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ABSTRACT

Over the past century, research has focused on continuously improving the performance of
manufacturing processes and systems — often measured in terms of cost, quality, productivity, and
material and energy efficiency. With the advent of smart manufacturing technologies — better
production equipment, sensing technologies, computational methods, and data analytics applied
from the process to enterprise levels — the potential for sustainability performance improvement is
tremendous. Sustainable manufacturing seeks the best balance of a variety of performance
measures to satisfy and optimize the goals of all stakeholders. Accurate measures of performance
are the foundation on which sustainability objectives can be pursued. Historically, operational and
information technologies have undergone disparate development, with little convergence across
the domains. To focus future research efforts in advanced manufacturing, the authors organized a
one-day workshop, sponsored by the U.S. National Science Foundation (NSF), at the joint
manufacturing research conferences of the American Society of Mechanical Engineers (ASME)

and Society of Manufacturing Engineers (SME). Research needs were identified to help harmonize
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disparate manufacturing metrics, models, and methods from across conventional manufacturing,
nanomanufacturing, and additive/hybrid manufacturing processes and systems. Experts from
academia and government labs presented invited lightning talks to discuss their perspectives on
current advanced manufacturing research challenges. Workshop participants also provided their
perspectives in facilitated brainstorming breakouts and a reflection activity. The aim was to define
advanced manufacturing research and educational needs for improving manufacturing process
performance through improved sustainability metrics, modeling approaches, and decision support
methods. In addition to these workshop outcomes, a review of the recent literature is presented,
which identifies research opportunities across several advanced manufacturing domains.
Recommendations for future research describe the short-, mid-, and long-term needs of the

advanced manufacturing community for enabling smart and sustainable manufacturing.

Keywords: Smart Manufacturing, Sustainable Manufacturing, Advanced Manufacturing, Future

Research, Education Needs

1. Introduction

Manufacturing has undergone rapid advancement in the past few decades, due to improvements in
information technology, sensing methods and technologies, tooling and equipment, new and
improved materials, and improved understanding of process characteristics through data analytics,
all of which has enabled new manufacturing methods (e.g., cyber-manufacturing and distributed
manufacturing) and manufacturing processes (e.g., additive manufacturing and hybrid
manufacturing) (1). Integration of current-day manufacturing methods, processes, and equipment

with sensors, controls, computational methods, new materials, data analytics, artificial
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intelligence, and communication technologies drive smart manufacturing (2), an emerging
manufacturing concept that has seen a variety of definitions. The U.S. National Institute for
Standards and Technology (NIST), states, “[Smart manufacturing systems are] fully-integrated,
collaborative manufacturing systems that respond in real time to meet changing demands and
conditions in the factory, in the supply network, and in customer needs” (3). The U.S. Department
of Energy (DOE) Clean Energy Smart Manufacturing Innovation Institute (CESMII) posits,
“Smart Manufacturing (SM) enables all information about the manufacturing process to be
available when it is needed, where it is needed, and in the form it is needed across the entire
manufacturing value-chain to power smart decisions” (4). Such technological advances will enable
a broad range of industries to lower costs, improve quality, increase productivity, improve material
management, increase efficiency, reduce energy use, and improve worker health and safety, among

other performance measures (2,5).

Further, continuously monitoring and improving upon these key performance indicators (KPIs)
helps in improving the sustainability performance of smart manufacturing systems beyond that
previously attainable with asynchronous, manual collection and interpretation of performance
data. Sustainable manufacturing requires a balance of KPIs that span the three pillars of
sustainability (economic, environmental, and social) based on stakeholder preferences (6).
However, smart and sustainable manufacturing systems exhibit a complex nature, often due to
varied, non-uniform manufacturing processes that make quantifying process metrics, ensuring data
integrity, and establishing relationships between the systems and sub-systems extremely difficult
(7,8). Through the evolution of manufacturing, new processes, materials, and supporting

technologies have been developed based on industry needs. Complementary efforts were
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undertaken to quantify metrics, model systems and sub-systems, and develop methods of
quantification for performance measures. These developments have been completed quite
independently, however, and have had little to no convergence. To address this deficiency, NIST
worked to (a) develop standard smart manufacturing measurement methods, (b) model and
characterize smart manufacturing system complexity, (c) develop guidelines for methods, metrics,
and tools that enable manufacturing stakeholders to assess and assure cybersecurity of smart
manufacturing systems, and (d) develop methods and protocols for the integration of smart
manufacturing systems (9). In addition, recently developed ASTM standards led by NIST
researchers guide companies in evaluating and characterizing the sustainability performance of

manufacturing processes in their facilities and supply chains (10,11).

To support research efforts in smart and sustainable manufacturing, the authors organized a one-
day workshop, sponsored by the U.S. National Science Foundation (NSF), at the joint
manufacturing research conferences of the American Society of Mechanical Engineers (ASME)
Society of Manufacturing Engineers (SME) held at Texas A&M University in June 2018. The
workshop invited participants from the industry, academia, and government labs to engage in
presentations and discussions of recent developments within emerging areas of advanced
manufacturing. It aimed to identify the basis for future research in smart and sustainable
manufacturing to support performance metrics, characterization models, and analysis methods
attendant with conventional manufacturing, nanomanufacturing, and additive/hybrid
manufacturing, as well as for process-level and system-level characterization. This approach
enabled the research team to gather perspectives from across various domains of manufacturing

and to synthesize these findings to address common research needs for advancing smart and
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sustainable manufacturing with an emphasis on the role of standards in advancing the field.
Workshop activities undertaken to generate and synthesize this information are described in
Section 3. To supplement the findings from the workshop presented in Section 4, the research team
conducted a literature review which identifies the current state of several key domains of
manufacturing and their relevant challenges. Section 5 reports future research opportunities and
expected outcomes in short- to long-term time ranges. Section 2 provides background information

in support of the work reported herein.

2. Background

The objective of the study reported herein aims to focus future research efforts in advanced
manufacturing, with an emphasis on smart and sustainable manufacturing processes and systems.
A foundational assumption for smart manufacturing is that models of manufacturing processes
provide a basis for computationally improving manufacturing operations. The principles on which
these models are organized are emerging. ASTM subcommittee E60.13 on Sustainable
Manufacturing (12) has published an initial set of standards to codify these principles, yet more
research is needed to understand the fundamental modeling concepts—the abstractions—needed

to enable model reuse and composition across the variety of manufacturing processes and systems.

To provide an initial foundation for this work, the findings from a prior workshop on Reusable
Abstractions for Manufacturing Processes (RAMP), held in 2017, and the purpose of the 2018
RAMP workshop are next introduced. Both workshops were held in conjunction with a

competition for modeling manufacturing processes using standard methods under development by
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ASTM subcommittee E60.13. The competitions motivated application of the standards to several

manufacturing processes and user experiences from which to generate meaningful feedback.

