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Abstract—Regression test selection (RTS) reduces regression
testing costs by re-running only tests that can change behavior
due to code changes. Researchers and large software organiza-
tions recently developed and adopted several RTS tools to deal
with the rapidly growing costs of regression testing. As RTS tools
gain adoption, it becomes critical to check that they are correct
and efficient. Unfortunately, checking RTS tools currently relies
solely on limited tests that RTS tool developers manually write.

We present RTSCHECK, the first framework for checking RTS
tools. RTSCHECK feeds evolving programs (i.e., sequences of
program revisions) to an RTS tool and checks the output against
rules inspired by existing RTS test suites. Violations of these rules
are likely due to deviations from expected RTS tool behavior, and
indicative of bugs in the tool. RTSCHECK uses three components
to obtain evolving programs: (1) AutoEP automatically generates
evolving programs and corresponding tests, (2) DefectsEP uses
buggy and fixed program revisions from bug databases, and
(3) EvoEP uses sequences of program revisions from actual
open-source projects’ histories. We used RTSCHECK to check
three recently developed RTS tools for Java: Clover, Ekstazi, and
STARTS. RTSCHECK discovered 27 bugs in these three tools.

I. INTRODUCTION

Regression testing is an important, widely used, but costly

approach for checking that code changes do not break pre-

viously working functionality. Regression testing costs arise

from running tests on each program revision; such costs have

been growing quadratically with the growth in the number of

tests and with increasing frequency of code changes [1]–[4].

Regression test selection (RTS) [5]–[8] reduces regression

testing costs by selecting to re-run, on each new program

revision, only a subset of tests that can change behavior due

to code changes, i.e., affected tests. A typical RTS technique

collects dependencies (e.g., methods, classes) for each test and

selects to re-run only tests whose dependencies changed. An

RTS technique is safe if it does not miss to select any affected

test and precise if it selects only affected tests.

To deal with the rapidly growing costs of regression test-

ing, several RTS tools were recently developed and adopted

by both industry and researchers. Industry examples include

Microsoft’s Test Impact Analysis for .NET [9], which ships

with Visual Studio to millions of developers, and Clover’s Test

Optimization for Java [10], which was recently open-sourced

to increase adoption. Researchers also developed several RTS

tools in the last five years alone [11]–[14]; some of these tools

have been adopted by large software organizations [15].

As RTS tools gain adoption and become more mainstream,

it becomes critical and timely to check their correctness and

efficiency. We say an RTS tool is correct if it is safe and

precise, subject to the implemented RTS technique. RTS tool

efficiency is measured by comparing its end-to-end time (i.e.,

test selection time plus execution time for selected tests) with

RetestAll, i.e., running all tests at each revision.

Unfortunately, there is no systematic approach for checking

correctness and efficiency of RTS tools. Checking RTS tools

currently depends solely on the limited sets of tests that each

RTS tool developer manually writes. Prior research established

a framework for analytically evaluating RTS techniques [16],

and several researchers semi-formally proved safety and com-

putational complexity of RTS techniques [17]–[19]. However,

these proofs and analyses may not carry over to the RTS tools

that implement those techniques; implementing a technique in

a tool requires engineering and, like any other software, RTS

tools may contain bugs. A framework for checking RTS tools

will (1) enable researchers to compare existing RTS tools and

check future RTS tools, and (2) provide greater confidence to

developers who are considering to adopt RTS tools.

We present RTSCHECK, a novel framework for checking

RTS tools. RTSCHECK feeds evolving programs, i.e., se-

quences of program revisions, to an RTS tool and checks the

output against rules that specify likely violations of expected

behavior. RTSCHECK currently uses seven hand-crafted rules,

inspired by developer-written tests for RTS tools; users can

extend the set of rules. RTSCHECK detects violations in three

categories. (1) RTSCHECK detects a likely safety violation if

an RTS tool does not select expected tests, e.g., not selecting

to run newly failed tests that fail in RetestAll. (2) RTSCHECK

detects a likely precision violation if an RTS tool selects un-

necessary tests, e.g., running all tests the second time when run

twice on the same program revision. (3) RTSCHECK detects

a generality violation if an RTS tool does not integrate well

with the program, leading to unexpected behavior, e.g., failing

more tests than RetestAll due to incorrect instrumentation.

RTSCHECK also generates an efficiency report, which shows

if an RTS tool takes longer to run (on average) than RetestAll.

RTSCHECK uses the common assumptions in RTS research

that tests are not flaky [20]–[22], and there is no test-order

dependency [23]–[25]. All violations RTSCHECK detects are

due to implementation issues or limitations of the underlying

RTS technique that were unknown a priori; currently, we map

violations to these two root-causes manually.

RTSCHECK has three components for obtaining the evolv-

ing programs (i.e., code and tests) for testing RTS tools. First,
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Fig. 1: An overview of the RTSCHECK framework

the AutoEP component automatically generates a code revi-

sion, randomly generates tests for that revision, and systemati-

cally modifies the old revision with a set of evolution operators

to obtain subsequent revisions of code and tests. Second, the

DefectsEP component obtains evolving programs with two

revisions from bug databases, using the fixed version as the

first revision and the buggy version as the second revision.

Finally, the EvoEP component obtains evolving programs by

extracting program revisions from software repositories.

Our current RTSCHECK implementation supports checking

and comparing RTS tools for Java. We used RTSCHECK to

check and compare three recent RTS tools: Clover [26], Ek-

stazi [12], and STARTS [18]. Clover is developed by industry,

while Ekstazi and STARTS are developed by researchers. We

used RTSCHECK to obtain a total of 31K evolving programs,

which have a total of 4M tests. RTSCHECK reported 24K

violations; we inspected a subset of these violations (207) and

mapped them to 20 implementation issues, seven limitations

of the underlying RTS techniques, and two false positives. We

reported all 27 bugs to the developers of these RTS tools,

four of which were already known to the developers. The

developers already confirmed 10 of the 23 previously unknown

bugs. Each RTSCHECK component contributed to discovering

several unique bugs, and we found at least six bugs in each

RTS tool that we checked.

This paper makes the following contributions:

• Framework: We present RTSCHECK, the first framework

for systematically checking RTS tools for likely violations

of expected behavior and for reporting efficiency. We are the

first to apply automatic generation of evolving programs and

existing bug databases for checking RTS tools.

