type classes, the type
classes of Isabelle/HOL are restricted to one type variable, and are not
first-class. One particular advantage of type classes in proof assistants
(as opposed to type classes in Haskell) is that propositions can be type
class members, e.g., a type class for a monad can require witnesses
(proofs) for the monad laws along with monad operations. By extension,
this means that proofs in one type class instance can be derived partly
from proofs in other type class instances (e.g., of some more general
class). In contrast with Haskell, the type class instance resolution system
in Coq can always be elided by manually passing implicit type class
instances.

Type classes have been used for abstraction and reuse in many
proof developments. For example, Spitters and Weegen (2011) used
type classes to represent a standard algebraic hierarchy in Coq, along
with parts of category theory. Woos et al. (2016) used type classes to
organize the correctness proof of the Raft consensus protocol in Coq,
and for abstracting the Raft protocol implementation for replication
over arbitrary state machines.

Type classes are closely tied to other language features for abstrac-
tion. General parametrization of theories in Isabelle can be achieved via
locales (Kammiiller et al., 1999; Ballarin, 2006), which is the mechanism
used to provide type class support (Haftmann and Wenzel, 2009); a
locale can be viewed as a persistent proof context that includes arbi-
trary variables and assumptions, and which can be instantiated in other
proofs.

Canonical Structures In Coq, canonical structures (Mahboubi and
Tassi, 2013; Saibi, 1999) provide an alternative to type classes. Canonical
structures are a mechanism to provide theory-specific dictionaries to
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datatypes, allowing for more flexible resolution strategy than more the
more widely used type classes.

To show their typical use, consider partial commutative monoids
(PCMs); an algebraic structure which recurs in our current ongoing work
on the verification of stateful and concurrent programs (Nanevski et al.,
2014). We implement PCMs using two of the Coq’s native constructs:
dependent records and canonical structures. We follow the established
SSReflect design pattern of defining algebraic data structures by means
of miz-in composition (Garillot, 2011), whereby different dependent
records formalize different algebraic properties, which can be combined
using packed classes mechanism. The latter also defines the field reso-
lution strategy (Garillot et al., 2009) in a case of overlapping names.
For instance, in Coq the miz-in defining PCMs is represented by the
following dependent record:

Record mixin_of (T : Type) := Mixin {
valid : T — bool;
join : T - T — T;
unit : T;
: commutative join;
: associative join;
: left_id unit join;
: V x y, valid (join x y) — valid x;
¢ valid unit }.

The type T is the carrier type of the structure. The field valid selects
a subset of T, standing for the “defined” elements. The invalid (or
“undefined”) elements help model partiality: a partial function over T will
return some invalid element on an input on which it is mathematically
undefined. join is the binary operation of the PCM, and unit is the unit
element. The remaining five unnamed fields enumerate the axioms that
have to be satisfied by each PCM instance.

Next, the mix-in “interface” is packaged with a carrier type, into
a dependent record type, which represents PCMs. We also introduce
a coercion from the package to the underlying carrier type, so that
the two can be conflated. This coercion essentially accounts for the
delegation hierarchy from object-oriented languages.

Structure pcm : Type := Pack {type : Type; _ : mixin_of type}.
Coercion type : pcm >— Sortclass.
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Next, we explain the mechanism of packaging all necessary defini-
tions along with lemmas about data structures (such as join’s commu-
tativity and associativity in the case of PCMs) into a single module
that should be imported by the clients of the algebraic structure. For
example, we introduce appropriate notation for the join operation, and
specifically name and prove the lemmas that correspond to the PCM
properties that we left unnamed in the mixin.

Notation x @y := (join x y).

Lemma joinC (U : pcm) (xy : U) : xey =y @ x.

Lemma joinA (U : pcm) (x yz : U) : xeyez =x0(yeoz).

The lemmas such as joinC and joinA are proved by destructing the
package U, but notice how the coercion allows conflating U with its
carrier type. Also notice how the notation e allows the PCM U to be
ommitted from the equations themselves, as the typechecker can infer
it from the context.

Algebraic structures can inherit the properties of other, more basic
structures. Thus, we also require an analogue of object-oriented in-
heritance. We illustrate how this can be done in Coq, by defining an
interface for a cancellative PCM, which inherits from an ordinary PCM.
The cancellative PCM is defined as the following mix-in record:

Record mixin_of (U : pcm) := Mixin {

_:VYabec: U, valid (aeb) —+ aeb=aec — b =c
.
Notice that the dependent record mixin_of in this case is parametrized
via the carrier PCM vu, which is used as a target for a coercion whenever
an instance of a plain PCM or a carrier type U is required, since coercions
a transitive.

Let us now instantiate the definition of abstract structure with
concrete datatypes. It turns out that it is insufficient to merely prove
that a datatype satisfies the PCM axioms. To work comfortably with
an algebraic structure in practice, one has to explicitly “register” the
structure with the type inference engine.

We first show what goes wrong if one doesn’t perform the “regis-
tration.” For instance, assume we first define an instance of a PCM for
nat with addition, by proving that + with o satisfies the PCM axioms.
Then the following lemma which uses the generic notation e for the
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PCM operation, is considered ill-formed by Coq. The reason is that Coq
cannot figure that there is a PCM associated with nat, and that the
generic notation e should be resolved with addition. Indeed, we could
have defined the PCM for nat via multiplication (x) with 1, in which
case o should be resolved by x.

Lemma add_perm (a b c : nat) : ae (bec) =ce (bea).

In the above case, once a structure is registered as the default PCM for
nat, the add_perm lemma can be proved by selective rewriting using the
standard PCM properties.

Some notable uses of canonical structures include telescopes (Garillot
et al., 2009) and higher-order tactics for separation logic (Gonthier et al.,
2011).

6.2.2 Design Principles for Programming with Dependent Types

In order to use dependent types to their full extent, proof engineers have
developed many paradigms to deal with the challenges they present. For
example, using dependent types, we can define heterogenous lists and a
selection function over hetereogenous lists. To write the selection func-
tion, however, we must first define the type that it has, which depends
on the case. Chlipala (2013a) accomplishes this using a membership
predicate:

Section hlist.

Variable A : Type.
Variable B : A — Type.

Inductive hlist {A : Type} {B : A — Type} : list A — Type :=
| HNil : hlist nil
| HCons : V (x : A) (1s : list A), B x — hlist 1ls — hlist (x :: 1ls).

Variable elm : A.

Inductive member : list A — Type :=
| HFirst : V 1ls, member (elm :: 1s)
| HNext : V x 1ls, member ls — member (x :: 1ls).

Fixpoint hget 1ls (mls : hlist 1s) : member 1ls — B elm :=
(k... %)
End hlist.
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In other words, the type of hget states that whenever elm is a member
of some list 1s, then we can select some element of type B elm from
any mls : hlist 1s. This is one example of a common style of writing
functions and proofs using dependent types, wherein the proof engineer
first defines the type of the function or proof inductively, and then
defines the function or proof that has that type. It is a powerful style
that makes it possible to define very expressive types.

Chlipala (2013a) provides a comprehensive overview of dependently-
typed programming in Coq with many more examples. Tanter and
Tabareau (2015) outlines design principles for gradual verification in
Coq, which may help reduce the burden of verification with dependent
types and increase adoption.

6.2.3 Design Principles for Scale

The scale of programs verified in I'TPs has increased over the years.
In recent years, proof engineers have begun to look at how to address
the challenges that come with this increase in scale. Proof engineering
in the large (Kaivola and Kohatsu, 2003), for example, describes a
methodology for verifying large-scale ciruits; it is among the earliest
work noting that proof design for large verification projects is important.
This section describes design principles dealing with the challenges of
scale such as robustness in the face of changes, compositionality of
components, and efficiency of code and proofs. In addition, Section 6.4
describes design principles for proof reuse.

Design Principles for Robustness A major source of inefficiency in
verification is proof brittleness: Even a minor change to a single theorem
or definition can break many dependent proofs. This makes proofs
difficult to maintain (Woos et al., 2016; Aydemir et al., 2008; Murphy-
Hill and Grossman, 2014; Delaware et al., 2013a). Design principles
help make proofs robust in the face of changes. This is one approach to
proof evolution (Section 7.2).

One approach to building robust proofs is to make use of proof
automation (Chapter 5) to dispatch similar goals. Proof engineers who
use the default tactics included in many proof assistants already take
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advantage of this, since the same tactic can discharge different goals.
For example, a proof engineer who uses omega in Coq or presburger in
Isabelle/HOL need not change the proof script as the goal changes, so
long as the goal stays within the same fragment of arithmetic solved by
those tactics.

The degree to which proof engineers rely on automation varies by
style. CPDT (Chlipala, 2013a), for example, advocates for the heavy
use of program-specific automation, noting that this makes proofs more
robust; the tagless interpreter proofs from Chapter 8.3 of CPDT contain
an example of automation of this kind. This style of development
localizes the burden of change to the automation itself as opposed to
the many proofs that use the automation.

While automation can make proofs more robust, it can also be
brittle in itself. For example, some Coq tactics automatically generate
hypothesis names; small changes in specifications can cause proofs that
rely on those names to break. One approach to this problem is to
always explicitly specify hypothesis names, so that Coq never generates
hypothesis names automatically; the IDE Company-Coq (Pit-Claudel
and Courtieu, 2016) provides some built-in support for this approach.
Planning for Change (Woos et al., 2016) notes that, while this approach
helps, it is still necessary to update those explicit names as specifications
change. Instead, the authors advocate for the use of structural tactics,
or tactics that do not depend on hypothesis names and hypothesis
ordering; many tactics of this style can be found in the associated
StructTact (StructTact Development Team, 2016-2019) library.

Planning for Change addresses design for robustness not only at
the level of automation, but also at the level of specifications and proof
objects. It presents a methodology for writing robust proofs indepen-
dently of any domain or framework. This methodology is informed by a
large proof engineering effort verifying the Raft consensus protocol. It
is a set of five recommendations. Some of these recommendations draw
on software engineering design principles. For example, the authors
recommend using information hiding techniques similar to those used in
software engineering to hide definitions. That way, the burden of change
is localized to interface changes, and changes in only implementation do
not cause breaking changes in dependencies. Other recommendations
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tackle challenges that are unique to proof engineering. For example, the
authors advocate for the use of custom induction principles to capture
common patterns in inductive proofs.

Refinement (Section 6.1.2) can help make proofs robust to changes.
For example, the proofs of the sel.4 microkernel in Isabelle/HOL have
evolved alongside the implementation for over eight years (Klein et al.,
2014). The proof development makes use of two layers of specifications:
an abstract specification which describes only behavior of the system, and
an executable specification which includes implementation details. These
two layers are connected by a refinement proof. Using this approach,
the authors found that both making low-level changes and adding new
simple features were not very costly, though more complex changes that
interacted with other parts of the code significantly were still costly.

Design Principles for Compositionality CompCert (Section 3.1.1) em-
ploys a compositional design for describing the different intermediate
languages and how they interact with each other. Affinity lemmas from
Planning for Change also capture this concept. The CertiKOS project
introduces the idea of a deep specification (Gu et al., 2015) that makes
compositional verification more tractable. DeepSpec (DeepSpec Team,
2013-2019), an ongoing project, is addressing this problem more gener-
ally. Section 6.3 describes frameworks for compositional verification.

Design Principles for Efficiency Some proof assistants like Coq work
by extraction (Section 4.4.2) from the core language into an executable
language. The resulting extracted code can be slow, which can be a
barrier for verifying a realistic system. Cruz-Filipe and Spitters (2003)
and Cruz-Filipe and Letouzey (2006) describe proof design principles
for optimizing the efficiency of extracted code.

6.2.4 Style Guides and Proof Techniques

Style guides and proof techniques help guide proof engineers in dealing
with common patterns to address common challenges.
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Style Guides Section 3.2.1 described style guides in mathematics. A
few general-purpose style guides exist. Gerwin’s style guide (Klein,
2015) for Isabelle, for example, is a set of guidelines that are used
within Isabelle itself and in several large developments. The Isabelle
Archive of Formal Proofs requires that submitted proofs follow some
of these guidelines, and recommends others (Klein et al., 2004-2019).
The CogStyle (Coq Development Team, 2017) style guide is a set of
guidelines for Coq in the main Coq repository which is used within the
standard library.

Proof Techniques Proof techniques are techniques that handle com-
mon classes of proofs, or that make it easier to write proofs in a
particular style. For example, one widely-used proof technique is sim-
ulation (Lynch and Vaandrager, 1994); an overview of this technique
can be found in Chlipala (2017). This technique helps proof engineers
prove that systems preserve liveness and safety properties. Refinement
(Section 6.1.2) reduces to simulation (Klein et al., 2014).

One application of simulation is to show compiler correctness. Com-
pCert (Leroy, 2009), for example, uses this technique to show that
the program transformations that the compiler makes are semantics-
preserving. In the case of compiler correctness as in CompCert, both
directions of simulation (forward simulation and backward simulation)
start with a source program s and a target program t that are related
along some relation r. The forward simulation (Figure 6.1, left) states
that if s steps to s’, then ¢ can step to some t, where s’ and ¢ are
related by r. Similarly, the backward simulation (Figure 6.1, right)
states that if ¢ steps to ¢/, then s can step some s’, where ¢’ and s’ are
related by r. Intuitively, a forward simulation shows that “anything
the source program could do, the target program could do too,” and a
backward simulation shows that “anything the target program could do,
the source program could do too.” Together, a forward and a backward
simulation establish indistinguishability, any entity restricted to only
observe “visible” program transitions (e.g., input and output) will never
be able to determine if they are interacting with the source or target
program (Sangiorgi, 2011). If the source language is deterministic, then
the forward simulation follows from the backward simulation; if the
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Figure 6.1: Forward (left) and backward (right) simulation for compiler correctness.
Premises are show as solid lines and goals are shown as dashed lines.

target language is deterministic, then the backward simulation follows
from the forward simulation (Leroy, 2009). CompCert takes advantage
of this to show backward simulation from only forward simulation and
determinism of the target language.

Section 5.1 discusses some techniques for interacting with automa-
tion. Proof techniques can also help proof engineers reason within certain
domains. Bahr and Hutton (2015), for example, describes a technique
for deriving correct compilers from specifications in Coq. Section 6.2.5
describes techniques for reasoning about imperative programs.

6.2.5 Design Principles for Reasoning about Imperative Programs

When desigining a verification framework for imperative programs based
on a dependently-typed proof assistant (e.g., Coq), the most common
approach is to implement a version of a Floyd-Hoare style program
logic (Floyd, 1967; Hoare, 1969) in it. When doing so, the framework
designer is faced with the following choices:

e How to embed, into a proof assistant, the language with the
features, which the host language does not have (e.g., mutable
state and concurrency)?

e How to encode verification conditions for imperative programs
specified in Floyd-Hoare style, and implement the corresponding
reasoning principles in a proof assistant?
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Below, we elaborate on these two design choices and provide a survey of
the most prominent approaches implementing them, both for sequential
and concurrent reasoning about imperative programs.

On Shallow and Deep Embedding

An important design decision to take when designing a framework for
verification of effectful (i.e., heap-manipulating or concurrent) programs
on top of a general-purpose proof assistant is its use of shallow or deep
embedding the language to be verified.

Shallow embedding is an approach of implementing programming
languages, characterized by representation of the language of interest
(usually called a domain-specific language or DSL) as a subset of another
general-purpose host language, so the programs in the former one are
simply the programs in the latter one. The idea of shallow embedding
originates at early ’60s with the beginning of era of the Lisp programming
language (Graham, 1996), which, thanks to its macro-expansion system,
serves as a powerful platform to implement DSLs by means of shallow
embedding (such DSLs are sometimes called internal or embedded).

Shallow embedding in the world of practical programming is ad-
vocated for a high speed of language prototyping and the ability to
reuse most of the host language infrastructure. An alternative ap-
proach of implementing and encoding programming languages is called
deep embedding, and amounts to the implementation of a DSL from
scratch, essentially, writing its parser, interpreter and type-checker in
a general-purpose language. Deep embedding is preferable when the
overall performance of the implemented language runtime is of more
interest than the speed of DSL implementation, since then a lot of
intermediate abstractions, which are artifacts of the host language, can
be avoided.

In the world of mechanized program verification, both deep and
shallow embeddings have their own strengths and weaknesses. Although
implementations of deeply embedded languages and calculi naturally
tend to be more verbose, design choices in them are usually simpler to
explain and motivate. Moreover, the deep embedding approach makes
the problem of name binding to be explicit, so it would be appreciated
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as an important aspect in the design and reasoning about programming
languages (Aydemir et al., 2008; Weirich et al., 2011; Charguéraud, 2011).
We believe that these are the reasons why this approach is typically
chosen as a preferable one when teaching program specification and
verification in Coq (Pierce et al., 2014).

Importantly, deep embedding gives the programming language im-
plementor full control over its syntax and semantics. In particular, the
expressivity limits of a defined logic or a type system are not limited by
expressivity of the host language’s type system. Deep embedding makes
it much more straightforward to reason about pairs of programs by
means of defining the relations as propositions on pairs of syntactic trees,
which are implemented as elements of corresponding datatypes. This
point becomes crucial when one needs to reason about the correctness of
program transformations and optimizing compilers (Appel et al., 2014).

In contrast, the choice of shallow embedding, while sparing one the
labor of implementing the parser, name binder and type checker, may
limit the expressivity of the logical calculus or a type system to be
defied. In the case of Hoare Type Theory (Nanevski et al., 2010), for
instance, it amounts to the impossibility to specify programs that store
effectful functions and their specifications into a heap.!

In the past decade Coq has been used in a large number of projects
targeting formalization of logics and type systems of various program-
ming languages and proving their soundness, with most of them pre-
ferring the deep embedding approach to the shallow one. We believe
that the explanation of this phenomenon is the fact that it is much
more straightforward to define semantics of a deeply-embedded “feath-
erweight” calculus (Igarashi et al., 2001) and prove soundness of its
type system or program logic, given that it is the ultimate goal of the
research project. However, in order to use the implemented framework
to specify and verify realistic programs, a significant implementation
effort is required to extend the deep implementation beyond the “core
language,” which makes shallow embedding more preferable.

L This limitation can be, however, overcome by postulating necessary axioms.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

180 Proof Organization and Scalability

Encoding Verification Conditions

In a Floyd-Hoare style logic, specification of a program c is given in a
form of a tiple {P} ¢ {Q}, where the assertions P and @ are referred
to as the precondition and the postcondition, respectively. The standard
semantics of the triple imposes that for any state, satisfying P, the
final state, after ¢ terminates, satisfies (). This definition corresponds
to termination-insensitive partial correctness (i.e., ¢ is allowing to not
terminate at all, so any postcondition would hold). Some program logics
impose a stronger semantics of total correctness, requiring ¢ to terminate,
in addition to the above (Dockins and Hobor, 2010).

This treatment of a Floyd-Hoare triple allows for verifying the
programs by means of following the inference rules of a program logic,
allowing to decompose the proof of {P} ¢ {Q} into the proofs about
¢’s sub-programs (Hoare, 1969). While this style of reasoning seems
natural and relatively easy to implement in a proof assistant, and is
advocated by the most widely used tutorials (Pierce et al., 2014), it is
not the most convenient to conduct the proofs in, due to the need of
constantly discharge the weakening obligations, required for “massaging”
the verification goal, and represented by the following inference rule:

P=pP {P}c{Q} @=0Q
{P} c{Q}

A more proof-assistant-friendly way to encode the Floyd-Hoare-style
verification conditions, “compressing” the necessary applications of the

(WEAKEN)

weakening rule, is to use the idea of predicate transformer by (Dijkstra,
1975) that can be used to compute a pre-condition for a computation,
for any context in which that computation may be used. This approach,
dubbed the weakest precondition (WP) calculus allows one to encode
the meaning of a Floyd-Hoare triple (roughly) as follows:

{P}c{Q} & P=wpc{Q},

where wp ¢ {Q} is the program ¢’s weakest precondition wrt. the imposed
postcondition @), expressed as a logical formula. Therefore, what is left
to the designer of the mechanised program logic to do is to provide
the implementation of the primitive wp, which would “compile” a
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program and its postcondition to the logical assertion, which can be
later discharged using the host proof assistant’s machinery.

The weakest precondition approach to encoding verification condi-
tions for imperative programs is amazingly versatile, and, to the best
our knowledge, has been adopted in most of the major implementations
of program logics embedded into proof assistants (Nanevski et al., 2008a;
McCreight, 2009; Nanevski et al., 2010; Charguéraud, 2010; Chlipala,
2011; Swamy et al., 2013; Appel et al., 2014; Krebbers et al., 2017).

Verifying sequential heap-manipulating programs

The main success in a program logic-based verification of heap-manipulating
programs has been achieved with the discovery of Separation Logic (O’Hearn
et al., 2001; Reynolds, 2002). It did not take long for Separation Logic
to be mechanised in an ITP (Nanevski et al., 2008a; Mehta and Nipkow,
2003; McCreight, 2009), using both deep and shallow embedding.

One of the most successful formalizations in Coq by means of
shallow embedding is the series of work on Hoare Type Theory (HTT)
by Nanevski et al. (2008a), known as YNot. YNot has been used, among
other things, in verifying a relational database system (Malecha et al.,
2010) and a secure browser kernel (Jang et al., 2012).

In addition to adopting the WP-calculus for expressing verification
conditions in an embedding of Separation Logic into Coq, HTT first
made active use of binary postconditions, enabling a straightforward
treatment of logical variables, whose scope spans both pre- and postcon-
ditions of a Floyd-Hoare triple. Specifically, this has been achieved by
making a postcondition @ to be not of type state — Prop (i.e., unary,
as suggested by the textbook expositions of program logics), but rather
of type state — state — Prop, i.e., constraining both the pre- and the
post-state. This style of specification has later been adopted by multiple
other verification frameworks (Swierstra, 2009; Swamy et al., 2013).

The SEPREF (Lammich, 2015) tool for verifying imperative programs
in Isabelle/HOL includes a separation logic framework built on top of
Imperative HOL, which is built on top of Isabelle/HOL. SEPREF uses
refinement (Section 6.1.2) to derive an imperative heap-based program
and correctness proof from a functional program and correctness proof.
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YNot (Nanevski et al., 2008a) has implemented the heap disjointness,
inherent to Separation Logic, by means of a deep embedding of logic rea-
soning principles. Such an embedding of a domain-specific logic required
a later development of a number of tactics for making large mechanised
proofs tractable (Chlipala et al., 2009). In a later work, Nanevski et al.
(2010) have shown shown how to achieve almost the same expressiv-
ity with very little domain-specific automation, by making reasoning
about finite heaps decidable and leveraging the machinery of small-scale
reflection (Gonthier and Mahboubi, 2010).

Various successful deep embeddings of Floyd-Hoare style reasoning
into Coq have been demonstrated viable for the sake of reasoning about
low-level programs using different versions of Separation Logic (Chlipala
et al., 2009; Chlipala, 2011; Chlipala, 2013b; Chen et al., 2015; Cao
et al., 2018). All those efforts came supplied with tailored libraries
of domain-specific tactics, with those tactics automatically applying
Separation Logic’s FRAME rule and thus progressively reducing the size
of the verification goal.

6.2.6 Future of Design

While we think that domain-specific design principles will always be
important, we expect that there is a lot of potential for general-purpose
design principles that frame proof engineering in the context of software
engineering and make novel use of what we already know. Planning
for Change investigates where proof engineering diverges from software
engineering and where it calls for specialized techniques; continuing
along these lines should drive more useful proof design techniques.
Compared to design principles for mathematics, current general-
purpose design principles place little emphasis on proof understanding.
While this is an understandable difference in emphasis, his can inhibit
collaboration for proof engineers as well. We expect more work on
proof understanding to become common as collaboration between proof
engineers increases with the growth in large-scale verification projects.
Automation-heavy styles can help prevent breaking changes, but
have drawbacks. Some of these drawbacks may be avoidable. For exam-
ple, one limitation is that proof checking of the large and complex terms
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these procedures produce can be slow. Developments in proof checking
such as term simplification could make this style more tractable. De-
bugging is also difficult; alleviating this concern could be as simple as
better debugging tooling for tactics.

6.3 High-Level Verification Frameworks

In the context of software engineering, a framework is distinguished
from a library or domain-specific language in that the client relinquishes
control of execution to the framework. In practice, the concept of
a framework often refers to some combination of design principles,
libraries, and tooling that together give structure to code, often within
a certain domain, regardless of control of execution. We use the latter
term, as it is what is used most often in proof engineering papers, and
as the concept of control of execution does not always make sense in
the context of proof development.

Several of the libraries and languages we have already discussed (for
example, Bedrock (Chlipala, 2013b)) fit this definition of a framework.
This section extends that discussion to cover frameworks for two common
domains: concurrent applications (Section 6.3.1) and language design
and metatheory (Section 6.3.2). It then discusses frameworks for a few
other domains (Section 6.3.3), and concludes with a discussion of the
future of frameworks (Section 6.3.4) for proof engineering.

6.3.1 Frameworks for Verifying Concurrent Applications

Reasoning about concurrent programs brings new challenges into mech-
anising reasoning: due to the excessively large state-space of possible
interactions between simultaneously executing processes or threads,
simply enumerating them is no longer tractable. However, since in most
of the practical applications the interaction between processes on some
sort of shared state happens only at dedicate program points, via spe-
cific programming primitives, a plausible way to reduce this complexity
is to reduce concurrent reasoning to a sequential one. This idea has
been pioneered in the work on Concurrent Separation Logic by O’Hearn
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(2007), which provided a series of inference rules for compositional
sequential and concurrent reasoning for shared-memory concurrency.

Similarly to plain Separation Logic, variants of CSL have been im-
plemented as both shallow and deep embedding with the corresponding
benefits and drawbacks.

The first shallow embedding of Subjective Concurrent Separation
Logic, a CSL-like logic for concurrency, was due to Ley-Wild and
Nanevski (2013), who implemented it using Coq’s indexed types. Unlike
the prior work on Hoare Type Theory (Nanevski et al., 2010), in which
Coq’s dependent types were only capturing the effect of an imperative
program on a state, in SCSL, the types were also carrying informa-
tion about resource invariants, capturing the contract of a concurrent
interaction between threads. That work has been later extended to
a more expressive Fine-Grained Concurrent Separation Logic (FCSL)
(Nanevski et al., 2014; Sergey et al., 2015), which provided a more gen-
eral treatment of concurrent resources, incorporating ideas from both
CSL and Rely-Guarantee-based verification methodologies (Jones, 1983;
Feng, 2009), and implementing them in a form of a shallowly-embedded
type theory for state.

The main shortcoming of both SCSL and FCSL, both being shallowly-
embedded type theories for state, are the limitations due to the limita-
tions of Coq’s model wrt. impredicativity. At the time of this writing,
FCSL did not support higher-order heaps (i.e., the possibility to reason
about arbitrary storable effectful procedures). It was conjectured by
FCSL’s authors that this obstacle could be overcome by relying on the
universe polymorphism feature introduced in Coq version 8.5 (Sozeau
and Tabareau, 2014). An approach based on Rely-Guarantee references,
similar to FCSL in spirit, employed Coq as a host framework for im-
plementing DSL (but not proving its soundness wrt. some semantics)
for streamlining reasoning about certain concurrency patterns (Gordon
et al., 2017), allowed by considering Rely-Guarantee contracts, but
without CSL-enabled proof modularity.

Implementation of concurrent imperative programs in Coq by means
of deep embedding has been first considered in the context of verifying
low-level code with dynamic thread creations in CAP and CCAP pro-
gram logics (Yu and Shao, 2004; Feng and Shao, 2005). Targeting real
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architectures, those formal verification efforts required astonishingly
high proof efforts and have been eventually superseded by a mechanized
proof methodology based on certified abstraction layers, not grounded
in any specific Hoare-style program logic (Gu et al., 2015; Kim et al.,
2017; Gu et al., 2018).