The first RAMP workshop also was supported by NSF and held in conjunction with the 13" ASME
Manufacturing Science and Engineering Conference (MSEC) and the 45" SME North American
Manufacturing Research Conference (NAMRC) on June 7, 2017 at the University of Southern
California in Los Angeles, CA. The workshop was held in partnership also with NIST and ASTM
International. The objectives of the workshop were to:

a) Familiarize the research community with standards from the ASTM E60.13 Subcommittee
for modeling manufacturing processes, including the ASTM E3012 Standard Guide for
Characterizing Environmental Aspects of Manufacturing Processes (11);

b) Provide an opportunity for participants to put those standards into practice in modeling
processes of their own interest, and to share experiences in applying the standards; and

c) Provide a source of candidate models to populate an extensible repository of reusable

manufacturing process models being developed by NIST and its academic partners.

The workshop attracted several dozen participants from industry, academia, and government labs.
The workshop highlighted the opportunities for an open repository of process models (13), and
identified emerging efforts, including both standards development and academic and industrial
research, to outline a vision for coalescing such efforts towards an open process model repository.
Lessons from the workshop led to a new information model that facilitates more consistent

characterization of physical artifacts in production systems, leading to better reusability of models
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and reproducibility of environmental analyses. Based on the 2017 workshop results and findings
from ongoing research, the follow-on workshop held in 2018 and reported here was designed to:
a) identify needs for education and research to support the characterization of unit
manufacturing processes (UMPs) for sustainability assessment;
b) define current limitations in associated education and research practices; and
c) prioritize the challenges to be pursued by the manufacturing research community to best
meet industry needs in adopting and applying analytical methods for improving smart and

sustainable manufacturing process and system performance.

The outcomes of the workshop are expected to benefit basic research programs within NSF, for
example by leading to funded research and advancements in topic areas such as sustainability of
nanomanufacturing processes and nano-products, digitization of continuous and batch processes,
fundamental models of manufacturing processes, and efficient process and system models for
decision support in cloud manufacturing. Academic researchers with foci in smart and sustainable
manufacturing systems, manufacturing machines and equipment, materials engineering and
processing, nanomanufacturing, and engineering education were particularly encouraged to attend;
the workshop attracted participants with broad interests in teaching undergraduate and graduate
students and conducting basic and applied research in analytical methods for sustainable

manufacturing.

3. Overview of the 2018 RAMP Workshop
The second RAMP workshop was comprised of two half-day sessions and an evening poster

session. The first half of the day was dedicated to presentations that introduced a variety of
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perspectives on manufacturing metrics and process modeling. The second half of the day was
designed to engage the participants in defining relevant advanced manufacturing research
challenges. In addition to participants from academia, industry, and government labs, the
workshop hosted 46 undergraduate and graduate student participants, including 23 student finalists
comprising six teams from the NIST-sponsored RAMP competition (14). The student participants
presented posters reporting their research in manufacturing process modeling and sustainability

performance assessment. Additional details of the sessions are described in the following sections.

3.1. Student Presentations and Expert Lightning talks

In the first session of the workshop, RAMP competition finalists presented their projects,
summarized in Table 1. In the following session, experts from across the advanced manufacturing
domain presented lightning talks to report ongoing research activities and their personal
perspectives on the current and future research challenges and modeling needs for advanced
manufacturing. These expert talks were not meant to be comprehensive, but provided context for
participants in the afternoon session of the workshop to identify and discuss extant challenges

across manufacturing research domains.

The talks in the second session started with Dr. Khershed Cooper of NSF presenting
Nanomanufacturing Research at NSF. He discussed various NSF programs that address the
growing demands and challenges of advanced manufacturing. He presented several specific
approaches that have been pursued to address needs for scalability in nanomanufacturing under
NSF funding. He also discussed avenues of NSF funding to support such work, including cyber-

manufacturing and nanomanufacturing.
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Table 1: Summary of RAMP Competition finalist presentations

Presentation Topic

Author(s)

Affiliation

A Production Line for Polylactide
Business Card

Ian Garretson and Barbara Linke

University of California, Davis

Sustainability Analysis of
Stereolithography using UMP
Models

Timothy Simon', Yiran Yang', Wo
Jae Lee!, Jing Zhao!, Lin Li2, and
Fu Zhao'

Purdue University!, University of
Illinois-Chicago?

Aggregating UMP Models to
Enable Environmental Impact
Characterization of Polymer-Based
Hybrid Manufacturing

Sriram Manoharan and Dustin
Harper

Oregon State University

UMP Model for Flexible
Manufacturing System

Feng Ju, Daniel McCarville,
Hashem Alshakhs, Weihao Huang,

Arizona State University

Xuefeng Dong, Hussain Alhader

Data Driven UMP Model for
Monitoring Specific Energy in
Surface Grinding Process

Zhaoyan Fan and Sai Srinivas
Desabathina

Oregon State University

Grinding Analysis and Model Justin Canaperi, Yongxin Guo,
John Park, Jun Yang, and Yuki

Yoshinaga

Stony Brook University

Next, Dr. Ajay Malshe of the University of Arkansas outlined key drivers for standardization of
nanomanufacturing in his talk titled Standardization and Scale-up of Nanomanufacturing
Processes. He provided his perspective on the future of nanomanufacturing and described some of
the limitations, specifically noting increasing stress levels in the research lab because of a
dramatically changing invention-to-product life cycle. He also highlighted the missing link
between research and industrial application, a need to account for the frequency of products
changing hands, and the value of students being exposed to industry perspectives before

contributing to lab research.

Mr. Kevin Lyons of NIST then presented Standardization and Scale-up of Additive Manufacturing
Processes. He began by defining additive manufacturing processes and then providing his

perspective on the key drivers for advancing additive manufacturing technology. He indicated that
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data handling and sharing, model development and adaptation, and design for additive
manufacturing were key shortcomings to be addressed. He also introduced potential research
opportunities in additive manufacturing, such as the need to integrate various process models while
considering the inherent complexities, underlying assumptions, and constraints, the lack of a robust
method to verify and validate process models for additive manufacturing, the need to develop an
approach for capturing design rules for additive manufacturing, and the need to develop simulation
testbeds for modelers to test their models against rigorous, highly-controlled additive

manufacturing benchmark test data.

Moving away from the process-specific focus, Dr. Fazleena Badurdeen of the University of
Kentucky next spoke about Educating Engineers on Sustainable Manufacturing. She presented
several engineering education challenges, and emphasized that realizing sustainable
manufacturing innovations requires developing an educated and skilled workforce. One research
opportunity she noted was a need for a multi-disciplinary approach to address sustainable
manufacturing challenges that incorporates convergent research and education. In order to achieve
this vision, a continuous effort of collaboration between key stakeholders, such as universities,
industry, and state and federal agencies is required. She introduced various NSF programs and
other funding opportunities that could be used to facilitate such efforts to bolster sustainable

manufacturing engineering education.

Dr. Barbara Linke of the University of California Davis next focused on Modeling Manufacturing
Processes. She outlined the Unit Process Life Cycle Inventory (UPLCI) effort (15) to characterize

a broad set of manufacturing processes. The UPLCI approach uses industrial information for each
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manufacturing process (machine) to estimate material inputs, energy use, and material losses for a
particular product design. Linke also introduced a more involved approach for modeling process
environmental performance metrics developed under the Cooperative Effort on Process Emissions
in Manufacturing (CO2PE!) initiative (16). She discussed the challenges encountered during the
creation of UPLCI, including data quality and availability, reduction of complexity while
remaining generic, managing empirical models, dependence of materials and energy on machine
setup, and an unclear vision of how to capture impacts of auxiliary processes. To improve
dissemination, Linke encouraged researchers to report their UPLCI models in standard format as
peer-reviewed journal articles in Production Engineering - Research and Development, where

recent UPLCI studies have appeared for grinding and welding (17,18).