• Implementation: We implement RTSCHECK to check RTS

tools for Java. RTSCHECK can be extended to check new

RTS tools, support new components for obtaining evolving

programs, or use different rules. RTSCHECK is available at

http://cozy.ece.utexas.edu/rtscheck.

• Evaluation: We deployed RTSCHECK to check three RTS

tools: Clover, Ekstazi, STARTS. RTSCHECK discovered 27

bugs, four of which were known. The RTS tool developers

so far confirmed 10 of the remaining 23 bugs.

II. THE RTSCHECK FRAMEWORK

Figure 1 shows an overview of RTSCHECK. RTSCHECK

takes two inputs: (1) a configuration file for setting up the

components that obtain evolving programs, and (2) the RTS

TABLE I: Rules for Detecting Violations from Running an

Evolving Program with RetestAll and at least One RTS Tool

Id Violation Description Type

R1 In some revision, the number of newly failed tests
when run with the tool is lower than with RetestAll

safety

R2 In some revision, the tool selects zero tests but all
other tools select all tests

R3 In all revisions, the tool selects all tests

precision
R4 In some revision, the tool selects all tests but all

other tools select zero tests

R5 The first two revisions are the same, and the tool
selects one or more tests in the second revision

R6 In the first revision, the tool selects a different
number of tests than RetestAll

generality
R7 In some revision, the number of failed tests when

run with the tool is greater than with RetestAll

tools to check. Based on these inputs, RTSCHECK obtains

evolving programs; feeds these programs, one at a time, to

the RTS tools; and checks for likely violations (violations for

short). We first describe the rules that RTSCHECK uses to

detect violations, and then we describe each component for

obtaining evolving programs.

A. Rules for Detecting Violations

We define an evolving program as a sequence of n program

revisions (P0, P1, ..., Pn−1). Each program revision is a tuple

of code under test and a test suite. For a given evolving

program, RTSCHECK runs each program revision with the

RTS tools being checked; the results of test execution and

tool-specific intermediate data are stored as metadata. The

metadata is available when running the next program revision

and enables RTS tools to perform selection.

Our rules for detecting violations apply to one evolving

program at a time; the rules are defined over the metadata

available after executing the evolving program. Table I shows

our rules for detecting violations. We assume that RTSCHECK

executes the given evolving program with RetestAll and at

least one RTS tool, although rules R2 and R4 apply only if

more than one RTS tool is provided as the input. For each rule,

we show a unique Id, a short description of when the rule is

violated, and the type of the violation that the rule detects;

there are three types of violations: safety violations, precision

violations, and generality violations.



1) Safety Violations: Rules R1 and R2 detect safety vio-

lations. A safety violation occurs when the RTS tool may be

selecting fewer newly failed tests than should be selected; a

newly failed test passed in the old revision but fails in the

new revision. Violating rule R1 indicates a bug (we assume

no flaky tests and no test order dependencies). Not selecting a

newly failed test means that an RTS tool could cause users to

miss a fault in the code. Violating rule R2 may not indicate a

true bug, because it compares an RTS tool against other tools.

However, in such cases, the difference in selection (selecting

no tests versus all other tools selecting all tests) is extreme,

so it is highly likely there is a bug in the tool.

2) Precision Violations: Rules R3, R4, and R5 detect

precision violations. A precision violation occurs when the

RTS tool may be selecting too many tests, more than are

necessary. Of these rules, there is no guarantee that violating

rules R3 and R4 indicate actual bugs in the RTS tool; it may

be the correct behavior for the RTS tool to be selecting all the

tests as they may all be affected tests. However, again, such

scenarios are rather extreme and likely indicative of a bug

where all other tools select no tests, or if on every revision a

tool selects all tests. Violating rule R5 indicates a true bug: if

there is no change, there should be no affected tests.

3) Generality Violations: Rules R6 and R7 detect generality

violations. A generality violation occurs when using the RTS

tool with the code and tests leads to different behavior than

what is expected, such as crashing or failing more tests than

with RetestAll. Violating either of the two rules indicates

a true bug in the RTS tool. For rule R6, an RTS tool on

a fresh, first revision should always select all the tests, as

RetestAll does. Not selecting all the tests indicates the tool is

not working properly with the code/tests. While violating R6

means running fewer tests than should be run, it is not a safety

violation, as there is no change that leads to any affected tests.

For rule R7, if an RTS tool results in more failed tests than

RetestAll, the extra failed tests must be due to bad integration

with the tool, e.g, the tool caused tests to behave differently,

or the tool is crashing for some tests.

Our rules are inspired by the assertions from existing

manually written tests for RTS tools, capturing common

expected behaviors of RTS tools. Note that while assertions

from manually-written tests helped design the rules, RTS tool

developers usually check these assertions on very few, if any,

evolving programs. Starting with some of the base assertions

from existing tests, we modified them to only test extreme

cases. For example, instead of having a rule that is violated

when an RTS tool selects fewer tests than other RTS tools,

our rule R2 is a more extreme version of this rule. Intuitively,

having more extreme rules leads to fewer false positives. The

rules we use here do not necessarily find all bugs in RTS tools.

However, RTSCHECK has a modular design and provides a

way to extend the set of rules that can help detect more

violations that lead to finding more bugs. We plan to study

various extensions in the future.

B. The AutoEP Component

AutoEP obtains evolving programs via automated code

generation, test generation and code evolution. Our key idea is

to apply bounded exhaustive testing with randomly generated

tests and state comparison for checking RTS tools. Addition-

ally, we develop a novel set of program evolution operators.

AutoEP works in three main steps: (1) generate the first

revision in an evolving program, (2) generate tests for the first-

revision programs, and (3) evolve those first-revision programs

to obtain corresponding second-revision programs. A program

may evolve in multiple ways, so AutoEP obtains multiple

evolving programs from a first-revision program.
1) Program Generator: AutoEP uses JDolly [27] to gener-

ate the first-revision programs. JDolly systematically generates

Java programs up to specified bounds and was originally

developed for testing Java refactoring engines [28]. We choose

JDolly because it exhaustively generates programs with com-

plex relations among code elements (e.g., class inheritance).