Iris is another CSL-inspired mechanised verification framework that
has been in development in parallel with FCSL, with an aim to provide
more uniform foundations for reasoning about concurrency (Jung et al.,
2015). Due to the chosen semantic foundations, allowing for impredica-
tivity in the presence of mutable state (and hence, storable higher-order
procedures) (Svendsen and Birkedal, 2014), Iris could not have been
implemented as a shallow embedding and, hence, has been encoded as
a deeply-embedded logic.

While that initially has been considered an significant obstacle for
verifying large concurrent programs in Iris, due to a large proof overhead,
the later introduction of Iris Proof Mode (IPM) (Krebbers et al., 2017)
fixed this shortcoming, significantly lowering the entrance threshold for
conducting mechanised Iris proofs (Birkedal and Bizjak, 2018). This
has been achieved in IPM by effectively leveraging Coq’s extensible
parsing and proof-by-reflection, and introducing a library of domain-
specific tactics, mimicking, for the sake of an end user of the framework,
standard CSL-style inference rules. Due to its success, IPM itself has
been later generalised to MoSelL.—an extensible proof mode allowing
for reasoning not just with Iris but with any separation-style program
logics (Krebbers et al., 2018).

As frameworks implementing Hoare-style reasoning about concur-
rency with pre/postconditions, both FCSL and IPM follow the encoding
style with Dijkstra-style weakest preconditions.

6.3.2 Frameworks for Language Design and Metatheory

Several frameworks deal with the challenge of component reuse, one
of the challenges from POPLMARK (Section 3.2.2). Meta-Theory a
la Carte (MTC) (Delaware et al., 2013b) is a framework and Coq
library that builds on Data Types a la Carte (Swierstra, 2008) to
address challenges in reuse: extensibility of definitions and proofs through
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algebraic properties that provide control over the evaluation order, and
modular reasoning about partial definitions and proofs through algebraic
combinators. Using MTC, the proof engineer can assemble a language
from existing components.

MTC does not address extensibility of languages with effects: adding
new effects breaks existing proofs. Modular Monadic Meta-Theory
(3MT) (Delaware et al., 2013a) extends MTC with a methodology and
monad library that includes monads for effects as well as algebraic laws.
The methodology and library make proofs resilient to the addition of
new effects to a language. MTC and 3MT both use algebraic properties
to address difficulties with component reuse—algebra in many ways
offers natural abstractions, and those techniques can apply more broadly
outside of formal metatheory.

Other notable frameworks for language design include the Fiat (Chli-
pala et al., 2017; Delaware et al., 2015) framework for Coq, as well as
the Hybrid (Felty and Momigliano, 2012) framework for Isabelle/HOL
and Coq, which addresses the difficulties of using HOAS with inductive
and coinductive proofs.

6.3.3 Frameworks for Other Domains

Concurrent applications and language metatheory are just two domains
for which verification frameworks are useful. Frameworks assist proof
engineers in many other domains. For example, a few frameworks
exist for verifying distributed systems. Verdi (Wilcox et al., 2015) is
a framework for building verified distributed systems in Coq; it has
been used to build and verify an implementation of the Raft consensus
protocol (Woos et al., 2016). Disel (Sergey et al., 2017) is a framework
for compositional verification of distributed protocols.

6.3.4 Future Frameworks

The expressiveness of the underlying logics of common proof assistants
combined with their interactive natures makes it possible to develop
useful frameworks for a variety of domains. We expect that proof
engineers will continue to develop and improve on frameworks that
tackle challenges associated with common domains, as well as build
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new frameworks to handle challenges associated with new domains for
verification as they arise. In addition, we expect that frameworks will
address challenges that current frameworks do not fully address, such
as language extension and component reuse in metatheory.

While it is natural to apply frameworks to challenges within common
domains, we also expect the development of more general-purpose
frameworks building on common proof assistants to address challenges
that proof engineers face independently of domain, or when following
specific design principles.

6.4 Proof Reuse

Large proof developments may involve redundant efforts that can be
time-consuming. Proof reuse addresses this by repurposing existing
proofs as much as possible, minimizing the amount of redundant work
that proof engineers must do. Early examples of proof reuse include
proof by analogy (Curien, 1995), the technique of adapting a proof of a
theorem to a proof of a related theorem, and proof generalization (Hasker
and Reddy, 1992), the technique of adapting a proof of a theorem to
prove a more general theorem.

Proof reuse is the proof engineering analogue to software reuse. Like
software reuse, proof reuse leverages design principles (Section 6.4.1)
and language constructs (Section 6.4.2). In addition, the interactive
nature of proof assistants naturally leads to a class of proof reuse
technologies less explored in the software engineering world: automated
tooling (Section 6.4.3). This section samples these approaches.

6.4.1 Design Principles for Modularity and Reuse

Good design principles can help maximize the reusability of existing
proofs. Some of these design principles are natural generalizations of
design principles for software reuse more generally, such as aspect-
oriented software development (AOSD), a programming approach that
optimizes for separation of concern (Filman et al., 2004). Others, like
the affinity lemmas from Planning for Change (Section 6.2.3) are unique
to proof engineering.
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Design Principles from Software Engineering In software engineer-
ing, encapsulating behavior can help not only protect against future
changes, but can also help with reusing multiple implementations of
interfaces with the same behavior. Likewise, the interfaces and infor-
mation hiding recommendations form Planning for Change are useful
not only to protect proofs against future changes, but also to switch be-
tween different datastructure implementations with the same high-level
behavior.

The work by Delaware et al. (2011) attacks the problem of language
metatheory extension, along with the corresponding formalization in a
proof assistant and changing the corresponding type safety proofs (i.e.,
progress and preservation theorems), from the perspective of Software
Product Lines (SPL). SPL is an approach to AOSD that opportunisti-
cally reuses software by deriving many different pieces of software from a
common producer. Delaware et al. (2011) starts from formalizing a core
language, taking a “core” Featherweight Java (cFJ), and considering
all further extensions to the language (casts, interfaces, generics) as
features.

What is inherent for the SPL approach is reasoning about compo-
sition and possible interaction between features, expressed by means
of an algebra of feature operators: -, #, and x. Introducing multiple
features can lead to an exponential explosion of pairwise interaction,
which, however, is rarely observed in practice, as most of the features
are mutually independent.

In order to enable feature-based decomposition of a language, all
its components (syntax, dynamic semantics, safety proofs etc.) are
written is specific languages, amenable for feature compostions. For
instance, the language syntax and its semantic/typing rules can be
extended by introducing the mechanism of variation points (VPs) into
the corresponding grammar productions, premises and conclusions, of
the rules, reusing the intuition of SPL design.

On the implementation side, the modularity of extensions is achieved
by means of reusing Coq’s capabilities for higher-order parametrization:
language component definitions are parameterized by the corresponding
variation point contexts. The crux of the technique is identifying the
effect of the VPs to the safety proofs, which are conducted in a way,
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parametric with respect to the inductive cases to be considered. For
each specific combination of the features, the top-level proof dispatches
to the proofs from the corresponding feature module.

The shortcoming of the approach is the requirement, for a core lan-
guage, to have a significant foresight when identifying the appropriate
VPs, which provide the opportunity for feature extensions. While the pa-
per demonstrates how to do it in the context of a language, whose safety
is formalised via the syntactic approach, it provides little guidance with
respect to other ways of stating type soundness (e.g., via logical rela-
tions), neither does it consider other domains beyond PL design. Overall,
the approach seems to be a bit ad-hoc, which is why further advances
in this direction lead to the creation of the monadic MTC (Delaware
et al., 2013b) and 3MT (Delaware et al., 2013a) frameworks we have
already discussed.

Beyond Software Engineering Proof assistants in the LCF family are
complex systems with multiple languages at different levels. Accordingly,
reuse in these systems happens not only at the term level, but also at
the tactic level. Designing powerful tactics can maximize reuse of proof
scripts to prove different goals (Section 6.2.3).

Among the recommendations that Planning for Change makes is the
use of affinity lemmas that describe relationships between components.
These lemmas show that properties that hold over one component also
hold over another, which facilitates reuse of proofs across components.

6.4.2 Language Constructs for Organization and Reuse

As in software engineering, proof assistants often provide support for
reuse at the language level. These range from entire languages optimized
for reuse to useful constructs built on existing languages that make
reuse easier. This section describes a sample of languages and language
constructs for proof reuse.

Languages for Reuse Some languages are designed with the goal of
optimizing for proof reuse. For example, Felty and Howe (1994) describes
an ITP that is optimized for reuse at the tactic level.
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In this system, reuse works by replaying tactics in a new proof setting.
To make this possible, the system automatically generalizes proofs using
metavariables. In contrast, the logical framework PR (Caplan and
Harandi, 1995) optimizes for reuse at the level of the type theory. The
framework builds on an embedded Hoare logic, adding constructs to
the logic that aid in abstraction and reuse of proof terms.

HoTT (introduced in Section 4.3.2) has practical proof engineering
applications. HoTT’s univalence axiom gives rise to automatic transport
of functions and proofs across type equivalences: to write the same
function or proof about two equivalent types, the proof engineer needs
only to write the function or proof over one of these two types, and then
show the equivalence between them. Cubical type theory (Cohen et al.,
2018) provides a computational interpretation of HoTT’s univalence, so
that it is no longer an axiom.

Proof assistants or extensions to proof assistants built on HoTT or
cubical type theory include Cubical Agda (Agda Development Team,
2005-2018), CoqHoTT (CoqHoTT Development Team, 2015-2019), and
RedPRL (RedPRL Development Team, 2015-2018). While these ITPs
are relatively new, we expect that reuse will be easier in these proof
assistants. However, univalence is incompatible with the popular axiom
UIP (Uniqueness of Identity Proofs, which states that all proofs of
equality at a given type are equal), and univalent ITPs present their
own difficulties, so these are not a catch-all solution. We discuss tooling
for transport that does not rely on univalence at the level of the type
theory in Section 6.4.3.

Language Constructs for Reuse Even in languages that are not de-
signed with the goal of proof reuse in mind, certain language features
can help make proof reuse more tractable. The modules, type classes,
and canonical structures discussed in Section 6.2.1 are examples of these
features, as are other mechanisms for inheritance. In addition, many
proof assistants implement subtyping or type coercions (Barthe, 1995;
Aspinall and Compagnoni, 2001; Saibi, 1997; Luo, 1999; Asperti et al.,
2007; Callaghan and Luo, 2001; de Moura et al., 2015) in various forms,
and these can also help make proof reuse more tractable.
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One recent development is the notion of an ornament (McBride,
2011), a programming mechanism for describing relationships between
inductive types that preserve inductive structure. That is, there is
an ornament between natural numbers and lists, and between lists
and length-indexed vectors; there is no ornament between lists and
trees, since these types have different inductive structures. Ornaments
allow for the derivation of new types from existing types, and for the
automatic lifting of functions and proofs from each existing type to
the corresponding new type. Lifting functions and proofs necessitates
some additional automation beyond the addition of ornaments to a
language. So far, ornaments exist in various forms as deep embeddings
in Agda (Dagand, 2017; Williams et al., 2014; Ko and Gibbons, 2016),
and as tooling for proof reuse (Section 6.4.3) in Coq.

The language Cedille makes it possible to define combinators that
allow for reuse of functions and proofs across certain related datatypes
without any performance penalty (Diehl et al., 2018). Like ornaments,
these combinators facilitate reuse between unindexed and indexed ver-
sions of types like lists and vectors. They do not support incompletely
determined relations that ornaments support, such as the ornament
between natural numbers and lists (lists have a new element in the
inductive case). Applications of these combinators definitionally reduce
in such a way as to facilitate efficient reuse thanks to properties of the
underlying type theory of Cedille.

6.4.3 Automated Tooling for Proof Reuse

Since proof assistants typically involve a heavily interactive workflow
like the REPL, they lend themselves naturally to automation. As such,
in addition to the design principles and language features for proof reuse
found in typical software engineering projects, there is a body of work
that uses automated tooling to repurpose existing proofs. Section 6.3.2
decribes some frameworks for component reuse, a kind of proof reuse, in
mechanized metatheory. This section describes other tooling for proof
reuse.
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Adapting Inductive Proofs Boite (2004) describes a tactic to adapt
proof obligations to changes in inductive types. This technique con-
structs and analyzes a dependency graph to determine when reuse of
existing proofs is possible, then reuses existing proofs when possible
and generates new proof obligations for new branches of the proof.
Mulhern (2006) provides a high-level description of a possible method
to synthesize missing proofs for those new obligations using a type
reconstruction algorithm, though it is not currently implemented.

Proof Planning Proof planning (Bundy, 1988) is a proof search tech-
nique that uses plans to guide search for proofs with similar structures.
Proof planning can involve the use of critics (Ireland, 1996), which reuse
information from failing proofs to guide search for correct proofs. While
it was originally designed for use with automated theorem provers, it
has also reached interactive theorem provers. For example, IsaPlan-
ner (Dixon and Fleuriot, 2003) is a proof planner for Isabelle with
support for rippling (Shah, 2005), a technique for automatic induction.
Rippling has also been implemented in an induction automation tool
for Coq (wilson2010).

Proof Generalization Proof generalization tools generalize proofs of a
theorem to obtain proofs of more general theorems. Proof generalization
first arose in the 1990s (Hasker and Reddy, 1992; Kolbe and Walther,
1998; Pons, 1999). A simple example of proof generalization is the
Coq generalize tactic, which does basic syntactic generalization. The
Coq documentation demonstrates this tactic on the following proof
state (Coq Development Team, 1999-2018b):

X, y : nat

O<<=x+y+y

Running generalize (x + y + y) on this goal produces the following proof
state:

X, y : nat

V n : nat, 0 <= n
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The final generated proof term proves the original goal by specialization
of this generalized goal.

The generalization technique implemented in Coq’s generalize tactic
can handle only simple syntactic substitution. A few tools can handle
more complex transformations. For example, Johnsen and Liith (2004)
presents a proof generalization tool for Isabelle with proof terms which
can handle generalizing over dependencies on other theorems, as well
as generalization over functions and types. The Coq proof repair tool
PUMPKIN PATCH (Section 7.2.3) includes an abstraction compo-
nent which does not just syntactic generalization, but also type-driven
generalization.

Transport  Transport (also known as transfer) methods automatically
adapt proofs along relations. These tools aim to mimic the experience
of mathematical proofs on paper, in which simply stating a relation
between two structures (such as an equivalence) can be enough use
theorems about one structure as theorems about the other.

This idea developed both as an extension to the language and as
an approach to automation: Barthe and Pons (2001) introduced an
extension to dependent type theory with a computational intepretation
of isomorphisms using rewrites. Around the same time, Magaud and
Bertot (2002) introduced an automatic method for adapting proofs
along binary and unary representations of the natural numbers.

Since then, there have been many more transport tools handling
more than just those two types, including the Transfer and Lifting
packages (Huffman and Kuncar, 2013) for Isabelle/HOL, and a pro-
totype Coq plugin for transporting proofs across ismorphisms and
implications (Zimmermann and Herbelin, 2015).

Univalent transport is the particular kind of transport across type
equivalences that arises from HoTT’s univalence axiom (see Sections 4.3.2
and 6.4.2). Equivalences for Free! (Tabareau et al., 2018) uses insights
from HoTT to develop and formalize a powerful tool for transporting
proofs across equivalences in Coq. In many cases, it is possible to use this
tool to port functions and proofs without any axiomatic dependencies;
in some cases, the tool relies on the functional extensionality axiom.
Thus far, the primary barriers to usability of the tool are the proof
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burden on the user to configure the automation, and the inefficiency of
the generated functions. Nonetheless, this is a significant step toward a
robust tool for automatic transport in a proof assistant that does not
depend on univalence.

The DEVOID (Ringer et al., 2019) Coq plugin automates transport
across certain equivalences that correspond to algebraic ornaments,
a particular class of ornaments (Section 6.4.2). DEVOID automati-
cally discovers and proves the equivalences that correspond to these
ornaments, and then transports functions and proofs across those equiv-
alences using a program transformation. DEVOID handles a narrow
class of equivalences relative to Equivalences for Free!, but the functions
and proofs that it produces for the cases it can handle are small and
efficient in comparison.

6.4.4 Packaging and Distributing Programs and Proofs

Proof assistants projects are software artifacts, and can thus be packaged
and distributed in a similar way. For Isabelle/HOL, the venue for
distribution is the Archive of Formal Proofs (Klein et al., 2004-2019;
Blanchette et al., 2015). Coq uses the OCaml infrastructure around the
OPAM package manager to provide a similar collection of packages (Coq
development team, 2018). In principle, executable verified software can
also be distributed on these platforms, but can also use conventional
channels, which may raise issues of trust.

6.4.5 Future of Reuse

Component reuse, a form of proof reuse, is an underaddressed tenant
POPLMARK. The solutions which do exist are able to take advantage
of common proof structure within the domain of metatheory. We expect
that similar common structure exists for proofs in other domains, and
this area is ripe for the development of design principles, frameworks,
and automated tooling to maximize reuse.

More generally, we expect to see mainstream proof assistants con-
tinue to integrate language reuse constructs. For example, ornaments
are a promising feature designed specifically for reuse in a dependently
typed language, but most existing implementations require the user
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to write programs and proofs in a domain-specific deeply embedded
logic. DEVOID takes some steps toward integrating ornaments into an
existing I'TP without an embedding, but it handles only a small class
of ornaments and makes some additional restrictions beyond those that
the original ornaments work assumes. We expect ornaments to integrate
more smoothly with existing ITPs in the future.

We expect that recent developments in HoT'T will fundamentally
change how people view proof reuse, and that concepts from HoTT will
continue to influence the design of proof reuse tools for other languages.
Approaches like Equivalences for Free! have the benefit of principled
design of automation with guaranteed properties, but do not introduce
univalence, and so are not incompatible with other assumptions that
programmers may want in their type theories. These two views of
univalent transport can continue to evolve alongside one another.
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Practical Proof Development and Evolution

As the scale of proof development grows, priorities change. Project
management becomes more important, as does dealing gracefully with
changes over time. These demands mirror the concerns the software
community has addressed as program development has scaled. The
proof engineering community has responded similarly, with interfaces,
environments, processes, and tools for effective development that scales.

This section discusses developments in user interfaces and tooling
(Section 7.1), proof evolution (Section 7.2), user productivity and cost
estimation (Section 7.3), and mining proof repositories (Section 7.4)
that address these concerns.

7.1 User Interfaces and Tooling for User Support

Most early proof assistants shipped with a very simple user interface:
the Read-Eval-Print Loop (REPL). This interface reads in user-written
expressions in the proof assistant language, evaluates those expressions,
then prints a result or error for the user.

User interfaces for proof assistants have come a long way from the
REPL. The support that these REPLs provide users is minimal, and so
soon after their development, many techniques to ease interaction with
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REPLSs arose. While the interfaces from earlier eras still see common
use, we are now entering an era of interaction that emphasizes full
integrated development environments (IDEs), with support for project
management and for asynchronous development.

In parallel to this evolution of user interfaces (Section 7.1.1), we
are seeing an increase in specalized interfaces (Section 7.1.2), usability
analysis of user interfaces (Section 7.1.3), and advanced tooling for user
support (Section 7.1.4). We expect these traditions will merge and drive
the future of interaction (Section 7.1.5) with proof assistants.

7.1.1 The Evolution of User Interfaces

We can think of proof assistant user interfaces as evolving in three
generations:

1. Generation I: The REPL
2. Generation II: Separation of Concerns

3. Generation III: Full IDEs

Generation |I: The REPL The REPL was the earliest form of interac-
tion with the proof assistant. For example, the description of Stanford
LCF (Milner, 1972) calls the proof process a “conversation between the
user and the computer.” The LCF user writes commands, which the
computer evaluates and replies to with feedback such as new goals. In
part of the example from the LCF description, the user cuts an inline
lemma:

*xkkxGOAL £ C g;

The computer then responds acknowledging the new goal:

NEWGOAL #1 £ C g

The user tells the computer to prove this goal inductively:

*%%x%*TRY 1 INDUCT 1;

The computer responds with two intermediate goals, a base case and
an inductive case:
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Figure 7.1: Agda Emacs mode (from Barret (2018))
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The user then proves those subgoals, then uses the inline lemma to
prove the original result.

Many ITPs followed in this tradition and introduced command line
REPLs. Examples of command line REPLs include the cogtop (Coq
Development Team, 1999-2018¢) command for Coq and the ho1 (HOL
Development Team, 2016-2018) command for HOL. Some of these tools
are still accessible even when graphical interfaces exist. For example,
Coq still exposes its cogtop command, in spite of the existence of the
graphical interfaces CoqIDE (Coq Development Team, 1999-2018a) and
Proof General (Aspinall, 2000b).

However, not all ITPs followed in this tradition. Nuprl, for example,
was distributed with a graphical interface from the start (Constable
et al., 1986). Even those ITPs that followed in this tradition sometimes
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later diverged. For example, Agda’s --interactive option to interact with
the REPL directly is no longer supported; Agda interaction happens
through an Emacs (GNU Project, 1985-2019) or Atom (GitHub, 2014-
2019) mode which calls out directly to the backend theorem prover (Agda
Development Team, 2005-2017). Figure 7.1 shows an examples of the
Agda Emacs mode. Isabelle/HOL has recently done away with its REPL;
the default interface is now Isabelle/jEdit (Wenzel, 2012), which instead
builds on Isabelle/PIDE (Wenzel, 2014).

Generation Il: Separation of Concerns The 1990s saw a surge in
the release of interfaces for ITPs decoupled from the proof checker,
typically communicating with the system through a protocol. In some
ways, this was a natural path of evolution from the way that users
typically interacted with the REPLs for existing I'TPs. While the REPL
was typically exposed through a command line tool, it was common
to instead use multiple Emacs buffers, one for development and for
the proof assistant top-level, and to copy definitions between the two.
This approach is still used in some modern proof assistants such as
HOL (HOL Development Team, 2018).

This mode of interaction naturally led to the development of Emacs
modes which interact with the REPL or theorem prover backend. For
example, Isamode (Aspinall, 2000a) for Isabelle99 was an Emacs mode
for Isabelle which smoothed interaction with the REPL. The HOL4
Emacs mode (Myreen, 2008-2018) is still used to this day. The Agda
Emacs mode, which interacts with the Agda backend, is similar in
spirit but contains more advanced functionality; it allows the user
to, for example, define holes in terms and fill those holes in later in
development. Idris includes an Emacs mode (Mehnert and Christiansen,
2014) for interacting with the REPL, which inspired by both the Agda
Emacs mode and Proof General.

Other interfaces beyond Emacs modes communicate with the back-
end theorem prover or REPL in this style. For example, ALF, a prede-
cessor to Agda, included a window-based interface for communicating
with the backend (Altenkirch et al., 1994). The lightweight interface
TkHOL (Syme, 1995) for HOL also follows in this style. Bertot and
Théry (1998) describes a generic approach for building an interface that
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Figure 7.2: Proof General (left) and CoqIDE (right) for Coq

communicates with the ITP using a protocol, inspired by the early Coq
user interface CTCOQ.

In some cases, these interfaces were entirely independent of the
underlying proof assistant. One notable example of such an interface
from this generation is the Emacs extension Proof General (Aspinall,
2000b), an interface for proof development that supports multiple proof
assistants. Proof General has seen widespread use, especially within
the Coq community. While Proof General best supports Coq, it also
has support for LEGO, PhoX, and an old version of Isabelle, as well as
experimental support for other proof assistants (PG development team,
2016). It is simple yet easily extensible, both to support new proof
assistants and to add new functionality for existing proof assistants.
Company-Coq (Pit-Claudel and Courtieu, 2016) for example, extends
Proof General with many new features for Coq, including improved
autocompletion, and integration of documentation.

Following the success of Proof General, Coq released the lightweight
interface CoqIDE (Coq Development Team, 1999-2018a) as part of Coq
8.0 (Coq Development Team, 2003). Its main selling point was speed: It
claimed to be faster than Proof General. In addition, CoqIDE’s native
support for Coq means that it is always maintained and distributed with
new versions of Coq, imposing minimal overhead on users. Figure 7.2
shows CoqIDE and Proof General side-by-side for Coq.

Both third-party interfaces and native interfaces from this generation
continue to be popular to this day. This separation of concerns has also
inspired a new generation of specialized interfaces (Section 7.1.2) for
proof assistants.
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Figure 7.3: Isabelle/jEdit (from Wenzel (2018Db))

Generation Ill: Full IDEs The third generation of user interfaces co-
incides with the rise of proof development of large projects and the
corresponding increase in concern for good proof engineering support.
Interfaces from this generation focus on scaling to large developments.
For example, early user interfaces did not support asynchronous devel-
opment: they did not allow the user to run the proof checker on some
proofs while modifying others. Early user interfaces also did not have
support for project management, and so were not truly full-scale IDEs.

Many IDEs in the latest wave of development address these concerns.
Coqoon (Faithfull et al., 2018), for example, is an IDE for Coq built on
Eclipse with support for both project management and asynchrony. The
PIDE framework, originally developed for use with the Isabelle IDE
Isabelle/jEdit (Wenzel, 2014), also supports asynchronous development;
Isabelle/jEdit is shown in Figure 7.3.

PIDE is ultimately indifferent to the backend theorem prover; Wenzel
(2013a) and Barras et al. (2015) describe interfaces built on PIDE for
Coq. PIDE also has additional interfaces in Isabelle aside from the
default Isabelle/jEdit, including Isabelle/VSCode (Wenzel, 2017¢), an
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Isabelle plugin for Visual Studio (Microsoft, 1997-2019). PIDE has seen
enough success that Isabelle has done away with its REPL entirely.

Like Isabelle, Lean also has an IDE implemented as a Visual Studio
plugin (Lean Development Team, 2016-2019). This IDE communicates
with the Lean server, and supports incremental compilation and proof
checking, debugging, documentation, and batch execution.

Many existing proof assistant interfaces have integrated features from
this generation. For example, CoqIDE now supports asynchrony (Coq
Development Team, 1999-2018a). It remains to be seen to what extent
full-scale IDEs for proof assistants will continue to evolve and to grow
in popularity.

7.1.2 Specialized Interfaces

The separation of concern from Generation II interfaces for proof assis-
tants inspired the development of specialized interfaces. For example,
web-based interfaces require minimal setup and installation, and so are
thought to be less intimidating to new users, especially students. Many
web-based interfaces are built with students as the key audience to
address concerns students have about installing and using heavyweight
IDEs. Examples of web-based interfaces for proof development include
ProofWeb (Kaliszyk, 2007), jsCoq (Gallego Arias et al., 2017), and
PeaCoq (Robert and Lerner, 2014-2016). The Lean 2 tutorial (Lean
Development Team, 2014-2017) uses the Lean.JS (Lean Development
Team, 2017-2018) web interface for Lean to provide an interactive
learning experience directly in the browser.

Proof assistant users sometimes note that the experience of writing
proofs has game-like elements. The interactive nature of a proof assistant,
for example, is similar to interacting with an adversary in a game.
There is some work on gamification of proofs that reifies this intuition
into the interface itself. In these games, players can generate program
annotations (Dietl et al., 2012), write natural deduction proofs (Lerner
et al., 2015), and identify inductive invariants (Bounov et al., 2018),
all the while having low-level details of these proofs abstracted away
from them. While these games are not interfaces for well-known I'TPs
like Coq and Isabelle, they may help with tasks that can assist users in
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writing proofs, such as finding inductive invariants. Applying this same
intuition to build new interfaces for commonly-used proof assistants
may help make them more accessible to non-experts in the future.