Mr. Arvind Shankar Raman of Oregon State University next presented the talk titled, Approach
for Modeling of Manufacturing Processes and Manufacturing Systems. He discussed the
motivations for companies to pursue sustainable manufacturing practices, including social
responsibility, investor demands, government regulations, international standards, and customer
consciousness. However, he noted a considerable number of challenges; for example, analysis
applications for sustainability assessments are often deficient in supporting integrated system-,
process-, and machine-level manufacturing decisions. Data collection and reporting within and
across supply chains remain a large challenge for manufacturers. Prior manufacturing process
modeling efforts (e.g., UPLCI and CO2PE!) have focused on developing information models that
are problem-specific, making them extremely limited in their extensibility. In addition, such
approaches require technical understanding of the manufacturing processes, which makes them

difficult to adopt and apply within different product designs and production settings. Shankar
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Raman presented an information modeling framework for reusing and extending existing models

of manufacturing processes for sustainability characterization (19).

To close out the lightning talks, Dr. Alex Brodsky of George Mason University, in his presentation
titled Reusable Model Repository for Manufacturing Systems, introduced a web-based system,
called Factory Optima, being developed in his lab for composition and analysis of manufacturing
service networks based on a reusable model repository (20). This architecture aims to overcome
the limitations of current decision-making tools and models for smart manufacturing. Most
analysis and optimizations tools are currently developed from scratch, which leads to high cost,
long-duration development, and restricted extensibility. Factory Optima is a high-level system
architecture based around a reusable model repository and the Unity Decision Guidance
Management System. Brodsky described this software framework and system for composition,
optimization, and trade-off analysis of manufacturing and contract service networks. The work is
unique in its ability to perform tasks on arbitrary service networks without manually crafting

optimization models.

The expert lightning talks laid the foundation for the interactive afternoon sessions of the
workshop. Three exercises were conducted to engage workshop participants: a schema refinement
activity, brainstorming on process modeling challenges and opportunities, and a reflective activity

to contemplate the lessons of the day.
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3.2. Schema refinement activity

Researchers from NIST led the activity to gather feedback from 2018 RAMP Competition
participants and others to support extending and strengthening of the schema standardized in the
ASTM E3012-16 standard (recently superseded by ASTM E3012-19). One of the key goals of
ASTM E3012-16 is to characterize and record UMP models in a consistent manner to promote
model reuse and sharing. The schema provided in the standard did not explicitly support reuse,
which was made apparent from the NIST-hosted RAMP Competition in 2017, where use of the
standard was a requirement for process model development. The submissions rarely conformed to
the standard. NIST designed a formal implementation schema (21) for the 2018 RAMP
Competition to ensure that the standard was followed more closely by process modelers. NIST
also proposed revisions to the standard that are captured in the new schema, including the inclusion
of more specific elements within the product and process information element as well as other

elements and attributes to promote model traceability.

The proposed revisions to the standard were reviewed and explained in a 15-minute presentation.
Participants were then asked to navigate to the online tool, IdeaBoardz (22), on their personal
devices (e.g., mobile phones, laptops, or tablets) and to respond under six categories of feedback:
keep doing, start doing, stop doing, less of, more of, and action items. Participants were asked to
anonymously post concepts, ideas, and suggestions related to each category. The online tool
allowed for “up-votes,” wherein workshop participants could show their agreement with ideas
posted by other participants. Once concepts were posted to the board, participants volunteered to

provide a verbal explanation of their ideas, which led to a discussion and clarification of key ideas.
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Based on the number of votes, it was evident that participants desired more modeling examples,
specifically those that would be industry-relevant (19 total votes). There was also a considerable
need for better definitions and documentations for the elements and attributes within the schema
(7 total votes). With proper tools and frameworks, participants suggested that there would be fewer
barriers to the use of UMP information models. Based on comments received, a critical future
direction would be to demonstrate the use of the revised schema in industrial settings. In particular,
validating the approach at scale would garner more interest and use of the standard. Validation
could be facilitated by the generation of models (or adaptation of manufacturing process models)

undertaken by the advanced manufacturing research community.

3.3. Brainstorming activity and results

Parallel brainstorming discussions that focused on the six lightning talk topic areas were each
facilitated by a subject matter expert. The session was guided by Dr. Karl Haapala, of Oregon State
University, and focused on advancing discrete manufacturing processes, nanomanufacturing at
scale, additive manufacturing at scale, process-level sustainability assessment, system-level
sustainability assessment, and manufacturing engineering education. The brainstorming session
involved 26 participants from academia and three from government labs. Each of the groups
discussed challenges and opportunities related to metrics and indicators, models and algorithms,
and tools and methods for each topic area. Participants first distributed themselves among the topic
areas and then advanced through facilitated discussion rounds to brainstorm ideas related to the
topics in a timed manner. The structure of this session allowed for a continuous flow of

perspectives and ideas that were guided toward identifying challenges and approaches to
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overcoming them for each topic. Results of the activity were synthesized and provided in Table 2

(metrics/indicators), Table 3 (models/algorithms), and Table 4 (methods/tools) for each topic area.

Table 2. Results for metrics and indicators from the brainstorming activity

Topic Metrics and Indicators
Discrete e Identified challenges, including product customization, standardization, and bolstering
manufacturing the flexibility of processes

o Identified connecting process level controls and system level metrics as a key barrier

Nanomanufacturing e Identified key metrics and indicators which include (depending on the process) fluid

at scale type, electron beam power, scan rate, beam diameter, material removal rate, structural
resolution, feature size, tolerances, nanoparticle medium, roll-to-roll speed, printing
speed, ink spread, sintering conductivity, circuit device design, and reactor design

o Identified a key barrier as control over process parameters to achieve defined
dimensional tolerances, which is difficult due to the extreme sensitivity of
nanomanufacturing processes

Additive e Identified metrics included temperature, layer thickness, material uniformity, material
manufacturing at density, extrusion rates, feed rates, internal geometries, product dimensional
scale constraints, melt pool geometry, build time, profile, accuracy, surface finish, and

repeatability, including preventative maintenance, post-processing operations, and
control of multi-axis equipment

e Noted a need for developing and implementing methods of non-destructive inspection
for measuring features (internal and external). In addition, current indicators of process
variables are deficient in their ability to control the melt pool within desired operating
ranges of existing additive manufacturing processes

Process-level o Identified metrics and indicators at the process level, which broadly include cost,
sustainability productivity, quality, energy, resources, waste, environmental impacts, personal health,
assessment and safety

¢ Noted a difficulty in identifying and quantifying metrics at the process level, which
requires sophisticated models for accurate characterization

System-level o Identified metrics included lead time, resource availability, material stability, and
sustainability system reliability
assessment

e Indicated importance of considering interactions of multiple manufacturing processes
for accurate metric quantification and assessment, requiring integration of models
across engineering domains and information-sharing across industries

Manufacturing ¢ Noted that an identifiable increase in confidence within manufacturing classes is a key
engineering indicator for education in advanced manufacturing
education

o Identified the lack of sustainability topics in undergraduate studies is a weakness of
advanced manufacturing education

¢ Found metrics for engineering education in advanced manufacturing difficult to define
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3.4. Reflection activity and results

The final stage of the afternoon workshop session involved an individual activity that allowed
participants to reflect on what they had heard and to offer their own insights. As such, the workshop
organizers posed two questions: (1) What do you see as the most pressing need for advanced
manufacturing research or advanced manufacturing education? and (2) What do you see as the
key next step to be taken to address a pressing research or educational challenge in advanced

manufacturing?