Table II shows the user-specifiable constraints we use to tune

program generation for JDolly. The table shows a unique

identifier for each constraint (Id) and a short summary of

each constraint (Summary (see [27])). More details about the

constraints are available elsewhere [29].

TABLE II: Program Generation

Constraints Used in AutoEP

Id Summary (see [27])

JD1 NoConstraints
JD2 ClzWithMethodAndSuperClz
JD3 ClzWithMethodAndSubClz
JD4 ClzWithFieldAndSuperClz
JD5 ClzWithMethodAndField
JD6 SomeInheritance
JD7 SomeMethod
JD8 SomeField
JD9 SomeCaller
JD10 SomeFieldSomeFieldAccess

Note that programs

generated by JDolly may

not compile. Therefore,

AutoEP contains a post-

processing step to re-

move programs that do

not compile.
2) Test Generator:

AutoEP uses the Ran-

doop tool [30], [31]

to generate tests. Each

test method generated by

Randoop is a sequence

of method calls. The method sequence length and the number

of test methods to generate can be specified as AutoEP inputs;

we evaluate with maximum sequence lengths of {1, 2, 4, 100}
and (up to) 50 tests per length. The other input to Randoop is

the set of classes for which to generate tests. The list of classes

we provide to Randoop are the first-revision classes generated

by JDolly. Randoop starts with an empty set of sequences and

randomly chooses, in each step, a method to invoke from one

of the first-revision classes. The call sequence is extended until

the specified limit is reached or invoking the current sequence

causes an exception so that further extension of the sequence

is not beneficial. The arguments for each method call in the

sequence are selected either from a predefined pool for each

type (e.g., null for reference types) or from the results of

prior method calls in the same method call sequence.

Oracles in Randoop tests are limited, so we additionally cap-

ture program state as new oracles for the tests. Specifically, the

program state contains objects of all classes in the generated

program, including values of all primitive (inherited) fields

and information about their type (i.e., the class hierarchy).



We capture the program state at the end of a test run by a

lightweight heap traversal. We treat the state captured at the

end of a test run in the first-revision program as the expected

value of the state. Essentially, one can manually create an

assertion that fails if the state captured at the end of a test run

does not match this expected value of the state. If running the

test later, e.g., after evolution, the state does not match this

expected state, then this assertion fails. Dynamic instrumen-

tation that we use to capture program state is lightweight: it

only adds a single line to each constructor. We confirmed on

a large number of examples that our instrumentation does not

conflict with that used by the dynamic RTS tools in our study,

nor do they impact dependencies collected by the RTS tools.

3) Program Evolver: Automatically checking RTS tools

requires at least two revisions of an evolving program, which is

unlike prior work on program (and test) generation for testing

compilers [32]–[36], refactoring engines [27], [37], [38], etc.,

which generate many single-revision programs. Our approach

for evolving the first revision of an evolving program into the

second revision uses mutations, similar in spirit to how the

EMI approach [39]–[42] creates program variants for compiler

testing. The differences with EMI are the set of program

evolution operators used for evolving the initial revision and

the goal of generating programs. The goal of many operators

in AutoEP is to change the behavior of the code under test in

ways that affect test outcomes. To generate second-revision

programs, AutoEP mutates first-revision programs using a

set of program evolution operators that we define based on

the literature on developing safe RTS techniques for object

oriented programming languages [17], [43], [44].

TABLE III: Program Evolution

Operators Available in AutoEP

Id Description

E1 Add extends
E2 Copy field
E3 Copy field and replace
E4 Copy method
E5 Copy method and replace
E6 Evolve to next program
E7 Increase constants
E8 Remove extends
E9 Remove method

Table III shows the pro-

gram evolution operators

supported in AutoEP. The

first column shows Id for

each operator that will be

used later in this document,

and the second column

briefly describes each op-

erator. “Add extends” (E1)

adds an extends keyword

to a class and systematically

chooses a superclass. “Copy

field” (E2) copies a field

from one class to another. “Copy field and replace” (E3)

copies a field from one class to another and changes its initial

value (if primitive). “Copy method” (E4) copies a method

from one class to another. “Copy method and replace” (E5)

copies a method from one class to another and changes a

constant in its body. “Evolve to next program” (E6) evolves

a program to a subsequent program, considering the order in

which the programs were generated. “Increase constant” (E7)

replaces a constant with a larger value. “Remove extends”

(E8) removes an extends keyword. “Remove method” (E9)

removes a method.

Operators E1, E2, E3, E4, E5, E8, and E9 impact class

relationships. E6 corresponds to a random program evolution.

Finally, E7 modifies various code elements where constants

can appear, e.g., field initialization or return statement. Each

operator may be applied to several locations in a first-revision

program, resulting in many evolving programs. AutoEP’s

operators are related to operators in mutation testing [45]–

[49], which are used to evaluate test-suite quality. For example,

“Increase constant” is available in most mutation testing

tools. However, other AutoEP operators have no equivalent

previously-proposed mutation operator.

C. The DefectsEP Component

The DefectsEP component obtains evolving programs by

extracting fixed and buggy revisions from bug databases. Our

goal is to use a real bug-introducing change and a failing

test for checking RTS tools. Several bug databases follow a

similar structure: there are two program revisions for each bug,

one revision corresponding to the buggy program revision and

the other corresponding to the fixed program revision. These

programs are usually (large) open-source projects and the bugs

are actual bugs fixed by developers of those projects. There is

usually at least one test that fails in the buggy revision (i.e.,

the bug-revealing test) and passes in the fixed revision.

The main idea behind DefectsEP is to reverse the order of

the buggy and fixed revisions to simulate a program change

that leads to failing tests. If an RTS tool is integrated in such

an evolving program, the tool should always select the failing

test(s). Although our original motivation is to check for safety

violations, we still check all applicable rules. For the case

of rule R5, because there cannot be two revisions that are

the same (otherwise, there cannot be a buggy and a fixed

revision), we also run the fixed revision twice to have the

first two revisions be the same and see if R5 is violated.

In our current version of RTSCHECK, the DefectsEP uses

the Defects4J bug database [50]. Defects4J includes a large

number of bugs and it has been used for many software

engineering research tasks [51]–[53]. We are the first to use

Defects4J for evaluating RTS tools.