7.1.3 Interface Usability Analysis

Traditional software engineering tools and interfaces are often subject
to usability analyses according to the conventions in human-computer
interaction (HCI). There are some similar analyses related to proof
assistants. Aitken et al. (1998) propose a three-layer model to account
for user interaction with a proof assistant, and perform an empirical
study which concludes that there is support for the view of “proof as
programming” for proof assistant interaction, rather than “proof by
pointing” (Bertot et al., 1994) and “proof as structure editing”. Kadoda
et al. (1999) analyze the usability of theorem provers in a cognitive
framework by using questionnaires. Aitken and Melham (2000) analyze
errors in proof attempts. Beckert et al. (2014) use focus groups to
evaluate usability of proof assistants, finding that users prefer proof
assistants that produce intuitive proofs, can present comprehensible
proof steps, and provides a convenient interface.

7.1.4 Tooling for User Support

In parallel with the evolution of user interfaces, recent years have seen
an emphasis on tooling to help users with proof development. These
features are more useful than ever because of the advent of Generation
IT user interfaces that are not tightly tied to the REPL.

Many of the user support features that are now arising for proof
engineering echo similar features that already exist in languages with
more mature IDEs. For example, languages with more mature IDEs
often integrate refactoring tools into those IDEs; now that proof assistant
interfaces are maturing, interfaces with refactoring support such the
Coq interface CoqPIE (Roe and Smith, 2016) are beginning to emerge.
We discuss more refactoring tools in Section 7.2.2.

In addition, new techniques are extending the reach of user support
features to support the challenges particular to proof development. For
example, one common challenge in proof engineering is efficiently finding
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relevant datatypes and proofs Many proof assistants distribute tools for
this by default. For example, Coq includes the search command, which
SSReflect (Gonthier and Mahboubi, 2010) extends; Isabelle includes
the find_theorems and find_consts commands. This challenge has also
inspired several external tools, including the web-based tool Whelp (As-
perti et al., 2004) for Coq, upon which Matita builds (Asperti et al.,
2007).

Machine-learning techniques can also help with challenges in proof
developments, for example by suggesting hints to users. Recent tooling of
this flavor includes the ML4PG (Komendantskaya et al., 2012) extension
to Proof General, which uses machine learning to suggest hints during
proof development, and ACL2(ml) (Heras et al., 2013), which uses
machine learning to suggest auxiliary lemmas for ACL2 development.
Nagashima and He propose a proof method recommendation system
for Isabelle/HOL based on machine learning, which is trained on large
proof corpora (Nagashima and He, 2018).

Unlike traditional software development, proof development with
ITPs often involves significant interaction with automation. Accordingly,
one question that many tools explore is the ideal user experience for
interacting with automation. The web-based IDE PeaCoq (Robert and
Lerner, 2014-2016), for example, has extra support for tactic previews
and context management. Matita (Asperti et al., 2007) includes special
support for contextual term manipulation, and for understanding the
execution of tactical-like chains of tactics.

Another common problem in proof development is that the proof
engineer may accidentally state a false theorem, or may be unsure if
a stated theorem is true. When a stated theorem is false, it can be
difficult to determine that the theorem is actually false; the proof en-
gineer may instead think his inability to prove the theorem is due to
his own shortcomings. Hammers and other general-purpose automation
(Section 5.2.1) can help a proof engineer discharge simple proof obliga-
tions and quickly determine that a theorem is true; the proof engineer
can then reprove the theroem in a different way if desired. Property-
based testing tools like Quickcheck for Isabelle (Bulwahn, 2012) and
QuickChick (Lampropoulos et al., 2017; Paraskevopoulou et al., 2015)
for Coq can help users identify counterexamples to false properties.
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7.1.5 Future of User Interfaces

Many of the Generation I interfaces still exist today. We expect some
of these will continue to exist, since they are useful when resources are
limited. However, there is a growing trend of moving away from the
REPL in some ITPs such as Isabelle/HOL; perhaps more ITPs will
move in that direction.

The interactive nature of the REPL makes it simple to collect fine-
grained data on how proof engineers develop code. For proof assistants
that are backed by a REPL, collecting this data could help with the
development of better tooling to support proof engineers during develop-
ment. Similarly, while there is some empirical information on how proof
engineers interact with different user interfaces, this is still a lot more
ground to cover. Even collecting simple information like the number
of users of each interface for each proof assistant over time may help
gauge the impacts of different design decisions. More user studies on
interacting with proof assistants could also help pave the way for more
useful interfaces.

We expect that the separation of concerns emphasized with Genera-
tion II interfaces has had a strong influence and will likely continue to
have a strong influence. Separation of concerns and extensibility may
be part of why Proof General has continued to be successful after so
many years. In many ways, this mirrors the success that is seen in suc-
cessful IDEs for software engineers, such as Eclipse (Eclipse Foundation,
2001-2019) or IntelliJ IDEA (JetBrains, 2001-2019). We expect that
future developments will continue to work on separation of concerns
and extensibility, with better plugin systems for IDEs to support more
features with minimal effort for the interface developer and for the proof
engineer.

Emacs has played a crucial role in the history of the development
of IDEs for ITPs, with many early interfaces implemented as Emacs
modes. Recent years have seen the development of IDEs as Visual Studio
plugins for Isabelle/HOL and for Lean. In the future, perhaps more
proof assistants will implement IDEs as plugins for existing IDEs such
as Visual Studio and Eclipse, and perhaps these existing IDEs will play
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a similar role to Emacs in the continued development of proof assistant
IDEs.

We also expect that project management will continue to grow in
importance as large proof developments become more common. Few
interfaces for proof assistants currently have strong support for project
management; this is an area ripe for improvement. Better integration
of build tools and continuous integration tools can greatly improve
development experience.

Finally, we expect more productivity tools to emerge, like the refac-
toring tools that already exist, and for these tools to be integrated
into IDEs. For example, most mature IDEs for existing languages have
strong support for debugging. Debugging tools for proof assistants, on
the other hand, are few and far between. Better plugin systems for
interfaces could help minimize the friction in supporting these features
at the IDE level.

7.2 Proof Evolution

Programs change over time, and so proofs about programs must change
with those programs. This concern is raised in the Social Processes (De-
Millo et al., 1977) critique of program verification as a barrier for the
verification of real programs. This barrier has been realized in real de-
velopments; a review (Elphinstone and Heiser, 2013) of the evolution of
the seL4 verified OS microkernel (Klein et al., 2009), for example, notes
that while customizing the kernel to different environments may be
desirable, “the formal verification of sel.4 creates a powerful disincentive
to changing the kernel.” Leroy et al. (2012) motivates and describes
updates to the initial CompCert memory model that include changes in
specifications, automation, and proofs (CompCert Development Team,
2010).

Changes in programs and proofs are not always in the proof en-
gineer’s control— updating a standard library, for example, can lead
to proofs in client code failing during regression proof checking (Sec-
tion 7.2.1). Reactive approaches to proof evolution address changes that
occur outside of the proof engineer’s control. These approaches con-
trast with and are complementary to proactive approaches that address
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brittleness ahead of time, such as the design principles discussed in
Section 6.2.

Consider, for example, a Coq proof that uses the intros tactic. If
the user does not pass identifiers to intros, then Coq automatically
chooses hypothesis names. Small changes to the theorem statement or
to the proof can change the names of the hypotheses that Coq chooses,
which can make proofs that refer to those hypotheses brittle. We briefly
discussed two proactive approaches to this problem in Section 6.2.3:
explicitly choosing identifiers to pass to intros, and writing tactics that
do not refer to these hypotheses at all. In contrast with these proactive
approaches, the IDE CoqPIE (Roe and Smith, 2016) automatically
renames references to hypotheses in proofs to work around this problem
reactively.

The renaming functionality of CoqPIE is an example of proof refac-
toring (Section 7.2.2), a reactive approach to proof evolution. Proof
repair (Section 7.2.3) is a similar reactive approach to proof evolu-
tion. The main distinction between these two approaches is that proof
refactoring is semantics-preserving, while proof repair need not be.
Nonetheless, these technologies often overlap.

7.2.1 Regression Proving

Regression proving is the process of rechecking proofs after a change to
a verification project, mirroring regression testing for software projects.
For large-scale projects, regression proving may require considerable
machine time—from tens of minutes and hours up to several days. This
can negatively affect the productivity of proof engineers. Absent domain-
and context-specific knowledge, as in proof refactoring, the two main
techniques to speed up regression proving are proof-checking paralleliza-
tion (Wenzel, 2013b; Barras et al., 2013) and proof selection (Celik
et al., 2017).

Support for parallelization varies in degree and kind among proof
assistants. Isabelle leverages the support for threads in its host compiler,
Poly/ML, to spawn proof checking tasks processed by parallel workers.
Using a notion of proof promises, proofs that require previous unfinished
result can proceed normally and become finalized when extant tasks
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terminate (Wenzel, 2013a). Isabelle also includes a build system with
integrated support for checking of proofs and management of parallel
workers. The lack of native threads in OCaml prevents similar low-cost
fine-grained parallelism for Coq. However, spawning parallel operating
system processes is still possible, and such processes can be leveraged for
both file-level parallelism and to check fine-grained proof tasks (Barras
et al., 2015). Lean supports fine-grained parallel proof checking (de
Moura et al., 2015). Compared to parallelization of test execution for
software projects, checking a proof is deterministic and has no side-
effects detrimental to checking other proofs.

A regression proof selection (RPS) technique limits the scope of
regression proving to those proofs that are affected by a change to a
project. While selection at the file level (modulo file dependencies) is
broadly supported via build systems such as make, only some proof
assistants such as Isabelle and Coq supports selection of individual
proofs; this is made possible by support for asynchronous proof check-
ing (Wenzel, 2014; Barras et al., 2015). Celik et al. proposed an RPS
technique for Coq that combines dependency analysis at the file and
proof levels (Celik et al., 2017); their tool implementation, dubbed iCoq,
compares checksums of files, terms, and proof scripts to locate and run
affected proofs sequentially. In an evaluation on the revision histories
of several large-scale Coq projects, iCoq was up to 3 times faster than
using conventional make-style checking with a persistent store, and up
to 10 times faster than conventional checking when each revision is
checked from a clean slate.

Palmskog et al. (2018) defined a taxonomy of regression proving
techniques for proof assistants that include both parallelism and selec-
tion. Along one axis, they consider parallelization at the file and proof
granularity. Along the other axis, they consider selection of files and
proofs. Their most sophisticated technique combines proof selection
and fine-grained parallelization, and consisistently outperforms other
techniques on the revision histories of several Coq large-scale projects.

Wenzel (2017b) and Wenzel (2018a) outlined how to scale Isabelle
for large projects using both parallelism and other techniques.
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7.2.2 Proof Refactoring

Refactoring is the restructuring of code in a way that preserves seman-
tics (Opdyke, 1992); proof refactoring is the refactoring of proofs (White-
side, 2013). Proof refactoring tools help automate this process, propogat-
ing a single change throughout the proof development. Like program
refactoring tools, proof refactoring tools can help keep developments
maintainable as they change over time (Bourke et al., 2012). In that
way, it is possible to consider refactoring tools as both proactive and
reactive approaches to proof evolution, though we consider them here
through a reactive lens.

Some proof assistants expose tactics (Section 5.1.1) or proof lan-
guages (Section 5.1.2) in which the proof engineer can write high-level
proof scripts to guide proof search. Some proof refactoring tools refac-
tor these proof scripts directly. One such tool is POLAR (Dietrich
et al., 2013), a generic framework for proof script refactoring. PO-
LAR is instantiated with two languages, both of which are based on
Isabelle/Isar (Wenzel, 2007): Hiscript (Whiteside, 2013), a language
with support for refactoring, and QSCRIPT (Dietrich, 2011), a language
with support for proof planning (Section 6.4.3). Refactoring in POLAR
works through a combination of rewrite rules that operate over a graph
representation of the underlying language. POLAR implements ten
kinds of refactorings by default, and also supports custom refactorings.
It guarantees that all lemmas that go through before the refactoring
continue to go though after the refactoring.

Some proof refactoring tools focus on specific refactoring tasks that
are common in proof development. For example, Levity (Bourke et al.,
2012) is a proof refactoring tool for an old version of Isabelle/HOL
that automatically moves lemmas to maximize reuse. The design of
Levity is informed by experiences with two large proof developments.
Levity addresses problems that are especially pronounced in the domain
of proof refactoring, such as the context-sensitivity of proof scripts.
Tactician (Adams, 2015) is a refactoring tool for proof scripts in HOL
Light that focuses on refactoring proofs between sequences of tactics
and tacticals.
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There is little work on refactoring proof terms (Section 4.3.1) directly.
This is the main focus of Chick (Robert, 2018), which refactors terms
in a dependently-typed functional language similar to Gallina. To use
Chick, the proof engineer applies some refactorings. Chick then uses
a program differencing algorithm to determine the changes to make
elsewhere in the program, then makes those changes. Chick supports
insertion, deletion, modification, and permutation of subterms. Similarly,
RefactorAgda (Wibergh, 2019) is a refactoring tool for a subset of Agda
that operates directly over Agda terms. RefactorAgda supports many
changes, including changing indentation, renaming terms, moving terms,
converting between implicit and explicit arguments, reordering subterms,
and adding or removing constructors to or from types; it also documents
ideas for supporting other refactorings, such as adding and removing
arguments and indicies to and from types.

For both Chick and RefactorAgda, only some of these changes are
semantics-preserving. Adding a new index to a type, for example, does
not preserve the semantics of the original program. Accordingly, these
tools can be viewed as both refactoring and repair tools, though the
algorithms that they use are syntactic.

A natural integration point for a proof refactoring tool is at the
level of a platform or an IDE. The Coq IDE CoqPIE (Roe and Smith,
2016) for Coq takes this approach for refactoring proof scripts. CoqPIE
includes a Replay button which steps through the proof while renaming
any changed hypothesis names. CoqPIE can also automatically split out
intermediate goals from a proof into separate lemmas. There are plans
to support more refactoring functionality in CoqPIE in the future.

7.2.3 Proof Repair

Program repair (Monperrus, 2018) is the automatic patching of programs
to fix bugs; proof repair is program repair for proofs. Proof repair tools
automatically fix broken proofs. Recent lessons from a review of a
certain class of program repair tools (Qi et al., 2015) highlight why
proof repair is a particularly good domain of program repair. The
review demonstrates that many existing tools produce incorrect patches.
Among the recommendations the authors make to remedy this is the
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suggestion that program repair tools make use of extra information
such as specifications, code from other applications, or example patches
when generating patches.

In proof repair, a specification is always available: the theorem the
repaired proof ought to prove. Some proof repair tools take this a step
further and make use of additional extra information, such as examples
patches. One such tool is PUMPKIN PATCH (Ringer et al., 2018), a
proof repair tool for Coq that generalizes example patches. PUMPKIN
PATCH takes as inputs an old proof and a new proof that addresses
some change in specification. From those, it identifies a reusable patch
that describes the change in specification; for the kinds of changes
PUMPKIN PATCH can currently handle, this patch is a Gallina
function. The proof engineer can then use this patch to patch other
proofs broken by the change in specification. PUMPKIN PATCH
has only preliminary tooling (Ringer and Yazdani, 2018) for applying
patches automatically, and currently handles only simple changes.

Chick (Robert, 2018) was developed in parallel to PUMPKIN
PATCH, and has a similar workflow: Chick takes a set of example
changes supplied by the programmer, and uses a program differencing
algorithm to determine the changes to make elsewhere. Unlike PUMP-
KIN PATCH, Chick also applies the changes it finds. However, Chick
does this using a syntactic algorithm that handles only simple trans-
formations; for this reason, it presents itself primarily as a refactoring
tool, even though the changes it makes may not preserve semantics.
The refactoring tool RefactorAgda (Wibergh, 2019) similarly decribes
some semantics-changing repairs for a subset of Agda.

While proof repair is analogous to program repair, it was born out of
traditional proof reuse (Section 6.4). For example, PUMPKIN PATCH
discovers patches which help adapt a proof of a theorem to a proof of a
related theorem, and can so be thought of as a tool to assist in proof by
analogy (Curien, 1995). Similarly, the proposed proof weaving (Mulhern,
2006) method to automatically satisfy new obligations generated in
response to changes in inductive types can be viewed as a proof repair
technique. Proof planning critics (Ireland, 1996) can also be viewed as
a technique for proof repair.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

212 Practical Proof Development and Evolution

New technologies continue to make proof repair more feasible.
GALILEO (Chan et al., 2011) is a tool build on Isabelle for identifying
and repairing faulty ontologies in response to contradictory evidence;
it has been applied to repair faulty physics ontologies, and may have
applications more generally for mathematical proofs. GALILEO uses
repair plans to determine when to trigger a repair, as well as how to
repair the ontology.

Knowledge sharing methods (Gauthier and Kaliszyk, 2014) match
concepts across different proof assistants with similar logics and identify
isomorphic types, and may have implications for proof repair. Later work
uses these methods in combination with HOL(y)Hammer to reprove
parts of the standard library of HOL4 and HOL Light using combined
knowledge from the two proof assistants (Gauthier and Kaliszyk, 2015).
More recently, this approach has been used to identify similar concepts
across libraries in proof assistants with different logics (Gauthier and
Kaliszyk, 2019). These methods combined with automation like hammers
may help the proof engineer adapt proofs between isomorphic types,
and may have applications when repairing proofs even within the same
logic, using information from different libraries, different commits, or
different representations of similar types.

7.2.4 Future of Proof Evolution

There is a lot of room for work in proof evolution—only a few techniques
exist so far, many of which emerged in parallel. We expect these reactive
approaches to continue to evolve alongside proactive approaches like
design principles, as the two approaches are complementary. Proof
evolution can help with changes that occur outside of the programmer’s
control, such as changes in dependencies (examples of this can be found
in Ringer et al. (2018)) and changes that are difficult to protect against
even with informed design (examples of this can be found in Klein
(2014)).

Ideally, proof evolution tools ought to integrate naturally with the
workflows of proof engineers, for example through integration with exist-
ing tactic or proof languages, or through IDE or continuous integration
support. While some proof evolution tools focus on this already and
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can offer useful insights, this can be challenging. For example, refactor-
ing Ltac proof scripts can be difficult, since the semantics of Ltac are
not well-defined; Ltac2 (Pédrot, 2019) may simplify this in the future.
Robert (2018) discusses the challenges involved in refactoring proof
scripts in more detail. Ringer et al. (2018) also discusses the challenges
of workflow integration, along with other open problems in proof repair.
We expect to see more emphasis on addressing these challenges in the
future.

There is only preliminary work exploring how much of the work
from existing refactoring and repair tools for programming carries over
to the domain of proof assistants. It is worth exploring in more detail
which challenges are unique to this domain. For example, Qi et al. (2015)
provides several recommendations for how program repair tools can
make use of extra information such as examples to make searching for
patches more feasible; PUMPKIN PATCH and machine learning tools
use examples for this purpose already. Future proof refactoring and
repair tools can similarly learn from those recommendations.

One tempting use case for proof refactoring and repair tools is when
a library changes a specification that breaks proofs in client code that
uses those libraries. Current refactoring and repair tools, however, rely
each individual client to determine the appropriate refactors and repairs
to make to fix those proofs. To better address this problem, future
refactoring and repair tools can provide support at the level of library
design. A library designer may, for example, specify how something has
changed to a tool; the tool may then apply this information in client
code automatically. Some program repair tools already support library-
provided patches (Monperrus, 2018); we expect to see this extend to
proof refactoring and repair tools in the future.

One barrier to useful refactoring and repair tools for proof engineers
is the lack of information on the kinds of changes that proof engineers
make in practice. Collecting data on the changes that proof engineers
make and classifying it could help guide refactoring and repair tools
to handle classes of changes that matter in practice, and could also
help machine learning tools gather both positive and negative examples.
Similarly, collecting the benchmarks and examples from both proactive
and reactive approaches to proof evolution such as Planning for Change,
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sel4, iCoq, and PUMPKIN PATCH can help drive the development
of future proof evolution tools and measure their success meaningfully.

7.3 User Productivity and Cost Estimation

Bourke et al. (2012) outline challenges in large-scale verification projects
using proof assistants: (1) new proof engineers joining the project, (2) ex-
pert proof engineering during main development, (3) proof maintenance,
and (4) social and management aspects. They highlight three lessons:
(1) proof automation is crucial, (2) using introspective tools for quickly
finding facts in large databases gain importantance for productivity,
and (3) tools that shorten the edit-check cycle increase productivity,
even when sacrificing soundness.

Zhang et al. (2012) present a simulation model of the process of
verifying the operating system kernel sel.4. Their model is expressed
as a software process using the tool Vensim. Andronick et al. (2012)
describe the development process and management issues in verifying
seL4. They conclude that formal verification, and re-verification, for
systems requiring in the order of 10,000 LOC is feasible using a proof
assistant. Staples et al. (2013) studied the relationships between sizes
of artifacts in seL.4. They find that the formal specifications have a
significant relationship with the the size of the verified executable code.
Staples et al. (2014) study the proof productivity problem in the context
of sel4; they find that effort is correlated linearly with proof size.
Matichuk et al. (2015a) analyze the Isabelle/HOL specifications and
proof scripts from the sel.4 project, and find a quadratic relationship
between the size of a formal property and the proof script required to
prove it.

Jeffery et al. (2015) identify 30 research questions about productiv-
ity in application of formal methods, such as verification using proof
assistants. Klein et al. (2017) outline the benefits of trustworthy systems.

7.4 Mining and Learning from Proof Repositories

Mining software repositories is an emerging field that analyzes software
repositories to yield actionable information about software systems and
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their development and evolution. We describe similar forms of analysis
that have been carried out for repositories with proof assistant code.

Wiedijk (2009) compared statistics for standard libraries of sev-
eral proof assistants for versions available around 2009, including Is-
abelle/HOL, Coq, and HOL Light. For each library, he reports the
number of lines of comments, proofs, definitions, etc. Despite founda-
tional differences, the numbers are similar, with HOL Light having the
smallest number of lines for definitions. For example, the LOC shares
of theorem statements, definitions, and proof in the Coq version 8.1
standard library were 11%, 8%, and 53%, respectively. Wiedijk argues
informally that fewer definitions per proof means higher trustworthiness,
since having proofs of relevant properties yield higher confidence in the
adequacy of definitions.

Blanchette et al. (2015) investigated Isabelle’s Archive of Formal
Proofs (AFP), analyzing among other properties the number and sizes
of proofs, interdependencies between projects, and number of authors.
For the AFP in aggregate, the LOC shares of theorem statements,
definitions, and proofs were 19%, 8%, and 58%, respectively. They found
that the Isabelle Sledgehammer tool for proof automation (Paulson and
Blanchette, 2012) could prove about 60% of all theorems in the AFP.

Software metrics provide quantitative ways to describe software arti-
facts and processes and discover new properties. Aspinall and Kaliszyk
(2016a) first considered analogous metrics for formal proofs. More specif-
ically, they define an abstract model of formal proofs and a set of proof
metrics for this model, which they implement for three different proof
assistants (Isabelle, Mizar, and HOL Light) and apply to several large
proof corpora.

Komendantskaya et al. (2012) used machine learning with cluster-
ing algorithms to identify patterns in large collections of Coq tactic
sequences and proof trees, e.g., to find structural similarities between
lemmas, and Heras and Komendantskaya (2013) and Heras and Komen-
dantskaya (2014) highlighted how statistical patterns in proofs can be
leveraged during interactive proof development. Aspinall and Kaliszyk
(2016b) used machine learning, in the form of a k-nearest-neighbor
classifier, to learn and suggest theorem names in HOL Light projects
that accurately reflect their property definitions.
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Miiller et al. (2017) proposed a format and database for capturing
and leveraging alignments between concepts in different proof assistants,
e.g., between natural numbers in Coq on one hand and Isabelle/HOL on
the other. One of the basic assumptions in alignment is that concepts
have syntactic and semantic similarities across environments, consistent
with repetitiveness assumptions in naturalness. Gauthier and Kaliszyk
(2019) proposed an algorithm based on heuristics for generating align-
ments given two proof assistant libraries, and evaluated it on libraries
from six proof assistants. For example, by evaluating a library against
itself for alignment, duplicated concepts can be found.

Kaliszyk et al. (2017b) leveraged statistical machine learning tech-
niques in a tool that automatically translates (“formalizes”) mathe-
matical texts to proof assistant code. Their approach and evaluation is
based on learning and cross-validation using a corpus with established
alignments between English texts and HOL Light documents, based on
the Flyspeck project (Hales et al., 2017). They find that the number of
correct translations among the top 20 is 64%.

There are many recent lines of work that learn from large proof
assistant corpora to directly perform various automated reasoning
tasks (Kiithlwein et al., 2012; Kiithlwein et al., 2013; Kaliszyk and Urban,
2014; Irving et al., 2016; Loos et al., 2017; Peng and Ma, 2017); the
HOLStep dataset (Kaliszyk et al., 2017a) is designed as a benchmark
for training and evaluating such techniques in a proof assistant context.
Gauthier et al. (2017) and Gauthier et al. (2018) proposed a technique
for learning from HOL4 tactic sequences and proof states and automati-
cally suggest tactic-based proofs of theorems. They achieved around 66%
success rate on the HOL4 standard library, and by also incorporating
the automated E prover into the toolchain, they raised the success rate
to 69%. Huang et al. (2019) similarly learn from tactics and proof states,
but in the context of Coq and for a limited set of algebraic proof goals.
Yang and Deng (2019) proposed a more general tactic-based approach
for learning and automatic proof suggestion for Coq, which achieved
around 12% success rate on proofs from a large dataset of 123 Coq
projects. Nagashima and He (2018) used custom encodings of proof
state in Isabelle/HOL for learning in order to predict suitable proof
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methods (essentially powerful domain-specific proof tactics) to apply.
Bansal et al. (2019) presented a learning environment for HOL Light.
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Conclusion

Proof engineering has come far since its infancy in the 1970s (Milner,
1972; Milner and Weyhrauch, 1972), drawing on hundreds of years of
foundational ideas in mathematics and logic. Researchers and proof
engineers have used proof assistants to build software artifacts spanning
hundreds of thousands of lines of code (Leroy, 2009; Klein et al., 2009). A
growing fraction of these artifacts are executable on real hardware, and
of these, some are verified down to machine code for verified hardware.
Verified artifacts have shown themselves to be more reliable (Yang et al.,
2011), and are beginning to see industrial applications (Késtner et al.,
2018; Erbsen et al., 2019).

Compared to most research software, widely used proof assistants
such as Coq and Isabelle/HOL are mature and well-maintained tools,
with large communities, large software ecosystems, wide selections of
support tools, and sophisticated interfaces. Interest in verification across
academia and industry builds additional momentum for proof assis-
tant development. Interest in formal proofs among mathematicians, for
example, results in rich libraries (Voevodsky et al., 2011-2019; Bauer
et al., 2017), foundational advances (Univalent Foundations Program,
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2013), and tooling (Braibant and Pous, 2011) useful for verifying soft-
ware. Advances in automated theorem proving reach proof engineers
through tools like hammers (Blanchette et al., 2016b), which allow them
to benefit from cutting-edge research without increasing the trusted
computing base. Adaptations of research on programming practices and
developer support tools and systems from software engineering help
proof engineers continually increase productivity.

We are living in the age of “big verification” (ACM SIGPLAN, 2016).
A new generation of computer science students are learning to use proof
assistants in undergraduate and graduate courses (Coq Development
Team, 2017-2019), entering the workforce equipped with the skills
to verify software. As the scale of that verified software continues to
grow, the challenges of proof engineering will continue to grow more
significant and salient. This survey concludes with a discussion of five
of the opportunities to address high-level challenges that remain.

