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ABSTRACT 

Over the past century, research has focused on continuously improving the performance of 

manufacturing processes and systems – often measured in terms of cost, quality, productivity, and 

material and energy efficiency. With the advent of smart manufacturing technologies – better 

production equipment, sensing technologies, computational methods, and data analytics applied 

from the process to enterprise levels – the potential for sustainability performance improvement is 

tremendous. Sustainable manufacturing seeks the best balance of a variety of performance 

measures to satisfy and optimize the goals of all stakeholders. Accurate measures of performance 

are the foundation on which sustainability objectives can be pursued. Historically, operational and 

information technologies have undergone disparate development, with little convergence across 

the domains. To focus future research efforts in advanced manufacturing, the authors organized a 

one-day workshop, sponsored by the U.S. National Science Foundation (NSF), at the joint 

manufacturing research conferences of the American Society of Mechanical Engineers (ASME) 

and Society of Manufacturing Engineers (SME). Research needs were identified to help harmonize 
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disparate manufacturing metrics, models, and methods from across conventional manufacturing, 

nanomanufacturing, and additive/hybrid manufacturing processes and systems. Experts from 

academia and government labs presented invited lightning talks to discuss their perspectives on 

current advanced manufacturing research challenges. Workshop participants also provided their 

perspectives in facilitated brainstorming breakouts and a reflection activity. The aim was to define 

advanced manufacturing research and educational needs for improving manufacturing process 

performance through improved sustainability metrics, modeling approaches, and decision support 

methods. In addition to these workshop outcomes, a review of the recent literature is presented, 

which identifies research opportunities across several advanced manufacturing domains. 

Recommendations for future research describe the short-, mid-, and long-term needs of the 

advanced manufacturing community for enabling smart and sustainable manufacturing. 

 

Keywords: Smart Manufacturing, Sustainable Manufacturing, Advanced Manufacturing, Future 

Research, Education Needs 

 

1. Introduction 

Manufacturing has undergone rapid advancement in the past few decades, due to improvements in 

information technology, sensing methods and technologies, tooling and equipment, new and 

improved materials, and improved understanding of process characteristics through data analytics, 

all of which has enabled new manufacturing methods (e.g., cyber-manufacturing and distributed 

manufacturing) and manufacturing processes (e.g., additive manufacturing and hybrid 

manufacturing) (1). Integration of current-day manufacturing methods, processes, and equipment 

with sensors, controls, computational methods, new materials, data analytics, artificial 
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intelligence, and communication technologies drive smart manufacturing (2), an emerging 

manufacturing concept that has seen a variety of definitions. The U.S. National Institute for 

Standards and Technology (NIST), states, “[Smart manufacturing systems are] fully-integrated, 

collaborative manufacturing systems that respond in real time to meet changing demands and 

conditions in the factory, in the supply network, and in customer needs” (3). The U.S. Department 

of Energy (DOE) Clean Energy Smart Manufacturing Innovation Institute (CESMII) posits, 

“Smart Manufacturing (SM) enables all information about the manufacturing process to be 

available when it is needed, where it is needed, and in the form it is needed across the entire 

manufacturing value-chain to power smart decisions” (4). Such technological advances will enable 

a broad range of industries to lower costs, improve quality, increase productivity, improve material 

management, increase efficiency, reduce energy use, and improve worker health and safety, among 

other performance measures (2,5).  

 

Further, continuously monitoring and improving upon these key performance indicators (KPIs) 

helps in improving the sustainability performance of smart manufacturing systems beyond that 

previously attainable with asynchronous, manual collection and interpretation of performance 

data. Sustainable manufacturing requires a balance of KPIs that span the three pillars of 

sustainability (economic, environmental, and social) based on stakeholder preferences (6). 

However, smart and sustainable manufacturing systems exhibit a complex nature, often due to 

varied, non-uniform manufacturing processes that make quantifying process metrics, ensuring data 

integrity, and establishing relationships between the systems and sub-systems extremely difficult 

(7,8). Through the evolution of manufacturing, new processes, materials, and supporting 

technologies have been developed based on industry needs. Complementary efforts were 
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undertaken to quantify metrics, model systems and sub-systems, and develop methods of 

quantification for performance measures. These developments have been completed quite 

independently, however, and have had little to no convergence. To address this deficiency, NIST 

worked to (a) develop standard smart manufacturing measurement methods, (b) model and 

characterize smart manufacturing system complexity, (c) develop guidelines for methods, metrics, 

and tools that enable manufacturing stakeholders to assess and assure cybersecurity of smart 

manufacturing systems, and (d) develop methods and protocols for the integration of smart 

manufacturing systems (9). In addition, recently developed ASTM standards led by NIST 

researchers guide companies in evaluating and characterizing the sustainability performance of 

manufacturing processes in their facilities and supply chains (10,11).  

 

To support research efforts in smart and sustainable manufacturing, the authors organized a one-

day workshop, sponsored by the U.S. National Science Foundation (NSF), at the joint 

manufacturing research conferences of the American Society of Mechanical Engineers (ASME) 

Society of Manufacturing Engineers (SME) held at Texas A&M University in June 2018. The 

workshop invited participants from the industry, academia, and government labs to engage in 

presentations and discussions of recent developments within emerging areas of advanced 

manufacturing. It aimed to identify the basis for future research in smart and sustainable 

manufacturing to support performance metrics, characterization models, and analysis methods 

attendant with conventional manufacturing, nanomanufacturing, and additive/hybrid 

manufacturing, as well as for process-level and system-level characterization. This approach 

enabled the research team to gather perspectives from across various domains of manufacturing 

and to synthesize these findings to address common research needs for advancing smart and 
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sustainable manufacturing with an emphasis on the role of standards in advancing the field. 

Workshop activities undertaken to generate and synthesize this information are described in 

Section 3. To supplement the findings from the workshop presented in Section 4, the research team 

conducted a literature review which identifies the current state of several key domains of 

manufacturing and their relevant challenges. Section 5 reports future research opportunities and 

expected outcomes in short- to long-term time ranges. Section 2 provides background information 

in support of the work reported herein. 

 

2. Background 

The objective of the study reported herein aims to focus future research efforts in advanced 

manufacturing, with an emphasis on smart and sustainable manufacturing processes and systems. 

A foundational assumption for smart manufacturing is that models of manufacturing processes 

provide a basis for computationally improving manufacturing operations.  The principles on which 

these models are organized are emerging. ASTM subcommittee E60.13 on Sustainable 

Manufacturing (12) has published an initial set of standards to codify these principles, yet more 

research is needed to understand the fundamental modeling concepts—the abstractions—needed 

to enable model reuse and composition across the variety of manufacturing processes and systems. 

 

To provide an initial foundation for this work, the findings from a prior workshop on Reusable 

Abstractions for Manufacturing Processes (RAMP), held in 2017, and the purpose of the 2018 

RAMP workshop are next introduced. Both workshops were held in conjunction with a 

competition for modeling manufacturing processes using standard methods under development by 
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ASTM subcommittee E60.13.  The competitions motivated application of the standards to several 

manufacturing processes and user experiences from which to generate meaningful feedback.   