D. The EvoEP Component

The EvoEP component obtains an evolving program by ex-

tracting program revisions from existing software repositories.

Furthermore, like with DefectsEP, we run the first revision

twice to ensure the first two revisions are the same, which

helps us check if R5 gets violated. The main motivation

for having EvoEP is to evaluate RTS tools with evolving

programs with more than two revisions (the previous two

components use only two revisions). Thus, EvoEP may po-

tentially discover bugs that require more than two revisions

to expose. Moreover, checking an RTS tool with EvoEP

can be seen as integration testing. EvoEP extracts evolving

programs from projects with complex setups, so it also has

the potential to discover bugs that manifest only with specific

program configurations. Additionally, the best way to evaluate

efficiency is likely by observing execution time on longer-

running evolving programs. Finally, is is important to check

RTS tools on actual program changes over a period of time.



TABLE IV: Number of Generated Programs (Base) and Number of Generated Evolving Programs (#G - Total and #C -

Compilable) for Various Modes using AutoEP

Base
E1 E2 E3 E4 E5 E6 E7 E8 E9

#G #C #G #C #G #C #G #C #G #C #G #C #G #C #G #C #G #C

JD1 88 264 0 352 352 0 0 528 58 528 58 88 29 264 264 176 0 264 0
JD2 390 1404 159 0 0 0 0 3120 1950 3120 1950 390 230 1074 1074 702 293 1560 293
JD3 377 1317 158 0 0 0 0 3016 2421 3016 2421 377 240 1039 1039 692 109 1508 273
JD4 199 512 512 199 199 199 199 85 85 85 85 199 199 199 199 142 142 85 85
JD5 85 224 26 0 0 0 0 60 47 60 47 85 57 60 60 58 42 60 0
JD6 399 1374 101 0 0 0 0 2394 1873 2394 1873 399 230 1066 1066 739 289 1197 277
JD7 399 1341 58 0 0 0 0 2349 2043 2349 2043 399 247 1197 1197 730 84 1197 0
JD8 251 885 793 1004 1004 1004 1004 502 459 502 459 251 226 502 502 458 420 251 223
JD9 365 1248 153 0 0 0 0 2190 1826 2190 1826 365 189 826 826 679 174 1095 80
JD10 80 280 115 158 158 158 158 474 370 474 370 80 39 160 160 144 73 240 96

III. EXPERIMENT SETUP

In this section, we describe the RTS tools used in the evalua-

tion and present evolving programs obtained by RTSCHECK.

We make a replication package for our evaluation publicly

available on our website [54].

A. The RTS Tools Under Evaluation

We use three RTS tools in our evaluation: Clover [26],

Ekstazi [12], [55] and STARTS [18], [56]. All the tools work

for Java. Further, Ekstazi and STARTS are developed by

researchers. Clover was developed in industry and started life

as a proprietary product but is now open-source.

Clover. In Clover [26], the Test Optimization feature [10]

performs RTS. Clover performs source-code instrumentation

prior to compilation. Then, at runtime, it records in a database

a mapping from each method under test to the set of test meth-

ods that use the method under test. After a change, Clover first

finds the methods under tests that changed, then it queries its

database to find which tests used the changed methods. Clover

re-instruments the files that contain changed methods and

keeps the same instrumentation for unchanged files. Clover

re-runs tests that it found to use changed method(s) from the

previous revision, plus any test(s) not already in its database,

e.g., newly added tests. Finally, after running the tests, Clover

updates the method-to-tests mapping in its database with

information from the current run, in preparation for a future

run. We use Clover 4.2.0 and the default configuration.

Ekstazi. Ekstazi [12], [55] uses dynamic binary instrumen-

tation to track the class dependencies of test classes. More

specifically, Ekstazi tracks, as test dependencies, the classes

(i.e., underlying compiled .class files) that are used while

executing each test class. Ekstazi computes and stores a

checksum for each test dependency in a revision. Then, after a

code change, Ekstazi recomputes the checksum of all the test

dependencies to see which ones have changed. The affected

tests computed by Ekstazi are all test classes for which at least

one dependency has a different checksum in the previous and

current revision, plus any newly added test(s). Finally, while

running the affected tests in the current revision, Ekstazi uses

its instrumentation to track and update the dependencies of the

affected tests, in preparation for a future run. We use Ekstazi

5.1.0 and the default configuration.

STARTS. STARTS [18], [56] statically computes the depen-

dencies of each test class and does not require any instrumenta-

tion. First, STARTS uses jdeps [57] to extract the dependencies

of each class in the application. STARTS computes as test

dependencies the reflexive and transitive closure for each node

that represents a test class in the dependency graph. Note

that (1) STARTS can be imprecise because the dependencies

found by jdeps are only potentially used classes and are not

necessarily runtime dependencies, (2) the constant pool in

a .class file contains the list of fully qualified names of

all classes that are used in the source file, and (3) STARTS

can miss dependencies when the relationship between classes

happens only via reflection. STARTS computes changes and

computes/stores checksums in the same way as Ekstazi. We

use STARTS 1.3 and the default configuration.

B. Evolving Programs

1) AutoEP: Table IV shows the number of generated

evolving programs using different AutoEP modes, i.e., a

combination of a program generation constraint and a program

evolution operator. Each row of the table shows the constraints

used in program generation, and each column shows one way

to evolve those programs.

We configured AutoEP to generate 400 programs (i.e., first

revisions of evolving programs) for each mode; we limit

the number of programs to make the experiments feasible.

Table IV shows, in the “Base” column, the number of those

programs (out of 400) that successfully compile. AutoEP

evolves only the programs that can be compiled. For each

program evolution operator, we show the number of generated

evolving programs (#G) and the number of those that can

be successfully compiled in the second revision (#C); the

following sections use only compilable evolving programs. As

we expected, some operators are better than others at generat-

ing compilable evolving programs. For example, increasing a

constant (E7) or copying a field (E2) does not introduce any

compilation error. On the other hand, removing a method (E9)

frequently leads to a compilation error, because those methods

are invoked from at least one of the tests. Finally, as expected,

copying a field or increasing a constant does not create any

evolving program when no field is present in the original

program (e.g., mode JD2 + E2) or all fields are references (JD1

+ E3). In total, AutoEP generated 31,104 evolving programs.