Opportunity 1: Adapting Tools and Ideas from Software Engineering
Development processes, build workflows, and support infrastructure
for proof assistants are far behind those for traditional software devel-
opment, and proof engineer productivity is consequently far from its
potential. Communities and ecosystems are small compared to those for
traditional software. Many features of and tools for proof assistants are
not adequately documented, and proof engineers struggle to develop
and maintain verified software in the face of evolving proof assistants,
libraries, and requirements (Bourke et al., 2012). Domains may lack
usable frameworks and libraries to build on, forcing time-consuming
development from scratch. Interfaces may lack in usability and key
features, and may become unmaintained and obsolete. Results in one
proof assistant cannot be readily used in another, except in special
cases. Proof engineering is particularly far behind software engineering
with respect to maintenance, disincentivizing experts (Elphinstone and
Heiser, 2013) from changing the system once it has been verified.
Proof engineering has already benefited from traditional software
engineering, for example through many of the design principles discussed
in Chapter 6. It can continue to draw on tools and ideas from software
engineering when applicable. The surveyed work suggests that it is
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sometimes necessary to adapt these tools and ideas, both to address
challenges unique to or especially pronounced in proof engineering (such
as brittleness), and to fully take advantage of the opportunities that
proof engineering presents (such as the availability of full specifications).
Continuing to transfer ideas and tools from software engineering to
proof engineering with these differences in mind may help close the gap
between the two disciplines. Ideas and tools ripe for transfer include
improved continuous integration systems, package systems, source code
hosting, graphical interfaces, error messaging, debugging tools, and
development processes.

Opportunity 2: Making Proof Assistants More Accessible Com-
pared to traditional programming languages, systems, and environ-
ments, proof assistants can be hard for non-experts to understand.
Their foundational bases in logic, mathematics, and type theory, which
have served to maintain trust, may also deter potential users due to
perceived complexity. Omissions in and misunderstandings of specifi-
cations may lead to lowered expectations and negative perceptions of
formally verified software. An overwhelming majority of large successful
software verification projects using proof assistants are carried out and
maintained by small teams of highly specialized and trained researchers,
frequently with close ties to the institutions where the corresponding
proof assistant is developed (Gonthier et al., 2013).

Some of this inaccessibility may dissipate over time, as students
become more familiar with concepts like inductive or dependent types
through the use of interactive theorem provers in computer science
courses, or through the availability of online books and tutorials. Some
may inspire new abstractions around concepts that are not accessible to
the average programmer. For example, new abstractions may help non-
experts more easily interface with unification algorithms and existential
variables. The interactive theorem proving community can continue to
draw on automated theorem proving to help make interactive theorem
proving more accessible and increase its reach and impact, not just
through hammers, but also as part of counterexample generators and
similar tools (Blanchette and Nipkow, 2010). Techniques from the
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broader formal methods community can even be certified in proof
assistants, and then applied inside them.

Opportunity 3: Understanding and Evaluating Development Pro-
cesses It is difficult to improve the state of the art in proof engineering
without understanding the status quo. The surveyed work suggests that
little work has been done to understand and assess the current develop-
ment processes of proof engineers, and that some of the work that has
been done in this direction has been inconclusive.

Thousands of proof assistant software verification projects are pub-
licly available on platforms such as GitHub for study, reuse, and as
research subjects; curated collections such as Isabelle’s Archive of Formal
Proofs (Klein et al., 2004-2019) and Coq’s OPAM package index (Coq
development team, 2018) provide high-quality projects with extensive
metadata, guaranteed to work with certain proof assistant versions.
These codebases can be investigated empirically, learned from, and
used to construct benchmarks when evaluating new proof engineering
techniques. Collecting and analyzing data from other points in the
development process, such as interaction with the IDE, may further
facilitate in these processes, as may user studies and community-wide
retrospective discussions of influential work.

Opportunity 4: End-to-End Verification Bugs affecting the soundness
of a proof assistant with respect to its foundations, although rare,
threaten to undermine trustworthiness. Coq Development Team (2018-
2019), for example, contains preliminary documentation of 23 (now
fixed) critical bugs in the history of stable releases of Coq. Of the bugs
listed, only 1 (fixed in 2015) was assessed as likely to be exploited by
chance, but the risk of others was not determined. Extensions to proof
assistant kernels may further cloud understanding of the implemented
metatheory.

The wide availability of verified systems software provides the basis
of a fully verified software ecosystem, with all-encompassing end-to-end
guarantees for both functional and non-functional properties for a wide
range of practical software. This could rule out many recently discovered
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critical bugs and even many prevalent security flaws (Chlipala, 2018).
Proof assistant self-verification projects and certified compilers for proof
assisants, although still emerging and used by few, promise to eventually
make the trusted computing base of verified ecosystems minimal. One
important step towards a verified ecosystem is to formalize additional
practical programming languages and their semantics and runtime
environments.

Opportunity 5: Looking to New Applications In the Social Processes
critique of program verification, DeMillo et al. (1977) wrote that:

We believe that, in the end, it is a social process that de-
termines whether mathematicians feel confident about a
theorem—and we believe that, because no comparable social
process can take place among program verifiers, program
verification is bound to fail. We can’t see how it’s going to
be able to affect anyone’s confidence about programs.

The authors of this survey find it surprising with this in mind that
Leroy (2006) and Leroy (2009) put years of effort into verifying an
optimizing C compiler, with little precedent to suggest that such a
project could succeed. But it did succeed, and in so doing increased
confidence in both the compiler itself (Yang et al., 2011) and in the
compiled software (Késtner et al., 2018).

As proof engineers and researchers like Leroy (2006) stretch the
boundaries of current proof engineering techniques on new and interest-
ing domains, proof engineering research can continue to grow to support
the new needs that arise. This cycle can help build a world with, for
example, safer transportation systems or more reliable medical devices.
It can help build a world that is a bit more trustworthy.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

Acknowledgements

We would like to thank Dan Grossman, Derek Dreyer, Xavier Leroy,
Benjamin Pierce, Andrew Appel, Bob Harper, Jonathan Aldrich, Karl
Crary, Adam Chlipala, Chris Martens, Joachim Breitner, Christine
Rizkallah, Giuliano Losa, Thomas Tuerk, Roberto Guanciale, Doug
Woos, James R. Wilcox, Ryan Doenges, Jared Roesch, Sorin Lerner,
Leslie Lamport, Fred Schneider, John Leo, Bob Atkey, Lars Hupel, Bu-
day Gergely, Makarius Wenzel, Jasmin Christian Blanchette, Matthieu
Sozeau, Cyril Cohen, David Thrane Christiansen, Sam Tobin-Hochstadt,
Mario Alvarez, Joomy Korkut, Robert Rand, Taylor Blau, Anna Ko-
rnfeld Simpson, Jonathan Sterling, Colin Barret, Toby Murray, Ger-
win Klein, Graydon Hoare, Emilio Jésus Gallego Arias, and Brendan
Zabarauskas. We are grateful to the anonymous reviewers for their
detailed comments and valuable suggestions. This material is based
upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1256082, the National Sci-
ence Foundation under Grant Nos. CCF-1652517, CCF-1836813, and
CCF-1749570, and by a Research Award from Facebook. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

223



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References

Abel, A.; A. Momigliano, and B. Pientka (2017a). “POPLMark Reloaded”.
In: Proceedings of the Logical Frameworks and Meta-Languages: The-
ory and Practice Workshop.

Abel, A., A. Vezzosi, and T. Winterhalter (2017b). “Normalization by
Evaluation for Sized Dependent Types”. Proc. ACM Program. Lang.
1(ICFP): 33:1-33:30. por: 10.1145/3110277.

ACL2 Development Team (1990-2019). “ACL2”. URL: http://www.cs.
utexas.edu/users/moore/acl2.

ACM SIGPLAN (2016). “Most Influential POPL Paper Award”. URL:
http://www.sigplan.org/Awards/POPL.

Adams, M. (2015). “Refactoring Proofs with Tactician”. In: Software
Engineering and Formal Methods. Berlin, Heidelberg: Springer. 53—
67. por: 10.1007/978-3-662-49224-6_ 6.

Agda Development Team (2005-2017). “Quick Guide to Editing, Type
Checking and Compiling Agda Code — Agda 2.5.4.2 Documentation”.
URL: http://agda.readthedocs.io/en/v2.5.4.2/getting-started/quick-
guide.html#quick-guide-introduction.

Agda Development Team (2005-2018). “Cubical Type Theory in Agda —
Agda 2.6.0 Documentation”. URL: http://agda.readthedocs.io/en/
latest /language/cubical.html.

Agda Development Team (2007-2019). “The Agda Wiki”. URL: http:
//wiki.portal.chalmers.se/agda/pmwiki.php.

224



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 225

Aitken, J., P. Gray, T. Melham, and M. Thomas (1998). “Interactive
Theorem Proving: An Empirical Study of User Activity”. Journal of
Symbolic Computation. 25(2): 263-284. pDo1: 10.1006/jsc0.1997.0175.

Aitken, S. and T. Melham (2000). “An analysis of errors in interactive
proof attempts”. Interacting with Computers. 12(6): 565-586. DOI:
10.1016/S0953-5438(99)00023-5.

Aldrich, J., R. J. Simmons, and K. Shin (2008). “SASyLF: An Ed-
ucational Proof Assistant for Language Theory”. In: Proceedings
of the 2008 International Workshop on Functional and Declarative
Programming in Education. FDPE ’08. Victoria, BC, Canada: ACM.
31-40. por: 10.1145/1411260.1411266.

Allen, S. F., R. L. Constable, D. J. Howe, and W. E. Aitken (1990).
“The semantics of reflected proof”. In: Proceedings. Fifth Annual
IEEE Symposium on Logic in Computer Science. 95-105. DOI: 10.
1109/LICS.1990.113737.

Altenkirch, T., V. Gaspes, B. Nordstrom, and B. von Sydow (1994).
“A user’s guide to ALF”. URL: http://www.cse.chalmers.se/~bengt/
papers/usersguidetoalf.pdf.

Amani, S., A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor,
J. Beeren, Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller,
T. Murray, G. Klein, and G. Heiser (2016). “Cogent: Verifying
High-Assurance File System Implementations”. In: International
Conference on Architectural Support for Programming Languages
and Operating Systems. Atlanta, GA, USA. 175-188. por: 10.1145/
2872362.2872404.

Ambler, S. J., R. L. Crole, and A. Momigliano (2002). “Combining
Higher Order Abstract Syntax with Tactical Theorem Proving and
(Co)Induction”. In: Theorem Proving in Higher Order Logics. Berlin,
Heidelberg: Springer. 13-30. po1: 10.1007/3-540-45685-6__3.

Notices of the American Mathematical Society (2008): A Special Issue
on Formal Proof. URL: http://www.ams.org/notices/200811/.

Amin, N. and T. Rompf (2017). “Type Soundness Proofs with Defini-
tional Interpreters”. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. POPL 2017.
Paris, France: ACM. 666-679. por: 10.1145/3009837.3009866.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

226 References

Anand, A., A. W. Appel, G. Morrisett, M. Weaver, M. Sozeau, O. Savary
Belanger, R. Pollack, and Z. Paraskevopoulou (2017). “CertiCoq:
A verified compiler for Coq”. In: CogPL. URL: http://www.cs.
princeton.edu/~appel /papers/certicoq-coqpl.pdf.

Anand, A., S. Boulier, C. Cohen, M. Sozeau, and N. Tabareau (2018).
“Towards Certified Meta-Programming with Typed Template-Coq”.
In: Interactive Theorem Proving. Cham: Springer International Pub-
lishing. 20-39. DO1: 10.1007/978-3-319-94821-8 2.

Anand, A. and V. Rahli (2014). “Towards a Formally Verified Proof
Assistant”. In: Interactive Theorem Proving. Cham: Springer Inter-
national Publishing. 27-44. por: 10.1007/978-3-319-08970-6__3.

Anderson, T. and M. Dahlin (2014). Operating Systems: Principles and
Practice. 2nd. Recursive books.

Andronick, J., R. Jeffery, G. Klein, R. Kolanski, M. Staples, H. Zhang,
and L. Zhu (2012). “Large-Scale Formal Verification in Practice:
A Process Perspective”. In: International Conference on Software
Engineering. Zurich, Switzerland: ACM. 1002-1011. por1: 10.1109/
ICSE.2012.6227120.

Angiuli, C., E. Cavallo, K. Hou, R. Harper, and J. Sterling (2018).
“The RedPRL Proof Assistant (Invited Paper)”. In: Proceedings of
the 13th International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, LEFMTP@QFSCD 2018, Ozford, UK,
7th July 2018. 1-10. por: 10.4204/EPTCS.274.1.

Appel, A. W. (2006). “Tactics for separation logic”. INRIA Rocquen-
court and Princeton University, Farly Draft. URL: https://www.cs.
princeton.edu/~appel /papers/septacs.pdf.

Appel, A. W. (2011a). “Efficient Verified Red-Black Trees”. URL: https:
//www.cs.princeton.edu/~appel/papers/redblack.pdf.

Appel, A. W. (2011Db). “Verified Software Toolchain”. In: Programming
Languages and Systems: 20th FEuropean Symposium on Program-
ming, ESOP 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbriicken,
Germany, March 26-April 3, 2011. Proceedings. Berlin, Heidelberg:
Springer. 1-17. por: 10.1007/978-3-642-19718-5__1.

Appel, A. W. (2017). Personal communication.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 227

Appel, A. W., R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart,
S. Blazy, and X. Leroy (2014). Program Logics for Certified Compil-
ers. Cambridge University Press. por: 10.1017/CB0O9781107256552.

Appel, A. W., R. Dockins, and X. Leroy (2012). “A list-machine bench-
mark for mechanized metatheory”. Journal of Automated Reasoning.
49(3): 453-491. por: 10.1007/s10817-011-9226-1.

Appel, A. W., N. G. Michael, A. Stump, and R. Virga (2003). “A Trust-
worthy Proof Checker”. J. Autom. Reasoning. 31(3-4): 231-260. DOI:
10.1023/B:JARS.0000021013.61329.58.

Aristotle (1926). “Prior Analytics”. In: The Works of Aristotle. Trans-
lated by A. J. Jenkinson. Oxford.

Armstrong, A., T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I.
Stark, N. Krishnaswami, and P. Sewell (2019). “ISA Semantics for
ARMv8-a, RISC-v, and CHERI-MIPS”. Proc. ACM Program. Lang.
3(POPL): 71:1-71:31. por: 10.1145/3290384.

Asperti, A., C. S. Coen, E. Tassi, and S. Zacchiroli (2007). “User
interaction with the Matita proof assistant”. Journal of Automated
Reasoning. 39(2): 109-139. por: 10.1007/s10817-007-9070-5.

Asperti, A., F. Guidi, C. S. Coen, E. Tassi, and S. Zacchiroli (2004).
“A content based mathematical search engine: Whelp”. In: Interna-
tional Workshop on Types for Proofs and Programs. Springer. 17-32.
por: 10.1007/11617990_ 2.

Aspinall, D. (2000a). “Isamode”. URL: https://homepages.inf.ed.ac.uk/
da/Isamode/doc/Isamode_ toc.html.

Aspinall, D. (2000b). “Proof General: A Generic Tool for Proof De-
velopment”. In: Tools and Algorithms for the Construction and
Analysis of Systems: 6th International Conference, TACAS 2000
Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2000 Berlin, Germany, March 25 —
April 2, 2000 Proceedings. Berlin, Heidelberg: Springer. 38-43. DOI:
10.1007/3-540-46419-0__3.

Aspinall, D. and A. Compagnoni (2001). “Subtyping dependent types”.
Theoretical Computer Science. 266(1): 273-309. por: 10.1016/S0304-
3975(00)00175-4.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

228 References

Aspinall, D. and C. Kaliszyk (2016a). “Towards Formal Proof Met-
rics”. In: Fundamental Approaches to Software Engineering. Berlin,
Heidelberg: Springer. 325-341. por: 10.1007/978-3-662-49665-7_19.

Aspinall, D. and C. Kaliszyk (2016b). “What’s in a Theorem Name?”
In: Interactive Theorem Proving. Cham: Springer International Pub-
lishing. 459-465. por: 10.1007/978-3-319-43144-4_ 28.

Avigad, J. (2004). “Proof Mining”. URL: http://www.andrew.cmu.edu/
user/avigad /Talks/asl04.pdf.

Aydemir, B. E., A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic
(2005-2019). “The POPLMark Challenge”. URL: http://www.seas.
upenn.edu/~plclub/poplmark/.

Aydemir, B. E., A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic
(2005). “Mechanized Metatheory for the Masses: The POPLMark
Challenge”. In: Proceedings of the 18th International Conference on
Theorem Proving in Higher Order Logics. TPHOLs’05. Oxford, UK:
Springer-Verlag. 50-65. por: 10.1007/11541868_ 4.

Aydemir, B., A. Bohannon, and S. Weirich (2006). “Nominal Reasoning
Techniques in Coq”. In: International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP). Seattle,
WA, USA.

Aydemir, B., A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich
(2008). “Engineering Formal Metatheory”. In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’08. San Francisco, CA, USA:
ACM. 3-15. por: 10.1145/1328438.1328443.

Back, R. J. R. (1991). “Refinement Diagrams”. In: /th Refinement
Workshop. London: Springer London. 125-137. por: 10.1007/978-1-
4471-3756-6_7.

Back, R.-J. (1988). “A calculus of refinements for program derivations”.
Acta Informatica. 25(6): 593-624. po1: 10.1007/BF00291051.

Backus, J. (1978). “Can Programming Be Liberated from the von
Neumann Style?: A Functional Style and Its Algebra of Programs”.
Commun. ACM. 21(8): 613-641. por: 10.1145/359576.359579.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 229

Bahr, P. and G. Hutton (2015). “Calculating correct compilers”. J. Funct.
Program. 25. por: 10.1017/S0956796815000180.

Ballarin, C. (2006). “Interpretation of Locales in Isabelle: Theories and
Proof Contexts”. In: Mathematical Knowledge Management. Berlin,
Heidelberg: Springer. 31-43. po1: 10.1007/11812289_ 4.

Bancerek, G. (1990). “The fundamental properties of natural numbers”.
Formalized Mathematics. 1(1): 41-46.

Bansal, K., S. M. Loos, M. N. Rabe, C. Szegedy, and S. Wilcox (2019).
“HOList: An Environment for Machine Learning of Higher-Order
Theorem Proving (extended version)”. CoRR. abs/1904.03241.

Barendregt, H. (2007). “Proofs of Correctness in Mathematics and Indus-
try”. In: Wiley Encyclopedia of Computer Science and Engineering.
John Wiley & Sons. poI: 10.1002/9780470050118.ecse579.

Barendregt, H. (2013). “Foundations of Mathematics from the Per-
spective of Computer Verification”. In: Mathematics, Computer
Science and Logic - A Never Ending Story: The Bruno Buchberger
Festschrift. Cham: Springer International Publishing. 1-49. por:
10.1007/978-3-319-00966-7__1.

Barendregt, H. and E. Barendsen (2002). “Autarkic Computations in
Formal Proofs”. Journal of Automated Reasoning. 28(3): 321-336.
DOI: 10.1023/A:1015761529444.

Barendregt, H. and F. Wiedijk (2005). “The challenge of computer math-
ematics”. Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences. 363(1835):
2351-2375. por: 10.1098 /rsta.2005.1650.

Barras, B. (2010). “Sets in Coq, Coq in Sets”. Journal of Formalized
Reasoning. 3(1): 29-48. DOI: 10.6092 /issn.1972-5787/1695.

Barras, B., L. del Carmen Gonzéilez Huesca, H. Herbelin, Y. Régis-
Gianas, E. Tassi, M. Wenzel, and B. Wolff (2013). “Pervasive Paral-
lelism in Highly-Trustable Interactive Theorem Proving Systems”.
In: Intelligent Computer Mathematics: MKM, Calculemus, DML,
and Systems and Projects 2013, Held as Part of CICM 2013, Bath,
UK, July 8-12, 2013. Proceedings. Berlin, Heidelberg: Springer. 359—
363. DOI: 10.1007/978-3-642-39320-4_ 29.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

230 References

Barras, B., C. Tankink, and E. Tassi (2015). “Asynchronous Processing
of Coq Documents: From the Kernel up to the User Interface”. In: In-
teractive Theorem Proving: 6th International Conference, ITP 2015,
Nangjing, China, August 24-27, 2015, Proceedings. Cham: Springer
International Publishing. 51-66. po1: 10.1007/978-3-319-22102-1_ 4.

Barras, B. and B. Werner (1997). “Coq in Coq”. URL: http://www.lix.
polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf.

Barret, C. (2018). “Twitter Response”. URL: http://twitter.com /
cbarrett/status/1059888137026068482.

Barthe, G. (1995). “Implicit coercions in type systems”. In: International
Workshop on Types for Proofs and Programs. Springer. 1-15. DOTI:
10.1007/3-540-61780-9_ 58.

Barthe, G. and P. Courtieu (2002). “Efficient reasoning about executable
specifications in Coq”. In: International Conference on Theorem
Proving in Higher Order Logics. Springer. 31-46. po1: 10.1007/3-
540-45685-6_ 4.

Barthe, G. and O. Pons (2001). “Type Isomorphisms and Proof Reuse
in Dependent Type Theory”. In: Foundations of Software Science
and Computation Structures. Berlin, Heidelberg: Springer. 57-71.
DOI: 10.1007/3-540-45315-6__4.

Barthe, G., M. Ruys, and H. Barendregt (1996). “A two-level approach
towards lean proof-checking”. In: Types for Proofs and Programs:
International Workshop, TYPES °95 Torino, Italy, June 5-8, 1995
Selected Papers. Berlin, Heidelberg: Springer. 16-35. por: 10.1007/3-
540-61780-9_59.

Bates, J. L. (1979). “A Logic for Correct Program Development”.
AAI8003896. PhD thesis. Ithaca, NY, USA: Cornell University.
Bauer, A., J. Gross, P. L. Lumsdaine, M. Shulman, M. Sozeau, and B.
Spitters (2017). “The HoTT Library: A Formalization of Homotopy
Type Theory in Coq”. In: Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs. CPP 2017. Paris,

France: ACM. 164-172. por: 10.1145/3018610.3018615.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 231

Beckert, B., S. Grebing, and F. Bohl (2014). “A Usability Evaluation of
Interactive Theorem Provers Using Focus Groups”. In: 12th Inter-
national Conference on Software Engineering and Formal Methods
(SEFM 2014) — Collocated Workshops: Human-Oriented Formal
Methods (HOFM 2014). Vol. 8938. Lecture Notes in Computer Sci-
ence. Springer. 3-19. por: 10.1007/978-3-319-15201-1 1.

Benthem Jutting, L. S. van (1994). “Checking Landau’s Grundlagen in
the Automath System: Parts of Chapters 0, 1 and 2 (Introduction,
Prepration, Translation)”. In: Studies in Logic and the Foundations
of Mathematics. Vol. 133. Elsevier. 701-720. po1: 10.1016/S0049-
237X(08)70222-2.

Berger, U., S. Berghofer, P. Letouzey, and H. Schwichtenberg (2005).
“Program extraction from normalization proofs”. Studia Logica. 82.
DoI: 10.1007/s11225-006-6604-5.

Berghofer, S. and T. Nipkow (2002). “Executing Higher Order Logic”.
In: Types for Proofs and Programs: International Workshop, TYPES
2000 Durham, UK, December §-12, 2000 Selected Papers. Berlin,
Heidelberg: Springer. 24-40. po1: 10.1007/3-540-45842-5_ 2.

Berghofer, S. and C. Urban (2007). “A Head-to-Head Comparison
of de Bruijn Indices and Names”. FElectronic Notes in Theoretical
Computer Science. 174(5): 53-67. por: 10.1016/j.entcs.2007.01.018.

Berghofer, S. and M. Wenzel (1999). “Inductive Datatypes in HOL —
Lessons Learned in Formal-Logic Engineering”. In: Theorem Proving
in Higher Order Logics. Berlin, Heidelberg: Springer. 19-36. DOTI:
10.1007/3-540-48256-3__ 3.

Bertot, Y. (2009). “Theorem proving support in programming language
semantics”. In: From Semantics to Computer Science: Essays in
Honour of Gilles Kahn. Ed. by Y. Bertot, G. Huet, J.-J. Lévy,
and G. Plotkin. Cambridge University Press. 337-361. URL: http:
//hal.inria.fr/inria-00160309/.

Bertot, Y. and P. Casteran (2004). Interactive Theorem Proving and
Program Development: Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science An EATCS Series.
Berlin, Heidelberg: Springer. bor: 10.1007/978-3-662-07964-5.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

232 References

Bertot, Y., G. Kahn, and L. Théry (1994). “Proof by pointing”. In: The-
oretical Aspects of Computer Software. Berlin, Heidelberg: Springer.
141-160. po1: 10.1007/3-540-57887-0_ 94.

Bertot, Y. and L. Théry (1998). “A Generic Approach to Building User
Interfaces for Theorem Provers”. Journal of Symbolic Computation.
25(2): 161-194. por: 10.1006/jsco.1997.0171.

Biendarra, J., J. C. Blanchette, A. Bouzy, M. Desharnais, M. Fleury,
J. Holzl, O. Kuncar, A. Lochbihler, F. Meier, L. Panny, A. Popescu,
C. Sternagel, R. Thiemann, and D. Traytel (2017). “Foundational
(Co)datatypes and (Co)recursion for Higher-Order Logic”. In: Fron-
tiers of Combining Systems. Cham: Springer International Publish-
ing. 3-21. por: 10.1007/978-3-319-66167-4__ 1.

Birkedal, L. and A. Bizjak (2018). “Lecture Notes on Iris: Higher-Order
Concurrent Separation Logic”. URL: https://iris-project.org/tutorial-
pdfs/iris-lecture-notes.pdf.

Bishop, E. and D. Bridges (1985). Constructive Analysis. Springer. DOI:
10.1007/978-3-642-61667-9.

Bishop, S., M. Fairbairn, H. Mehnert, M. Norrish, T. Ridge, P. Sewell,
M. Smith, and K. Wansbrough (2018). “Engineering with Logic:
Rigorous Test-Oracle Specification and Validation for TCP/IP and
the Sockets API”. J. ACM. 66(1): 1:1-1:77. por: 10.1145/3243650.

Bishop, S., M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K.
Wansbrough (2006). “Engineering with Logic: HOL Specification
and Symbolic-evaluation Testing for TCP Implementations”. In:
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’06. Charleston,
SC, USA: ACM. 55-66. por: 10.1145/1111037.1111043.

Bjgrner, D. and K. Havelund (2014). “40 Years of Formal Methods”. In:
FM 2014: Formal Methods: 19th International Symposium, Singa-
pore, May 12-16, 2014. Proceedings. Cham: Springer International
Publishing. 42—-61. po1: 10.1007/978-3-319-06410-9_ 4.

Blanchette, J. C., L. Bulwahn, and T. Nipkow (2011). “Automatic Proof
and Disproof in Isabelle/HOL”. In: Frontiers of Combining Systems.
Berlin, Heidelberg: Springer. 12-27. por: 10.1007/978-3-642-24364-
6_2.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 233

Blanchette, J. C., M. Fleury, P. Lammich, and C. Weidenbach (2018).
“A verified SAT solver framework with learn, forget, restart, and
incrementality”. Journal of Automated Reasoning. 61(1-4): 333-365.

Blanchette, J. C., D. Greenaway, C. Kaliszyk, D. Kiihlwein, and J. Urban
(2016a). “A Learning-Based Fact Selector for Isabelle/HOL”. Journal
of Automated Reasoning. 57(3): 219-244. por: 10.1007/s10817-016-
9362-8.