Table 3. Results for models and algorithms from the brainstorming activity

Topic Models and Algorithms
Discrete o Noted that complexities in model composition and optimization are barriers to
manufacturing developing flexible models and algorithms, requiring support of related products with

complementary models across multiple enterprises

e Indicated that scheduling intricacies are a challenge for modeling flexible discrete
product manufacturing systems

¢ Noted that modeling dynamic processes and processes that are interdisciplinary
(involving various engineering technologies) can be extremely difficult

Nanomanufacturing e Noted current modeling methods include modeling of nano-scale fluid dynamics, roll-
at scale to-roll modeling, circuit modeling, molecular dynamics, and density functional theory

e Indicated a lack of models or algorithms for metrics and indicators of interest such as
electron beam power, scan rate, beam diameter, structural resolution, feature size,
nanoparticle medium, printing speed, ink spread, and sintering conductivity

Additive o Indicated some of the existing modeling challenges include support structure
manufacturing at optimization, design features (form, fit, and function), and model fidelity
scale

e Expressed a need for representing key performance indicators (KPIs) as a function of
control parameters

¢ Noted that cloud-based process design is needed, perhaps combining parameterized
product design methods with new process design approaches

Process-level e Indicated limited availability of models and algorithms that enable the assessment of
sustainability process-level sustainability metrics
assessment

¢ Noted that exploration of physics-based and empirical models, predictive models,
optimization methods, process planning, and sensor data collection and storage for
data-driven models should be studied as disparate means to assess and improve
process-level sustainability

System-level o Noted a need to develop models for risk assessment and evaluating system dynamics
sustainability

assessment o Indicated models that describe manufacturing processes accurately have an important

role in robust system-level sustainability assessment
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Topic Models and Algorithms
Manufacturing o Identified the need for models to apply sustainability concepts in real life, as well as the
engineering need for models that are easy-to-apply with existing software solutions and
education sustainability assessment methods

e Indicated a need to incorporate design methodologies, especially Design for X
concepts, into manufacturing engineering curricula

Participants recorded their answers to the two questions on individual notecards. The answers
received were varied, but could be grouped into the following categories:

a) Connection between academia, industry, and government

b) Manufacturing engineering education improvement and workforce development

c) Development, verification, and validation of manufacturing process models

d) Development of advanced manufacturing technologies and novel materials

e) Scalability improvements and standardization for advanced manufacturing

f) Integration of advanced manufacturing with cross-functional engineering domains
The categorization of responses to the open-ended first question are indicated in Fig. 1. More than
one quarter (27%) of the participants reported that manufacturing engineering education
improvement and workforce development efforts are most needed to advance manufacturing
research or education. Individual responses indicated that participants perceived a lack of industry-
relevant curricula in advanced manufacturing engineering education or a lack of adoption of basic
engineering education in manufacturing industry. Key ideas shared by workshop participants
included improving education, providing hands-on experience, promoting manufacturing
education to inspire younger generation, and developing online resources for manufacturing

education.
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1. Connection between academia, industry, and government

2. Manufacturing engineering education improvements and
workforce development

= 3. Development, verification, and validation of manufacturing
process models

m 4. Development of advanced manufacturing technology and
novel materials

= 5. Scalability improvements and standardization for advanced
manufacturing

= 6. Advanced manufacturing integration with cross-functional
engineering domains

Fig. 1. Summary of responses to Question 1: What do you see as the most pressing need for

advanced manufacturing research or advanced manufacturing education?

The third category (process model development, verification, and validation) and the last category
(integrating manufacturing with cross-functional engineering domains), scored high as well; 21%
of respondents identified these areas as having the most pressing need. In particular, participants
noted that process models with validated datasets, methods, and algorithms were needed. These
responses may have been due to the workshop discussions tailored toward addressing a need for
models to fill current characterization gaps and engineering education needs. Respondents
indicated that fields of engineering such as design (connecting design and manufacturing) and
computer science (artificial intelligence, machine learning, and improvements in analytical tools)

play a critical role in advancing manufacturing industry and enabling smart manufacturing.

Table 4. Results for methods and tools from the brainstorming activity

Topic Methods and Tools
Discrete o Identified a need to classify problems of existing manufacturing processes to advance
manufacturing the understanding and optimize the performance of discrete manufacturing processes

using machine learning
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Topic Methods and Tools

o Expressed a need to develop software for interpreting and linking disparate process
models

Nanomanufacturing e Noted that common tools include mathematical solvers, computational fluid dynamics

at scale software, finite element analysis software, and finite volume methods, as well as
analytical tools (e.g., scanning electron microscopes and transmission electron
microscopes)

o Noted that key barriers include the precision and accuracy of current metrological
methods/tools and limited ability to control motion components with extreme precision

Additive e Indicated a need for tools that aid selection of the process type, build orientation, and
manufacturing at material, in addition to tools that support metrology, in-process monitoring, quality
scale measurement, and verification and validation

e Noted a need to develop/improve tools that perform cross-validation, and provide
sustainability decision support, cost modeling, and product design optimization

Process-level o Indicated a need for tools that support teaching of sustainability assessment at the
sustainability process level through adaptable, easy-to-use, open source methods of quantification
assessment

o Identified skills training, societal influence, and social behaviors as approaches to
communicate the importance of considering sustainability factors

System-level e Indicated current challenges include how to collect, sort, and validate data for system-
sustainability level assessment
assessment

o Noted a need to develop tools that establish and define process relationships between
models for systemic assessments

Manufacturing o Noted that manufacturing techniques that can be taught using in-house demonstrations
engineering would be highly beneficial for students to develop a physical understanding of
education processes

o Indicated that basic technical knowledge should be included in physics-based classes,
and taught using case studies in an interactive manner (e.g., labs associated with
reading materials)

For the second question, the responses were coded using the same six categories (Fig. 2). More
than one-third of the participants felt that the key next step was related to manufacturing
engineering education improvement and workforce development. In particular, workshop
participants noted needs in providing internship opportunities for students, developing online
educational tools on advanced manufacturing, promoting engineering at all levels of education,
enabling education research, recruiting people for advanced manufacturing careers, and combining

industry practice with traditional educational methods.
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1. Connection between academia, industry, and government

19%
2. Manufacturing engineering education improvements and

1 workforce development

3. Development, verification, and validation of manufacturing
process models

" 4. Development of advanced manufacturing technology and
novel materials

15% = 5. Scalability improvements and standardization for advanced
38% manufacturing

® 6. Advanced manufacturing integration with cross-functional
engineering domains
Fig. 2. Summary of responses to Question 2: What do you see as the key next step to be taken

to address a pressing research or educational challenge in advanced manufacturing?