 

The first RAMP workshop also was supported by NSF and held in conjunction with the 13th ASME 

Manufacturing Science and Engineering Conference (MSEC) and the 45th SME North American 

Manufacturing Research Conference (NAMRC) on June 7, 2017 at the University of Southern 

California in Los Angeles, CA. The workshop was held in partnership also with NIST and ASTM 

International. The objectives of the workshop were to:  

a) Familiarize the research community with standards from the ASTM E60.13 Subcommittee 

for modeling manufacturing processes, including the ASTM E3012 Standard Guide for 

Characterizing Environmental Aspects of Manufacturing Processes (11); 

b) Provide an opportunity for participants to put those standards into practice in modeling 

processes of their own interest, and to share experiences in applying the standards; and 

c) Provide a source of candidate models to populate an extensible repository of reusable 

manufacturing process models being developed by NIST and its academic partners. 

 

The workshop attracted several dozen participants from industry, academia, and government labs. 

The workshop highlighted the opportunities for an open repository of process models (13), and 

identified emerging efforts, including both standards development and academic and industrial 

research, to outline a vision for coalescing such efforts towards an open process model repository. 

Lessons from the workshop led to a new information model that facilitates more consistent 

characterization of physical artifacts in production systems, leading to better reusability of models 
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and reproducibility of environmental analyses. Based on the 2017 workshop results and findings 

from ongoing research, the follow-on workshop held in 2018 and reported here was designed to:  

a) identify needs for education and research to support the characterization of unit 

manufacturing processes (UMPs) for sustainability assessment;  

b) define current limitations in associated education and research practices; and  

c) prioritize the challenges to be pursued by the manufacturing research community to best 

meet industry needs in adopting and applying analytical methods for improving smart and 

sustainable manufacturing process and system performance.  

 

The outcomes of the workshop are expected to benefit basic research programs within NSF, for 

example by leading to funded research and advancements in topic areas such as sustainability of 

nanomanufacturing processes and nano-products, digitization of continuous and batch processes, 

fundamental models of manufacturing processes, and efficient process and system models for 

decision support in cloud manufacturing. Academic researchers with foci in smart and sustainable 

manufacturing systems, manufacturing machines and equipment, materials engineering and 

processing, nanomanufacturing, and engineering education were particularly encouraged to attend; 

the workshop attracted participants with broad interests in teaching undergraduate and graduate 

students and conducting basic and applied research in analytical methods for sustainable 

manufacturing.  

 

3. Overview of the 2018 RAMP Workshop 

The second RAMP workshop was comprised of two half-day sessions and an evening poster 

session. The first half of the day was dedicated to presentations that introduced a variety of 
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perspectives on manufacturing metrics and process modeling. The second half of the day was 

designed to engage the participants in defining relevant advanced manufacturing research 

challenges. In addition to participants from academia, industry, and government labs, the 

workshop hosted 46 undergraduate and graduate student participants, including 23 student finalists 

comprising six teams from the NIST-sponsored RAMP competition (14).  The student participants 

presented posters reporting their research in manufacturing process modeling and sustainability 

performance assessment.  Additional details of the sessions are described in the following sections. 

 

3.1. Student Presentations and Expert Lightning talks 

In the first session of the workshop, RAMP competition finalists presented their projects, 

summarized in Table 1. In the following session, experts from across the advanced manufacturing 

domain presented lightning talks to report ongoing research activities and their personal 

perspectives on the current and future research challenges and modeling needs for advanced 

manufacturing. These expert talks were not meant to be comprehensive, but provided context for 

participants in the afternoon session of the workshop to identify and discuss extant challenges 

across manufacturing research domains. 

 

The talks in the second session started with Dr. Khershed Cooper of NSF presenting 

Nanomanufacturing Research at NSF. He discussed various NSF programs that address the 

growing demands and challenges of advanced manufacturing. He presented several specific 

approaches that have been pursued to address needs for scalability in nanomanufacturing under 

NSF funding. He also discussed avenues of NSF funding to support such work, including cyber-

manufacturing and nanomanufacturing. 
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Table 1: Summary of RAMP Competition finalist presentations 

Presentation Topic Author(s) Affiliation 
A Production Line for Polylactide 
Business Card 

Ian Garretson and Barbara Linke University of California, Davis 

Sustainability Analysis of 
Stereolithography using UMP 
Models 

Timothy Simon1, Yiran Yang1, Wo 
Jae Lee1, Jing Zhao1, Lin Li2, and 
Fu Zhao1 

Purdue University1, University of 
Illinois-Chicago2 

Aggregating UMP Models to 
Enable Environmental Impact 
Characterization of Polymer-Based 
Hybrid Manufacturing 

Sriram Manoharan and Dustin 
Harper 

Oregon State University 

UMP Model for Flexible 
Manufacturing System 

Feng Ju, Daniel McCarville, 
Hashem Alshakhs, Weihao Huang, 
Xuefeng Dong, Hussain Alhader 

Arizona State University 

Data Driven UMP Model for 
Monitoring Specific Energy in 
Surface Grinding Process 

Zhaoyan Fan and Sai Srinivas 
Desabathina 

Oregon State University 

Grinding Analysis and Model Justin Canaperi, Yongxin Guo, 
John Park, Jun Yang, and Yuki 
Yoshinaga 

Stony Brook University 

 

Next, Dr. Ajay Malshe of the University of Arkansas outlined key drivers for standardization of 

nanomanufacturing in his talk titled Standardization and Scale-up of Nanomanufacturing 

Processes. He provided his perspective on the future of nanomanufacturing and described some of 

the limitations, specifically noting increasing stress levels in the research lab because of a 

dramatically changing invention-to-product life cycle. He also highlighted the missing link 

between research and industrial application, a need to account for the frequency of products 

changing hands, and the value of students being exposed to industry perspectives before 

contributing to lab research.  

 

Mr. Kevin Lyons of NIST then presented Standardization and Scale-up of Additive Manufacturing 

Processes. He began by defining additive manufacturing processes and then providing his 

perspective on the key drivers for advancing additive manufacturing technology. He indicated that 
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data handling and sharing, model development and adaptation, and design for additive 

manufacturing were key shortcomings to be addressed. He also introduced potential research 

opportunities in additive manufacturing, such as the need to integrate various process models while 

considering the inherent complexities, underlying assumptions, and constraints, the lack of a robust 

method to verify and validate process models for additive manufacturing, the need to develop an 

approach for capturing design rules for additive manufacturing, and the need to develop simulation 

testbeds for modelers to test their models against rigorous, highly-controlled additive 

manufacturing benchmark test data. 

 

Moving away from the process-specific focus, Dr. Fazleena Badurdeen of the University of 

Kentucky next spoke about Educating Engineers on Sustainable Manufacturing. She presented 

several engineering education challenges, and emphasized that realizing sustainable 

manufacturing innovations requires developing an educated and skilled workforce. One research 

opportunity she noted was a need for a multi-disciplinary approach to address sustainable 

manufacturing challenges that incorporates convergent research and education. In order to achieve 

this vision, a continuous effort of collaboration between key stakeholders, such as universities, 

industry, and state and federal agencies is required. She introduced various NSF programs and 

other funding opportunities that could be used to facilitate such efforts to bolster sustainable 

manufacturing engineering education.  

 

Dr. Barbara Linke of the University of California Davis next focused on Modeling Manufacturing 

Processes. She outlined the Unit Process Life Cycle Inventory (UPLCI) effort (15) to characterize 

a broad set of manufacturing processes. The UPLCI approach uses industrial information for each 
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manufacturing process (machine) to estimate material inputs, energy use, and material losses for a 

particular product design. Linke also introduced a more involved approach for modeling process 

environmental performance metrics developed under the Cooperative Effort on Process Emissions 

in Manufacturing (CO2PE!) initiative (16). She discussed the challenges encountered during the 

creation of UPLCI, including data quality and availability, reduction of complexity while 

remaining generic, managing empirical models, dependence of materials and energy on machine 

setup, and an unclear vision of how to capture impacts of auxiliary processes. To improve 

dissemination, Linke encouraged researchers to report their UPLCI models in standard format as 

peer-reviewed journal articles in Production Engineering - Research and Development, where 

recent UPLCI studies have appeared for grinding and welding (17,18). 