TABLE V: DefectsEP Subjects

(#P=Number of Evolving Pro-

grams, #VP=Number of Valid

Evolving Programs)

Project Name #P #VP

JFreechart 26 0
Closure-compiler 133 0
Commons-lang 65 26
Commons-math 106 100
Mockito 38 0
Joda-time 27 26

Total 395 152
Avg. 65.83 25.33

2) DefectsEP: In the-

ory, we could use all ex-

amples available in the

Defects4J bug database.

However, as our evalua-

tion in this paper uses a

specific set of RTS tools,

we filter out the exam-

ples on which it is known

that one of the RTS tool

does not explicitly sup-

port, e.g., using a build

system one of the RTS

tools does not support.

Specifically, we perform the following steps to obtain evolving

programs for DefectsEP:

a) Start with all the 395 examples in the Defects4J repository

(SHA 6bc92429) [50].

b) Filter out the 72 non-Maven examples; we filter non-

Maven projects because Clover and STARTS currently

support only the Maven build system.

c) Filter out the 138 examples that cannot build, due to issues

such as old dependencies that cannot be found anymore.

d) Filter out the 33 examples that do not compile with Java

8; we use Java 8 because STARTS does not work with

earlier Java versions.

e) Exclude the seven tests that are flaky or fail consistently

on the fixed program version (one test in Commons-lang,

one test in Commons-math, and five tests in Joda-time);

we detect flaky tests by running each test three times and

observing differences in test outcomes.

Table V shows the name of each project, total number of

evolving programs, and the number of valid evolving programs

after the aforementioned steps.

TABLE VI: EvoEP Subjects

Project Name SHA #Tests

Closure-compiler 8594a5cb 357
DBCP 23f6717c 43
IO 078af456 104
Commons-math 085816b7 483
Net 4e5a6992 43
Graphhopper 14d2d670 141
Guava 34c16162 496
HikariCP 471e27ec 35
OpenTripPlanner 8f1794da 139
Streamlib 6e0edb5f 25

Total N/A 1,866
Avg. N/A 186.6

3) EvoEP: The

EvoEP component

can be configured

to extract evolving

programs from any

project that uses

a version control

system, such as Git.

In our experiments

we use projects

that are available

on GitHub, use

the Maven build

system, and were

recently used in research on regression testing [13], [18].

We limit the max number of revisions to 20 to ensure that

running experiments and inspecting violations is feasible.

Table VI shows the list of projects used by EvoEP. For

each project, we show its name, the latest SHA used for the

experiments, and the number of tests at the latest SHA.

IV. EVALUATION

To assess the benefits of using RTSCHECK for checking

RTS tools, we answer the following research questions:

RQ1: What safety violations and bugs are detected by

RTSCHECK, and which components provide evolving pro-

grams on which violations are detected?

RQ2: What precision violations and bugs are detected by

RTSCHECK, and which components provide evolving pro-

grams on which violations are detected?

RQ3: What generality violations and bugs are detected by

RTSCHECK, and which components provide evolving pro-

grams on which violations are detected?

RQ4: What can be learned about efficiency of RTS tools by

using various RTSCHECK components?

A. Inspection Procedure

Our rules generated over 24K violations. It is not feasible

to manually inspect all these violations, so we used the

following sampling procedure. For violations from AutoEP

(total of 24,472), we sampled two violations for each AutoEP

mode, i.e., we inspected 84 violations. For violations from

DefectsEP (total of 348), we grouped the violations based on

which rules are violated, which tools violate the rules, and on

which projects the rules are violated. In total, we create 25

groups, from which we inspected 41 violations. We provide

in-depth description and the exact groupings of violations on

this paper’s companion website [54]. Finally, for the violations

observed by running evolving programs obtained by EvoEP we

inspected all 82 violations. While not all violations inspected

may indicate bugs in RTS tools, our inspection found only two

false positives among the violations.

B. Detected Bugs

In total, we discovered 27 real bugs from our inspection,

with only two false positives. Table VII shows the list of

bugs detected by RTSCHECK. We group the bugs into one

of three types based on inspected violations. Each row in the

table describes one bug. Column 1 shows a unique bug Id.

Column 2 is a short description of the bug. Column 3 is the

type of the bug, which can either be an implementation bug

(I) or a technique limitation (T). Column 4 shows the rule that

was violated; Column 5 shows which components’ evolving

program triggered the bug. Finally, Column 6 shows the status

of the bug: (1) “Confirmed” indicates that we reported a bug

and developers confirmed our findings; (2) “New” indicates

that we reported a bug, and developers did not yet respond;

and (3) “Known” indicates that we found a bug that has been

reported previously or known to developers.

C. RQ1: Safety Violations

Answer: We discovered nine bugs in three tools and no false

positive. AutoEP and EvoEP led to the discovery of eight bugs

and one bug, respectively.



TABLE VII: Detected Bugs (I=Implementation Bug, T=Technique Limitation)

Id Description Type Rule Component Status
S

a
fe

ty

Clover-1 Moving a class does not update dependency cache I R1 AutoEP Confirmed

Clover-2 Accessing a field does not create dependency T R1 AutoEP New

Clover-3 Overriding a method not captured T R1 AutoEP New

Clover-4 Using a class with the instanceof operator not captured T R1 AutoEP New

Clover-5 Invoking a constructor and introspecting the class does not create dependency T R1 AutoEP New

Clover-7 Hiding a field not detected T R1 AutoEP Confirmed

Clover-8 Having an overloaded method and then changing a class hierarchy not detected T R1 AutoEP Confirmed

STARTS-1 Invoking tests via Suite does not create compile-time dependencies on tests I R1 AutoEP Confirmed

All-1 Does not detect changes to non-Java files T R1 EvoEP Known

P
re

ci
si

o
n

Clover-9 Invoking tests via Suite class not supported I R3 AutoEP Confirmed

Ekstazi-1 Invoking tests via a JUnit3 runner is not wrapped to capture dependencies I R5 DefectsEP Known

Ekstazi-2 Always selects two tests when run on Joda-time even if no changes between runs I R5 DefectsEP New

STARTS-2 Invoking all tests by creating a single Suite always runs all tests I R3 DefectsEP Confirmed