Blanchette, J. C., M. Haslbeck, D. Matichuk, and T. Nipkow (2015).
“Mining the Archive of Formal Proofs”. In: Intelligent Computer
Mathematics: International Conference, CICM 2015, Washington,
DC, USA, July 13-17, 2015, Proceedings. Cham: Springer Interna-
tional Publishing. 3-17. por: 10.1007/978-3-319-20615-8 1.

Blanchette, J. C., C. Kaliszyk, L. C. Paulson, and J. Urban (2016b).
“Hammering towards QED”. Journal of Formalized Reasoning. 9(1):
101-148. pot: 10.6092/issn.1972-5787/4593.

Blanchette, J. C. and T. Nipkow (2010). “Nitpick: A Counterexample
Generator for Higher-order Logic Based on a Relational Model
Finder”. In: Proceedings of the First International Conference on
Interactive Theorem Proving. ITP’10. Edinburgh, UK: Springer-
Verlag. 131-146. po1: 10.1007/978-3-642-14052-5_ 11.

Boite, O. (2004). “Proof Reuse with Extended Inductive Types”. In:
Theorem Proving in Higher Order Logics: 17th International Confer-
ence, TPHOLs 2004, Park City, Utah, USA, September 14-17, 2004.
Proceedings. Berlin, Heidelberg: Springer. 50-65. po1: 10.1007/978-
3-540-30142-4_ 4.

Boulton, R. J., A. Gordon, M. J. C. Gordon, J. Harrison, J. Herbert, and
J. V. Tassel (1992). “Experience with Embedding Hardware Descrip-
tion Languages in HOL”. In: Proceedings of the IFIP TC10/WG 10.2
International Conference on Theorem Provers in Circuit Design:
Theory, Practice and Ezxperience. Amsterdam, The Netherlands:
North-Holland Publishing Co. 129-156.

Bounov, D., A. DeRossi, M. Menarini, W. G. Griswold, and S. Lerner
(2018). “Inferring Loop Invariants through Gamification”. In: Pro-
ceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems. ACM. 231. por: 10.1145/3173574.3173805.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

234 References

Bourke, T., M. Daum, G. Klein, and R. Kolanski (2012). “Challenges and
Experiences in Managing Large-Scale Proofs”. In: Conferences on In-
telligent Computer Mathematics (CICM) / Mathematical Knowledge
Management. Bremen, Germany: Springer. 32-48. DOI: 10.1007/978-
3-642-31374-5_ 3.

Boutin, S. (1997). “Using reflection to build efficient and certified
decision procedures”. In: Theoretical Aspects of Computer Software:
Third International Symposium, TACS’97 Sendai, Japan, September
23-26, 1997 Proceedings. Berlin, Heidelberg: Springer. 515-529. DOI:
10.1007/BFb0014565.

Boyer, R. S. (1994). “A mechanically proof-checked encyclopedia of
mathematics: Should we build one? Can we?” In: Automated De-
duction — CADE-12: 12th International Conference on Automated
Deduction Nancy, France, June 26 — July 1, 1994 Proceedings. Berlin,
Heidelberg: Springer. 237-251. por: 10.1007/3-540-58156-1__17.

Bradley, A. R. and Z. Manna (2007). The Calculus of Computation:
Decision Procedures with Applications to Verification. Berlin, Hei-
delberg: Springer-Verlag.

Brady, E. (2013). “Idris, a general-purpose dependently typed program-
ming language: Design and implementation”. Journal of Functional
Programming. 23(5): 552-593. por: 10.1017/S095679681300018X.

Braibant, T. and D. Pous (2011). “Tactics for Reasoning Modulo AC in
Coq”. In: Certified Programs and Proofs: First International Confer-
ence, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings.
Berlin, Heidelberg: Springer. 167-182. por: 10.1007 /978-3-642-
25379-9_14.

Braibant, T. and D. Pous (2012). “Deciding Kleene Algebras in Coq”.
Logical Methods in Computer Science. Volume 8, Issue 1. Dor: 10.
2168/LMCS-8(1:16)2012.

Buchberger, B. (2000). “Theory exploration with Theorema”. Analele
Universitatic Din Timisoara, ser. Matematica-Informatica. 38(2):

9-32.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 235

Buchberger, B., A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K.
Nakagawa, F. Piroi, N. Popov, J. Robu, M. Rosenkranz, et al.
(2006). “Theorema: Towards computer-aided mathematical theory
exploration”. Journal of Applied Logic. 4(4): 470-504. por1: 10.1016/
j-jal.2005.10.006.

Bulwahn, L. (2012). “The New Quickcheck for Isabelle: Random, Exhaus-
tive and Symbolic Testing Under One Roof”. In: Proceedings of the
Second International Conference on Certified Programs and Proofs.
CPP’12. Kyoto, Japan: Springer-Verlag. 92-108. po1: 10.1007/978-
3-642-35308-6__10.

Bundy, A. (1988). “The Use of Explicit Plans to Guide Inductive
Proofs”. In: Proceedings of the 9th International Conference on
Automated Deduction. Berlin, Heidelberg: Springer. 111-120. DOI:
10.1007/BFb0012826.

Burstall, R. M. (1969). “Proving Properties of Programs by Structural
Induction”. The Computer Journal. 12(1): 41-48. po1: 10.1093/
comjnl/12.1.41.

Busch, H. (1994). “First-order automation for higher-order-logic the-
orem proving”. In: Higher Order Logic Theorem Proving and Its
Applications. Springer. 97-112. por: 10.1007/3-540-58450-1__37.

Cachin, C., R. Guerraoui, and L. Rodrigues (2011). Introduction to
Reliable and Secure Distributed Programming. 2nd. Springer. DOI:
10.1007/978-3-642-15260-3.

Callaghan, P. and Z. Luo (2001). “An implementation of LF with
coercive subtyping & universes”. Journal of Automated Reasoning.
27(1): 3-27. por: 10.1023/A:1010648911114.

Cao, J., M. Fu, and X. Feng (2015). “Practical tactics for verifying
C programs in Coq”. In: Proceedings of the 2015 Conference on
Certified Programs and Proofs. ACM. 97-108. por: 10.1145/2676724.
2693162.

Cao, Q., L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel (2018).
“VST-Floyd: A Separation Logic Tool to Verify Correctness of C
Programs”. Journal of Automated Reasoning. 61(1): 367-422. DOT:
10.1007/s10817-018-9457-5.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

236 References

Caplan, J. E. and M. T. Harandi (1995). “A Logical Framework for
Software Proof Reuse”. SIGSOFT Softw. Eng. Notes. 20(SI): 106—
113. por: 10.1145/223427.211821.

Capretta, V. (2005). “General Recursion via Coinductive Types”. Logical
Methods in Computer Science. Volume 1, Issue 2(July). por: 10.
2168/LMCS-1(2:1)2005.

Capretta, V. and A. P. Felty (2007). “Combining de Bruijn Indices and
Higher-Order Abstract Syntax in Coq”. In: Types for Proofs and
Programs. Berlin, Heidelberg: Springer. 63-77. por: 10.1007/978-3-
540-74464-1_5.

Cardelli, L., S. Martini, J. C. Mitchell, and A. Scedrov (1994). “An
Extension of System F with Subtyping”. Inf. Comput. 109(1-2):
4-56. DOI: 10.1006/inco.1994.1013.

Casinghino, C., V. Sjo6berg, and S. Weirich (2014). “Combining proofs
and programs in a dependently typed language”. In: The /1st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014.
33—46. por: 10.1145/2535838.2535883.

Celik, A., K. Palmskog, and M. Gligoric (2017). “iCoq: Regression Proof
Selection for Large-Scale Verification Projects”. In: 32nd IEEE/ACM
International Conference on Automated Software Engineering. ASE
2017. 171-182. por: 10.1109/ASE.2017.8115630.

Chaieb, A. and T. Nipkow (2008). “Proof synthesis and reflection for
linear arithmetic”. Journal of Automated Reasoning. 41(1): 33.
Chajed, T., J. Tassarotti, M. F. Kaashoek, and N. Zeldovich (2019). “Ar-
gosy: Verifying Layered Storage Systems with Recovery Refinement”.
In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2019. Phoenix,

AZ, USA: ACM. 1054-1068. por: 10.1145/3314221.3314585.

Chan, M., J. Lehmann, and A. Bundy (2011). “GALILEO: A system
for automating ontology evolution”. ARCOE-11: 46.

Charguéraud, A. (2010). “Program Verification Through Characteristic
Formulae”. In: Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming. ICFP °10. Baltimore, MD,
USA: ACM. 321-332. por: 10.1145/1863543.1863590.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 237

Charguéraud, A. (2011). “The Locally Nameless Representation”. Jour-
nal of Automated Reasoning: 1-46. DOI: 10.1007/s10817-011-9225-2.

Chen, H., T. Chajed, A. Konradi, S. Wang, A. Ileri, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich (2017). “Verifying a High-performance
Crash-safe File System Using a Tree Specification”. In: Proceedings
of the Symposium on Operating Systems Principles. 270-286. DOLI:
10.1145/3132747.3132776.

Chen, H., D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N.
Zeldovich (2015). “Using Crash Hoare Logic for Certifying the FSCQ
File System”. In: Proceedings of the 25th Symposium on Operating
Systems Principles. SOSP ’15. Monterey, California: ACM. 18-37.
DOI: 10.1145/2815400.2815402.

Chlipala, A. (2008). “Parametric Higher-order Abstract Syntax for
Mechanized Semantics”. In: Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming. ICEP ’08. Vic-
toria, BC, Canada: ACM. 143-156. por: 10.1145/1411204.1411226.

Chlipala, A. (2011). “Mostly-automated verification of low-level pro-
grams in computational separation logic”. In: PLDI. ACM. 234-245.
DOI: 10.1145/1993498.1993526.

Chlipala, A. (2013a). Certified Programming with Dependent Types:
A Pragmatic Introduction to the Coq Proof Assistant. Cambridge,
MA, USA: MIT Press.

Chlipala, A. (2013b). “The Bedrock Structured Programming System:
Combining Generative Metaprogramming and Hoare Logic in an
Extensible Program Verifier”. In: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming.
ICFP ’13. Boston, MA, USA: ACM. 391-402. pot: 10.1145/2500365.
2500592.

Chlipala, A. (2017). “Formal Reasoning About Programs”. URL: http:
//adam.chlipala.net/frap/.

Chlipala, A. (2018). “The Surprising Security Benefits of End-to-End
Formal Proofs”. URL: https://www.cccblog.org/2018/06/13/the-
surprising-security-benefits-of-end-to-end-formal-proofs/.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

238 References

Chlipala, A., B. Delaware, S. Duchovni, J. Gross, C. Pit-Claudel, S.
Suriyakarn, P. Wang, and K. Ye (2017). “The End of History: Using
a Proof Assistant to Replace Language Design with Library Design”.
In: 2nd Summit on Advances in Programming Languages (SNAPL
2017). Vol. 7T1. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. 3:1-3:15. po1: 10.4230/LIPIcs.SNAPL.2017.3.

Chlipala, A., J. G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky
(2009). “Effective interactive proofs for higher-order imperative
programs”. In: Proceeding of the 14th ACM SIGPLAN international
conference on Functional programming (ICFP 2009). ACM. 79-90.
DOI: 10.1145/1596550.1596565.

Christiansen, D. and E. Brady (2016). “Elaborator Reflection: Extending
Idris in Idris”. SIGPLAN Not. 51(9): 284-297. por: 10.1145/3022670.
2951932.

Chrzaszcz, J. (2003). “Implementing Modules in the Coq System”.
In: Theorem Proving in Higher Order Logics. Berlin, Heidelberg:
Springer. 270-286. por: 10.1007/10930755__18.

Church, A. (1936). “An Unsolvable Problem of Elementary Number
Theory”. American Journal of Mathematics. 58(2): 345-363. DOI:
10.2307/2371054.

Church, A. (1940). “A formulation of the simple theory of types”.
Journal of Symbolic Logic. 5(2): 56—68. DOI: 10.2307/2266170.

Church, A. (1941). The calculi of lambda-conversion. Princeton Univer-
sity Press.

Ciaffaglione, A. and I. Scagnetto (2012). “A weak HOAS approach to
the POPLMark Challenge”. In: Proceedings Seventh Workshop on
Logical and Semantic Frameworks, with Applications, LSFA 2012,
Rio de Janeiro, Brazil, September 29-30, 2012. 109-124. por: 10.
4204/EPTCS.113.11.

Claret, G., L. d. C. G. Huesca, Y. Régis-Gianas, and B. Ziliani (2013).
“Lightweight proof by reflection using a posteriori simulation of
effectful computation”. In: International Conference on Interactive
Theorem Proving. Springer. 67-83. DOI: 10.1007/978-3-642-39634-
2_8.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 239

cody (2015). “Why does Coq have Prop?” Theoretical Computer Science
Stack Exchange. URL: http://cstheory.stackexchange.com/questions/
21836 /why-does-coq-have-prop.

Cohen, C. (2013). “Pragmatic Quotient Types in Coq”. In: Interactive
Theorem Proving. Berlin, Heidelberg: Springer. 213-228. por: 10.
1007/978-3-642-39634-2__17.

Cohen, C., T. Coquand, S. Huber, and A. Mértberg (2018). “Cubical
Type Theory: A Constructive Interpretation of the Univalence Ax-
iom”. In: 21st International Conference on Types for Proofs and
Programs (TYPES 2015). Vol. 69. Schloss Dagstuhl. 5:1-5:34. DOI:
10.4230/LIPIcs. TYPES.2015.5.

Cohen, C., M. Dénes, and A. Mortberg (2013). “Refinements for Free!”
In: Certified Programs and Proofs. Cham: Springer International
Publishing. 147-162. por: 10.1007/978-3-319-03545-1__10.

Cohn, A. (1983). “The Equivalence of Two Semantic Definitions: A Case
Study in LCF”. SIAM Journal on Computing. 12(2): 267-285. DOI:
10.1137/0212016.

CompCert Development Team (2010). “Merge of the newmem and
newextcalls branches”. URL: http://github.com/AbsInt/CompCert/
commit /a74f6b45d72834b5b8417297017bd81424123d98.

Constable, R. L., S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith (1986). Implement-
ing Mathematics with the Nuprl Proof Development System. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc.

Cooper, K. and L. Torczon (2011). Engineering a compiler. Elsevier.
por: 10.1016/C2009-0-27982-7.

Coq Development Team (2017-2019). “CoqInTheClassroom”. URL: http:
//github.com/coq/coq/wiki/CoqIlnTheClassroom.

Coq Development Team (2018-2019). “Preliminary compilation of criti-
cal bugs in stable releases of Coq”. URL: http://github.com/coq/
coq/blob/master/dev/doc/critical-bugs.

Coq Development Team (1999-2018a). “Coq Integrated Development
Environment”. URL: http://coq.inria.fr /refman /practical-tools/
coqide.html.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

240 References

Coq Development Team (1999-2018b). “Tactics”. URL: http://coq.inria.
fr /refman/proof-engine/tactics.html.

Coq Development Team (1999-2018c). “The Coq Commands”. URL:
http://coq.inria.fr /refman /practical-tools/coq-commands.html.
Coq Development Team (1989-2019). “The Coq Proof Assistant”. URL:

http://coq.inria.fr.

Coq Development Team (2003). “interface GTK2 experimentale”. URL:
http://github.com/coq/coq/commit/3feld8e4287.

Coq Development Team (2017). “CoqStyle”. URL: https://github.com/
coq/coq/wiki/CoqStyle.

Coq development team (2018). “Coq OPAM Package Index”. URL:
https://coq.inria.fr/opam/www/.

CoqHoTT Development Team (2015-2019). “The CoqHoTT Project”.
URL: http://coqhott.gforge.inria.fr/.

Coquand, T. (1994). “Infinite objects in type theory”. In: Types for
Proofs and Programs. Berlin, Heidelberg: Springer. 62-78. por1: 10.
1007/3-540-58085-9_ 72.

Coquand, T. and G. Huet (1985). “Constructions: A higher order proof
system for mechanizing mathematics”. In: EUROCAL ’85. Berlin,
Heidelberg: Springer. 151-184. por: 10.1007/3-540-15983-5_ 13.

Coquand, T. and G. Huet (1988). “The calculus of constructions”.
Information and Computation. 76(2): 95-120. por: 10.1016,/0890-
5401(88)90005-3.

Coquand, T. and C. Paulin-Mohring (1990). “Inductively defined types”.
In: COLOG-88. Berlin, Heidelberg: Springer. 50-66. por: 10.1007/3-
540-52335-9_47.

Corbineau, P. (2008). “A Declarative Language for the Coq Proof
Assistant”. In: Types for Proofs and Programs: International Con-
ference, TYPES 2007, Cividale des Friuli, Italy, May 2-5, 2007
Revised Selected Papers. Berlin, Heidelberg: Springer. 69-84. DOI:
10.1007/978-3-540-68103-8__5.

Cornes, C. and D. Terrasse (1995). “Automating inversion of inductive
predicates in Coq”. In: International Workshop on Types for Proofs
and Programs. Springer. 85-104. Do1: 10.1007/3-540-61780-9_ 64.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 241

Cornes, C., J. Courant, J.-C. Fillidtre, G. Huet, P. Manoury, C. Munoz,
C. Murthy, C. Parent, C. Paulin-Mohring, A. Saibi, et al. (1995).
“The Coq Proof assistant, Reference Manual, Version 5.107”.

Crary, K. and R. Harper (2014). “The Mechanization of Standard
ML”. URL: http://github.com/SMLFamily /The- Mechanization-of-
Standard-ML.

Crégut, P. (1999-2018). “Omega: A solver for quantifier-free problems
in Presburger Arithmetic”. URL: http://coq.inria.fr / refman /
addendum/omega.html.

Cruz-Filipe, L. and P. Letouzey (2006). “A Large-Scale Experiment in
Executing Extracted Programs”. Electronic Notes in Theoretical
Computer Science. 151(1): 75-91. por: 10.1016/j.entcs.2005.11.024.

Cruz-Filipe, L. and B. Spitters (2003). “Program Extraction from
Large Proof Developments”. In: Theorem Proving in Higher Order
Logics: 16th International Conference, TPHOLs 2003, Rome, Italy,
September 8-12, 2003. Proceedings. Berlin, Heidelberg: Springer.
205-220. por: 10.1007/10930755__14.

Curien, R. (1995). “Tools for proof by analogy”. Theses. Université Henri
Poincaré - Nancy 1. URL: https://hal.univ-lorraine.fr/tel-01748604.

Curry, H. B. (1934). “Functionality in Combinatory Logic”. Proceedings
of the National Academy of Sciences of the United States of America.
20(11): 584-590. URL: http://www.jstor.org/stable/86796.

Czajka, L. and C. Kaliszyk (2018). “Hammer for Coq: Automation for
Dependent Type Theory”. Journal of Automated Reasoning. 61(1):
423-453. por: 10.1007/s10817-018-9458-4.

Czajka, L., C. Kaliszyk, and B. Ekici (2018). “CoqHammer: Automation
for Dependent Type Theory”. URL: http://cl-informatik.uibk.ac.at/
cek/coghammer/.

Dagand, P. (2017). “The essence of ornaments”. J. Funct. Program. 27:
€9. por: 10.1017/S0956796816000356.

Dahn, B. 1., J. Gehne, T. Honigmann, and A. Wolf (1997). “Integration of
automated and interactive theorem proving in ILF”. In: International
Conference on Automated Deduction. Springer. 57-60. pDor: 10.1007/
3-540-63104-6_7.



The version of record is available at: http://dx.doi.org/10.1561/2500000045
242 References

Dam, M., R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz (2013).
“Formal Verification of Information Flow Security for a Simple ARM-
based Separation Kernel”. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’13.
Berlin, Germany: ACM. 223-234. por: 10.1145/2508859.2516702.

Danielsson, N. A. (2012). “Operational Semantics Using the Partiality
Monad”. In: Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’12. Copenhagen,
Denmark: ACM. 127-138. por: 10.1145/2364527.2364546.

Darmochwat, A. (1990). “Finite sets”. Formalized Mathematics. 1(1):
165-167.

Davis, J. and M. O. Myreen (2015). “The Reflective Milawa Theorem
Prover is Sound (Down to the Machine Code that Runs it)”. Journal
of Automated Reasoning. 55(2): 117-183. por: 10.1007/s10817-015-
9324-6.

de Bruijn, N. G. (1970). “The mathematical language Automath, its
usage, and some of its extensions”. In: Symposium on Automatic
Demonstration. Berlin, Heidelberg: Springer. 29-61. po1: 10.1007/
BFb0060623.

de Bruijn, N. G. (1972). “Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with appli-
cation to the Church-Rosser theorem”. Indagationes Mathematicae
(Proceedings). 75(5): 381-392. pOI: 10.1016,/1385-7258(72)90034-0.

de Bruijn, N. G. (1994). “A Survey of the Project Automath”. In:
Selected Papers on Automath. Ed. by R. Nederpelt, J. Geuvers, and
R. de Vrijer. Vol. 133. Studies in Logic and the Foundations of
Mathematics. Elsevier. 141-161. por: 10.1016/S0049-237X(08)70203-
9.

de Moura, L., S. Kong, J. Avigad, F. van Doorn, and J. von Raumer
(2015). “The Lean Theorem Prover (System Description)”. In: Au-
tomated Deduction - CADE-25: 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Pro-
ceedings. Cham: Springer International Publishing. 378-388. DOTI:
10.1007/978-3-319-21401-6_ 26.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 243

De Roever, W.-P.; K. Engelhardt, and K.-H. Buth (1998). Data refine-
ment: model-oriented proof methods and their comparison. Vol. 47.
Cambridge University Press.

DeepSpec Team (2013-2019). “DeepSpec Project”. URL: https://deepspec.
org.

Delahaye, D. (2000). “A Tactic Language for the System Coq”. In:
Logic for Programming and Automated Reasoning: Tth International
Conference, LPAR 2000 Reunion Island, France, November 6-10,
2000 Proceedings. Berlin, Heidelberg: Springer. 85-95. por: 10.1007/
3-540-44404-1_7.

Delaware, B., W. Cook, and D. Batory (2011). “Product Lines of Theo-
rems”. In: Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Appli-
cations. OOPSLA ’11. Portland, OR, USA: ACM. 595-608. DOTI:
10.1145/2048066.2048113.

Delaware, B., S. Keuchel, T. Schrijvers, and B. C. Oliveira (2013a).
“Modular Monadic Meta-theory”. In: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming.
ICFP ’13. Boston, MA, USA: ACM. 319-330. pot: 10.1145/2500365.
2500587.

Delaware, B., C. Pit-Claudel, J. Gross, and A. Chlipala (2015). “Fiat: De-
ductive Synthesis of Abstract Data Types in a Proof Assistant”. In:
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages. POPL ’15. Mumbai,
India: ACM. 689-700. por: 10.1145/2676726.2677006.

Delaware, B., B. C. d. S. Oliveira, and T. Schrijvers (2013b). “Meta-
theory a La Carte”. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’13. Rome, Italy: ACM. 207-218. por: 10.1145/
2429069.2429094.

Demers, F.-N. and J. Malenfant (1995). “Reflection in logic, functional
and object-oriented programming: A Short Comparative Study”. In:
In IJCAI "95 Workshop on Reflection and Metalevel Architectures
and their Applications in Al 29-38.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

244 References

DeMillo, R. A., R. J. Lipton, and A. J. Perlis (1977). “Social Processes
and Proofs of Theorems and Programs”. In: Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. POPL 77. Los Angeles, California: ACM. 206-214. DOI:
10.1145/512950.512970.

Devriese, D. and F. Piessens (2011). “On the Bright Side of Type Classes:
Instance Arguments in Agda”. In: Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming.
ICFP ’11. Tokyo, Japan: ACM. 143-155. por: 10.1145/2034773.
2034796.

Diehl, L., D. Firsov, and A. Stump (2018). “Generic Zero-cost Reuse
for Dependent Types”. Proc. ACM Program. Lang. 2(ICFP): 104:1-
104:30. por: 10.1145/3236799.

Dietl, W., S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper,
T. Pavlik, and Z. Popovi¢ (2012). “Verification games: Making
verification fun”. In: Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs. ACM. 42-49. po1: 10.1145/
2318202.2318210.

Dietrich, D. (2011). Assertion level proof planning with compiled strate-
gles.

Dietrich, D., I. Whiteside, and D. Aspinall (2013). “Polar: A Frame-
work for Proof Refactoring”. In: Logic for Programming, Artificial
Intelligence, and Reasoning. Berlin, Heidelberg: Springer. 776-791.
DOI: 10.1007/978-3-642-45221-5_ 52.

Dijkstra, E. W. (1975). “Guarded Commands, Nondeterminacy and
Formal Derivation of Programs”. Commun. ACM. 18(8): 453-457.
por: 10.1145/360933.360975.

Dixon, L. and J. Fleuriot (2003). “IsaPlanner: A Prototype Proof
Planner in Isabelle”. In: Automated Deduction — CADE-19. Berlin,
Heidelberg: Springer. 279-283. Do1: 10.1007/978-3-540-45085-6_ 22.

Dockins, R. and A. Hobor (2010). “A theory of termination via in-
direction”. In: Proceedings of the Dagstuhl Seminar on Modelling,
Controlling and Reasoning about State. Vol. 10351. Dagstuhl, Ger-
many. 166-177.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 245

Doczkal, C. and G. Smolka (2018). “Regular Language Representations
in the Constructive Type Theory of Coq”. Journal of Automated
Reasoning. 61(1): 521-553. por1: 10.1007/s10817-018-9460-x.

Dramnesc, I., T. Jebelean, and S. Stratulat (2015). “Theory exploration
of binary trees”. In: Intelligent Systems and Informatics (SISY),
2015 IEEE 13th International Symposium on. IEEE. 139-144. DoOI:
10.1109/SISY.2015.7325367.

Dreyer, D., R. Harper, M. M. T. Chakravarty, and G. Keller (2007).
“Modular Type Classes”. In: Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’07. Nice, France: ACM. 63-70. por: 10.1145/1190216.
1190229.

Ebner, G., S. Ullrich, J. Roesch, J. Avigad, and L. de Moura (2017).
“A Metaprogramming Framework for Formal Verification”. Proc.
ACM Program. Lang. 1(ICFP): 34:1-34:29. por: 10.1145/3110278.

Eclipse Foundation (2001-2019). “Eclipse”. URL: http://www.eclipse.
org/ide/.

Elphinstone, K. and G. Heiser (2013). “From L3 to seL.4 What Have
We Learnt in 20 Years of 1.4 Microkernels?” In: Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles.
SOSP ’13. Farminton, PA: ACM. 133-150. DOI1: 10.1145/2517349.
2522720.

Erbsen, A., J. Philipoom, J. Gross, R. Sloan, and A. Chlipala (2019).
“Simple High-Level Code For Cryptographic Arithmetic — With
Proofs, Without Compromises”. In: IEEE Symposium on Security
and Privacy. DO1: 10.1109/SP.2019.00005.

Escard6, M. H. (2018). “A self-contained, brief and complete formulation
of Voevodsky’s Univalence Axiom”. CoRR. abs/1803.02294.

Esparza, J., P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G.
Smaus (2013). “A fully verified executable LTL model checker”. In:
International Conference on Computer Aided Verification. Springer.
463-478.

Faithfull, A., J. Bengtson, E. Tassi, and C. Tankink (2018). “Coqoon:
An IDE for interactive proof development in Coq”. International
Journal on Software Tools for Technology Transfer. 20(2): 125-137.
DoI: 10.1007/s10009-017-0457-2.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

246 References

Fallenstein, B. and R. Kumar (2015). “Proof-producing reflection for
HOL”. In: International Conference on Interactive Theorem Proving.
Springer. 170-186. por: 10.1007/978-3-319-22102-1_ 11.