 

Mr. Arvind Shankar Raman of Oregon State University next presented the talk titled, Approach 

for Modeling of Manufacturing Processes and Manufacturing Systems. He discussed the 

motivations for companies to pursue sustainable manufacturing practices, including social 

responsibility, investor demands, government regulations, international standards, and customer 

consciousness. However, he noted a considerable number of challenges; for example, analysis 

applications for sustainability assessments are often deficient in supporting integrated system-, 

process-, and machine-level manufacturing decisions. Data collection and reporting within and 

across supply chains remain a large challenge for manufacturers. Prior manufacturing process 

modeling efforts (e.g., UPLCI and CO2PE!) have focused on developing information models that 

are problem-specific, making them extremely limited in their extensibility. In addition, such 

approaches require technical understanding of the manufacturing processes, which makes them 

difficult to adopt and apply within different product designs and production settings. Shankar 
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Raman presented an information modeling framework for reusing and extending existing models 

of manufacturing processes for sustainability characterization (19).  

 

To close out the lightning talks, Dr. Alex Brodsky of George Mason University, in his presentation 

titled Reusable Model Repository for Manufacturing Systems, introduced a web-based system, 

called Factory Optima, being developed in his lab for composition and analysis of manufacturing 

service networks based on a reusable model repository (20). This architecture aims to overcome 

the limitations of current decision-making tools and models for smart manufacturing. Most 

analysis and optimizations tools are currently developed from scratch, which leads to high cost, 

long-duration development, and restricted extensibility. Factory Optima is a high-level system 

architecture based around a reusable model repository and the Unity Decision Guidance 

Management System. Brodsky described this software framework and system for composition, 

optimization, and trade-off analysis of manufacturing and contract service networks. The work is 

unique in its ability to perform tasks on arbitrary service networks without manually crafting 

optimization models.  

 

The expert lightning talks laid the foundation for the interactive afternoon sessions of the 

workshop. Three exercises were conducted to engage workshop participants: a schema refinement 

activity, brainstorming on process modeling challenges and opportunities, and a reflective activity 

to contemplate the lessons of the day.  
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3.2. Schema refinement activity 

Researchers from NIST led the activity to gather feedback from 2018 RAMP Competition 

participants and others to support extending and strengthening of the schema standardized in the 

ASTM E3012-16 standard (recently superseded by ASTM E3012-19). One of the key goals of 

ASTM E3012-16 is to characterize and record UMP models in a consistent manner to promote 

model reuse and sharing. The schema provided in the standard did not explicitly support reuse, 

which was made apparent from the NIST-hosted RAMP Competition in 2017, where use of the 

standard was a requirement for process model development. The submissions rarely conformed to 

the standard. NIST designed a formal implementation schema (21) for the 2018 RAMP 

Competition to ensure that the standard was followed more closely by process modelers. NIST 

also proposed revisions to the standard that are captured in the new schema, including the inclusion 

of more specific elements within the product and process information element as well as other 

elements and attributes to promote model traceability.  

 

The proposed revisions to the standard were reviewed and explained in a 15-minute presentation. 

Participants were then asked to navigate to the online tool, IdeaBoardz (22), on their personal 

devices (e.g., mobile phones, laptops, or tablets) and to respond under six categories of feedback: 

keep doing, start doing, stop doing, less of, more of, and action items. Participants were asked to 

anonymously post concepts, ideas, and suggestions related to each category. The online tool 

allowed for “up-votes,” wherein workshop participants could show their agreement with ideas 

posted by other participants. Once concepts were posted to the board, participants volunteered to 

provide a verbal explanation of their ideas, which led to a discussion and clarification of key ideas. 
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Based on the number of votes, it was evident that participants desired more modeling examples, 

specifically those that would be industry-relevant (19 total votes). There was also a considerable 

need for better definitions and documentations for the elements and attributes within the schema 

(7 total votes). With proper tools and frameworks, participants suggested that there would be fewer 

barriers to the use of UMP information models. Based on comments received, a critical future 

direction would be to demonstrate the use of the revised schema in industrial settings. In particular, 

validating the approach at scale would garner more interest and use of the standard. Validation 

could be facilitated by the generation of models (or adaptation of manufacturing process models) 

undertaken by the advanced manufacturing research community. 

 

3.3. Brainstorming activity and results 

Parallel brainstorming discussions that focused on the six lightning talk topic areas were each 

facilitated by a subject matter expert. The session was guided by Dr. Karl Haapala, of Oregon State 

University, and focused on advancing discrete manufacturing processes, nanomanufacturing at 

scale, additive manufacturing at scale, process-level sustainability assessment, system-level 

sustainability assessment, and manufacturing engineering education. The brainstorming session 

involved 26 participants from academia and three from government labs.  Each of the groups 

discussed challenges and opportunities related to metrics and indicators, models and algorithms, 

and tools and methods for each topic area. Participants first distributed themselves among the topic 

areas and then advanced through facilitated discussion rounds to brainstorm ideas related to the 

topics in a timed manner. The structure of this session allowed for a continuous flow of 

perspectives and ideas that were guided toward identifying challenges and approaches to 
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overcoming them for each topic. Results of the activity were synthesized and provided in Table 2 

(metrics/indicators), Table 3 (models/algorithms), and Table 4 (methods/tools) for each topic area. 

Table 2. Results for metrics and indicators from the brainstorming activity 

Topic Metrics and Indicators 
Discrete 
manufacturing 

• Identified challenges, including product customization, standardization, and bolstering 
the flexibility of processes 

• Identified connecting process level controls and system level metrics as a key barrier  

Nanomanufacturing 
at scale 

• Identified key metrics and indicators which include (depending on the process) fluid 
type, electron beam power, scan rate, beam diameter, material removal rate, structural 
resolution, feature size, tolerances, nanoparticle medium, roll-to-roll speed, printing 
speed, ink spread, sintering conductivity, circuit device design, and reactor design 

• Identified a key barrier as control over process parameters to achieve defined 
dimensional tolerances, which is difficult due to the extreme sensitivity of 
nanomanufacturing processes 

Additive 
manufacturing at 
scale 

• Identified metrics included temperature, layer thickness, material uniformity, material 
density, extrusion rates, feed rates, internal geometries, product dimensional 
constraints, melt pool geometry, build time, profile, accuracy, surface finish, and 
repeatability, including preventative maintenance, post-processing operations, and 
control of multi-axis equipment 

• Noted a need for developing and implementing methods of non-destructive inspection 
for measuring features (internal and external). In addition, current indicators of process 
variables are deficient in their ability to control the melt pool within desired operating 
ranges of existing additive manufacturing processes 

Process-level 
sustainability 
assessment 

• Identified metrics and indicators at the process level, which broadly include cost, 
productivity, quality, energy, resources, waste, environmental impacts, personal health, 
and safety 

• Noted a difficulty in identifying and quantifying metrics at the process level, which 
requires sophisticated models for accurate characterization 

System-level 
sustainability 
assessment 

• Identified metrics included lead time, resource availability, material stability, and 
system reliability 

• Indicated importance of considering interactions of multiple manufacturing processes 
for accurate metric quantification and assessment, requiring integration of models 
across engineering domains and information-sharing across industries 

Manufacturing 
engineering 
education 

• Noted that an identifiable increase in confidence within manufacturing classes is a key 
indicator for education in advanced manufacturing 

• Identified the lack of sustainability topics in undergraduate studies is a weakness of 
advanced manufacturing education 

• Found metrics for engineering education in advanced manufacturing difficult to define 
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3.4. Reflection activity and results 

The final stage of the afternoon workshop session involved an individual activity that allowed 

participants to reflect on what they had heard and to offer their own insights. As such, the workshop 

organizers posed two questions: (1) What do you see as the most pressing need for advanced 

manufacturing research or advanced manufacturing education? and (2) What do you see as the 

key next step to be taken to address a pressing research or educational challenge in advanced 

manufacturing? 

