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Abstract—This paper focuses on current control in
a permanent-magnet synchronous motor (PMSM). This
paper has two main objectives: the first objective is to develop
a neural-network (NN) vector controller to overcome the
decoupling inaccuracy problem associated with the conventional
proportional-integral-based vector-control methods. The NN is
developed using the full dynamic equation of a PMSM, and
trained to implement optimal control based on approximate
dynamic programming. The second objective is to evaluate the
robust and adaptive performance of the NN controller against
that of the conventional standard vector controller under
motor parameter variation and dynamic control conditions by:
1) simulating the behavior of a PMSM typically used in realistic
electric vehicle applications and 2) building an experimental
system for hardware validation as well as combined hardware
and simulation evaluation. The results demonstrate that the NN
controller outperforms conventional vector controllers in both
simulation and hardware implementation.

Index Terms—Approximate dynamic programming (ADP),
neural network (NN), permanent-magnet synchronous motor
(PMSM), vector control, voltage source inverter (VSI).

I. INTRODUCTION

THE PERFORMANCE of a permanent-magnet
synchronous motor (PMSM) depends not only on
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its hardware design but also on how it is controlled. Motor
current control plays a particularly critical role [1]. Since
there is a direct relation between motor current and torque,
current control is equivalent to torque control [2]. To achieve
fast and accurate current or torque tracking, several improved
control techniques have been developed, including predictive
current control [1], [2]; direct torque control [3], [4];
proportional—integral (PI) plus proportional-resonant (PR)
control [5]; and mixed H2/Hoo control [6].

Predictive current control [1], [2] uses a current-prediction
equation to estimate the motor current at the next sampling
interval and a control equation to determine the next control
action. It shows fast current-tracking response but becomes
unstable when the actual motor’s parameters differ from the
programmed parameters used in the predictive controller [2].

Direct torque control provides a simple implementation for
instant motor torque control [4]. However, it suffers from
drawbacks, such as variable switching frequency, large torque
ripple, and high sampling rates for digital implementation [4].

PI-PR control is similar to the conventional standard field-
oriented vector control, except that it combines PI with several
PR control paths to enhance tracking of the current which
may contain a lot of ac disturbance components [S]. The
PI-PR approach requires properly tuning parameters of differ-
ent resonant terms, and its performance can be affected when
motor parameters change, or when disturbance harmonics are
different from those used to tune the resonant terms.

The mixed H2/Hoo control [7] requires a reasonably accu-
rate system model [8]. Also, it does not handle nonlinear
constraints very well [8]. In [9], it was found that applying
a mixed H2/Hoo controller in experimental conditions is much
more challenging than in simulated environments.

As a result of these weaknesses, the conventional standard
field-oriented vector control is still the dominant motor-current
control strategy for PMSMs in today’s motor drive indus-
try [10], [11]. But, recent studies show this conventional
control strategy is inherently limited [12].

Neural networks (NNs) have been applied in PMSM con-
trol since 1990s. But, to the best of our knowledge, NNs
have not been used for current control of a PMSM based on
a voltage source inverter (VSI). In [13], a feedforward NN
identifier is utilized to replace the traditional speed-loop con-
troller to generate a reference current. The reference current
is then compared with the actual current to drive a current
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source inverter (CSI) through a hysteresis switching scheme.
The NNs presented in [14] and [15] have a similar function to
the NN used in [13]. The difference is that a typical current-
loop controller is introduced after the NN identifier, and a VSI
replaces a CSI as the PMSM inverter. In [16], a feedforward
NN is used as an identifier for a PMSM for the purpose of
offsetting the impact of uncertainties.

This paper develops a novel control strategy: NN-based
current vector-controller for a PMSM trained using an approx-
imate dynamic programming (ADP) method. In recent years,
significant research has been conducted in optimal control of
nonlinear systems based on ADP [17]-[22], none of which,
however, focuses on vector control of a PMSM, although many
recent studies have pivoted around developing ADP techniques
for optimal energy management in a time scale from several
minutes to several hours. These include ADP-based energy
storage management with solar renewable [23], ADP-based
battery management for residential energy systems [24], and
ADP-based home energy management [25]. But, the focus of
this paper is on real-time control of PMSMs for a time scale
of milliseconds and below. In [26], a preliminary NN vector
control for PMSMs was developed.

This paper has extended far beyond [26]. The special
contributions of this paper include the following.

1) An ADP-based NN controller.

2) Training of the NN as a recurrent network.

3) Detailed stability evaluation under a wide range of

diverse conditions and parameter uncertainties.

4) Implementation and hardware experiment testing of the
NN controller.

Several important features of the proposed NN control

method include the following.

1) The NN is trained as a recurrent network, enabling
it to exhibit fixed-weight adaptive behavior [27], and
predictive control ability, like conventional current-
predictive controllers.