A significant fraction of participants (19%) reported key next steps related to connection between
academia, industry, and government, noting that academic research, government policies, and
industry adoption need to work hand-in-hand for advancing manufacturing. Some of the key points
mentioned by participants were needs for better communication between academia and industry,
in addition to implementing policy changes for encouraging more sustainable practices, using
industry-driven research to create value, and bridging the gap between people and technology
through defined guidelines for practitioners.

4. Summary of Workshop Findings

The workshop activities identified potential directions for basic and applied research related to
sustainability of nanomanufacturing processes and nano-products, digitization of continuous and
batch processes, development of physics-based models of manufacturing processes, and efficient
process and system models for cloud- and cyber-manufacturing. In particular, the following

research directions emerged:
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a)

b)

d)

g)

h)

)

Machine learning methods can support understanding of a variety of discrete manufacturing
processes, e.g., nanomanufacturing, as well as system-level sustainable manufacturing
analysis and optimization.

Metrics and indicators for nanomanufacturing are plentiful and span process parameters,
material properties, and part characteristics. They should be unified/harmonized to enable
technology comparisons.

Scalability in nanomanufacturing needs to lead to reduced defects, improved metrology
methods and tools, and measurement of moving parts and assemblies.

Scalability of additive manufacturing requires optimization methods for new material
development, part geometry generation, and support structure design.

Additive manufacturing key performance indicators must be connected as a function of
process controls.

Integration of in-situ and out-of-process metrology, sustainability decision tools, model
selection tools, cost models, and product design optimization tools, are all areas of research
need, especially in emerging domains, e.g., additive manufacturing.

Transient analysis of complex manufacturing systems can lead to robust manufacturing
process models.

Bridging the gap between process-level controls and system-level metrics can enable deeper
insight for discrete and bulk product manufacturing.

Systemic sustainable manufacturing requires insight from risk assessment and system
dynamics methods to capture the emergent behaviors of interconnected, complex systems.
Societal influences of sustainable manufacturing, e.g., stakeholder behavior, must be better

understood to enhance development and adoption of new materials, processes, and products.
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k) Robust methods to characterize interactions of physical processes, human activities, and
decisions across systems are needed to advance systemic sustainable manufacturing.

1) Problem identification and diagnostics can be aided through classification of physical asset
degradation.

m) Innovative engineering education approaches are needed to address the growing urgency
for accurate and meaningful sustainability assessment at the process and system levels.
Engineering students often need a more physical connection to the process, while technical
students require more fundamental knowledge and skills for advanced manufacturing.

n) Developing and sharing knowledge (e.g., learning metrics, models, and approaches) for
improving the effectiveness of learning in advanced manufacturing should be a focus of
engineering education research.

o) Standards can support the reusability and replicability of research into advanced

manufacturing processes.

5. A Review of Future Research Opportunities

Based on these workshop findings, the authors synthesized the research directions that emerged
into five advanced manufacturing topics: conventional manufacturing, nanomanufacturing,
additive/hybrid manufacturing, process and system characterization, and workforce education and
training. These categories follow key NSF areas of research interest. Next, a review of the recent
literature was undertaken with a goal of identifying future research opportunities in each of these
domains. We focused on first defining the state of current research in each topic area by reviewing
recent NSF advanced manufacturing projects and related literature from the manufacturing

research community. Based on this work, we present short-, mid-, long-term research challenges
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raised to help define key gaps to be addressed by the advanced manufacturing community. Finally,
we identify expected outcomes of successful research undertaken in each area. We caution that
these findings are limited (specific technology development may not have broad consensus); the

community should expand areas of research opportunity through continued discourse.

5.1. Conventional Manufacturing

Conventional manufacturing commonly includes established processes, categorized as primary
shaping, deformation, material removal, coating, heat treatment, and joining processes (23). While
the physical phenomena of each of these processes have not been completely characterized, a
majority of recent phenomenological research has been directed at additive manufacturing, as
discussed in Section 5.3. In addition, in the U.S., welding process research has been well-supported
by the NSF. The emphasis has been on solid-state welding processes, which occur below the
melting temperature of the components to be joined. These research efforts include advancements
in friction stir welding (e.g., defect detection and prevention (24,25), joining dissimilar metals
(26,27), and effects of temperature and force control (28,29)); hybrid ultrasonic resistance welding
(30-32); magnetic pulse welding and friction stir blind riveting (33—35); and impact welding (36).
Fewer research efforts have tackled fusion welding processes, such as vibration-assisted laser

keyhole welding (37).

Recent research in material removal operations have explored specific challenging phenomena,
such as those attendant with ultra-precision machining of ceramics (38—40); machining-induced
distortion in milling (41,42); through-tool minimum quantity lubrication drilling (43); and

atomized dielectric-based electro discharge machining (44). Research in this domain is also
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directed at improving machine tools, such as software-supported improvement of speed and
accuracy of vibration-prone machines (45-47); at metrology, such as measurements of part
features using freeform optics (48—50), measurement of dynamic moving parts in manufacturing
tools (51), and manufacturing of optics used in metrology (52); and at non-destructive evaluation
of composites (53). Table 5 identifies the relevant potential research opportunities and expected

outcomes in the short-, mid-, and long-term ranges.

With the trend towards smart, automated, and cyber-integrated manufacturing, the need for
realistic digital representations of conventional manufacturing processes is also gaining
importance (7,54). Though much insight can be gained through purely data-driven models, a
hybrid approach, wherein physical knowledge is also leveraged, is preferred (55). Emerging
electronic, biomedical, and aerospace products are driving applications of new smart technologies,
providing challenging material combinations, tolerances, and lot sizes for conventional

manufacturing.

Table S. Research opportunities for conventional manufacturing processes

Research Opportunity Expected Outcome

1-3 years e Develop physical process models, in particular ¢ Optimized digital twins of processes

fi d hybrid
O new and fybric processes e Robust models with easier transferability and

¢ Develop transient analysis models of complex scalability
systems, especially non-steady state
manufacturing elements

4-5 years e Develop robust and process-representative ¢ Optimized performance of discrete
machine learning algorithms manufacturing through improved process
understanding

e Develop scheduling models for flexible discrete
systems e Process and process chain improvements

¢ Develop models and controls for integrating
robots into manufacturing processes, and model
interactions between robots and processes

e Develop models of metrology processes to allow
smart manufacturing control
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5+ years e Develop models for product categories across ¢ Higher competitiveness of various industry
multiple enterprises, in particular the connection sectors
of physical process models across factories

5.2. Nanomanufacturing

Nanomanufacturing has been used in producing materials and products in almost all major industry
sectors, such as electronics, automobile, aerospace, biomedical, energy, and food, among others
(56). Nanomanufacturing is the production of nanoscale features (surface and sub-surface),
materials (nanoparticles), parts (3D nanostructures, nanotubes, and nanowires), devices, and
systems (57). Scalable nanomanufacturing involves the high volume manufacturing of
nanomaterials and nanostructures, assembly into parts, devices and sub-systems, and integration
into a complete system. Nanomanufacturing generally has a minimum of one lateral dimension in

the range of 1-100 nm (58).