Table 3. Results for models and algorithms from the brainstorming activity 

Topic Models and Algorithms 
Discrete 
manufacturing 

• Noted that complexities in model composition and optimization are barriers to 
developing flexible models and algorithms, requiring support of related products with 
complementary models across multiple enterprises 

• Indicated that scheduling intricacies are a challenge for modeling flexible discrete 
product manufacturing systems 

• Noted that modeling dynamic processes and processes that are interdisciplinary 
(involving various engineering technologies) can be extremely difficult 

Nanomanufacturing 
at scale 

• Noted current modeling methods include modeling of nano-scale fluid dynamics, roll-
to-roll modeling, circuit modeling, molecular dynamics, and density functional theory 

• Indicated a lack of models or algorithms for metrics and indicators of interest such as 
electron beam power, scan rate, beam diameter, structural resolution, feature size, 
nanoparticle medium, printing speed, ink spread, and sintering conductivity 

Additive 
manufacturing at 
scale 

• Indicated some of the existing modeling challenges include support structure 
optimization, design features (form, fit, and function), and model fidelity  

• Expressed a need for representing key performance indicators (KPIs) as a function of 
control parameters 

• Noted that cloud-based process design is needed, perhaps combining parameterized 
product design methods with new process design approaches 

Process-level 
sustainability 
assessment 

• Indicated limited availability of models and algorithms that enable the assessment of 
process-level sustainability metrics 

• Noted that exploration of physics-based and empirical models, predictive models, 
optimization methods, process planning, and sensor data collection and storage for 
data-driven models should be studied as disparate means to assess and improve 
process-level sustainability 

System-level 
sustainability 
assessment 

• Noted a need to develop models for risk assessment and evaluating system dynamics 

• Indicated models that describe manufacturing processes accurately have an important 
role in robust system-level sustainability assessment 
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Topic Models and Algorithms 
Manufacturing 
engineering 
education 

• Identified the need for models to apply sustainability concepts in real life, as well as the 
need for models that are easy-to-apply with existing software solutions and 
sustainability assessment methods  

• Indicated a need to incorporate design methodologies, especially Design for X 
concepts, into manufacturing engineering curricula 

 

Participants recorded their answers to the two questions on individual notecards. The answers 

received were varied, but could be grouped into the following categories: 

a) Connection between academia, industry, and government 

b) Manufacturing engineering education improvement and workforce development 

c) Development, verification, and validation of manufacturing process models 

d) Development of advanced manufacturing technologies and novel materials 

e) Scalability improvements and standardization for advanced manufacturing 

f) Integration of advanced manufacturing with cross-functional engineering domains 

The categorization of responses to the open-ended first question are indicated in Fig. 1. More than 

one quarter (27%) of the participants reported that manufacturing engineering education 

improvement and workforce development efforts are most needed to advance manufacturing 

research or education. Individual responses indicated that participants perceived a lack of industry-

relevant curricula in advanced manufacturing engineering education or a lack of adoption of basic 

engineering education in manufacturing industry. Key ideas shared by workshop participants 

included improving education, providing hands-on experience, promoting manufacturing 

education to inspire younger generation, and developing online resources for manufacturing 

education. 
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Fig. 1. Summary of responses to Question 1: What do you see as the most pressing need for 

advanced manufacturing research or advanced manufacturing education? 

 

The third category (process model development, verification, and validation) and the last category 

(integrating manufacturing with cross-functional engineering domains), scored high as well; 21% 

of respondents identified these areas as having the most pressing need. In particular, participants 

noted that process models with validated datasets, methods, and algorithms were needed. These 

responses may have been due to the workshop discussions tailored toward addressing a need for 

models to fill current characterization gaps and engineering education needs. Respondents 

indicated that fields of engineering such as design (connecting design and manufacturing) and 

computer science (artificial intelligence, machine learning, and improvements in analytical tools) 

play a critical role in advancing manufacturing industry and enabling smart manufacturing.  

Table 4. Results for methods and tools from the brainstorming activity 

Topic Methods and Tools 
Discrete 
manufacturing 

• Identified a need to classify problems of existing manufacturing processes to advance 
the understanding and optimize the performance of discrete manufacturing processes 
using machine learning 

7%

27%

21%

17%

7%

21%

1. Connection between academia, industry, and government

2. Manufacturing engineering education improvements and
workforce development

3. Development, verification, and validation of manufacturing
process models

4. Development of advanced manufacturing technology and
novel materials

5. Scalability improvements and standardization for advanced
manufacturing

6. Advanced manufacturing integration with cross-functional
engineering domains

1

2

3
4

5

6
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Topic Methods and Tools 
• Expressed a need to develop software for interpreting and linking disparate process 

models 

Nanomanufacturing 
at scale 

• Noted that common tools include mathematical solvers, computational fluid dynamics 
software, finite element analysis software, and finite volume methods, as well as 
analytical tools (e.g., scanning electron microscopes and transmission electron 
microscopes) 

• Noted that key barriers include the precision and accuracy of current metrological 
methods/tools and limited ability to control motion components with extreme precision 

Additive 
manufacturing at 
scale 

• Indicated a need for tools that aid selection of the process type, build orientation, and 
material, in addition to tools that support metrology, in-process monitoring, quality 
measurement, and verification and validation 

• Noted a need to develop/improve tools that perform cross-validation, and provide 
sustainability decision support, cost modeling, and product design optimization  

Process-level 
sustainability 
assessment 

• Indicated a need for tools that support teaching of sustainability assessment at the 
process level through adaptable, easy-to-use, open source methods of quantification 

• Identified skills training, societal influence, and social behaviors as approaches to 
communicate the importance of considering sustainability factors 

System-level 
sustainability 
assessment 

• Indicated current challenges include how to collect, sort, and validate data for system-
level assessment 

• Noted a need to develop tools that establish and define process relationships between 
models for systemic assessments  

Manufacturing 
engineering 
education 

• Noted that manufacturing techniques that can be taught using in-house demonstrations 
would be highly beneficial for students to develop a physical understanding of 
processes 

• Indicated that basic technical knowledge should be included in physics-based classes, 
and taught using case studies in an interactive manner (e.g., labs associated with 
reading materials) 

 

For the second question, the responses were coded using the same six categories (Fig. 2). More 

than one-third of the participants felt that the key next step was related to manufacturing 

engineering education improvement and workforce development. In particular, workshop 

participants noted needs in providing internship opportunities for students, developing online 

educational tools on advanced manufacturing, promoting engineering at all levels of education, 

enabling education research, recruiting people for advanced manufacturing careers, and combining 

industry practice with traditional educational methods.  
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Fig. 2. Summary of responses to Question 2: What do you see as the key next step to be taken 

to address a pressing research or educational challenge in advanced manufacturing? 