G
en

er
a
li

ty

Clover-6 Instrumenting classes under test changes program behavior I R7 AutoEP/DefectsEP Known

Clover-10 Cannot parse a subset of Java syntax I R6 DefectsEP New

Clover-11 Inserts incompatible code during instrumentation I R6 DefectsEP New

Clover-12 Instrumentation cannot deal with two classes that have same fully qualified name I R6 EvoEP New

Clover-13 Introduces external libraries that pollute shared cache I R7 EvoEP New

Clover-14 Parser does not properly support checker framework’s annotations I R6 EvoEP New

Clover-15 Ignores tests explicitly requested to be executed in pom file I R6 EvoEP New

Clover-16 Not able to find a core Clover class at runtime due to problems with classpath I R6 EvoEP New

Ekstazi-3 Crashes due to incompatibility with outdated build systems I R6 DefectsEP Confirmed

Ekstazi-4 Unexpectedly triggers JUnit4 annotations under JUnit3 framework I R7 EvoEP Confirmed

Ekstazi-5 Improper support of @Inject annotations I R7 EvoEP New

STARTS-3 Incompatible with specific third-party libraries I R6 EvoEP Confirmed

STARTS-4 Cannot support tests in a non-conventional location on disk I R6 EvoEP Confirmed

STARTS-5 In-memory dependency graph grows out of available memory I R6 EvoEP Known

We illustrate one bug discovered by AutoEP and one bug

discovered by EvoEP; we simplify and format the code for

ease of presentation.

1) AutoEP: Field hiding (Clover-7). Figure 2a shows an

evolving program that triggers a bug in Clover due to incorrect

handling of field hiding. Clover misses to detect that a new

field was added to the class of the instance used during test

execution, thus skipping to select a failing test in the second

revision. This bug was detected by inspecting a violation of

rule R1 and the bug was confirmed by Clover developers.

2) EvoEP: External dependencies (All-1). Figure 2b

shows an evolving program that illustrates the limitation of

RTS tools used in our study. In summary, EvoEP extracted an

evolving program from the Graphhopper project. Several tests

were accessing .txt files on disk, which is not captured by any

RTS tool used in our study. This was detected by inspecting

a violation of rule R1. Developers of RTS tools classified this

case as a known bug and a limitation of the RTS techniques.

3) Discussion: We note that only evolving programs ob-

tained by AutoEP and EvoEP discovered bugs due to safety

violations. We expected that EvoEP would not detect many

safety violations because public repositories rarely include

failing tests. Within the violations inspected, no bug due

to safety violation was discovered by DefectsEP. Our result

shows the benefit of automated test generation and using only

existing bug databases is not sufficient for checking RTS tools.

D. RQ2: Precision Violations

Answer: We discovered four bugs in the tools and identified

two false positives. Two components (AutoEP and DefectsEP)

led to the discovery of one and three bugs, respectively. The

bugs were discovered in all RTS tools.

We describe one bug discovered by AutoEP, one bug dis-

covered by DefectsEP, and a false positive reported by EvoEP.

1) AutoEP: @Suite (Clover-9). Figure 2c shows an evolv-

ing program that led to a bug found in Clover. Clover always

selects to run a test annotated with @RunWith(Suite.class).
The example violated rule R3. This is an implementation bug

and was confirmed by Clover developers. Indeed, we found

that any test generated by Randoop that includes @Suite
would lead to this violation, resulting in an overwhelming

number of violations. We eventually modified the default

generation in Randoop to output tests without @Suite. Our

total count of violations do not include those due to @Suite,

but we note that we could find a bug in Clover due to Randoop

generating such tests.

2) DefectsEP: Lack of JUnit3 support (Ekstazi-1). Fig-

ure 2d shows an evolving program that led to a bug found



1 class CTest {

2 @Test void test() {

3 C c = new C();

4 assertEquals(10, c.f); }}

5 public class A {

6 public int f = 10;

7 }

8 public class C extends A {

9 + public int f = 11;

10 }

(a) Clover-7 bug

1 class CTest {

2 public void test() {

3 assertEquals(1,

4 new A().readStatusCodeFromFile());

5 }

6 }

7 public class A {

8 private String filePath = "PATH/TO/FILE" ;

9 public int readStatusCodeFromFile() {

10 int status = .../* Read the status

11 code from the file at filePath*/

12 return status;

13 }

14 }

(b) All-1 bug

1 class CTest {

2 @Test void test1() throws

Throwable {

3 C c = new C();

4 int x = c.m1();

5 org.junit.Assert.assertTrue(x

== 0); }}

6 @RunWith(Suite.class)

7 @Suite.SuiteClasses({ CTest.class })

8 class RegressionTest {}

9 class C {

10 public int m1() { return 0; }

11 }

(c) Clover-9 bug

1 import junit.framework.*;//JUnit3

2 public class CTest extends TestCase{

3 public static Test suite() {

4 return new TestSuite(CTest.

class);

5 }

6 public void test() {

7 assertNotNull(new A());

8 }

9 }

(d) Ekstazi-1 bug

1 class CTest {

2 public void test() {

3 assertEquals(1,

4 B.class

5 .getDeclaredClasses()

6 .length);

7 }

8 }

9 public class A {}

10 public class B {

11 public A a;

12 public void m() {}

13 }

(e) Clover-6 bug

1 ...

2 <dependency>

3 <groupId>

4 com.h2database

5 </groupId>

6 <artifactId>h2</artifactId>

7 <version>1.4.197</version>

8 <scope>test</scope>

9 </dependency>

10 ...

(f) STARTS-3 bug

Fig. 2: Several examples of evolving programs that illustrate bugs in RTS tools under test; each subcaption corresponds to a

bug id in Table VII. The lines that are added are prefixed with “+”

in Ekstazi. This evolving program has tests in JUnit3 style,

and if the test is run with Ekstazi twice, the test is executed

both times. We noticed that this bug was fixed very recently

in the latest release of Ekstazi, so it is a known bug. This bug

was discovered because rule R5 was violated in the Apache

Commons-lang project.

3) EvoEP: We found no bug due to precision violation from

the evolving programs obtained by EvoEP. We illustrate and

analyze the reason for a false positive.

RetestAll run after every n revisions. We discovered that

Clover forces the execution of all tests every 10 revisions.