Feferman, S. (2005). “Predicativity”. In: Ozford Handbook of Philosophy
of Mathematics and Logic. Ed. by S. Shapiro. Oxford University
Press. 590-624.

Felty, A. P., A. Momigliano, and B. Pientka (2015). “The Next 700 Chal-
lenge Problems for Reasoning with Higher-Order Abstract Syntax
Representations: Part 1-A Common Infrastructure for Benchmarks”.
CoRR. abs/1503.06095.

Felty, A. and D. Howe (1994). “Generalization and reuse of tactic proofs”.
In: Logic Programming and Automated Reasoning: 5th International
Conference. LPAR ’94. Berlin, Heidelberg: Springer. 1-15. DOT:
10.1007/3-540-58216-9_ 25.

Felty, A. and A. Momigliano (2012). “Hybrid: A Definitional Two-
Level Approach to Reasoning with Higher-Order Abstract Syntax”.
Journal of Automated Reasoning. 48(1): 43-105. por: 10.1007/s10817-
010-9194-x.

Felty, A., A. Momigliano, and B. Pientka (2018). “Benchmarks for
reasoning with syntax trees containing binders and contexts of
assumptions”. Mathematical Structures in Computer Science. 28(9):
1507-1540. por: 10.1017/S0960129517000093.

Felty, A. and B. Pientka (2010). “Reasoning with Higher-Order Abstract
Syntax and Contexts: A Comparison”. In: Interactive Theorem
Proving. Berlin, Heidelberg: Springer. 227-242. po1: 10.1007/978-3-
642-14052-5_17.

Feng, X. (2009). “Local rely-guarantee reasoning”. In: POPL. ACM.
315-327. por: 10.1145/1480881.1480922.

Feng, X. and Z. Shao (2005). “Modular verification of concurrent as-
sembly code with dynamic thread creation and termination”. In:
Proceedings of the 10th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2005). ACM. 254-267. DOIL:
10.1145/1086365.1086399.

Filliatre, J.-C. and P. Letouzey (2004). “Functors for Proofs and Pro-
grams”. In: Programming Languages and Systems. Berlin, Heidelberg:

Springer. 370-384. por: 10.1007/978-3-540-24725-8 26.



The version of record is available at: http://dx.doi.org/10.1561/2500000045
References 247

Filman, R., T. Elrad, S. Clarke, and M. Aksit (2004). Aspect-oriented
Software Development. First. Addison-Wesley Professional.

Floyd, R. W. (1967). “Assigning Meanings to Programs”. Proceedings
of Symposium on Applied Mathematics. 19.

Fox, A. and M. O. Myreen (2010). “A Trustworthy Monadic Formal-
ization of the ARMvT Instruction Set Architecture”. In: Interac-
tive Theorem Proving. Berlin, Heidelberg: Springer. 243-258. DOT:
10.1007/978-3-642-14052-5__18.

Franca, R. B., D. Favre-Felix, X. Leroy, M. Pantel, and J. Souyris
(2011). “Towards Formally Verified Optimizing Compilation in Flight
Control Software”. In: Bringing Theory to Practice: Predictability
and Performance in Embedded Systems. Vol. 18. OpenAccess Series
in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 59-68. po1: 10.4230 / OASIcs.
PPES.2011.59.

Frege, G. (1893). Grundgesetze der Arithmetik. Jena: Verlag Hermann
Pohle.

Gallego Arias, E. J., B. Pin, and P. Jouvelot (2017). “jsCoq: Towards
Hybrid Theorem Proving Interfaces”. In: Proceedings of the 12th
Workshop on User Interfaces for Theorem Provers, Coimbra, Por-
tugal, 2nd July 2016. Vol. 239. FElectronic Proceedings in Theoret-
ical Computer Science. Open Publishing Association. 15-27. DOTI:
10.4204/EPTCS.239.2.

Garillot, F. (2011). “Generic Proof Tools and Finite Group Theory”.
PhD thesis. Palaiseau, France: Ecole Polytechnique.

Garillot, F., G. Gonthier, A. Mahboubi, and L. Rideau (2009). “Pack-
aging Mathematical Structures”. In: TPHOL. Vol. 5674. LNCS.
Springer. 327-342. por: 10.1007/978-3-642-03359-9  23.

Gauthier, T. and C. Kaliszyk (2014). “Matching concepts across HOL
libraries”. In: Intelligent Computer Mathematics. Springer. 267-281.
DOI: 10.1007/978-3-319-08434-3_ 20.

Gauthier, T. and C. Kaliszyk (2015). “Sharing HOL4 and HOL Light
Proof Knowledge”. In: Logic for Programming, Artificial Intelli-
gence, and Reasoning: 20th International Conference, LPAR-20
2015, Suva, Fiji, November 24-28, 2015, Proceedings. Berlin, Hei-
delberg: Springer. 372-386. DOI: 10.1007/978-3-662-48899-7_ 26.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

248 References

Gauthier, T. and C. Kaliszyk (2019). “Aligning concepts across proof
assistant libraries”. Journal of Symbolic Computation. 90: 89-123.
Symbolic Computation in Software Science. DOI: 10.1016/j.jsc.2018.
04.005.

Gauthier, T., C. Kaliszyk, and J. Urban (2017). “TacticToe: Learning
to Reason with HOL4 Tactics”. In: LPAR-21. 21st International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning. Vol. 46. EPiC Series in Computing. EasyChair. 125-143.
DOI: 10.29007 /ntlb.

Gauthier, T., C. Kaliszyk, J. Urban, R. Kumar, and M. Norrish (2018).
“Learning to Prove with Tactics”. CoRR. abs/1804.00596. arXiv:
1804.00596.

Geuvers, H. (2009). “Proof assistants: History, ideas and future”. Sad-
hana. 34(1): 3-25. por: 10.1007/s12046-009-0001-5.

Geuvers, H., R. Pollack, F. Wiedijk, and J. Zwanenburg (2002a). “A Con-
structive Algebraic Hierarchy in Coq”. Journal of Symbolic Compu-
tation. 34(4): 271-286. poI: 10.1006/jsc0.2002.0552.

Geuvers, H., F. Wiedijk, and J. Zwanenburg (2002b). “A Constructive
Proof of the Fundamental Theorem of Algebra Without Using the
Rationals”. In: Types for Proofs and Programs. TYPES ’00. Berlin,
Heidelberg: Springer. 96-111. po1: 10.1007/3-540-45842-5 7.

Giero, M., F. Wiedijk, M. Giero, and F. Wiedijk (2003). “MMode, a
Mizar mode for the proof assistant Coq”. URL: http://www.cs.kun.
nl/~freek/mmode/mmode.pdf.

Giménez, E. (1995). “Codifying guarded definitions with recursive
schemes”. In: Types for Proofs and Programs. Berlin, Heidelberg:
Springer. 39-59. por: 10.1007/3-540-60579-7__3.

GitHub (2014-2019). “Atom”. URL: http://atom.io/.

GNU Project (1985-2019). “GNU Emacs”. URL: http://www.gnu.org/
software/emacs/.

Godel, K. (1930). “Die Vollstédndigkeit der Axiome des logischen Funk-
tionenkalkiils”. Monatshefte fiir Mathematik und Physik. 37(1): 349—
360. por: 10.1007/BF01696781.

Godel, K. (1931). “Uber formal unentscheidbare Sétze der Principia
Mathematica und verwandter Systeme 1”. Monatshefte fiir Mathe-
matik und Physik. 38(1): 173-198. por: 10.1007/BF01700692.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 249

Gomes, V. B., M. Kleppmann, D. P. Mulligan, and A. R. Beresford
(2017). “Verifying strong eventual consistency in distributed sys-
tems”. Proceedings of the ACM on Programming Languages. 1(OOP-
SLA): 109. por: 10.1145/3133933.

Gonthier, G. (2008). “Formal proof—the four-color theorem”. Notices
of the American Mathematical Society. 55(11): 1382-1393. URL:
http://www.ams.org/notices/200811/tx081101382p.pdf.

Gonthier, G., A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry (2013). “A Machine-
Checked Proof of the Odd Order Theorem”. In: Interactive Theorem
Proving: 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings. Berlin, Heidelberg: Springer. 163-179.
DOI: 10.1007/978-3-642-39634-2__14.

Gonthier, G. and A. Mahboubi (2010). “An introduction to small scale
reflection in Coq”. Journal of Formalized Reasoning. 3(2): 95-152.
DOIL: 10.6092/issn.1972-5787/1979.

Gonthier, G. and E. Tassi (2012). “A Language of Patterns for Subterm
Selection”. In: Interactive Theorem Proving. Berlin, Heidelberg:
Springer. 361-376. DoI: 10.1007/978-3-642-32347-8_25.

Gonthier, G., B. Ziliani, A. Nanevski, and D. Dreyer (2011). “How to
Make Ad Hoc Proof Automation Less Ad Hoc”. In: Proceedings of
the 16th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’11. Tokyo, Japan: ACM. 163-175. por: 10.
1145/2034773.2034798.

Gordon, A. D. (1994). “A mechanisation of name-carrying syntax up to
alpha-conversion”. In: Higher Order Logic Theorem Proving and Its
Applications. Berlin, Heidelberg: Springer. 413-425. por: 10.1007/3-
540-57826-9 152.

Gordon, C. S.;, M. D. Ernst, D. Grossman, and M. J. Parkinson
(2017). “Verifying Invariants of Lock-Free Data Structures with
Rely-Guarantee and Refinement Types”. ACM Trans. Program.
Lang. Syst. 39(3): 11:1-11:54. por: 10.1145/3064850.

Gordon, M. J. C. (2000). “Proof, Language, and Interaction”. In: ed. by
G. Plotkin, C. Stirling, and M. Tofte. Cambridge, MA, USA: MIT
Press. Chap. From LCF to HOL: A Short History. 169-185.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

250 References

Gordon, M. J. C. and T. F. Melham, eds. (1993). Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic. New York,
NY, USA: Cambridge University Press.

Gordon, M. J. C., R. Milner, L. Morris, M. C. Newey, and C. P.
Wadsworth (1978). “A Metalanguage for Interactive Proof in LCF”.
In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. POPL ’78. Tucson, Arizona:
ACM. 119-130. por: 10.1145/512760.512773.

Gordon, M. J. C.; R. Milner, and C. P. Wadsworth (1979). “Edinburgh
LCF: A Mechanised Logic of Computation”. In: Lecture Notes in
Computer Science. Vol. 78. DOI: 10.1007/3-540-09724-4.

Graham, P. (1996). ANSI Common Lisp. Prentice Hall Press.

Grégoire, B. and A. Mahboubi (2005). “Proving equalities in a com-
mutative ring done right in Coq”. In: International Conference on
Theorem Proving in Higher Order Logics. Springer. 98-113. DOTI:
10.1007/11541868_ 7.

Gu, R., J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S. Weng, H.
Zhang, and Y. Guo (2015). “Deep Specifications and Certified Ab-
straction Layers”. In: POPL. ACM. 595-608. por: 10.1145/2676726.
2676975.

Gu, R., Z. Shao, H. Chen, X. ( Wu, J. Kim, V. Sjoberg, and D. Costanzo
(2016). “CertiKOS: An Extensible Architecture for Building Certified
Concurrent OS Kernels”. In: OSDI. USENIX Association. 653—669.

Gu, R., Z. Shao, J. Kim, X. Wu, J. Koenig, V. Sjoberg, H. Chen,
D. Costanzo, and T. Ramananandro (2018). “Certified concurrent
abstraction layers”. In: PLDI. ACM. 646-661. po1: 10.1145/3192366.
3192381.

Guanciale, R., H. Nemati, M. Dam, and C. Baumann (2016). “Provably
secure memory isolation for Linux on ARM”. Journal of Computer
Security. 24(6): 793-837. por: 10.3233/JCS-160558.

Haftmann, F., A. Krauss, O. Kuncar, and T. Nipkow (2013). “Data Re-
finement in Isabelle/HOL”. In: Interactive Theorem Proving. Berlin,
Heidelberg: Springer. 100-115. por: 10.1007/978-3-642-39634-2_ 10.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 251

Haftmann, F. and T. Nipkow (2010). “Code Generation via Higher-order
Rewrite Systems”. In: Proceedings of the 10th International Con-
ference on Functional and Logic Programming. FLOPS’10. Sendai,
Japan: Springer-Verlag. 103—-117. po1: 10.1007/978-3-642-12251-
4_9.

Haftmann, F. and M. Wenzel (2007). “Constructive Type Classes in
Isabelle”. In: Types for Proofs and Programs. Ed. by T. Altenkirch
and C. McBride. Berlin, Heidelberg: Springer. 160-174. po1: 10.
1007/978-3-540-74464-1_ 11.

Haftmann, F. and M. Wenzel (2009). “Local Theory Specifications in
Isabelle/Isar”. In: Types for Proofs and Programs. Berlin, Heidelberg:
Springer. 153-168. por: 10.1007/978-3-642-02444-3 10.

Hales, T. C. (2007). “The Jordan curve theorem, formally and infor-
mally”. American Mathematical Monthly. 114(10): 882-894.

Hales, T. C., J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R.
Zumkeller (2011). “A Revision of the Proof of the Kepler Conjecture”.
In: The Kepler Conjecture: The Hales-Ferguson Proof. New York,
NY: Springer New York. 341-376. po1: 10.1007/978-1-4614-1129-
1.09.

Hales, T., M. Adams, G. Bauer, T. D. Dang, J. Harrison, L. T. Hoang, C.
Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, Q. T. Nguyen,
T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, T. H. A. Ta,
N. T. Tran, T. D. Trieu, J. Urban, K. Vu, and R. Zumkeller (2017).
“A Formal Proof of the Kepler Conjecture”. Forum of Mathematics,
Pi. 5. por: 10.1017/fmp.2017.1.

Harper, R. (1999). “Proof-directed Debugging”. J. Funct. Program. 9(4):
463-469. por: 10.1017/50956796899003378.

Harper, R. (2011). “Modules Matter Most”. URL: https://existentialtype.
wordpress.com,/2011/04 /16 /modules-matter-most/ .

Harper, R. (2016). Practical foundations for programming languages.
2nd. Cambridge, UK: Cambridge University Press. por: 10.1017/
CBO9781316576892.

Harper, R. and K. Crary (2019). Personal communication.

Harper, R., F. Honsell, and G. Plotkin (1993). “A Framework for
Defining Logics”. J. ACM. 40(1): 143-184. por: 10.1145/138027.
138060.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

252 References

Harper, R., F. Honsell, and G. D. Plotkin (1987). “A Framework for
Defining Logics”. In: Proceedings of the Second Annual IEEE Sym-
posium on Logic in Computer Science (LICS 1987). Ithaca, NY,
USA: IEEE Computer Society Press. 194-204.

Harper, R. and D. R. Licata (2007). “Mechanizing metatheory in a
logical framework”. Journal of Functional Programming. 17(4-5):
613-673. por: 10.1017/S0956796807006430.

Harrison, J. (1995). “Metatheory and Reflection in Theorem Proving:
A Survey and Critique”. Technical Report No. CRC-053. Millers
Yard, Cambridge, UK: SRI Cambridge. URL: http://www.cl.cam.ac.
uk/~jrh13/papers/reflect.dvi.gz.

Harrison, J. (1996). “A Mizar Mode for HOL”. In: Theorem Proving in
Higher Order Logics. Vol. 1125. Turku, Finland: Springer. 203-220.
por: 10.1007/BFb0105406.

Harrison, J., J. Urban, and F. Wiedijk (2014). “History of Interactive
Theorem Proving”. In: Computational Logic. Ed. by J. H. Siekmann.
Vol. 9. Handbook of the History of Logic. No. Supplement C. North-
Holland. 135-214. por: 10.1016/B978-0-444-51624-4.50004-6.

Hasker, R. W. and U. S. Reddy (1992). “Generalization at higher
types”. In: Proceedings of the Workshop on the AProlog Programming
Language. 257-271.

Hemer, D., I. Hayes, and P. Strooper (2001). “Refinement Calculus
for Logic Programming in Isabelle/HOL”. In: Theorem Proving in
Higher Order Logics. Berlin, Heidelberg: Springer. 249-260. DOI:
10.1007/3-540-44755-5_ 18.

Heras, J. and E. Komendantskaya (2013). “ML4PG in Computer Al-
gebra Verification”. In: Intelligent Computer Mathematics. Berlin,
Heidelberg: Springer. 354-358. por: 10.1007/978-3-642-39320-4_ 28.

Heras, J. and E. Komendantskaya (2014). “Recycling Proof Patterns in
Coq: Case Studies”. Mathematics in Computer Science. 8(1): 99-116.
por: 10.1007/s11786-014-0173-1.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 253

Heras, J., E. Komendantskaya, M. Johansson, and E. Maclean (2013).
“Proof-Pattern Recognition and Lemma Discovery in ACL2”. In:
Logic for Programming, Artificial Intelligence, and Reasoning: 19th
International Conference, LPAR-19, Stellenbosch, South Africa,
December 14-19, 2013. Proceedings. Berlin, Heidelberg: Springer.
389-406. por: 10.1007/978-3-642-45221-5_ 27.

Heyting, A. (1956). “Intuitionism. An introduction”.

Hoare, C. A. R. (1969). “An Axiomatic Basis for Computer Program-
ming”. Commaun. ACM. 12(10): 576-580. poI: 10.1145/363235.
363259.

Hoare, C. A. R. (1971). “Proof of a Program: FIND”. Commun. ACM.
14(1): 39-45. por: 10.1145,/362452.362489.

HOL Development Team (2016-2018). “Running hol”. URL: https://hol-
theorem-prover.org/guidebook/#running-hol.

HOL Development Team (2018). “The HOL System TUTORIAL”.
URL: http://sourceforge.net /projects /hol/files /hol / kananaskis-
12 /kananaskis-12-tutorial.pdf?download.

HOL Light Development Team (1996-2019). “HOL Light”. URL: http:
//www.cl.cam.ac.uk/~jrh13/hol-light.

Homeier, P. V. (2005). “A Design Structure for Higher Order Quotients”.
In: In Proc. of the 18th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs), volume 3603 of LNCS. 130~
146. por: 10.1007/11541868_9.

Howard, W. A. (1980). “The formulae-as-types notion of constructions”.
In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism. Ed. by J. P. Seldin and J. R. Hindley. Academic
Press.

Howe, D. J. (1988). “Computational metatheory in Nuprl”. In: Interna-
tional Conference on Automated Deduction. Springer. 238-257. DOI:
10.1007/BFb0012835.

Huang, D., P. Dhariwal, D. Song, and I. Sutskever (2019). “GamePad:
A Learning Environment for Theorem Proving”. In: International
Conference on Learning Representations. URL: https://openreview.
net /forum?id=r1xwKoR9Y7.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

254 References

Huffman, B. and O. Kuncar (2013). “Lifting and Transfer: A Modular
Design for Quotients in Isabelle/HOL”. In: Certified Programs and
Proofs: Third International Conference. CPP 2013. Cham: Springer
International Publishing. 131-146. DO1: 10.1007/978-3-319-03545-
1.09.

Hupel, L. and T. Nipkow (2018). “A Verified Compiler from Isabelle/HOL
to CakeML”. In: Programming Languages and Systems. Cham:
Springer International Publishing. 999-1026. por1: 10.1007 /978-
3-319-89884-1_35.

Hurd, J. (1999). “Integrating Gandalf and HOL”. In: International
Conference on Theorem Proving in Higher Order Logics. Springer.
311-321. por: 10.1007/3-540-48256-3_ 21.

Hurd, J. (2003). “First-order proof tactics in higher-order logic theorem
provers”. Design and Application of Strategies/Tactics in Higher
Order Logics, number NASA/CP-2003-212448 in NASA Technical
Reports: 56—68.

Igarashi, A., B. C. Pierce, and P. Wadler (2001). “Featherweight Java:
A minimal core calculus for Java and GJ”. ACM Trans. Program.
Lang. Syst. 23(3): 396-450. por: 10.1145/503502.503505.

Inria (1999-2018). “The Tactic Language”. URL: https://coq.inria.fr/
refman /proof-engine /Itac.html.

Ireland, A. (1996). “Productive Use of Failure in Inductive Proof”.
J. Autom. Reasoning. 16(1-2): 79-111. po1: 10.1007/BF00244460.

Irvine, A. D. (2016). “Principia Mathematica”. In: The Stanford Ency-
clopedia of Philosophy. Ed. by E. N. Zalta. Winter 2016. Metaphysics
Research Lab, Stanford University. URL: https://plato.stanford.edu/
archives/win2016/entries/principia-mathematica/.

Irvine, A. D. and H. Deutsch (2016). “Russell’s Paradox”. In: The
Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta. Winter
2016. Metaphysics Research Lab, Stanford University. URL: https:
//plato.stanford.edu/archives/win2016/entries/russell-paradox/.

Irving, G., C. Szegedy, A. A. Alemi, N. Een, F. Chollet, and J. Urban
(2016). “DeepMath - Deep Sequence Models for Premise Selection”.
In: Advances in Neural Information Processing Systems 29. Curran
Associates, Inc. 2235-2243. URL: http://papers.nips.cc/paper/6280-
deepmath-deep-sequence-models-for-premise-selection.pdf.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 255

Isabelle Development Team (1994-2019). “Isabelle”. URL: http://isabelle.
in.tum.de.

Jang, D., Z. Tatlock, and S. Lerner (2012). “Establishing Browser Secu-
rity Guarantees Through Formal Shim Verification”. In: Proceedings
of the 21st USENIX Conference on Security Symposium. Security’12.
Bellevue, WA: USENIX Association. 8-8.

Jeffery, R., M. Staples, J. Andronick, G. Klein, and T. Murray (2015).
“An empirical research agenda for understanding formal methods
productivity”. Information and Software Technology. 60: 102-112.
DOI: 10.1016/j.infsof.2014.11.005.

JetBrains (2001-2019). “IntelliJ IDEA”. URL: http://www.jetbrains.
com/idea/.

Johansson, M. (2017). “Automated Theory Exploration for Interactive
Theorem Proving”. In: International Conference on Interactive The-
orem Proving. Springer. 1-11. por: 10.1007/978-3-319-66107-0__1.

Johansson, M., D. Rosén, N. Smallbone, and K. Claessen (2014). “Hip-
ster: Integrating Theory Exploration in a Proof Assistant”. CoRR.
abs/1405.3426.

Johnsen, E. B. and C. Liith (2004). “Theorem Reuse by Proof Term
Transformation”. In: Theorem Proving in Higher Order Logics: 17th
International Conference, TPHOLs 2004, Park City, Utah, USA,
September 14-17, 2004. Proceedings. Berlin, Heidelberg: Springer.
152-167. por1: 10.1007/978-3-540-30142-4_ 12.

Jones, C. B. (1983). “Specification and Design of (Parallel) Programs”.
In: IFIP Congress. 321-332.

Jourdan, J.-H., F. Pottier, and X. Leroy (2012). “Validating LR(1)
Parsers”. In: Programming Languages and Systems. Berlin, Heidel-
berg: Springer. 397-416. DOI: 10.1007/978-3-642-28869-2_ 20.

Jung, R., J.-H. Jourdan, R. Krebbers, and D. Dreyer (2017). “RustBelt:
Securing the Foundations of the Rust Programming Language”. Proc.
ACM Program. Lang. 2(POPL): 66:1-66:34. pOI: 10.1145/3158154.

Jung, R., R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D.
Dreyer (2018). “Iris from the ground up: A modular foundation
for higher-order concurrent separation logic”. Journal of Functional
Programming. 28: €20. DO1: 10.1017/50956796818000151.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

256 References

Jung, R., D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer (2015). “Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning”. In: POPL. ACM. 637-650. DOTI:
10.1145/2676726.2676980.

Kadoda, G. F., R. G. Stone, and D. Diaper (1999). “Desirable features
of educational theorem provers - a cognitive dimensions viewpoint”.
In: PPIG. Psychology of Programming Interest Group. 4.

Kaiser, J.-O., B. Ziliani, R. Krebbers, Y. Régis-Gianas, and D. Dreyer
(2018). “Mtac2: Typed Tactics for Backward Reasoning in Coq”.
Proc. ACM Program. Lang. 2(ICFP): 78:1-78:31. por: 10.1145/
3236773.

Kaivola, R. and K. Kohatsu (2003). “Proof engineering in the large:
formal verification of Pentium 4 floating-point divider”. International
Journal on Software Tools for Technology Transfer. 4(3): 323-334.
DOI: 10.1007/s10009-002-0081-6.

Kaliszyk, C. (2007). “Web interfaces for proof assistants”. Electronic
Notes in Theoretical Computer Science. 174(2): 49-61. por: 10.1016/
j.entcs.2006.09.021.

Kaliszyk, C., F. Chollet, and C. Szegedy (2017a). “HolStep: A Machine
Learning Dataset for Higher-order Logic Theorem Proving”. In:
ICLR. URL: https://openreview.net /forum?id=ryuxYmvel.

Kaliszyk, C. and R. O’Connor (2009). “Computing with Classical Real
Numbers”. Journal of Formalized Reasoning. 2(1): 27-39. DOI: 10.
6092 /issn.1972-5787/1411.

Kaliszyk, C. and J. Urban (2014). “Learning-Assisted Automated Rea-
soning with Flyspeck”. Journal of Automated Reasoning. 53(2): 173~
213. por: 10.1007/s10817-014-9303-3.

Kaliszyk, C. and J. Urban (2015). “HOL(y)Hammer: Online ATP Service
for HOL Light”. Mathematics in Computer Science. 9(1): 5-22. DOI:
10.1007/s11786-014-0182-0.

Kaliszyk, C., J. Urban, and J. Vyskocil (2017b). “Automating Formal-
ization by Statistical and Semantic Parsing of Mathematics”. In:
Interactive Theorem Proving. Cham: Springer International Publish-
ing. 12-27. por: 10.1007/978-3-319-66107-0_ 2.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 257

Kammiller, F., M. Wenzel, and L. C. Paulson (1999). “Locales A
Sectioning Concept for Isabelle”. In: Theorem Proving in Higher
Order Logics. Berlin, Heidelberg: Springer. 149-165. por: 10.1007/3-
540-48256-3__11.

Kastner, D., X. Leroy, S. Blazy, B. Schommer, M. Schmidt, and C. Fer-
dinand (2017). “Closing the Gap — The Formally Verified Optimizing
Compiler CompCert”. In: §55°17: Safety-critical Systems Sympo-
sium 2017. Developments in System Safety Engineering: Proceedings
of the Twenty-fifth Safety-critical Systems Symposium. Bristol, UK:
CreateSpace. 163—-180. URL: https://hal.inria.fr/hal-01399482.

Kastner, D., U. Wiinsche, J. Barrho, M. Schlickling, B. Schommer, M.
Schmidt, C. Ferdinand, X. Leroy, and S. Blazy (2018). “CompCert:
Practical experience on integrating and qualifying a formally verified
optimizing compiler”. In: ERTS 2018: Embedded Real Time Software
and Systems. SEE. URL: https://hal.inria.fr/hal-01643290.

Kell, S., D. P. Mulligan, and P. Sewell (2016). “The Missing Link:
Explaining ELF Static Linking, Semantically”. In: OOPSLA. Ams-
terdam, Netherlands: ACM. 607—623. DO1: 10.1145/2983990.2983996.

Kim, J., V. Sjoberg, R. Gu, and Z. Shao (2017). “Safety and Liveness
of MCS Lock - Layer by Layer”. In: APLAS. Vol. 10695. LNCS.
Springer. 273-297. por: 10.1007/978-3-319-71237-6__14.

Klein, G. (2014). “Proof Engineering Considered Essential”. In: FM
2014: Formal Methods: 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings. Cham: Springer International Pub-
lishing. 16-21. po1: 10.1007/978-3-319-06410-9_ 2.