Nanomanufacturing has been broadly classified into three categories: top-down (producing
nanoscale features using physical processes that remove material from a larger mass), bottom-up
(building up nanoscale features from an atomic or molecular scale using chemical synthesis and
self-assembly), and hybrid (a combination of top-down and bottom-up) approaches (59). Due to
the application of nanomanufacturing in a variety of industry sectors, research of novel
nanomanufacturing technologies focuses on scaling up from lab-scale to large volume production,
lowering tooling and equipment cost, improving quality and reliability, increasing yields, reducing
wastes, developing materials compatible for new techniques, and multi-material production (60—

62).
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Since nanomanufacturing relies on many fields of engineering for materials development,
equipment and tool development, optical characterization of nanoscale features, and sensing and
instrumentation, these fields need to work cohesively to advance new nanomanufacturing
technologies. Current tools to characterize surface and sub-surface level topographical information
are time-consuming (63), which is a bottleneck in high-volume manufacturing. Unlike discrete
manufacturing processes, each nanoscale process is unique due to its complexity in controlling
process variables, measurement, sensing, and material homogeneity at the nanoscale (60). These
variations result in products of varying quality, introduce large failures, and decrease the relative

reliability of resulting products.

Mechanical components in nanomanufacturing devices and equipment are subjected to multiple
failure patterns due to system complexities such as, multiple sub-systems, complex underlying
physical phenomena, and rapid degradation of tool components (64,65). Extensive research is
often needed to troubleshoot equipment failures, occupying valuable human resources. Educating
engineers in nanomanufacturing processes is a key to overcoming many of these barriers (64). In
particular, educational materials for design for manufacturing and assembly (DFMA) and failure
modes and effects analysis (FMEA) should be developed for nanomanufacturing process
technologies. Another key area of emerging nanomanufacturing research is self-assembly of nano-
components to form nanoscale systems. Robust self-assembly methods are needed, for example,
in order for nanoscale components developed though bottom-up approaches to have a

hierarchically-ordered structure with high quality (66—68).
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It should be noted, nanomanufacturing technologies require large amounts of in-process
manufacturing data to support robust process modeling. To overcome this challenge, statistical
tools and machine learning methods could be applied for real-time process control to achieve
desired quality levels. Researchers would thus be able to correlate process parameters that are
crucial to performance improvement, while developing scientific understanding of the underlying
physical phenomena. Such knowledge would facilitate development of hybrid (combination of

physics-based and data-driven) models of nanomanufacturing processes (69).

Table 6 identifies the potential research opportunities and expected outcomes for

nanomanufacturing in the short-, mid-, and long-term ranges.

Table 6. Research opportunities for nanomanufacturing processes

Research Opportunity Expected Outcome

1-3 years e Improve control of in-process parameters (e.g., e Increased product quality
melt pool temperature, flow rates, and power

levels) to achieve desired feature tolerances * Reduced cost for metrology and quality

inspection
e Reduce scan speeds to improve upon current
metrology methods, which take a long time to
scan and require frequent calibration

e Improved process selection and design

e Develop an initial repository that contains design
for manufacturing methods for varied
nanomanufacturing processes

4-5 years e Integrate more precise control in current optical e Products with higher quality and reduced
methods employed in fabrication and metrology defects
to overcome inconsistencies in part quality due to

power, beam diameter, and machine precision * Efficient, high-throughput metrology

e Reduced cost of nano-products through high-

¢ Improve optimization and control of real-time .
volume production

process parameters, e.g., via artificial intelligence
methods, to improve efficiencies, and reduce
costs, environmental impacts, and wastes
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5+ years e Develop standard guidelines for establishing e Better understanding of process and system
performance metrics, analytical models, and factors to be prioritized for efficient
evaluation methods for nanomanufacturing manufacturing and high quality products

5.3. Additive Manufacturing

Additive manufacturing is a process of joining materials to make objects from 3D model data,
usually layer upon layer, as opposed to subtractive manufacturing methodologies (70). Additive
manufacturing is at a turning-point due to its increasing application in manufacturing a wide range
of products in various industrial sectors (71). Industry sectors where innovations can be seen
include food and consumer products, medicine and medical products, automotive, aviation,
architecture, and construction (72,73). Competitive advantages of additive manufacturing
processes include their adaptability to the geometric complexity of shape-optimized components,
suitability for production of customized or tailored products, flexibility for just-it-time production
approaches, and ability to reduce the need for part transportation and storage (56,74). Moreover,
design for additive manufacturing approaches have enabled industry to generate lightweight
product designs, reduce assembly errors, and improve sustainability performance of manufacturing

by reducing waste and energy.

These advantages of additive manufacturing processes are attendant with their own inherent
disadvantages. While conventional manufacturing processes are capable of making thousands to
millions of identical parts at low cost, for example, current additive manufacturing process
technologies are better suited for high-value, low-volume production applications (71) due to their
relatively high capital investment needed to achieve high production volumes (75). Thus, the cost

of products made using additive manufacturing is typically much higher than those made using
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conventional mass production methods. Current additive manufacturing equipment also imposes

limitations on product size and part quality, and requires more highly skilled labor.

To address these challenges, new additive manufacturing capabilities have been investigated,
including multi-material, multiscale, multiform, and multifunctional printing (76-78). Nano-
positioning in micro-scale additive manufacturing (79,80) has also gained attention from
researchers. Process modeling (81), precision improvement (82), and cost reduction (83) are the
other areas in micro-scale additive manufacturing that have been investigated recently. In addition
to micro-scale, some researchers have focused on developing new materials for nano-scale additive
manufacturing(84).

An extant challenge is the limited set of materials available for industrial additive manufacturing
use. These materials generally have limited mechanical and thermal properties, which restricts
their broader application (75). Moreover, the sustainability performance of many materials in
additive manufacturing is not well-understood (85). It has been suggested that developing lower
cost biocompatible materials can help improve economic and environmental aspects of
sustainability (86). In addition to material-related issues, the effect of different equipment and
process technologies on various materials are poorly understood, often resulting in poor surface
finish and tolerances, warping, and layer misalignment (87). Table 7 identifies the potential
research opportunities and expected outcomes for additive manufacturing in the short-, mid-, and

long-term ranges.

Table 7. Future research opportunities for additive manufacturing

Research Opportunity Expected Outcome
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1-3 years e Develop automated geometric decomposition e Improved product quality by predicting
methods for efficient part buildup and assembly warping and distortion

¢ Develop geometric dimensioning and tolerancing e Better data sharing, storing, access, and
models for a priori, predictive analytics modifying

e Develop models to characterize product and
process information (and/or performance) based
on 3D model and 2D slice data

4-5 years e Develop new equipment and controls to reduce e Mass production of identical parts at low
capital investment cost
e Develop new materials and compatible ¢ Broad potential applications using new
deposition mechanisms to enable multi-material materials and equipment

and multiscale additive manufacturing

e Develop multifunctional processes to enable
production of tailored alloys and microstructures

5+ years e Develop precision control strategies reduce cycle e Rapid manufacturing of products with
time while maintaining desired quality multiscale complex geometries

5.4. Process and System Characterization

Characterizing manufacturing processes at an in-depth level of detail and understanding
manufacturing systems have traditionally been considered mutually exclusive activities. Entire
disciplines and research communities have been built around each one in isolation. Engineering
teams to address each perspective reside in many organizations. As a result, the tools to support
these activities do not easily relate to one another (88). For example, manufacturing execution
system (MES) and enterprise resource planning (ERP) software have been designed to singularly
address the performance of manufacturing systems at different levels of control, while tools to
assess manufacturing processes are often developed in an ad hoc manner within individual

companies (89).