 

A significant fraction of participants (19%) reported key next steps related to connection between 

academia, industry, and government, noting that academic research, government policies, and 

industry adoption need to work hand-in-hand for advancing manufacturing. Some of the key points 

mentioned by participants were needs for better communication between academia and industry, 

in addition to implementing policy changes for encouraging more sustainable practices, using 

industry-driven research to create value, and bridging the gap between people and technology 

through defined guidelines for practitioners. 

4. Summary of Workshop Findings 

The workshop activities identified potential directions for basic and applied research related to 

sustainability of nanomanufacturing processes and nano-products, digitization of continuous and 

batch processes, development of physics-based models of manufacturing processes, and efficient 

process and system models for cloud- and cyber-manufacturing. In particular, the following 

research directions emerged: 
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a) Machine learning methods can support understanding of a variety of discrete manufacturing 

processes, e.g., nanomanufacturing, as well as system-level sustainable manufacturing 

analysis and optimization. 

b) Metrics and indicators for nanomanufacturing are plentiful and span process parameters, 

material properties, and part characteristics. They should be unified/harmonized to enable 

technology comparisons. 

c) Scalability in nanomanufacturing needs to lead to reduced defects, improved metrology 

methods and tools, and measurement of moving parts and assemblies. 

d) Scalability of additive manufacturing requires optimization methods for new material 

development, part geometry generation, and support structure design. 

e) Additive manufacturing key performance indicators must be connected as a function of 

process controls. 

f) Integration of in-situ and out-of-process metrology, sustainability decision tools, model 

selection tools, cost models, and product design optimization tools, are all areas of research 

need, especially in emerging domains, e.g., additive manufacturing. 

g) Transient analysis of complex manufacturing systems can lead to robust manufacturing 

process models.  

h) Bridging the gap between process-level controls and system-level metrics can enable deeper 

insight for discrete and bulk product manufacturing.  

i) Systemic sustainable manufacturing requires insight from risk assessment and system 

dynamics methods to capture the emergent behaviors of interconnected, complex systems. 

j) Societal influences of sustainable manufacturing, e.g., stakeholder behavior, must be better 

understood to enhance development and adoption of new materials, processes, and products. 



Shankar Raman et al. Journal of Smart and Sustainable Manufacturing Systems 

Page 22 of 51 

k) Robust methods to characterize interactions of physical processes, human activities, and 

decisions across systems are needed to advance systemic sustainable manufacturing. 

l) Problem identification and diagnostics can be aided through classification of physical asset 

degradation. 

m) Innovative engineering education approaches are needed to address the growing urgency 

for accurate and meaningful sustainability assessment at the process and system levels. 

Engineering students often need a more physical connection to the process, while technical 

students require more fundamental knowledge and skills for advanced manufacturing. 

n) Developing and sharing knowledge (e.g., learning metrics, models, and approaches) for 

improving the effectiveness of learning in advanced manufacturing should be a focus of 

engineering education research. 

o) Standards can support the reusability and replicability of research into advanced 

manufacturing processes. 

 

5. A Review of Future Research Opportunities 

Based on these workshop findings, the authors synthesized the research directions that emerged 

into five advanced manufacturing topics: conventional manufacturing, nanomanufacturing, 

additive/hybrid manufacturing, process and system characterization, and workforce education and 

training. These categories follow key NSF areas of research interest. Next, a review of the recent 

literature was undertaken with a goal of identifying future research opportunities in each of these 

domains. We focused on first defining the state of current research in each topic area by reviewing 

recent NSF advanced manufacturing projects and related literature from the manufacturing 

research community. Based on this work, we present short-, mid-, long-term research challenges 
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raised to help define key gaps to be addressed by the advanced manufacturing community. Finally, 

we identify expected outcomes of successful research undertaken in each area. We caution that 

these findings are limited (specific technology development may not have broad consensus); the 

community should expand areas of research opportunity through continued discourse. 

 

5.1. Conventional Manufacturing 

Conventional manufacturing commonly includes established processes, categorized as primary 

shaping, deformation, material removal, coating, heat treatment, and joining processes (23). While 

the physical phenomena of each of these processes have not been completely characterized, a 

majority of recent phenomenological research has been directed at additive manufacturing, as 

discussed in Section 5.3. In addition, in the U.S., welding process research has been well-supported 

by the NSF. The emphasis has been on solid-state welding processes, which occur below the 

melting temperature of the components to be joined. These research efforts include advancements 

in friction stir welding (e.g., defect detection and prevention (24,25), joining dissimilar metals 

(26,27), and effects of temperature and force control (28,29)); hybrid ultrasonic resistance welding 

(30–32); magnetic pulse welding and friction stir blind riveting (33–35); and impact welding (36). 

Fewer research efforts have tackled fusion welding processes, such as vibration-assisted laser 

keyhole welding (37).  

 

Recent research in material removal operations have explored specific challenging phenomena, 

such as those attendant with ultra-precision machining of ceramics (38–40); machining-induced 

distortion in milling (41,42); through-tool minimum quantity lubrication drilling (43); and 

atomized dielectric-based electro discharge machining (44). Research in this domain is also 
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directed at improving machine tools, such as software-supported improvement of speed and 

accuracy of vibration-prone machines (45–47); at metrology, such as measurements of part 

features using freeform optics (48–50), measurement of dynamic moving parts in manufacturing 

tools (51), and manufacturing of optics used in metrology (52); and at non-destructive evaluation 

of composites (53). Table 5 identifies the relevant potential research opportunities and expected 

outcomes in the short-, mid-, and long-term ranges. 

 

With the trend towards smart, automated, and cyber-integrated manufacturing, the need for 

realistic digital representations of conventional manufacturing processes is also gaining 

importance (7,54). Though much insight can be gained through purely data-driven models, a 

hybrid approach, wherein physical knowledge is also leveraged, is preferred (55). Emerging 

electronic, biomedical, and aerospace products are driving applications of new smart technologies, 

providing challenging material combinations, tolerances, and lot sizes for conventional 

manufacturing.  

Table 5. Research opportunities for conventional manufacturing processes 

 Research Opportunity Expected Outcome 
1-3 years • Develop physical process models, in particular 

for new and hybrid processes 

• Develop transient analysis models of complex 
systems, especially non-steady state 
manufacturing elements 

• Optimized digital twins of processes 

• Robust models with easier transferability and 
scalability 

4-5 years • Develop robust and process-representative 
machine learning algorithms  

• Develop scheduling models for flexible discrete 
systems 

• Develop models and controls for integrating 
robots into manufacturing processes, and model 
interactions between robots and processes 

• Develop models of metrology processes to allow 
smart manufacturing control 

• Optimized performance of discrete 
manufacturing through improved process 
understanding 

• Process and process chain improvements 
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5+ years • Develop models for product categories across 
multiple enterprises, in particular the connection 
of physical process models across factories 

• Higher competitiveness of various industry 
sectors 

 

5.2. Nanomanufacturing 

Nanomanufacturing has been used in producing materials and products in almost all major industry 

sectors, such as electronics, automobile, aerospace, biomedical, energy, and food, among others 

(56). Nanomanufacturing is the production of nanoscale features (surface and sub-surface), 

materials (nanoparticles), parts (3D nanostructures, nanotubes, and nanowires), devices, and 

systems (57). Scalable nanomanufacturing involves the high volume manufacturing of 

nanomaterials and nanostructures, assembly into parts, devices and sub-systems, and integration 

into a complete system. Nanomanufacturing generally has a minimum of one lateral dimension in 

the range of 1-100 nm (58).  