Because this behavior is purposely implemented in Clover,

we do not consider this violation to indicate a real bug.

4) Discussion: Evolving programs obtained by EvoEP did

not discover any bug due to precision violations. At the same

time AutoEP and DefectsEP discovered several bugs. These

two components did not find any common bug, showing that

both components are valuable and orthogonal.

E. RQ3: Generality Violations

Answer: We discovered 14 bugs in the tools and no false

positive. Each component led to the discovery of at least one

bug, one bug is discovered by more than one component, and

the bugs were discovered in all RTS tools.

We describe one bug discovered by each component and

compare the results of various components.

1) AutoEP: Heavy instrumentation (Clover-6). Figure 2e

illustrates an evolving program that led to a bug in Clover.

Clover performs an intrusive instrumentation by inserting extra

methods and fields in most of the classes. Any test that

depends on the number of fields (e.g., via reflection) fails

as there are now more fields than expected. This bug is

discovered with an evolving program obtained by AutoEP,

violating rule R7 when using state comparison as a test oracle.

To avoid excessive number of violations due to the same

reason, we excluded fields added by Clover from subsequent

state comparisons after we discovered this bug.

2) DefectsEP: Heavy instrumentation (Clover-6). Defect-

sEP led to the discovery of the same bug as described for

AutoEP. The bug was found because an evolving program

extracted from the Joda-time project violated rule R7. This is

the only bug that was discovered by more than one component

in the inspected set of violations.

3) EvoEP: Incompatible with a third-party library

(STARTS-3). Figure 2f shows the build configuration script

that exposed a bug in STARTS. Any program with this

configuration leads to a NullPointerException in STARTS.

This bug was discovered because rule R6 was violated in the

DBCP project. We categorize it as an implementation bug,

which is confirmed by the developers of STARTS.

4) Discussion: Our results show that all the components

were able to detect generality violations. More importantly,

based on the discovered bugs, we found that only one bug

was reported by more than one component. This emphasizes

the value of each individual component in our framework.

F. RQ4: Efficiency Report

Answer: Only DefectsEP and EvoEP are useful for checking

efficiency of RTS tools; we find that Clover is inefficient and

frequently takes a longer time to run than RetestAll.

Evolving programs generated by AutoEP have tests that take

negligible time. Therefore, we did not find it appropriate to use

AutoEP to check and compare efficiency of RTS tools.

Figure 3 shows efficiency reports for running DefectsEP and

EvoEP. The figures show for each project the cumulative time

(for all revisions of all evolving programs) taken by RetestAll,
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Fig. 3: DefectsEP and EvoEP efficiency report

Clover, Ekstazi, and STARTS. When computing cumulative

time, we excluded those projects on which at least one RTS

tool crashes on at least one revision. This way, if an RTS tool

crashes early (e.g., due to a generality violation), we do not

report the other tools as being relatively slower.

Based on the figures, we see that over all projects Clover is,

in general, rather inefficient in terms of testing time. Clover

takes more time than RetestAll on three out of seven projects.

Additionally, we find that, on average, Ekstazi and STARTS

both outperform RetestAll, but it is inconclusive which tool

is more efficient based on the set of evolving programs used

in our study. Future work could explore how to combine the

benefits of these tools and how to automatically predict what

tool would perform the best for a given context.

V. DISCUSSION AND FUTURE WORK

Extending RTSCHECK. Once the framework was in place, it

was relatively easy to include new rules and subjects. During

our development of RTSCHECK, when we needed to add more

rules, we estimate it took us about an hour to add a new

rule that uses the data and logs collected already. Adding new

Maven projects to evaluate is trivial.

Mutation testing. An alternative approach to checking

RTS tools is to apply mutation testing on large existing

projects [46], [48], [58]. AutoEP component’s evolution op-

erators are similar to mutation testing operators, which may

also be used to simulate code changes for use in RTSCHECK.

Unfortunately, we found that mutation testing is currently

not feasible. The ideal mutation tool for checking RTS tools

should not use mutant schemata [59] (because code must

“evolve”), should mutate source code (some RTS tools an-

alyze sources), work with various Java versions, and perform

mutation statically. To the best of our knowledge, no existing

mutation tool satisfies all these requirements.

Nevertheless, we performed an initial experiment on two

open-source projects: Apache CSV and Google compile-

testing. We mutated bytecode of these projects using PIT [49],

resulting in 585 and 961 mutants, respectively. We semi-

automatically translated these mutants to source code to obtain

evolving programs. We then ran all three RTS tools on the

evolved programs. None of the bugs detected by RTSCHECK

were detected by mutation testing, providing an initial evi-

dence that mutants generated by traditional mutation testing

do not help expose bugs in RTS tools.

Effective generated tests. We investigated what test length is

the most effective in finding safety and generality violations

with AutoEP; recall (Section II-B2) that we used four values

for the maximum test lengths: {1, 2, 4, 100}. We had two

findings. First, tests generated when the maximum sequence

length was set to 4 led to the largest number of failing tests.

Shorter tests are likely to depend on a small number of code

elements, and thus more likely to expose safety and generality

violations. Also, too short sequences (length = 1) may not

execute enough code to lead to interesting dependencies.

Second, we found a few cases when a violation was only

revealed with very short tests (e.g., JD3+E6).

Flaky tests. Due to the limited Java model (e.g., no static

fields) used for program generation, AutoEP does not generate

flaky tests [22], [60], [61]. As described earlier, we filtered out

flaky tests for DefectsEP. Finally, we did not observe flaky

tests in our runs of EvoEP.

Execution cost. We executed AutoEP experiments in parallel

on a supercomputer (using up to 256 nodes); each node has

Intel Xeon Phi 7250. Program generation (excluding time in

the queue), computed as if it was run sequentially, took a

bit over five CPU days. Evolving those programs took over

two CPU days. Finally, executing 31,104 evolving programs

with RetestAll and three RTS tools took 139.3 CPU days.

Experiments with DefectsEP took 19.2 CPU hours and EvoEP

took 32 CPU hours. DefectsEP and EvoEP experiments were

run on a 4-core Intel i7-6700 CPU @ 3.40GHz machine with

16GB of RAM, running Ubuntu 17.04.