Klein, G. (2015). “Gerwin’s Style Guide for Isabelle/HOL”. URL: https:
/ /proofcraft.org/blog/isabelle-style.html.

Klein, G., J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R.
Kolanski, and G. Heiser (2014). “Comprehensive Formal Verification
of an OS Microkernel”. ACM Trans. Comput. Syst. 32(1): 2:1-2:70.
DoOI: 10.1145/2560537.

Klein, G., J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser
(2018). “Formally Verified Software in the Real World”. Commun.
ACM. 61(10): 68-77. DOT: 10.1145/3230627.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

258 References

Klein, G., J. Andronick, G. Keller, D. Matichuk, T. Murray, and L.
O’Connor (2017). “Provably trustworthy systems”. Philosophical
Transactions of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences. 375(2104). por: 10.1098 /rsta.2015.
0404.

Klein, G., K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood (2009). “seL4: Formal Verification of an
OS Kernel”. In: Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles. SOSP ’09. Big Sky, MT, USA:
ACM. 207-220. por: 10.1145/1629575.1629596.

Klein, G., T. Nipkow, L. Paulson, and R. Thiemann (2004-2019).
“Archive of Formal Proofs: Submission Guidelines”. URL: https:
//www.isa-afp.org/submitting.html.

Ko, H.-S. and J. Gibbons (2016). “Programming with ornaments”. Jour-
nal of Functional Programming. 27. DOI: 10.1017/S0956796816000307.

Kolbe, T. and C. Walther (1998). “Proof analysis, generalization and
reuse”. In: Automated Deduction — A Basis for Applications. Springer.
189-219. por: 10.1007/978-94-017-0435-9_8.

Komendantskaya, E., J. Heras, and G. Grov (2012). “Machine Learn-
ing in Proof General: Interfacing Interfaces”. In: Proceedings 10th
International Workshop On User Interfaces for Theorem Provers,
UITP 2012, Bremen, Germany, July 11th, 2012. 15—41. DoI1: 10.
4204/EPTCS.118.2.

Krafft, D. B. (1981). “AVID: A system for the interactive development
of verifiably correct programs”. PhD thesis. Cornell University.
Krebbers, R., J.-H. Jourdan, R. Jung, J. Tassarotti, J.-O. Kaiser, A.

Timany, A. Charguéraud, and D. Dreyer (2018). “MoSeL: A General,
Extensible Modal Framework for Interactive Proofs in Separation
Logic”. Proc. ACM Program. Lang. 2(ICFP): 77:1-77:30. port: 10.

1145/3236772.

Krebbers, R., A. Timany, and L. Birkedal (2017). “Interactive proofs in
higher-order concurrent separation logic”. In: POPL. ACM. 205-217.
DOI: 10.1145/3009837.3009855.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 259

Kroening, D. and O. Strichman (2008). Decision Procedures: An Al-
gorithmic Point of View. 1st ed. Springer Publishing Company,
Incorporated. por: 10.1007/978-3-540-74105-3.

Kiithlwein, D., J. C. Blanchette, C. Kaliszyk, and J. Urban (2013).
“MaSh: Machine Learning for Sledgehammer”. In: Interactive Theo-
rem Proving. Berlin, Heidelberg: Springer. 35-50. Do1: 10.1007/978-
3-642-39634-2_ 6.

Kiihlwein, D., T. van Laarhoven, E. Tsivtsivadze, J. Urban, and T.
Heskes (2012). “Overview and Evaluation of Premise Selection Tech-
niques for Large Theory Mathematics”. In: Automated Reasoning.
Berlin, Heidelberg: Springer. 378-392. por1: 10.1007 /978-3-642-
31365-3_30.

Kumar, R. (2015). “Self-compilation and self-verification”. PhD thesis.
University of Cambridge.

Kumar, R., M. O. Myreen, M. Norrish, and S. Owens (2014). “CakeML:
A Verified Implementation of ML”. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’14. San Diego, CA, USA: ACM. 179-191. por:
10.1145/2535838.2535841.

Kumar, R., T. Kropf, and K. Schneider (1991). “Integrating a first-order
automatic prover in the HOL environment”. In: 1991 International
Workshop on the HOL Theorem Proving System and Its Applications.
IEEE. 170-176. por: 10.1109/HO1L.1991.596284.

Kuncar, O. and A. Popescu (2018). “A Consistent Foundation for
Isabelle/HOL”. Journal of Automated Reasoning. Jan. por: 10.1007/
s10817-018-9454-8.

Lammich, P. (2013). “Automatic Data Refinement”. In: Interactive
Theorem Proving. Berlin, Heidelberg: Springer. 84-99.

Lammich, P. (2015). “Refinement to imperative/HOL”. In: International
Conference on Interactive Theorem Proving. Springer. 253—269.
Lampropoulos, L., Z. Paraskevopoulou, and B. C. Pierce (2017). “Gen-
erating good generators for inductive relations”. Proceedings of
the ACM on Programming Languages. 2(POPL): 45:1-45:30. DOT:

10.1145/3158133.

Lean Development Team (2014-2017). “Theorem Proving in Lean”. URL:

http://leanprover.github.io/tutorial /.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

260 References

Lean Development Team (2017-2018). “Javascript interface to the Lean
server”. URL: http://github.com/leanprover /lean-client-js.

Lean Development Team (2016-2019). “Lean for VS Code”. URL: http:
//github.com/leanprover/vscode-lean.

Leibniz, G. W. (1685). The Art of Discovery. Wiener 51.

Leino, K. R. M. (2010). “Dafny: An Automatic Program Verifier for
Functional Correctness”. In: Logic for Programming, Artificial Intel-
ligence, and Reasoning. Berlin, Heidelberg: Springer. 348-370. DOI:
10.1007/978-3-642-17511-4_ 20.

Lerner, S., S. R. Foster, and W. G. Griswold (2015). “Polymorphic
blocks: Formalism-inspired Ul for structured connectors”. In: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM. 3063-3072. por1: 10.1145/2702123.
2702302.

Leroy, X. (2006). “Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant”. In: POPL. ACM.
42-54. por: 10.1145/1111037.1111042.

Leroy, X. (2007). “A locally nameless solution to the POPLMark chal-
lenge”. Research report No. 6098. INRIA. URL: http://gallium.inria.
fr /~xleroy /publi/POPLmark-locally-nameless.pdf.

Leroy, X. (2009). “Formal Verification of a Realistic Compiler”. Commaun.
ACM. 52(7): 107-115. por: 10.1145/1538788.1538814.

Leroy, X. (2015). “Using Coq’s evaluation mechanisms in anger”. URL:
http://gallium.inria.fr /blog/coq-eval/.

Leroy, X., A. W. Appel, S. Blazy, and G. Stewart (2012). “The Com-
pCert Memory Model, Version 2”. Research Report No. RR-7987.
INRIA. 26. URL: https://hal.inria.fr /hal-00703441.

Leroy, X. (2017). “The formal verification of compilers”. URL: https:
//deepspec.org/event /dsss17/leroy-dsss17.pdf.

Lescuyer, S. and S. Conchon (2009). “Improving Coq propositional
reasoning using a lazy CNF conversion scheme”. In: International
Symposium on Frontiers of Combining Systems. Springer. 287-303.

Letouzey, P. (2003). “A New Extraction for Coq”. In: Types for Proofs
and Programs. Berlin, Heidelberg: Springer. 200-219. por: 10.1007/3-
540-39185-1_ 12.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 261

Letouzey, P. (2004). “Programmation fonctionnelle certifiee — L’extraction
de programmes dans 'assistant Coq”. PhD thesis. Universite Paris-
Sud. URL: https://www.irif.fr /~letouzey /download /these_ letouzey.
pdf.

Letouzey, P. (2008). “Coq Extraction, an Overview”. In: Logic and The-
ory of Algorithms, Fourth Conference on Computability in Europe,
CiE 2008. Vol. 5028. Springer. Dor: 10.1007/978-3-540-69407-6_ 39.

Ley-Wild, R. and A. Nanevski (2013). “Subjective auxiliary state for
coarse-grained concurrency”. In: POPL. ACM. 561-574. pot: 10.
1145/2429069.2429134.

Lin, Y., G. Grov, and R. Arthan (2016). “Understanding and maintain-
ing tactics graphically OR how we are learning that a diagram can
be worth more than 10K LoC”. CoRR. abs/1610.05593.

Lindblad, F. and M. Benke (2006). “A Tool for Automated Theorem
Proving in Agda”. In: Proceedings of the 2004 International Confer-
ence on Types for Proofs and Programs. TYPES’04. Jouy-en-Josas,
France: Springer-Verlag. 154-169. po1: 10.1007/11617990__10.

Liu, Z., C. Morisset, and S. Wang (2011). “A Graph-Based Implemen-
tation for Mechanized Refinement Calculus of OO Programs”. In:
Formal Methods: Foundations and Applications. Berlin, Heidelberg:
Springer. 258-273. DOI: 10.1007/978-3-642-19829-8 17.

Loos, S., G. Irving, C. Szegedy, and C. Kaliszyk (2017). “Deep Network
Guided Proof Search”. In: LPAR-21. 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning.
Vol. 46. EPiC Series in Computing. EasyChair. 85-105. por1: 10.
29007 /8mwec.

Luo, Z. (1999). “Coercive subtyping”. Journal of Logic and Computation.
9(1): 105-130. por: 10.1093/logcom/9.1.105.

Lynch, N. and F. Vaandrager (1994). “FORWARD AND BACKWARD
SIMULATIONS PART I: UNTIMED SYSTEMS (Replaces TM-
486)”. Tech. rep. Cambridge, MA, USA.

MacQueen, D. B. (1986). “Using Dependent Types to Express Modular
Structure”. In: Proceedings of the 13th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. POPL ’86.
St. Petersburg Beach, Florida: ACM. 277-286. por: 10.1145/512644.
512670.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

262 References

Magaud, N. and Y. Bertot (2002). “Changing Data Structures in Type
Theory: A Study of Natural Numbers”. In: Types for Proofs and
Programs: International Workshop. TYPES 2000. Berlin, Heidelberg:
Springer. 181-196. por: 10.1007/3-540-45842-5_ 12.

Mahboubi, A. and E. Tassi (2013). “Canonical Structures for the Work-
ing Coq User”. In: Interactive Theorem Proving. Vol. 7998. LNCS.
Berlin, Heidelberg: Springer. 19-34. por: 10.1007/978-3-642-39634-
2_5.

Malecha, G. and J. Bengtson (2016). “Extensible and Efficient Automa-
tion Through Reflective Tactics”. In: Programming Languages and
Systems: 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. Berlin, Heidelberg: Springer. 532-559.
DOI: 10.1007/978-3-662-49498-1_ 21.

Malecha, G., G. Morrisett, A. Shinnar, and R. Wisnesky (2010). “Toward
a Verified Relational Database Management System”. In: Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’10. Madrid, Spain:
ACM. 237-248. por: 10.1145/1706299.1706329.

Martin-Lof, P. (1982). “Constructive Mathematics and Computer Pro-
gramming”. In: Logic, Methodology and Philosophy of Science VI.
Vol. 104. Studies in Logic and the Foundations of Mathematics.
Elsevier. 153-175. por: 10.1016,/S0049-237X(09)70189-2.

Martin-Lof, P. (1984). Intuitionistic Type Theory. Bibliopolis.

Matichuk, D., T. Murray, J. Andronick, R. Jeffery, G. Klein, and M.
Staples (2015a). “Empirical Study Towards a Leading Indicator for
Cost of Formal Software Verification”. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering. Vol. 1.
722-732. por: 10.1109/ICSE.2015.85.

Matichuk, D., T. C. Murray, and M. Wenzel (2015b). “Eisbach: A Proof
Method Language for Isabelle”. Journal of Automated Reasoning.
56: 261-282. DOI: 10.1007/310817-015-9360-2.

Matichuk, D., M. Wenzel, and T. Murray (2015¢). “The Eisbach user
manual”. Isabelle Community.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 263

McBride, C. (1996). “Inverting inductively defined relations in LEGO”.
In: International Workshop on Types for Proofs and Programs.
Springer. 236-253.

McBride, C. (2002). “Elimination with a Motive”. In: Types for Proofs
and Programs. Berlin, Heidelberg: Springer. 197-216. por1: 10.1007/3-
540-45842-5 13.

McBride, C. (2011). “Ornamental algebras, algebraic ornaments”. URL:
http://plv.mpi-sws.org/plerg/papers/mcbride-ornaments-2up.pdf.

McBride, C. (2015). “Turing-Completeness Totally Free”. In: Math-
ematics of Program Construction. Cham: Springer International
Publishing. 257-275. por: 10.1007/978-3-319-19797-5_13.

McCarthy, J. (1960). “Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part 17. Commun. ACM. 3(4):
184-195. por: 10.1145/367177.367199.

McCarthy, J. (1963). “A Basis for a Mathematical Theory of Compu-
tation”. In: Computer Programming and Formal Systems. Ed. by
P. Braffort and D. Hirschberg. Vol. 35. Studies in Logic and the
Foundations of Mathematics. Elsevier. 33-70. por: 10.1016,/S0049-
237X (08)72018-4.

McCreight, A. (2009). “Practical tactics for separation logic”. In: Inter-
national Conference on Theorem Proving in Higher Order Logics.
Springer. 343-358. poI: 10.1007/978-3-642-03359-9  24.

Mehnert, H. and D. Christiansen (2014). “Tool Demonstration: An
IDE for Programming and Proving in Idris”. Proceedings of Vienna
Summer of Logic, VSL. 14: 2.

Mehta, F. and T. Nipkow (2003). “Proving Pointer Programs in Higher-
Order Logic”. In: CADE. Vol. 2741. LNCS. Springer. 121-135. DOT:
10.1007/978-3-540-45085-6__10.

Microsoft (1997-2019). “Visual Studio”. URL: http:/ / visualstudio.
microsoft.com/.

Miller, D. (2018). “Mechanized Metatheory Revisited”. Journal of
Automated Reasoning. Oct. DOI: 10.1007/s10817-018-9483-3.

Milner, R. (1972). “Implementation and Applications of Scott’s Logic
for Computable Functions”. In: Proceedings of ACM Conference on
Proving Assertions About Programs. Las Cruces, NM, USA: ACM.
1-6. por: 10.1145/800235.807067.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

264 References

Milner, R., M. Tofte, R. Harper, and D. MacQueen (1997). The Defini-
tion of Standard ML (Revised). Cambridge, MA, USA: MIT Press.

Milner, R. and R. Weyhrauch (1972). “Proving compiler correctness in
a mechanized logic”. Machine Intelligence. 7: 51-70.

Monperrus, M. (2018). “Automatic Software Repair: A Bibliography”.
ACM Comput. Surv. 51(1): 17:1-17:24. por: 10.1145/3105906.

Morrisett, G., G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan (2012).
“RockSalt: Better, Faster, Stronger SFI for the x86”. In: Proceedings
of the 38rd ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’12. Beijing, China: ACM. 395—
404. por: 10.1145/2254064.2254111.

Mulhern, A. (2006). “Proof Weaving”. In: In Proceedings of the First
Informal ACM SIGPLAN Workshop on Mechanizing Metatheory.

Mullen, E., S. Pernsteiner, J. R. Wilcox, Z. Tatlock, and D. Grossman
(2018). “Oeuf: Minimizing the Coq Extraction TCB”. In: CPP. Los
Angeles, CA, USA: ACM. 172-185. por: 10.1145/3167089.

Miiller, D., T. Gauthier, C. Kaliszyk, M. Kohlhase, and F. Rabe (2017).
“Classification of Alignments Between Concepts of Formal Math-
ematical Systems”. In: Intelligent Computer Mathematics. Cham:
Springer International Publishing. 83-98. por: 10.1007/978-3-319-
62075-6_7.

Mulligan, D. P., S. Owens, K. E. Gray, T. Ridge, and P. Sewell (2014).
“Lem: Reusable Engineering of Real-world Semantics”. In: Pro-
ceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming. ICFP ’14. Gothenburg, Sweden: ACM.
175-188. DOI: 10.1145/2628136.2628143.

Murphy-Hill, E. and D. Grossman (2014). “How Programming Lan-
guages Will Co-evolve with Software Engineering: A Bright Decade
Ahead”. In: Proceedings of the on Future of Software Engineer-
ing. FOSE 201/. Hyderabad, India: ACM. 145-154. por: 10.1145/
2593882.2593898.

Murray, T. and P. C. van Oorschot (2018). “BP: Formal Proofs, the
Fine Print and Side Effects”. In: IEFE Cybersecurity Development
(SecDev). 1-10. por: 10.1109/SecDev.2018.00009.

Myreen, M. O. (2008-2018). “Guide to HOL4 interaction and basic
proofs”. URL: http://hol-theorem-prover.org/HOL-interaction.pdf.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 265

Myreen, M. O. and S. Owens (2012). “Proof-producing Synthesis of
ML from Higher-order Logic”. In: Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming.
ICFP ’12. Copenhagen, Denmark: ACM. 115-126. por1: 10.1145/
2364527.2364545.

Nagashima, Y. and Y. He (2018). “PaMpeR: Proof Method Recommen-
dation System for Isabelle/HOL”. In: Proceedings of the Interna-
tional Conference on Automated Software Engineering. ASE 2018.
Montpellier, France: ACM. 362-372. por: 10.1145/3238147.3238210.

Nagashima, Y. and R. Kumar (2017). “A Proof Strategy Language and
Proof Script Generation for Isabelle/HOL”. In: Automated Deduction
- CADE 26. Cham: Springer International Publishing. 528-545. DOTI:
10.1007/978-3-319-63046-5__32.

Nanevski, A., R. Ley-Wild, I. Sergey, and G. A. Delbianco (2014).
“Communicating State Transition Systems for Fine-Grained Concur-
rent Resources”. In: Programming Languages and Systems. Ed. by
Z. Shao. Berlin, Heidelberg: Springer. 290-310. por: 10.1007/978-3-
642-54833-8 16.

Nanevski, A., G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal
(2008a). “Ynot: Dependent Types for Imperative Programs”. In:
Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming. ICFP ’08. Victoria, BC, Canada: ACM.
229-240. por: 10.1145/1411204.1411237.

Nanevski, A., F. Pfenning, and B. Pientka (2008b). “Contextual modal
type theory”. ACM Transactions on Computational Logic. 9(3): 23.
DOI: 10.1145/1352582.1352591.

Nanevski, A., V. Vafeiadis, and J. Berdine (2010). “Structuring the
Verification of Heap-manipulating Programs”. In: Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’10. Madrid, Spain: ACM. 261-274.
DoI: 10.1145/1706299.1706331.

Narboux, J. (2004). “A decision procedure for geometry in Coq”. In: In-
ternational Conference on Theorem Proving in Higher Order Logics.
Springer. 225-240. por: 10.1007/978-3-540-30142-4_17.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

266 References

Neis, G., C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and V.
Vafeiadis (2015). “Pilsner: A Compositionally Verified Compiler for a
Higher-order Imperative Language”. In: Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming.
ICFP 2015. Vancouver, BC, Canada: ACM. 166-178. por1: 10.1145/
2784731.2784764.

Newey, M. C. (1973). “Axioms and Theorems for Integers, Lists and
Finite Sets in LCF”. Tech. rep. Memo AIM-184. Stanford, CA, USA.

Nipkow, T. (1989). “Term rewriting and beyond-theorem proving in
Isabelle”. Formal Aspects of Computing. 1(1): 320-338. por1: 10.1007/
BF01887212.

Nipkow, T. (1990). “Proof transformations for equational theories”. In:
Symposium on Logic in Computer Science. IEEE. 278-288. DOTI:
10.1109/LICS.1990.113754.

Nipkow, T. and G. Klein (2014). Concrete Semantics: With Isabelle/HOL.
Springer. DOI: 10.1007/978-3-319-10542-0.

nLab authors (2019a). “equality”. URL: http://ncatlab.org/nlab/show/
equality.

nLab authors (2019b). “foundation of mathematics”. URL: http://
ncatlab.org/nlab/show/foundation%200f%20mathematics.

nLab authors (2019¢). “intensional type theory”. URL: http://ncatlab.
org/nlab/show /intensional%20type%20theory.

Norell, U. (2015-2019). “agda-prelude”. URL: http://github.com /
UlfNorell/agda-prelude.

Norell, U. (2016). “Agda reflection overhaul”. URL: http://lists.chalmers.
se/pipermail /agda/2016,/008414.html.

O’Connor, L., C. Rizkallah, Z. Chen, S. Amani, J. Lim, Y. Nagashima,
T. Sewell, A. Hixon, G. Keller, T. C. Murray, and G. Klein (2016).
“COGENT: Certified Compilation for a Functional Systems Lan-
guage”. CoRR. abs/1601.05520.

O’Connor, R. (2005). “Essential Incompleteness of Arithmetic Veri-
fied by Coq”. In: Theorem Proving in Higher Order Logics: 18th
International Conference, TPHOLs 2005, Ozford, UK, August 22-
25, 2005. Proceedings. Berlin, Heidelberg: Springer. 245-260. DOT:
10.1007/11541868__16.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 267

O’Hearn, P. W. (2007). “Resources, concurrency, and local reasoning”.
Theor. Comput. Sci. 375(1-3): 271-307. po1: 10.1016/j.tcs.2006.12.
035.

O’Hearn, P. W., J. C. Reynolds, and H. Yang (2001). “Local Reasoning
about Programs that Alter Data Structures”. In: CSL. Vol. 2142.
LNCS. Springer. 1-19. por: 10.1007/3-540-44802-0__1.

Opdyke, W. F. (1992). “Refactoring: A program restructuring aid
in designing object-oriented application frameworks”. PhD thesis.
University of Illinois at Urbana-Champaign.

Oury, N. (2005). “Extensionality in the Calculus of Constructions”.
In: Theorem Proving in Higher Order Logics. Berlin, Heidelberg:
Springer. 278-293. por: 10.1007/11541868_ 18.

Owens, S. (2008). “A sound semantics for OCaml Light”. Programming
Languages and Systems: 1-15. DOI: 10.1007/978-3-540-78739-6__1.

Palmskog, K., A. Celik, and M. Gligoric (2018). “piCoq: Parallel Regres-
sion Proving for Large-scale Verification Projects”. In: ISSTA. Ams-
terdam, Netherlands: ACM. 344-355. por: 10.1145/3213846.3213877.

Paraskevopoulou, Z., C. Hrit¢gu, M. Dénés, L. Lampropoulos, and B. C.
Pierce (2015). “Foundational Property-Based Testing”. In: Inter-
active Theorem Proving: 6th International Conference, ITP 2015,
Nanjing, China, August 24-27, 2015, Proceedings. Cham: Springer
International Publishing. 325-343. po1: 10.1007/978-3-319-22102-
122,

Paulin-Mohring, C. (1989a). “Extracting F-omega’s Programs from
Proofs in the Calculus of Constructions”. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’89. Austin, TX, USA: ACM. 89-104. por: 10.
1145/75277.75285.

Paulin-Mohring, C. (1989b). “Extraction de programmes dans le Calcul
des Constructions”. PhD thesis. Université Paris 7.

Paulin-Mohring, C. (1993). “Inductive definitions in the system Coq
rules and properties”. In: Typed Lambda Calculi and Applications.
Berlin, Heidelberg: Springer. 328-345. por: 10.1007/BFb0037116.

Paulin-Mohring, C. and B. Werner (1993). “Synthesis of ML programs
in the system Coq”. Journal of Symbolic Computation. 15(5): 607—
640. por1: 10.1016/S0747-7171(06)80007-6.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

268 References

Paulson, L. (1983). “Tactics and tacticals in Cambridge LCF”. Tech. rep.
University of Cambridge, Computer Laboratory.

Paulson, L. (1984). “Deriving structural induction in LCF”. In: Se-
mantics of Data Types. Berlin, Heidelberg: Springer. 197-214. DOI:
10.1007/3-540-13346-1_10.

Paulson, L. C. (1988). “A preliminary users manual for Isabelle”. Tech.
rep. University of Cambridge, Computer Laboratory.

Paulson, L. C. (1993). “Isabelle: The Next 700 Theorem Provers”. CoRR.
¢s.L.O/9301106.

Paulson, L. C. (1994). “Isabelle: A Generic Theorem Prover”. In: Lecture
Notes in Computer Science. Vol. 828. por: 10.1007/BFb0030541.
Paulson, L. C. (1997). “Mechanizing Coinduction and Corecursion in
Higher-order Logic”. Journal of Logic and Computation. 7(2): 175

204. por: 10.1093/logcom/7.2.175.

Paulson, L. C. (1999). “A generic tableau prover and its integration
with Isabelle”. Journal of Universal Computer Science. 5(3): 73-87.
DOI: 10.3217/jucs-005-03-0073.

Paulson, L. C. (2006). “Defining Functions on Equivalence Classes”.
ACM Trans. Comput. Logic. 7(4): 6568-675. poI: 10.1145/1183278.
1183280.

Paulson, L. C. and J. C. Blanchette (2012). “Three years of experi-
ence with Sledgehammer, a practical link between automatic and
interactive theorem provers”. In: International Workshop on the Im-
plementation of Logics (IWIL 2010). Vol. 2. EPiC Series. EasyChair.
1-11.

Pédrot, P.-M. (2019). “Ltac2: Tactical Warfare”. In: CogPL 2019.

Peng, K. and D. Ma (2017). “Tree-Structure CNN for Automated The-
orem Proving”. In: Neural Information Processing. Cham: Springer
International Publishing. 3-12. por: 10.1007/978-3-319-70096-0_ 1.

Pfenning, F. and C. Elliott (1988). “Higher-order Abstract Syntax”. In:
Proceedings of the ACM SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation. PLDI ’88. Atlanta, GA,
USA: ACM. 199-208. por: 10.1145/53990.54010.

Pfenning, F. (2010). “Lecture Notes on Proofs as Programs: Lecture 2”.
URL: http://www.cs.cmu.edu/~fp/courses/15816-s10/lectures/02-
pap.pdf.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 269

Pfenning, F. and C. Paulin-Mohring (1990). “Inductively defined types
in the Calculus of Constructions”. In: Mathematical Foundations of
Programming Semantics. New York, NY: Springer-Verlag. 209-228.
por: 10.1007/BFb0040259.

Pfenning, F. and C. Schiirmann (1999). “System Description: Twelf —
A Meta-Logical Framework for Deductive Systems”. In: Automated
Deduction — CADE-16: 16th International Conference on Auto-
mated Deduction Trento, Italy, July 7-10, 1999 Proceedings. Berlin,
Heidelberg: Springer. 202-206. Do1: 10.1007/3-540-48660-7__14.

PG development team (2016). “Proof General 4.4.1 pre Documentation”.
URL: https://proofgeneral.github.io/doc/userman/.

Pientka, B. and J. Dunfield (2008). “Programming with proofs and
explicit contexts”. In: Proceedings of the 10th international ACM
SIGPLAN conference on Principles and practice of declarative pro-
gramming. ACM. 163-173. por: 10.1145/1389449.1389469.

Pierce, B. C. (2002). Types and programming languages. MIT press.

Pierce, B. C. (2017). Personal communication.

Pierce, B. C. (2019). Personal communication.

Pierce, B. C., C. Casinghino, M. Gaboardi, M. Greenberg, C. Hritcu,
V. Sjéberg, and B. Yorgey (2014). Software Foundations. Electronic
textbook. URL: http://www.cis.upenn.edu/~bcpierce/sf.

Pit-Claudel, C. and P. Courtieu (2016). “Company-Coq: Taking Proof
General one step closer to a real IDE”. In: CogPL’16: The Second
International Workshop on Coq for PL. DOI: 10.5281 /zenodo.44331.