With the emergence of industrial internet of things (IIoT) and related smart manufacturing
concepts (90), there has been a recent uptick in solutions to bridge the moat between these two

domains. Realizing semantic interoperability across MES and ERP software is a current focus area
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in the manufacturing research, industry, and standards communities for characterizing
manufacturing processes for sustainability assessment (91), developing repositories of
manufacturing process information (13,92), and analyzing manufacturing processes for designing
smart manufacturing systems (93). For example, Industrie 4.0, a German effort to develop a
common framework that facilitates vertical integration across the traditional ISA-95 perspective,
has gained much attention across the rest of the world (94). For manufacturers to remain
competitive, react amid unforeseen disruptions, and become more environmentally efficient, a
perspective that bridges these two traditionally separated domains is necessary. Table 8 identifies
the potential research opportunities and expected outcomes for process and system characterization

in the short-, mid-, and long-term ranges.

It is clearly beneficial to link perspectives related to manufacturing processes and manufacturing
systems. Benefits include more accurate prediction in critical system objectives, e.g., cycle time,
throughput, and cost estimation. However, there are significant challenges that must be overcome
to realize these benefits. One challenge is the computational cost of simulating detailed, process-
level models residing in large networks of manufacturing activities (95). For example, in
traditional operations management problems, process-level metrics, such as cycle time and energy
consumption, are simplified, e.g., assumed to be fixed, in order to deal with the complexity on the

systems level.

Table 8. Research opportunities in process and system characterization

Research Opportunity Expected Outcome
1-3 years o Construct guidelines for training data for e Public manufacturing process datasets
data-driven models and models

¢ Develop methods for integrating between e Usability of the current smart and
data contexts based on different standard sustainable manufacturing standards
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information modeling paradigms (e.g.,
SysML, E3012, and Modelica)

o Tightly integrate physical systems with
analytical applications

e Understand computational complexity of
process-level and systems-level analyses

o New guidelines for standards integration
(e.g., CCOM and E3012, MTConnect and
OPC-UA)

e Better communication across engineering
domains

4-5 years e Devise methods for consistent predictive e Better manufacturing analysis tools
models for process-level optimization . . .
P P ¢ High quality systems-level analysis
o Define standards for linking process-level .
simulation to systems-level optimization * Better adaptability to changes at the
process level
¢ Develop methods for real-time . .
monitoring and control from sensor data * Near e al-time 'tradev:—'off analysis for
assessing sustainability performance
e Improve sensor development/deployment . .
fo rphi gher quality data P ploy o Better public datasets for education,
training, and process improvement
5+ years ¢ Improve scalability, flexibility, and e Clear understanding of limits of paired

adaptability of process-level to systems-
level approaches

o Define model verification, validation, and
uncertainty quantification (V&V)

¢ Develop standards to port process-level to
systems-level thinking in an automated
manner

o Integrate broad-based security methods
with data flow for robust, trusted process
and system analysis and optimization

process-to-systems approaches and
standards that link the two perspectives

e Clear guidelines for characterizing
uncertainty of models

o Pilot studies that demonstrate potential to
educators, researchers, and practitioners

e Tools for secure and private data transfer
(e.g., blockchain for manufacturing)

o Improved standards for process model
and manufacturing data security

Other process and system characterization challenges include the following:

a) Validation modeling and uncertainty quantification methods across different abstraction

levels (e.g., machines, processes, and systems) are not standardized '.

b) Even if process-level models are available, e.g., in a repository, appropriateness of their

reuse for a specific instance is not well-understood (92). Bridging the existing standards at

! ASME’s Verification, Validation, and Uncertainty Quantification (VVUQ) initiative is an emerging standard area that provides

guidance to develop, analyze, and enhance the credibility of computational models and simulations (96)
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the various levels is another open research question, e.g., relating MTConnect to the E3012
standard.

c) To produce “what-if” scenario exploration in complex supply chain networks, relating
disparate databases to one another is particularly challenging.

d) Privacy and security associated with sharing data across and between distributed
manufacturing enterprises remains a primary concern of many manufacturing companies
and an area of very rapid evolution. Applying best practices and known methods for
incorporating levels of traceability, e.g., blockchain or digital signatures, is essential for
enterprises to feel comfortable in sharing data. Articulating manufacturing needs is

important to influencing ongoing development in these areas

5.5. Workforce Education and Training

Beyond traditional engineering and technical curricula, the current and future manufacturing
workforce needs to be educated in advanced manufacturing and provided with the skills that will
enable decision making in smarter, more sustainable industrial environments. Process and system
modeling are primary mechanisms to continuously improving broad-based manufacturing
performance (72,97). As noted above, manufacturing processes account for the most intensive
energy use and waste production in many manufacturing facilities (98,99), yet are often overlooked

because their solutions are complex and varied.

While process improvement based on Plan-Do-Check-Act cycles are well-established, technical
standards for applying the practice routinely for improving individual manufacturing processes

remain under development and deployment. ISO 14001 (100) provides guidelines for companies

Page 33 of 51



Shankar Raman et al. Journal of Smart and Sustainable Manufacturing Systems

to establish environmental management systems that address waste and energy management, but
stops short of offering guidance on improvements for individual processes. Engraining standards
such as those from ASTM E60.13 (101,102) into widespread practice, first through standards
education program development (103), will spur industry adoption of sustainability improvement
practices (104). These standard practices can be extended with a focus on individual manufacturing
processes to enable more replicable and repeatable evaluation. In addition, techniques for applying
foundational yet interdisciplinary (cross-cutting) technologies that promise revolutionary impacts
to manufacturing performance need to be integrated into manufacturing education. These
technologies include sensing technology, computational skills, artificial intelligence (Al), machine
learning, data analytics, ontological definition, cognitive computing, augmented and virtual
reality, and quantum computing, among others. Process modeling may serve as a platform for such

integrations.

The challenges of workforce education and training are diverse, and include establishing practices
in process and system modeling, sustainable thinking, life cycle assessment, and continuous
improvement at all levels of the manufacturing enterprise as well as a need for personalized
education and training experiences to inspire the next generation to pursue manufacturing careers
(105). Such efforts need to be undertaken at all educational levels. Often, the sustainability-related
trade-offs of our decisions are unknown, either due to a lack of information at the time the decisions
are made, a lack of metrics by which the factors can be quantified (i.e., the externalities), or lack
of visibility of the trade-offs to the decision maker (106,107). Standard practices for instilling
manufacturing process modeling are lacking (89), and how such standards can by systemically

employed in cyber-human systems must be better understood (9). Early work has been done in this
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area, but more is needed to characterize manufacturing processes for sustainability (101,108), for
representing manufacturing processes using information modeling (101,108), for reusing such
information models variations of manufacturing processes (19,102). What distinguishes these
concepts from more traditional curricula is the heavy reliance on information to guide decision
making. Information modeling and capture have traditionally not been part of manufacturing
engineering curricula. The field of structural engineering has seen a similar transformation and

several researchers have reported on educational aspects of this transformation (109—111).