 

Nanomanufacturing has been broadly classified into three categories: top-down (producing 

nanoscale features using physical processes that remove material from a larger mass), bottom-up 

(building up nanoscale features from an atomic or molecular scale using chemical synthesis and 

self-assembly), and hybrid (a combination of top-down and bottom-up) approaches (59). Due to 

the application of nanomanufacturing in a variety of industry sectors, research of novel 

nanomanufacturing technologies focuses on scaling up from lab-scale to large volume production, 

lowering tooling and equipment cost, improving quality and reliability, increasing yields, reducing 

wastes, developing materials compatible for new techniques, and multi-material production (60–

62). 
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Since nanomanufacturing relies on many fields of engineering for materials development, 

equipment and tool development, optical characterization of nanoscale features, and sensing and 

instrumentation, these fields need to work cohesively to advance new nanomanufacturing 

technologies. Current tools to characterize surface and sub-surface level topographical information 

are time-consuming (63), which is a bottleneck in high-volume manufacturing. Unlike discrete 

manufacturing processes, each nanoscale process is unique due to its complexity in controlling 

process variables, measurement, sensing, and material homogeneity at the nanoscale (60). These 

variations result in products of varying quality, introduce large failures, and decrease the relative 

reliability of resulting products. 

 

Mechanical components in nanomanufacturing devices and equipment are subjected to multiple 

failure patterns due to system complexities such as, multiple sub-systems, complex underlying 

physical phenomena, and rapid degradation of tool components (64,65). Extensive research is 

often needed to troubleshoot equipment failures, occupying valuable human resources. Educating 

engineers in nanomanufacturing processes is a key to overcoming many of these barriers (64). In 

particular, educational materials for design for manufacturing and assembly (DFMA) and failure 

modes and effects analysis (FMEA) should be developed for nanomanufacturing process 

technologies. Another key area of emerging nanomanufacturing research is self-assembly of nano-

components to form nanoscale systems. Robust self-assembly methods are needed, for example, 

in order for nanoscale components developed though bottom-up approaches to have a 

hierarchically-ordered structure with high quality (66–68).  
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It should be noted, nanomanufacturing technologies require large amounts of in-process 

manufacturing data to support robust process modeling. To overcome this challenge, statistical 

tools and machine learning methods could be applied for real-time process control to achieve 

desired quality levels. Researchers would thus be able to correlate process parameters that are 

crucial to performance improvement, while developing scientific understanding of the underlying 

physical phenomena. Such knowledge would facilitate development of hybrid (combination of 

physics-based and data-driven) models of nanomanufacturing processes (69).  

 

Table 6 identifies the potential research opportunities and expected outcomes for 

nanomanufacturing in the short-, mid-, and long-term ranges. 

 

 

Table 6. Research opportunities for nanomanufacturing processes 

 Research Opportunity Expected Outcome 
1-3 years • Improve control of in-process parameters (e.g., 

melt pool temperature, flow rates, and power 
levels) to achieve desired feature tolerances 

• Reduce scan speeds to improve upon current 
metrology methods, which take a long time to 
scan and require frequent calibration 

• Develop an initial repository that contains design 
for manufacturing methods for varied 
nanomanufacturing processes 

• Increased product quality 

• Reduced cost for metrology and quality 
inspection 

• Improved process selection and design 

4-5 years • Integrate more precise control in current optical 
methods employed in fabrication and metrology 
to overcome inconsistencies in part quality due to 
power, beam diameter, and machine precision 

• Improve optimization and control of real-time 
process parameters, e.g., via artificial intelligence 
methods, to improve efficiencies, and reduce 
costs, environmental impacts, and wastes 

• Products with higher quality and reduced 
defects 

• Efficient, high-throughput metrology 

• Reduced cost of nano-products through high-
volume production 
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5+ years • Develop standard guidelines for establishing 
performance metrics, analytical models, and 
evaluation methods for nanomanufacturing 

• Better understanding of process and system 
factors to be prioritized for efficient 
manufacturing and high quality products 

 

5.3. Additive Manufacturing 

Additive manufacturing is a process of joining materials to make objects from 3D model data, 

usually layer upon layer, as opposed to subtractive manufacturing methodologies (70). Additive 

manufacturing is at a turning-point due to its increasing application in manufacturing a wide range 

of products in various industrial sectors (71). Industry sectors where innovations can be seen 

include food and consumer products, medicine and medical products, automotive, aviation, 

architecture, and construction (72,73). Competitive advantages of additive manufacturing 

processes include their adaptability to the geometric complexity of shape-optimized components, 

suitability for production of customized or tailored products, flexibility for just-it-time production 

approaches, and ability to reduce the need for part transportation and storage (56,74). Moreover, 

design for additive manufacturing approaches have enabled industry to generate lightweight 

product designs, reduce assembly errors, and improve sustainability performance of manufacturing 

by reducing waste and energy.  

 

These advantages of additive manufacturing processes are attendant with their own inherent 

disadvantages. While conventional manufacturing processes are capable of making thousands to 

millions of identical parts at low cost, for example, current additive manufacturing process 

technologies are better suited for high-value, low-volume production applications (71) due to their 

relatively high capital investment needed to achieve high production volumes (75). Thus, the cost 

of products made using additive manufacturing is typically much higher than those made using 
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conventional mass production methods. Current additive manufacturing equipment also imposes 

limitations on product size and part quality, and requires more highly skilled labor.  

 

To address these challenges, new additive manufacturing capabilities have been investigated, 

including multi-material, multiscale, multiform, and multifunctional printing (76–78). Nano-

positioning in micro-scale additive manufacturing (79,80) has also gained attention from 

researchers. Process modeling (81), precision improvement (82), and cost reduction (83) are the 

other areas in micro-scale additive manufacturing that have been investigated recently. In addition 

to micro-scale, some researchers have focused on developing new materials for nano-scale additive 

manufacturing(84).  

An extant challenge is the limited set of materials available for industrial additive manufacturing 

use. These materials generally have limited mechanical and thermal properties, which restricts 

their broader application (75). Moreover, the sustainability performance of many materials in 

additive manufacturing is not well-understood (85). It has been suggested that developing lower 

cost biocompatible materials can help improve economic and environmental aspects of 

sustainability (86). In addition to material-related issues, the effect of different equipment and 

process technologies on various materials are poorly understood, often resulting in poor surface 

finish and tolerances, warping, and layer misalignment (87). Table 7 identifies the potential 

research opportunities and expected outcomes for additive manufacturing in the short-, mid-, and 

long-term ranges. 

Table 7. Future research opportunities for additive manufacturing 

 Research Opportunity Expected Outcome 
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1-3 years • Develop automated geometric decomposition 
methods for efficient part buildup and assembly 

• Develop geometric dimensioning and tolerancing 
models for a priori, predictive analytics 

• Develop models to characterize product and 
process information (and/or performance) based 
on 3D model and 2D slice data  

• Improved product quality by predicting 
warping and distortion 

• Better data sharing, storing, access, and 
modifying 

4-5 years • Develop new equipment and controls to reduce 
capital investment 

• Develop new materials and compatible 
deposition mechanisms to enable multi-material 
and multiscale additive manufacturing 

• Develop multifunctional processes to enable 
production of tailored alloys and microstructures  

• Mass production of identical parts at low 
cost 

• Broad potential applications using new 
materials and equipment 

5+ years • Develop precision control strategies reduce cycle 
time while maintaining desired quality 

• Rapid manufacturing of products with 
multiscale complex geometries 

 

5.4. Process and System Characterization 

Characterizing manufacturing processes at an in-depth level of detail and understanding 

manufacturing systems have traditionally been considered mutually exclusive activities. Entire 

disciplines and research communities have been built around each one in isolation. Engineering 

teams to address each perspective reside in many organizations. As a result, the tools to support 

these activities do not easily relate to one another (88). For example, manufacturing execution 

system (MES) and enterprise resource planning (ERP) software have been designed to singularly 

address the performance of manufacturing systems at different levels of control, while tools to 

assess manufacturing processes are often developed in an ad hoc manner within individual 

companies (89).  