Future work. RTSCHECK can be improved and our infras-

tructure used as a basis for testing various incremental program

analysis techniques. We plan to explore other ways of program

generation, test generation, and evolution, as well as clustering

evolving programs that expose the same bug. We plan to

develop better strategies for grouping violations for inspection

such that violations in the same group indicate the same

bug(s). We plan on developing new rules and improving on

our existing ones. As described in Section II-A, our rules are

designed to be extreme to favor reducing false positives at the

risk of missing true positives. We plan on investigating better

thresholds for differences in tests selected as to better balance

trade-offs between true and false positives. For existing rules,

we plan to also expand them by inspecting which individual

failed tests are missed to be selected by an RTS tool, not just

the number of failed tests. Furthermore, we plan to look deeper

at each failed test to see if the test fails for the same way as

if run in RetestAll, e.g., fails for the same assertion or, in

the case of AutoEP, the state captured at the second revision

matches what was captured for RetestAll.

VI. THREATS TO VALIDITY

External. Our framework may not readily generalize to

RTS tools developed for other programming languages, e.g.,

C# [62]. Our current implementation supports only Java, but

our methodology can apply to any programming language. We

limited our experiment with DefectsEP to only the Defects4J

bug database. We plan to integrate other bug databases in the



future, e.g., Bugs.jar [63]. Projects that we used for EvoEP

may not be representative of all projects. To mitigate this threat

we chose popular open-source projects from GitHub that use

Maven and were used in recent work on regression testing.

We applied our framework to three RTS tools. We used the

default configuration of RTS tools, as well as for Randoop

and JDolly. Our reasoning is that the developers or tools

that we used tuned default configurations to obtain optimal

performance. We limited the number of generated tests to 50

per program for AutoEP. The limits on the number of programs

and tests were set to make the experiments feasible. Although

we used only one evolving program per project with EvoEP,

we configured EvoEP to extract evolving programs from the

most recent revisions of used projects.

Internal. RTSCHECK implementation or any scripts we wrote

to run experiments may contain bugs. To mitigate this threat,

we reviewed code and wrote unit tests.

Construct. We define seven rules and inspected violations

of these rules to find bugs in RTS tools. We sampled the

violations based on our own experiences with developing RTS

tools. Furthermore, we found very few false positives in terms

of violations indicating real bugs. Several of the bugs we found

were confirmed by developers as real bugs.

VII. RELATED WORK

Regression test selection. RTSCHECK already finds bugs

in dynamic and static approaches. Other techniques exist

which compute test dependencies and affected tests in different

ways. For example, AutoRTS [11] is a static, compiler-based

technique which computes the dependencies of a test, T, from

all the classes that must be compiled before T can be compiled.

RTS tools compute dependencies and affected tests using

analysis at different granularity levels. Whereas STARTS

and Ekstazi find test dependencies and affected tests at the

class level, Clover works at the method level. Future work

should include results on (1) more method-level RTS tools

(e.g., Chianti [43], FaultTracer [44]), (2) hybrid class-and-

method level RTS techniques like HyRTS [13], (3) hybrid

class-and-statement level RTS techniques like DejaVOO [17],

(4) statement-level techniques like Pythia [64], (5) module-

level techniques like GIB [65], and (6) tools that capture

dependencies across JVM boundaries like RTSLinux [66].

Automated test (input) generation. Bounded exhaustive

techniques generate all test inputs up to a specified bound [67],

[68]. TestEra [69] and Korat [70] generate test inputs based

on imperative predicates. ASTGen [37] was the first approach

for automatically testing refactoring engines; it used a frame-

work for iterative generation of structurally complex tests.

UDITA [71] introduced an expressive specification language

to enable combining imperative predicates and iterative gen-

eration. Csmith [36] is a randomized compiler-testing tool

for C. JDolly is the most recent work on testing refactor-

ing engines [27]. RTSCHECK systematically uses JDolly to

generate the first revision of each evolving program, but a

future direction is to utilize other existing tools for program

generation. We applied JDolly to a new domain, and we

introduced new evolution operators and test oracles.

Pacheco et al. [30] presented Randoop. Search-based tech-

niques are another popular approach for generating sequences

of method calls [58], [72], [73]. We chose Randoop due to

our familiarity with the tool.

Testing software engineering tools. RTSCHECK is the first

approach for checking RTS tools. Similar to prior work in

checking correctness of software engineering tools, we also

rely on program and test generation. Mongiovi et al. [74]

combined JDolly and Randoop to detect non-behavior preserv-

ing refactoring transformations. Cuoq et al. [75] used Csmith

to test Frama-C. Kapus and Cadar [76] used Csmith to test

symbolic execution engines. Recently, Dutta et al. [77] used

a template based approach to generate programs and data for

testing probabilistic programming systems. We differ from all

these prior work in that we need to generate evolving programs

(not a single program version).

Program transformations. Our proposed evolution operators

are similar to operators used for mutation testing. Mutation

testing has been traditionally used to evaluate the quality of

test suites [45], [46], [48], [78]. Many mutation testing tools

have been developed over the years, including Javalanche [79],

Major [47], muJava [80], and PIT [49]. While we have several

operators that are similar to existing mutation testing operators,

we define unique operators made for the purpose of exercising

interesting parts of the language to evolve the program in ways

as to stress RTS tools.

VIII. CONCLUSION

Recent interest from industry, evidenced by recent adoption

of RTS tools, has created a need to check and compare

RTS tools more properly and systematically. RTSCHECK

feeds evolving programs (i.e., sequences of program revi-

sions) to RTS tools and checks the output against rules that

specify potential violations of expected behavior. We applied

RTSCHECK on three RTS tools, obtained 31K evolving pro-

grams, and detected 24K violations of the rules. We inspected

207 violations, from which we discovered 20 implementation

issues and seven limitations of the underlying RTS techniques.

We reported all 27 bugs to the developers of these RTS tools,

who already confirmed 14 of them, 10 of which were pre-

viously unknown. Each RTSCHECK component contributed

to discovering several unique bugs, and we found at least six

bugs in each RTS tool. For researchers, RTSCHECK provides a

framework to check correctness of future RTS tools or variants

of the existing tools. For developers, RTSCHECK can provide

confidence in RTS tools they may want to adopt.
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