Podkopaev, A., O. Lahav, and V. Vafeiadis (2019). “Bridging the gap be-
tween programming languages and hardware weak memory models”.
PACMPL. 3(POPL): 69:1-69:31. por: 10.1145/3290382.

Pollack, R. (1995). “On extensibility of proof checkers”. In: Types for
Proofs and Programs. Ed. by P. Dybjer, B. Nordstrém, and J. Smith.
Berlin, Heidelberg: Springer. 140-161. por: 10.1007/3-540-60579-
7_8.

Pollack, R. (1998). “How to Believe a Machine-Checked Proof”. In:
Twenty Five Years of Constructive Type Theory. Ed. by G. Sambin
and J. Smith. Oxford University Press.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

270 References

Pons, O. (1999). “Conception et rEalisation d’outils d’aide au dEveloppe-
ment de grosses thEories dans les systémes de preuves interactifs”.
PhD thesis.

Poswolsky, A. and C. Schiirmann (2009). “System description: Delphin—a
functional programming language for deductive systems”. Electronic
Notes in Theoretical Computer Science. 228: 113-120.

Pouillard, N. (2012). “agda-tactics: Semiring”. URL: http://github.com/
xplat /agda-tactics/blob/master/Tactics/Nat /Semiring.agda.

Pugh, W. (1991). “The Omega Test: A Fast and Practical Integer Pro-
gramming Algorithm for Dependence Analysis”. In: Proceedings of
the 1991 ACM/IEEE Conference on Supercomputing. Supercomput-
ing '91. Albuquerque, NM, USA: ACM. 4-13. por: 10.1145/125826.
125848.

Qi, Z., F. Long, S. Achour, and M. Rinard (2015). “An Analysis of
Patch Plausibility and Correctness for Generate-and-validate Patch
Generation Systems”. In: Proceedings of the 2015 International Sym-
posium on Software Testing and Analysis. ISSTA 2015. Baltimore,
MD, USA: ACM. 24-36. por: 10.1145/2771783.2771791.

Rand, R., J. Paykin, and S. Zdancewic (2017). “QWIRE Practice:
Formal Verification of Quantum Circuits in Coq”. In: Proceedings
14th International Conference on Quantum Physics and Logic, QPL
2017, Nijmegen, The Netherlands, 3-7 July 2017. 119-132. DOTI:
10.4204/EPTCS.266.8.

RedPRL Development Team (2015-2018). “The RedPRL Proof Assis-
tant”. URL: http://www.redprl.org.

Reynolds, J. C. (2002). “Separation Logic: A Logic for Shared Mutable
Data Structures”. In: LICS. IEEE Computer Society. 55-74. DOTI:
10.1109/LICS.2002.1029817.

Ricketts, D., V. Robert, D. Jang, Z. Tatlock, and S. Lerner (2014).
“Automating Formal Proofs for Reactive Systems”. In: Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 1. Edinburgh, UK: ACM. 452—
462. por: 10.1145/2594291.2594338.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 271

Ridge, T., D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell (2015). “SibylF'S: Formal Specification and Oracle-based
Testing for POSIX and Real-world File Systems”. In: Proceedings
of the 25th Symposium on Operating Systems Principles. SOSP ’15.
Monterey, California: ACM. 38-53. poI: 10.1145/2815400.2815411.

Ringer, T. and N. Yazdani (2018). “PUMPKIN-git”. URL: http://github.
com /uwplse/PUMPKIN-git.

Ringer, T., N. Yazdani, J. Leo, and D. Grossman (2018). “Adapting
Proof Automation to Adapt Proofs”. In: Proceedings of the 7th ACM
SIGPLAN Conference on Certified Programs and Proofs. CPP 2018.
DOIL: 10.1145/3167094.

Ringer, T., N. Yazdani, J. Leo, and D. Grossman (2019). “Ornaments
for Proof Reuse in Coq”. In: Interactive Theorem Proving.

Rizkallah, C., J. Lim, Y. Nagashima, T. Sewell, Z. Chen, L. O’Connor,
T. Murray, G. Keller, and G. Klein (2016). “A Framework for the
Automatic Formal Verification of Refinement from Cogent to C”. In:
International Conference on Interactive Theorem Proving. Nancy,
France. por: 10.1007/978-3-319-43144-4_ 20.

Robert, V. (2018). “Front-end tooling for building and maintaining
dependently-typed functional programs”. PhD thesis. UC San Diego.

Robert, V. and S. Lerner (2014-2016). “PeaCoq”. URL: http://goto.
ucsd.edu/peacoq/.

Robinson, J. A. (1965). “A Machine-Oriented Logic Based on the
Resolution Principle”. J. ACM. 12(1): 23-41. por: 10.1145/321250.
321253.

Roe, K. and S. Smith (2016). “CoqPIE: An IDE Aimed at Improving
Proof Development Productivity”. In: Interactive Theorem Proving:
7th International Conference, ITP 2016, Nancy, France, August
22-25, 2016, Proceedings. Cham: Springer International Publishing.
491-499. por: 10.1007/978-3-319-43144-4  32.

Rompf, T. and N. Amin (2016). “Type Soundness for Dependent Object
Types”. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA 2016. Amsterdam, Netherlands: ACM.
624-641. por: 10.1145/2983990.2984008.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

272 References

Rushby, J. M. (1981). “Design and Verification of Secure Systems”. In:
Proceedings of the Fighth ACM Symposium on Operating Systems
Principles. SOSP ’81. Pacific Grove, CA, USA: ACM. 12-21. pDOI:
10.1145/800216.806586.

Russell, B. (1906). “On Some Difficulties in the Theory of Transfinite
Numbers and Order Types”. Proceedings of the London Mathematical
Society. s2-4(1): 29-53. por: 10.1112/plms/s2-4.1.29.

Russell, B. (1918). Introduction to Mathematical Philosophy. George
Allen and Unwin.

Saibi, A. (1997). “Typing Algorithm in Type Theory with Inheritance”.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’97. Paris, France:
ACM. 292-301. por: 10.1145/263699.263742.

Saibi, A. (1999). “Outils Génériques de Modélisation et de Démonstra-
tion pour la Formalisation des Mathématiques en Théorie des Types:
application a la Théorie des Catégories”. PhD thesis. Paris, France:
Université Paris V1.

Sangiorgi, D. (2011). Introduction to Bisimulation and Coinduction.
New York, NY, USA: Cambridge University Press. por: 10.1017/
CBO9780511777110.

Schéfer, S., T. Tebbi, and G. Smolka (2015). “Autosubst: Reasoning
with de Bruijn terms and parallel substitutions”. In: International
Conference on Interactive Theorem Proving. Springer. 359-374. DOI:
10.1007/978-3-319-22102-1_ 24.

Schlichtkrull, A., J. C. Blanchette, and D. Traytel (2019). “A verified
prover based on ordered resolution”. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs
and Proofs. ACM. 152-165.

Scott, D. (1970). “Constructive validity”. In: Symposium on Automatic
Demonstration. Berlin, Heidelberg: Springer. 237-275. por: 10.1007/
BFb0060636.

Scott, D. S. (1993). “A type-theoretical alternative to ISWIM, CUCH,
OWHY". Theoretical Computer Science. 121(1): 411-440. por: 10.
1016,/0304-3975(93)90095-B.

Selsam, D. and L. de Moura (2017). “Congruence Closure in Intensional

Type Theory”. CoRR. abs/1701.04391.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 273

Selsam, D., P. Liang, and D. L. Dill (2017). “Developing Bug-free Ma-
chine Learning Systems with Formal Mathematics”. In: Proceedings
of the 34th International Conference on Machine Learning - Volume
70. ICML’17. Sydney, NSW, Australia: JMLR.org. 3047-3056.

Sergey, 1., A. Nanevski, and A. Banerjee (2015). “Mechanized Verifica-
tion of Fine-grained Concurrent Programs”. In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’15. Portland, OR, USA: ACM. 77-87.
DOIL: 10.1145/2737924.2737964.

Sergey, 1., J. R. Wilcox, and Z. Tatlock (2017). “Programming and
Proving with Distributed Protocols”. Proc. ACM Program. Lang.
2(POPL): 28:1-28:30. por: 10.1145/3158116.

Sewell, P., F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,
and R. StrniSa (2010). “Ott: Effective tool support for the working
semanticist”. Journal of Functional Programming. 20(1): 71-122.
DoI: 10.1017/S0956796809990293.

Sewell, T., F. Kam, and G. Heiser (2017). “High-assurance timing
analysis for a high-assurance real-time operating system”. Real-
Time Systems. 53(5): 812-853. poI: 10.1007/s11241-017-9286-3.

Shah, N. (2005). “'Rippling: Meta-Level Guidance for Mathematical
Reasoning, " by Alan Bundy, David Basin, Dieter Hutter, and
Andrew Ireland, Cambridge University Press, 2005”. J. Autom.
Reasoning. 35(4): 429-431. por: 10.1007/s10817-006-9027-0.

Shaw, M., J. Aldrich, T. D. Breaux, D. Garlan, C. Késtner, C. Le Goues,
and W. L. Scherlis (2015). “Seminal Papers in Software Engineering:
The Carnegie Mellon Canonical Collection”. URL: http://reports-
archive.adm.cs.cmu.edu/anon/isr2015/CMU-ISR-15-107.pdf.

Slind, K. (1994). “AC unification in HOL90”. In: Higher Order Logic
Theorem Proving and Its Applications. Springer. 437-449. po1: 10.
1007/3-540-57826-9__154.

Slotosch, O. (1997). “Higher order quotients and their implementation
in Isabelle/HOL”. In: Theorem Proving in Higher Order Logics.
Berlin, Heidelberg: Springer. 291-306. por: 10.1007/BEFb0028401.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

274 References

Smith, R. (2018). “Aristotle’s Logic”. In: The Stanford Encyclopedia of
Philosophy. Ed. by E. N. Zalta. Spring 2018. Metaphysics Research
Lab, Stanford University. URL: https://plato.stanford.edu/archives/
spr2018/entries/aristotle-logic/.

Serensen, M. H. and P. Urzyczyn (2006). Lectures on the Curry-Howard
isomorphism. Vol. 149. Elsevier.

Sozeau, M. (2010). “Equations: A Dependent Pattern-Matching Com-
piler”. In: Interactive Theorem Proving. Berlin, Heidelberg: Springer.
419-434. por: 10.1007/978-3-642-14052-5_29.

Sozeau, M., A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze, G.
Malecha, N. Tabareau, and T. Winterhalter (2019). “The MetaCoq
Project”. Tech. rep. INRIA. URL: https://hal.inria.fr/hal-02167423.

Sozeau, M. and N. Oury (2008). “First-Class Type Classes”. In: Theorem
Proving in Higher Order Logics: 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings.
Berlin, Heidelberg: Springer. 278-293. por: 10.1007 /978-3-540-
71067-7_23.

Sozeau, M. and N. Tabareau (2014). “Universe Polymorphism in Coq”.
In: Interactive Theorem Proving. Cham: Springer International Pub-
lishing. 499-514. por: 10.1007/978-3-319-08970-6_ 32.

Spitters, B. and E. van der Weegen (2011). “Type classes for mathemat-
ics in type theory”. Mathematical Structures in Computer Science.
21(4): 795-825. por: 10.1017/50960129511000119.

Spiwack, A. (2010). “An abstract type for constructing tactics in Coq”.
In: Proof Search in Type Theory. Edinburgh, UK. URL: https://hal.
inria.fr/inria-00502500.

Spiwack, A. (2016). “Inside the design of a tactic system”. URL: https:
//github.com/aspiwack /tacengine /releases/download /v0.1-draft /
tacengine.pdf.

Stampoulis, A. and Z. Shao (2010). “VeriML: Typed Computation of
Logical Terms Inside a Language with Effects”. In: Proceedings of
the 15th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’10. Baltimore, MD, USA: ACM. 333-344. DOI:
10.1145/1863543.1863591.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 275

Staples, M., R. Jeffery, J. Andronick, T. Murray, G. Klein, and R.
Kolanski (2014). “Productivity for Proof Engineering”. In: Proceed-
ings of the 8th ACM/IEEFE International Symposium on Empirical
Software Engineering and Measurement. ESEM ’14. Torino, Italy:
ACM. 15:1-15:4. po1: 10.1145/2652524.2652551.

Staples, M., R. Kolanski, G. Klein, C. Lewis, J. Andronick, T. Murray,
R. Jeffery, and L. Bass (2013). “Formal Specifications Better Than
Function Points for Code Sizing”. In: Proceedings of the 2018 Interna-
tional Conference on Software Engineering. ICSFE ’13. San Francisco,
CA, USA: IEEE Press. 1257-1260. por: 10.1109/ICSE.2013.6606692.

Sterling, J. and R. Harper (2017). “Algebraic Foundations of Proof
Refinement”. CoRR. abs/1703.05215.

Stewart, G., L. Beringer, S. Cuellar, and A. W. Appel (2015). “Com-
positional CompCert”. In: POPL. Mumbai, India: ACM. 275-287.
DOI: 10.1145/2676726.2676985.

Strachey, C. (2000). “Fundamental Concepts in Programming Lan-
guages”. Higher-Order and Symbolic Computation. 13(1): 11-49.
porI: 10.1023/A:1010000313106.

StructTact Development Team (2016-2019). “StructTact”. URL: http:
//github.com /uwplse/StructTact.

Stump, A. (2017). “The calculus of dependent lambda eliminations”.
Journal of Functional Programming. 27. DOI: 10.1017/S0956796817000053.

Svendsen, K. and L. Birkedal (2014). “Impredicative Concurrent Ab-
stract Predicates”. In: 149-168.

Swamy, N., C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S.
Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin (2016). “Dependent Types
and Multi-monadic Effects in F*”. SIGPLAN Not. 51(1): 256-270.
DOI: 10.1145/2914770.2837655.

Swamy, N., J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits
(2013). “Verifying higher-order programs with the Dijkstra monad”.
In: PLDI. ACM. 387-398. poI: 10.1145/2491956.2491978.

Swierstra, W. (2008). “Data Types a La Carte”. J. Funct. Program.
18(4): 423-436. por: 10.1017/S0956796808006758.



The version of record is available at: http://dx.doi.org/10.1561/2500000045
276 References

Swierstra, W. (2009). “A Hoare Logic for the State Monad”. In: TPHOLs.
Vol. 5674. LNCS. Springer. 440-451. por: 10.1007/978-3-642-03359-
9 _30.

Syme, D. (1995). “A new interface for HOL — Ideas, issues and im-
plementation”. In: Higher Order Logic Theorem Proving and Its
Applications. Berlin, Heidelberg: Springer. 324-339. por: 10.1007/3-
540-60275-5_ 74.

Tabareau, N., E. Tanter, and M. Sozeau (2018). “Equivalences for
Free: Univalent Parametricity for Effective Transport”. Proc. ACM
Program. Lang. 2(ICFP): 92:1-92:29. por: 10.1145/3236787.

Tanter, E. and N. Tabareau (2015). “Gradual Certified Programming in
Coq”. In: Proceedings of the 11th Symposium on Dynamic Languages.
DLS 2015. Pittsburgh, PA, USA: ACM. 26-40. por: 10.1145,/2816707.
2816710.

Tarski, A. (1936). “Der Wahrheitsbegriff in den Formalisierten Sprachen”.
Studia Philosophica. 1: 261-405.

Trybulec, A. and H. A. Blair (1985). “Computer Assisted Reasoning
with Mizar”. In: IJCAI Vol. 85. Citeseer. 26—28.

Turing, A. (1949). “Checking a large routine”. In: Report of a Conference
on High Speed Automatic Calculating Machines. 67—69.

Univalent Foundations Program (2013). Homotopy Type Theory: Uni-
valent Foundations of Mathematics. Institute for Advanced Study.
URL: https://homotopytypetheory.org/book.

Urban, C. (2008). “Nominal Techniques in Isabelle/HOL”. Journal of
Automated Reasoning. 40(4): 327-356. Dor: 10.1007 /s10817-008-
9097-2.

Urban, C. and C. Kaliszyk (2011). “General Bindings and Alpha-
Equivalence in Nominal Isabelle”. In: Programming Languages and
Systems. Berlin, Heidelberg: Springer. 480-500.

Valbuena, I. L. and M. Johansson (2015). “Conditional Lemma Discovery
and Recursion Induction in Hipster”. FCEASST. 72. URL: http:
//journal.ub.tu-berlin.de/eceasst /article /view /1009.

Van Der Walt, P. and W. Swierstra (2012). “Engineering proof by reflec-
tion in Agda”. In: Symposium on Implementation and Application
of Functional Languages. Springer. 157-173. por: 10.1007/978-3-
642-41582-1_10.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

References 277

“Verified cryptography for Firefox 57”7 (n.d.). URL: https://blog.mozilla.
org/security /2017/09/13/verified-cryptography-firefox-57.

Voevodsky, V. (2015). “An experimental library of formalized Mathemat-
ics based on the univalent foundations”. Mathematical Structures in
Computer Science. 25(5): 1278-1294. po1: 10.1017/50960129514000577.

Voevodsky, V., B. Ahrens, D. Grayson, et al. (2011-2019). “ UniMath:
Univalent Mathematics”. URL: https://github.com/UniMath.

von Neumann, J. (1993). “First Draft of a Report on the EDVAC”.
IEEE Ann. Hist. Comput. 15(4): 27-75. DOI: 10.1109/85.238389.

von Wright, J. (1994). “Program Refinement by Theorem Prover”. In:
6th Refinement Workshop. London: Springer London. 121-150. DOI:
10.1007/978-1-4471-3240-0_ 7.

Wadler, P. and S. Blott (1989). “How to Make Ad-hoc Polymorphism
Less Ad Hoc”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’89.
Austin, Texas, USA: ACM. 60-76. por: 10.1145/75277.75283.

Wang, M., Y. Tang, J. Wang, and J. Deng (2017). “Premise Selection
for Theorem Proving by Deep Graph Embedding”. In: Advances
in Neural Information Processing Systems 30. Curran Associates,
Inc. 2786-2796. URL: http://papers.nips.cc/paper/6871-premise-
selection-for-theorem-proving-by-deep-graph-embedding.pdf.

Warden, S. and F. Biancuzzi (2009). Masterminds of Programming:
Conversations with the Creators of Major Programming Languages.
O’Reilly Media.

Watt, C. (2018). “Mechanising and verifying the WebAssembly specifi-
cation”. In: Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. ACM. 53—65. DOTI:
10.1145/3167082.

Weirich, S., B. A. Yorgey, and T. Sheard (2011). “Binders unbound”. In:
Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2011). ACM. 333-345. DOIL:
10.1145/2034773.2034818.

Wenzel, M. et al. (2004). “The Isabelle/Isar reference manual”.

Wenzel, M. (2006). “Structured Induction Proofs in Isabelle/Isar”. In:
Mathematical Knowledge Management. Berlin, Heidelberg: Springer.
17-30. por: 10.1007/11812289 3.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

278 References

Wenzel, M. (2007). “Isabelle/Isar—a generic framework for human-
readable proof documents”. From Insight to Proof-Festschrift in
Honour of Andrzej Trybulec. 10(23): 277-298.

Wenzel, M. (2012). “Isabelle/jEdit — A Prover IDE within the PIDE
Framework”. In: Intelligent Computer Mathematics. Berlin, Heidel-
berg: Springer. 468-471. por: 10.1007/978-3-642-31374-5_ 38.

Wenzel, M. (2013a). “PIDE as front-end technology for Coq”. CoRR.
abs/1304.6626.

Wenzel, M. (2013b). “Shared-Memory Multiprocessing for Interactive
Theorem Proving”. In: Interactive Theorem Proving: 4th Interna-
tional Conference, ITP 2013, Rennes, France, July 22-26, 2013.
Proceedings. Berlin, Heidelberg: Springer. 418-434. por: 10.1007/978-
3-642-39634-2_30.

Wenzel, M. (2014). “Asynchronous User Interaction and Tool Inte-
gration in Isabelle/PIDE”. In: Interactive Theorem Proving: 5th
International Conference, ITP 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings. Cham: Springer International Publishing. 515-530. DOI:
10.1007/978-3-319-08970-6__33.

Wenzel, M. (2015). “Interactive Theorem Proving from the perspective
of Isabelle/Isar”. In: All about Proofs, Proofs for All. Ed. by B.
Woltzenlogel Paleo and D. Delahaye. Vol. 55. Mathematical Logic
and Foundations. London, UK: College Publications.

Wenzel, M. (2017a). “Future Prospects of Isabelle Technology”. URL:
http:/ /sketis.net /wp-content /uploads/2017/11/Copenhagen2017.
pdf.

Wenzel, M. (2017b). “Scaling Isabelle Proof Document Processing”.
URL: http://sketis.net /wp-content /uploads /2017 /12 /Isabelle__
Scaling_ Dec-2017.pdf.

Wenzel, M. (2017¢). “Visual Studio Code as Prover IDE for Isabelle”.
URL: https://sketis.net/2017 /visual-studio-code-as-prover-ide-for-
isabelle.

Wenzel, M. (2018a). “Further Scaling of Isabelle Technology”. URL:
https://files.sketis.net /Isabelle_ Workshop_ 2018/Isabelle_ 2018
paper__1.pdf.



The version of record is available at: http://dx.doi.org/10.1561/2500000045
References 279

Wenzel, M. (2018b). “Isabelle/jEdit”. URL: http://isabelle.in.tum.de/
dist/doc/jedit.pdf.

Whitehead, A. N. and B. Russell (1997). Principia mathematica to *56.
Cambridge University Press.

Whiteside, 1. J. (2013). “Refactoring proofs”. PhD thesis. University of
Edinburgh. URL: http://hdl.handle.net/1842/7970.

Wibergh, K. (2019). “Automatic refactoring for Agda”. MA thesis.
Chalmers University of Technology and University of Gothenburg.

Wiedijk, F. (2001). “Mizar light for HOL Light”. In: International
Conference on Theorem Proving in Higher Order Logics. Springer.
378-393. pOI: 10.1007/3-540-44755-5_ 26.

Wiedijk, F. (2006). The Seventeen Provers of the World: Foreword by
Dana S. Scott (Lecture Notes in Computer Science / Lecture Notes
in Artificial Intelligence). Berlin, Heidelberg: Springer-Verlag. DOI:
10.1007/11542384.

Wiedijk, F. (2009). “Statistics on digital libraries of mathematics”.
English. Studies in Logic, Grammar and Rhetoric. (18(31)): 137—
151.

Wiedijk, F. (2012). “Pollack-inconsistency”. Electronic Notes in Theo-
retical Computer Science. 285: 85-100. DOI: 10.1016/j.entcs.2012.06.
008.

Wilcox, J. R., D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson (2015). “Verdi: A Framework for Implementing
and Formally Verifying Distributed Systems”. In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’15. Portland, OR, USA: ACM. 357-368.
DOI: 10.1145/2737924.2737958.

Williams, T., P.-E. Dagand, and D. Rémy (2014). “Ornaments in Prac-
tice”. In: Proceedings of the 10th ACM SIGPLAN Workshop on
Generic Programming. WGP ’14. Gothenburg, Sweden: ACM. 15—
24. por: 10.1145/2633628.2633631.

Wimmer, S. and P. Lammich (2018). “Verified Model Checking of Timed
Automata”. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer. 61-78.

Wirth, N. (1971). “Program Development by Stepwise Refinement”.
Commun. ACM. 14(4): 221-227. por: 10.1145/362575.362577.



The version of record is available at: http://dx.doi.org/10.1561/2500000045

280 References

Woos, D., J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and T.
Anderson (2016). “Planning for Change in a Formal Verification
of the Raft Consensus Protocol”. In: Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs. CPP 2016.
St. Petersburg, FL, USA: ACM. 154-165. po1: 10.1145/2854065.
2854081.

Yang, K. and J. Deng (2019). “Learning to Prove Theorems via In-
teracting with Proof Assistants”. In: International Conference on
Machine Learning.

Yang, X., Y. Chen, E. Eide, and J. Regehr (2011). “Finding and Under-
standing Bugs in C Compilers”. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI ’11. San Jose, CA, USA: ACM. 283-294. DOTI:
10.1145/1993498.1993532.

Yi, K. (2006). “Educational Pearl: Proof-directed debugging revisited
for a first-order version”. J. Funct. Program. 16(6): 663-670. DOL:
10.1017/S0956796806006149.

Yu, D. and Z. Shao (2004). “Verification of safety properties for con-
current assembly code”. In: ACM. 175-188. por: 10.1145/1016850.
1016875.

Z3 Development Team (2008-2019). “Z3”. URL: http://github.com/
Z3Prover/z3/wiki.

Zalta, E. N. (2018a). “Frege’s Theorem and Foundations for Arithmetic”.
In: The Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta. Fall
2018. Metaphysics Research Lab, Stanford University. URL: https:
//plato.stanford.edu/archives/fall2018 /entries/frege-theorem/.

Zalta, E. N. (2018b). “Gottlob Frege”. In: The Stanford Encyclopedia of
Philosophy. Ed. by E. N. Zalta. Spring 2018. Metaphysics Research
Lab, Stanford University. URL: https://plato.stanford.edu/archives/
spr2018/entries/frege/.

Zeller, P., A. Bieniusa, and A. Poetzsch-Heffter (2014). “Formal Spec-
ification and Verification of CRDTs”. In: Formal Techniques for
Distributed Objects, Components, and Systems. Berlin, Heidelberg:
Springer. 33-48. por: 10.1007/978-3-662-43613-4_ 3.

Zhan, B. (2016). “AUTO2, a saturation-based heuristic prover for
higher-order logic”. CoRR. abs/1605.07577.



The version of record is available at: http://dx.doi.org/10.1561/2500000045
References 281

Zhang, H., G. Klein, M. Staples, J. Andronick, L. Zhu, and R. Kolanski
(2012). “Simulation Modeling of A Large Scale Formal Verification
Process”. In: International Conference on Software and Systems
Process. Zurich, Switzerland: IEEE. 3-12. por: 10.1109/ICSSP.2012.
6225979.

Zhao, J., S. Nagarakatte, M. M. K. Martin, and S. Zdancewic (2012).
“Formalizing the LLVM intermediate representation for verified pro-
gram transformations”. In: Proceedings of the 89th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012.
427-440. por: 10.1145/2103656.2103709.

Ziliani, B., D. Dreyer, N. R. Krishnaswami, A. Nanevski, and V.
Vafeiadis (2015). “Mtac: A monad for typed tactic programming
in Coq”. Journal of Functional Programming. 25. bor: 10.1017/
S0956796815000118.

Zimmermann, T. and H. Herbelin (2015). “Automatic and Transpar-
ent Transfer of Theorems along Isomorphisms in the Coq Proof
Assistant”. CoRR. abs/1505.05028.

Zucker, J. (1994). “Formalization of classical mathematics in Automath”.
In: Studies in Logic and the Foundations of Mathematics. Vol. 133.
Elsevier. 127-139. por: 10.1016/S0049-237X(08)70202-7.



	Introduction
	Challenges at Scale
	Scope: Domain and Literature
	Overview
	Reading Guide

	Proof Engineering by Example
	Why Proof Engineering Matters
	Proof Engineering for Program Verification
	Proof Engineering for Other Domains
	Practical Impact

	Foundations and Trusted Bases
	Proof Assistant Pre-History
	Proof Assistant Early History
	Proof Assistant Foundations
	Trusted Computing Bases of Proofs and Programs

	Between the Engineer and the Kernel: Languages and Automation
	Styles of Automation
	Automation in Practice

	Proof Organization and Scalability
	Property Specification and Encodings
	Proof Design Principles
	High-Level Verification Frameworks
	Proof Reuse

	Practical Proof Development and Evolution
	User Interfaces and Tooling for User Support
	Proof Evolution
	User Productivity and Cost Estimation
	Mining and Learning from Proof Repositories

	Conclusion
	Acknowledgements
	References