 

With the emergence of industrial internet of things (IIoT) and related smart manufacturing 

concepts (90), there has been a recent uptick in solutions to bridge the moat between these two 

domains. Realizing semantic interoperability across MES and ERP software is a current focus area 
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in the manufacturing research, industry, and standards communities for characterizing 

manufacturing processes for sustainability assessment (91), developing repositories of 

manufacturing process information (13,92), and analyzing manufacturing processes for designing 

smart manufacturing systems (93). For example, Industrie 4.0, a German effort to develop a 

common framework that facilitates vertical integration across the traditional ISA-95 perspective, 

has gained much attention across the rest of the world (94). For manufacturers to remain 

competitive, react amid unforeseen disruptions, and become more environmentally efficient, a 

perspective that bridges these two traditionally separated domains is necessary. Table 8 identifies 

the potential research opportunities and expected outcomes for process and system characterization 

in the short-, mid-, and long-term ranges. 

 

It is clearly beneficial to link perspectives related to manufacturing processes and manufacturing 

systems. Benefits include more accurate prediction in critical system objectives, e.g., cycle time, 

throughput, and cost estimation. However, there are significant challenges that must be overcome 

to realize these benefits. One challenge is the computational cost of simulating detailed, process-

level models residing in large networks of manufacturing activities (95). For example, in 

traditional operations management problems, process-level metrics, such as cycle time and energy 

consumption, are simplified, e.g., assumed to be fixed, in order to deal with the complexity on the 

systems level.  

Table 8. Research opportunities in process and system characterization 

 Research Opportunity Expected Outcome 
1-3 years • Construct guidelines for training data for 

data-driven models 

• Develop methods for integrating between 
data contexts based on different standard 

• Public manufacturing process datasets 
and models 

• Usability of the current smart and 
sustainable manufacturing standards 
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information modeling paradigms (e.g., 
SysML, E3012, and Modelica) 

• Tightly integrate physical systems with 
analytical applications  

• Understand computational complexity of 
process-level and systems-level analyses 

• New guidelines for standards integration 
(e.g., CCOM and E3012, MTConnect and 
OPC-UA) 

• Better communication across engineering 
domains 

4-5 years • Devise methods for consistent predictive 
models for process-level optimization 

• Define standards for linking process-level 
simulation to systems-level optimization 

• Develop methods for real-time 
monitoring and control from sensor data 

• Improve sensor development/deployment 
for higher quality data 

• Better manufacturing analysis tools 

• High quality systems-level analysis 

• Better adaptability to changes at the 
process level 

• Near real-time trade-off analysis for 
assessing sustainability performance 

• Better public datasets for education, 
training, and process improvement 

5+ years • Improve scalability, flexibility, and 
adaptability of process-level to systems-
level approaches 

• Define model verification, validation, and 
uncertainty quantification (V&V) 

• Develop standards to port process-level to 
systems-level thinking in an automated 
manner 

• Integrate broad-based security methods 
with data flow for robust, trusted process 
and system analysis and optimization 

• Clear understanding of limits of paired 
process-to-systems approaches and 
standards that link the two perspectives 

• Clear guidelines for characterizing 
uncertainty of models 

• Pilot studies that demonstrate potential to 
educators, researchers, and practitioners 

• Tools for secure and private data transfer 
(e.g., blockchain for manufacturing) 

• Improved standards for process model 
and manufacturing data security  

 

Other process and system characterization challenges include the following: 

a) Validation modeling and uncertainty quantification methods across different abstraction 

levels (e.g., machines, processes, and systems) are not standardized 1.  

b) Even if process-level models are available, e.g., in a repository, appropriateness of their 

reuse for a specific instance is not well-understood (92). Bridging the existing standards at 

                                                 

1 ASME’s Verification, Validation, and Uncertainty Quantification (VVUQ) initiative is an emerging standard area that provides 

guidance to develop, analyze, and enhance the credibility of computational models and simulations (96) 
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the various levels is another open research question, e.g., relating MTConnect to the E3012 

standard. 

c) To produce “what-if” scenario exploration in complex supply chain networks, relating 

disparate databases to one another is particularly challenging. 

d) Privacy and security associated with sharing data across and between distributed 

manufacturing enterprises remains a primary concern of many manufacturing companies 

and an area of very rapid evolution. Applying best practices and known methods for 

incorporating levels of traceability, e.g., blockchain or digital signatures, is essential for 

enterprises to feel comfortable in sharing data. Articulating manufacturing needs is 

important to influencing ongoing development in these areas 

 

5.5. Workforce Education and Training 

Beyond traditional engineering and technical curricula, the current and future manufacturing 

workforce needs to be educated in advanced manufacturing and provided with the skills that will 

enable decision making in smarter, more sustainable industrial environments. Process and system 

modeling are primary mechanisms to continuously improving broad-based manufacturing 

performance (72,97). As noted above, manufacturing processes account for the most intensive 

energy use and waste production in many manufacturing facilities (98,99), yet are often overlooked 

because their solutions are complex and varied. 

 

While process improvement based on Plan-Do-Check-Act cycles are well-established, technical 

standards for applying the practice routinely for improving individual manufacturing processes 

remain under development and deployment. ISO 14001 (100) provides guidelines for companies 
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to establish environmental management systems that address waste and energy management, but 

stops short of offering guidance on improvements for individual processes. Engraining standards 

such as those from ASTM E60.13 (101,102) into widespread practice, first through standards 

education program development (103), will spur industry adoption of sustainability improvement 

practices (104). These standard practices can be extended with a focus on individual manufacturing 

processes to enable more replicable and repeatable evaluation. In addition, techniques for applying 

foundational yet interdisciplinary (cross-cutting) technologies that promise revolutionary impacts 

to manufacturing performance need to be integrated into manufacturing education. These 

technologies include sensing technology, computational skills, artificial intelligence (AI), machine 

learning, data analytics, ontological definition, cognitive computing, augmented and virtual 

reality, and quantum computing, among others. Process modeling may serve as a platform for such 

integrations. 

 

The challenges of workforce education and training are diverse, and include establishing practices 

in process and system modeling, sustainable thinking, life cycle assessment, and continuous 

improvement at all levels of the manufacturing enterprise as well as a need for personalized 

education and training experiences to inspire the next generation to pursue manufacturing careers 

(105). Such efforts need to be undertaken at all educational levels. Often, the sustainability-related 

trade-offs of our decisions are unknown, either due to a lack of information at the time the decisions 

are made, a lack of metrics by which the factors can be quantified (i.e., the externalities), or lack 

of visibility of the trade-offs to the decision maker (106,107). Standard practices for instilling 

manufacturing process modeling are lacking (89), and how such standards can by systemically 

employed in cyber-human systems must be better understood (9). Early work has been done in this 
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area, but more is needed to characterize manufacturing processes for sustainability (101,108), for 

representing manufacturing processes using information modeling (101,108), for reusing such 

information models variations of manufacturing processes (19,102). What distinguishes these 

concepts from more traditional curricula is the heavy reliance on information to guide decision 

making. Information modeling and capture have traditionally not been part of manufacturing 

engineering curricula. The field of structural engineering has seen a similar transformation and 

several researchers have reported on educational aspects of this transformation (109–111).  