While industry is in need of skilled workers in smart and sustainable manufacturing to enable the
development, implementation, and continuous improvement of advanced manufacturing
processes, interests in manufacturing careers has decreased due to the poor image young people
have of industry (1). Integrating sustainability concepts into engineering curricula has been shown
to improve student perceptions, in particular for students underrepresented in engineering
(112,113), as well as motivating students to pursue careers in sustainability (114,115) and increase
student interest in the job opportunities in manufacturing (116,117). A concerted effort is needed
to synthesize existing resources through convergent research that raises the conscientiousness of
sustainability objectives in the profession, develops the data and methods needed to inform
effective decision making, and provides insight and intuition to externalities, while also focusing
the educational objectives of the advanced manufacturing community. For instance, a key gap in
existing science and engineering education is the lack of an appropriate learning environment for
students to address technical solutions that consider the three aspects of sustainability (118).
Further, the more mundane aspects of manufacturing (119-121) and manufacturing education can

be improved through the application of gamification techniques (122,123). With a deep
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understanding of the principles of manufacturing processes themselves, in some cases these

techniques may be applied to improve the performance of those processes.

Another fundamental distinction of future manufacturing systems is the interplay between the
virtual and the physical worlds. This distinction is manifest throughout the discipline. AR and
VR technologies are being applied in manufacturing training systems where significant training
can take place without any physical engagement. Similarly, like the 3D product design models
that came before it, the concept of the “digital twin” has emerged to describe the virtual model of
operational systems that allow for monitoring and prognosis based on real-time data. What’s more,
the use of robotics throughout manufacturing systems will require sophisticated human machine
collaborations. The next generation of manufacturing engineers will need to shift seamlessly and
accurately between the virtual and actual world in a way that has not been previously practiced,
opening up a new area of research exploration. Automation of systems means seeding control of
those systems, yet human expertise and knowledge is necessary to maintain control though all
types of failure modes. The aviation industry has witnessed some highly-visible unexpected
consequences from the introduction of automated navigation into the cockpit in terms of pilot
preparedness in emergency situations resulting in loss of human life (124,125). Avoiding similar
catastrophes in the manufacturing setting will take study and work towards implementing fail-safe
solutions. Initial approaches to the problem have explored the form of interactions between
humans and machines with the goal of identifying and optimizing those task for which a person’s
unique skills are best suited by providing access to data on demand to improve their decision

making capabilities (126,127).
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Table 9 identifies the potential research opportunities and expected outcomes for educational and

training issues in the short-, mid-, and long-term ranges.

Table 9. Research opportunities in workforce education and training

Research Opportunity Expected Outcome
1-3 years e Use the design of products, processes, and e Motivated young people toward engineering and
systems as a basis to capture K-12 students’ making for the social good
imaginations and interests . . .
e More engagement in engineering and
e Use web-based learning, augmented reality, manufacturing for a more productive society and
and virtual reality technologies to promote more sustainable industry
advanced manufacturing technical skills . ..
e Better trained students, technicians, and
e Create resources and tools for teaching engineers to support advanced manufacturing
process and information modeling in technical
and engineering education programs
o Integrate sustainable manufacturing and life
cycle thinking into K-12 curricula
4-5 years e Innovate current online and virtual media to e Prevention of unintended consequence through
teach K-12 and undergraduate students about proactive planning and informed decision
advanced manufacturing and build their making
confidence through learning by doin . R
& 8oy 8 e Expanded knowledge and engineering intuition
e Understand what is required of intuitive user surrounding sustainability objectives
interfaces to improve operational choices, . .
including gamification e Effective learning tools and methods
e Integrate life cycle thinking and design for X
methods in engineering education
5+ years e Make estimation of impacts available to e Ease of impact assessment for manufacturing
designers and other decision makers, e.g., processes and product life cycles
real-time analytics using cyber-technolo . . . .
Y gy gy e Integration of life cycle costs into design and
e Develop frameworks for integration of real- manufacturing planning
time data into design decision makin, . . . .
& g e Facilitated exploration of impacts of production
e Create tools that enable users to find relevant systems on society in the presence or absence of
existing information and research, and life cycle thinking
perform trade-off assessment
¢ Develop systemic approaches and methods for
teaching smart and sustainable manufacturing
6. SUMMARY

Over the past several decades, manufacturing industry has seen rapid development in sensing

technologies, process equipment, and materials, among other areas, aided by the emergence of
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data and information technologies. These advancements have enabled new manufacturing methods
(e.g., cyber-manufacturing and distributed manufacturing) and processes (e.g., additive
manufacturing and hybrid manufacturing), but often experienced little or no convergence during

their development, which has inhibited more systemic development and growth.

The foregoing presented the findings from a workshop organized within the manufacturing
research community that aimed to identify challenges and barriers attendant with smart and
sustainable manufacturing. The workshop activities (i.e., student presentations, expert talks,
schema refinement feedback, and brainstorming and reflection) aided in defining challenges
related to metrics and indicators, models and algorithms, and tools and methods across several
advanced manufacturing fields. The ideas gathered from workshop participants reflect a range of

potential opportunities for the manufacturing research and educational community to pursue.

To supplement workshop findings, a review of recent literature was completed under the following
themes: (a) conventional manufacturing processes and systems; (b) nanomanufacturing processes
and systems; (c) additive/hybrid manufacturing processes and systems; (d) process and system
characterization methods; and (e) workforce education and training for advanced manufacturing
industry. Existing challenges and barriers, potential research opportunities, and expected outcomes
were presented from the short- to long-term range for each topic area. This study arrived at the
following findings:

a) Improvements in sensing, controls, metrology, and processes have been reported across the

various manufacturing technology domains;
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b) There is a need for well-developed models, algorithms, and methods that can be utilized to
improve process- and system-level performance for specific manufacturing applications;

c) Artificial intelligence (e.g., reasoning and machine learning) and other emerging
technologies can have a great impact in process- and system-level improvements across
manufacturing domains; and

d) Improved manufacturing education could inspire future generations into manufacturing

engineering and research careers (e.g., through new hands-on, virtual, and off-site methods).

These findings can help stimulate future manufacturing research and benefit stakeholders across
academia, government, and industry for advancing smart and sustainable manufacturing, as
discussed in greater detail in Section 5. The fundamental and applied research opportunities
identified under these themes can be undertaken by existing and emerging consortia (e.g., NSF
Industry-University Collaborative Research Centers, Manufacturing USA, and EU Factories of the
Future programs), as well as through conventional university, industry, and government agency
funding mechanisms that are addressing emergent manufacturing challenges. It will be crucial that
research solutions derive actionable implementation pathways for industrial organizations and
educational institutions at all levels and scales in order to achieve the vision of academic, industry,

and governmental leaders and policy makers for a smarter, more sustainable future.

Disclaimer

No endorsement of any commercial product by NIST is intended. Commercial materials are

identified in this report to facilitate better understanding. Such identification does not imply
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endorsement by NIST nor does it imply the materials identified are necessarily the best for the

purpose.
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