2) The NN is trained to optimize an ADP-based cost func-
tion, making the NN controller an approximate optimal
controller, like an H2/Hoo controller.

3) The NN controller takes the error integral information
as the input, which guarantees that no steady-state error
exists for the reference tracking.

4) The NN can, in theory, emulate PI-PR control features,
due to the universal function-approximation capability
of NNs.

Thus, the NN has the potential to integrate optimal,
predictive, PI, and PR control characteristics together.
This paper demonstrates the NN controller’s improved
performance, under both simulation and hardware conditions
as compared to the conventional control methods.

It is worth emphasizing that the NN controller is trained
entirely offline under a wide range of simulated circumstances,
which allows the NN controller to adapt and respond to chang-
ing motor parameters in real time [27]. This leads to three
further key benefits of the NN control method.

1) The controller shows sufficient adaptability not to need

retuning every time the motor’s parameters change
slightly.
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2) The computational cost at runtime is extremely low and

easy to implement in low-cost hardware.

3) As training is completed offline, it is not possible for

the weights of the NN to destabilize at runtime.

The trained NN controller’s stability for controlling the
PMSM at runtime is validated against a test set and a hard-
ware experiment. The test set is intended to cover a sufficiently
wide range of circumstances to empirically provide evidence
for the stability of the controller. A formal proof of runtime
stability is not provided. Such proof would involve the devel-
opment of an analytical framework that is beyond the scope
of this paper.

The rest of this paper is structured as follows. Section II
covers the basic equations of the PMSM and conventional
field-oriented control. Section III elaborates on the NN control
method. Section IV shows how to train an NN based on ADP
to implement vector control for a PMSM. Section V shows
how to integrate NN control in a nested-loop PMSM control
configuration. Sections VI and VII compare the performance
of conventional and NN vector-control schemes through simu-
lation and hardware experiments. Finally, this paper concludes
with a summary of the main points.

II. CONVENTIONAL VECTOR CONTROL
A. PMSM Model

The conventional field-oriented vector control is based on
the Park transformation. Using the motor sign convention, this
yields the stator voltage equation [28] as

weLy

Vsd \ _ RS+Ld~d/dt - isd
vig ) weLy Ry+Ly-dfdr )\ isg

0
+ (wewf) (1)

where R; is the resistance of the stator winding; w, is the motor

electrical rotational speed; vsq, Vsg, isd, and iy, are the d and

g components of instant stator voltage and current; Ly and L,

are the stator and rotor d- and g-axis inductances; and y is

the flux linkage produced by the permanent magnet (PM).
The torque balance equation of a PM motor [28] is

Tem = Jeqdwm/dt + Bawm + TL 2)

where J, is the inertia of the motor; w;, is the motor rotational
speed; B, is the friction coefficient; 77 is the load torque; and
Tem 1S the electromagnetic drive torque. Depending on the type
of a PMSM, a surface PM (SPM) or interior PM (IPM) motor,
Tom can be expressed as follows:

Tem = P(Yfisg) SPM motor
Tem = P(l/ffisq + (Ld — Lq)isdisq) IPM motor

(3a)
(3b)

in which P represents the number of motor pole pairs. Lastly,
the relation between w,, and w, is given by

We = Wy - P. 4)

B. Conventional PMSM Vector Control

The conventional standard vector control technique usu-
ally has two distinctive nested-loop PI controllers: 1) the
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outer speed and rotor flux linkage PI controllers and 2) the
inner current PI controllers as shown in Fig. 1(top), where
Mg and Afd represent the actual and reference d-axis rotor
flux linkages, respectively. The current-loop control strategy
is developed by rewriting (1) as (5a), where the terms in
the large parentheses are used as the dynamic equations, and
the other terms are compensation terms. These compensa-
tion terms are ignored when obtaining the system transfer
functions [28], [29]. Thus, the consequent transfer functions,
1/(Rs+s-Lg) and 1/(Rg+s-Lg), are used to tune a conventional
d- or g-axis PI controller. The omission of the compensation
terms in deriving the transfer functions generates a decoupling
inaccuracy. After the d- and g-axis PI controllers are tuned,
the compensation terms are added back to the output of the PI
controllers, to form the final current-loop control configuration
[Fig. 1(top)]

Vsd = (Rsisq + Ladisq/dt) — a)eLqisq (52)
———
Vi Comp.Term

Vg = (Risg + Lodisg/dt) + 0eLaisa + 0oy . (5b)

v " Comp.Term

The design of the speed-loop controller is based on
the transfer function obtained from (2) and (3a), which is
Yr.P/(Bg + 5 - Joq). Details about how to tune both current-
and speed-loop controllers are presented in Section V.