 

While industry is in need of skilled workers in smart and sustainable manufacturing to enable the 

development, implementation, and continuous improvement of advanced manufacturing 

processes, interests in manufacturing careers has decreased due to the poor image young people 

have of industry (1). Integrating sustainability concepts into engineering curricula has been shown 

to improve student perceptions, in particular for students underrepresented in engineering 

(112,113), as well as motivating students to pursue careers in sustainability (114,115) and increase 

student interest in the job opportunities in manufacturing (116,117). A concerted effort is needed 

to synthesize existing resources through convergent research that raises the conscientiousness of 

sustainability objectives in the profession, develops the data and methods needed to inform 

effective decision making, and provides insight and intuition to externalities, while also focusing 

the educational objectives of the advanced manufacturing community. For instance, a key gap in 

existing science and engineering education is the lack of an appropriate learning environment for 

students to address technical solutions that consider the three aspects of sustainability (118). 

Further, the more mundane aspects of manufacturing (119–121) and manufacturing education can 

be improved through the application of gamification techniques (122,123). With a deep 
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understanding of the principles of manufacturing processes themselves, in some cases these 

techniques may be applied to improve the performance of those processes.  

 

Another fundamental distinction of future manufacturing systems is the interplay between the 

virtual and the physical worlds.  This distinction is manifest throughout the discipline.  AR and 

VR technologies are being applied in manufacturing training systems where significant training 

can take place without any physical engagement.  Similarly, like the 3D product design models 

that came before it, the concept of the “digital twin” has emerged to describe the virtual model of 

operational systems that allow for monitoring and prognosis based on real-time data.  What’s more, 

the use of robotics throughout manufacturing systems will require sophisticated human machine 

collaborations. The next generation of manufacturing engineers will need to shift seamlessly and 

accurately between the virtual and actual world in a way that has not been previously practiced, 

opening up a new area of research exploration.  Automation of systems means seeding control of 

those systems, yet human expertise and knowledge is necessary to maintain control though all 

types of failure modes.  The aviation industry has witnessed some highly-visible unexpected 

consequences from the introduction of automated navigation into the cockpit in terms of pilot 

preparedness in emergency situations resulting in loss of human life (124,125).  Avoiding similar 

catastrophes in the manufacturing setting will take study and work towards implementing fail-safe 

solutions.  Initial approaches to the problem have explored the form of interactions between 

humans and machines with the goal of identifying and optimizing those task for which a person’s 

unique skills are best suited by providing access to data on demand to improve their decision 

making capabilities (126,127).   
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Table 9 identifies the potential research opportunities and expected outcomes for educational and 

training issues in the short-, mid-, and long-term ranges. 

Table 9. Research opportunities in workforce education and training 

 Research Opportunity Expected Outcome 
1-3 years • Use the design of products, processes, and 

systems as a basis to capture K-12 students’ 
imaginations and interests 

• Use web-based learning, augmented reality, 
and virtual reality technologies to promote 
advanced manufacturing technical skills 

• Create resources and tools for teaching 
process and information modeling in technical 
and engineering education programs 

• Integrate sustainable manufacturing and life 
cycle thinking into K-12 curricula  

• Motivated young people toward engineering and 
making for the social good 

• More engagement in engineering and 
manufacturing for a more productive society and 
more sustainable industry 

• Better trained students, technicians, and 
engineers to support advanced manufacturing 

4-5 years • Innovate current online and virtual media to 
teach K-12 and undergraduate students about 
advanced manufacturing and build their 
confidence through learning by doing 

• Understand what is required of intuitive user 
interfaces to improve operational choices, 
including gamification  

• Integrate life cycle thinking and design for X 
methods in engineering education 

• Prevention of unintended consequence through 
proactive planning and informed decision 
making 

• Expanded knowledge and engineering intuition 
surrounding sustainability objectives 

• Effective learning tools and methods 

5+ years • Make estimation of impacts available to 
designers and other decision makers, e.g., 
real-time analytics using cyber-technology 

• Develop frameworks for integration of real-
time data into design decision making 

• Create tools that enable users to find relevant 
existing information and research, and 
perform trade-off assessment 

• Develop systemic approaches and methods for 
teaching smart and sustainable manufacturing 

• Ease of impact assessment for manufacturing 
processes and product life cycles 

• Integration of life cycle costs into design and 
manufacturing planning 

• Facilitated exploration of impacts of production 
systems on society in the presence or absence of 
life cycle thinking 

 

6. SUMMARY 

Over the past several decades, manufacturing industry has seen rapid development in sensing 

technologies, process equipment, and materials, among other areas, aided by the emergence of 
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data and information technologies. These advancements have enabled new manufacturing methods 

(e.g., cyber-manufacturing and distributed manufacturing) and processes (e.g., additive 

manufacturing and hybrid manufacturing), but often experienced little or no convergence during 

their development, which has inhibited more systemic development and growth. 

 

The foregoing presented the findings from a workshop organized within the manufacturing 

research community that aimed to identify challenges and barriers attendant with smart and 

sustainable manufacturing. The workshop activities (i.e., student presentations, expert talks, 

schema refinement feedback, and brainstorming and reflection) aided in defining challenges 

related to metrics and indicators, models and algorithms, and tools and methods across several 

advanced manufacturing fields. The ideas gathered from workshop participants reflect a range of 

potential opportunities for the manufacturing research and educational community to pursue. 

 

To supplement workshop findings, a review of recent literature was completed under the following 

themes: (a) conventional manufacturing processes and systems; (b) nanomanufacturing processes 

and systems; (c) additive/hybrid manufacturing processes and systems; (d) process and system 

characterization methods; and (e) workforce education and training for advanced manufacturing 

industry. Existing challenges and barriers, potential research opportunities, and expected outcomes 

were presented from the short- to long-term range for each topic area. This study arrived at the 

following findings: 

a) Improvements in sensing, controls, metrology, and processes have been reported across the 

various manufacturing technology domains; 



Shankar Raman et al. Journal of Smart and Sustainable Manufacturing Systems 

Page 39 of 51 

b) There is a need for well-developed models, algorithms, and methods that can be utilized to 

improve process- and system-level performance for specific manufacturing applications; 

c) Artificial intelligence (e.g., reasoning and machine learning) and other emerging 

technologies can have a great impact in process- and system-level improvements across 

manufacturing domains; and 

d) Improved manufacturing education could inspire future generations into manufacturing 

engineering and research careers (e.g., through new hands-on, virtual, and off-site methods). 

 

These findings can help stimulate future manufacturing research and benefit stakeholders across 

academia, government, and industry for advancing smart and sustainable manufacturing, as 

discussed in greater detail in Section 5. The fundamental and applied research opportunities 

identified under these themes can be undertaken by existing and emerging consortia (e.g., NSF 

Industry-University Collaborative Research Centers, Manufacturing USA, and EU Factories of the 

Future programs), as well as through conventional university, industry, and government agency 

funding mechanisms that are addressing emergent manufacturing challenges. It will be crucial that 

research solutions derive actionable implementation pathways for industrial organizations and 

educational institutions at all levels and scales in order to achieve the vision of academic, industry, 

and governmental leaders and policy makers for a smarter, more sustainable future. 

 

Disclaimer 

No endorsement of any commercial product by NIST is intended.  Commercial materials are 

identified in this report to facilitate better understanding.  Such identification does not imply 
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endorsement by NIST nor does it imply the materials identified are necessarily the best for the 

purpose. 
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