III. NN VECTOR CONTROL

To address the decoupling inaccuracy associated with the
conventional standard vector control, a novel NN controller is
proposed to replace the PI-based current controller. The NN
controller, known here as the action network, is implemented
as shown in Fig. 1(lower right). The outer speed loop remains

:
[l | g
\Z

NN structure

PMSM conventional (top) and NN (highlighted in gray color) vector control.

unchanged. The design stages of the NN controller are anal-
ogous to the design stages of a conventional controller. First,
a dynamic model of the plant is needed. Second, the NN struc-
ture needs to be specified which is analogous to specifying
a conventional controller structure. Third, the NN needs to be
trained, which is analogous to tuning a conventional controller.

A. State-Space Model of PMSM Current Loop

The NN current vector controller is developed using a state-
space model of the PMSM, by rearranging (5a) into the
standard state-space form, as shown by

i lsd _ Rs/Lyq —weLy/La isd
dt isq weLd/Lq Rx/Lq isq

Vsd/Ld
* ("Sq/Lq - wve/Lq> ©

where the system states are iy and iy;. The PM flux yy is
assumed to be constant, and the converter output voltages vy
and vy, are proportional to the control voltage generated by
the action network [30].

Since the NN controller is a digital controller, a discrete
equivalent of the continuous state-space model is required.
This is obtained by a zero- or first-order hold discrete equiv-
alent mechanism. This transformation yields

isa(kTs + Ts) _ isq(KTy) vsd (kTy) — 0
(isq(kTs +Ty) ) - A(isq (kTy) ) + B("sq (kTy) — we@&f)
(7

in which T is the sampling period, A is the system matrix,
and B is the input matrix. Since T is present on both sides, (7)
can be simplified as

Taagk + 1) = A - Tiag (k) + B - (Vsag (k) — Vray) (8)
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4
where k is an integer time step, isyy = (isa, isq)T, ?)qu =
(vsd, vsq)T is the control action, and Vg = (0, weyy)”

represents the induced voltage of the PM.

B. NN Structure

The NN has a feedforward network structure, consisting of
four different layers, namely an input layer, two hidden lay-
ers, and an output layer [Fig. 1(lower right)]. The input layer
contains four inputs. Two of these inputs comprise the vector
Edq (k), the error term, and the other two comprise Edq(k), the
integral of the error term. These two terms are defined by

Cag (k) = Tsaq(k) — iy, (K). g (k) = Sag(k — 1) + Zaq (k) - T
)

where 7;1 (k) is the reference dg current and Edq(k) is the
discrete integral of the error term obtained by the forward
rectangle rule. A two-hidden-layer NN was selected because
it generally yields a stronger approximation ability [31] than
a one-hidden-layer NN. The number of nodes in each hid-
den layer was selected via the trial-and-error method. We also
investigated NNs with more hidden layers and more nodes in
each hidden layer—but no major improvement was found.

As shown by (9), the NN has the same input signals, error
terms, and integrals of error terms, and same output signals
as those used in a conventional PI controller. Hence, the NN-
based controller can be considered as a “super-PI” controller
for a more stable and reliable PMSM operation, which can
be conveniently applied to an existing PMSM digital control
system. The four inputs to the NN are first divided by their
appropriate gains and, then, processed through a hyperbolic
tangent function, as shown in Fig. 1. The input layer then feeds
into the hidden layers, each of which contains six nodes. Each
node uses a hyperbolic-tangent activation function. Finally, the
output layer gives v, g (k), the output of the NN. This output is
multiplied by a gain, kpww, Which represents the pulse-width
modulation (PWM) [28], [30], to obtain the final control action
applied to the PMSM, vy, given by

Vedg(k) = kpwwm - A(€aq(k), Saq(k), W)

where W is the network’s overall weight vector, and
A(eqq(k), Sqq(k), w) denotes the whole action network. The
division of the inputs by Gain and Gain2 in the NN input
layer is to avoid the input saturation [32].

(10)

IV. TRAINING THE NN TO CONTROL THE PMSM
A. ADP-Based Control Formulation for PMSM

ADP is a very useful tool for solving and approximat-
ing an optimal control of a dynamic system [33]. A typical
ADP-based control problem consists of a cost function and
a mechanism that can minimize the cost function to achieve
the ADP-based control. The cost function is used to measure
the performance of the ADP-based control in tracking a target
trajectory and is typically defined as [33]

N
CG().J) = Y v*  UG®K). k). k) (11)

k=j
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where N is the trajectory length; y is the discount factor (0 <
y < 1); X(k) signifies the states of a dynamic system; u(k)
denotes the control action applied to the system; and U(e) is
the utility function. The cost function J(e), dependent upon
the initial time j and the initial state X(j), is referred to as the
cost-to-go of state X(j) in an ADP problem.

For vector control of a PMSM, the system state is ?qu(k)
and the control action is Tzsdq(k) according to Section III. The
goal of the current control for a PMSM is to track any spec-
ified target trajectory 7;qu(k) as close as possible. Thus, the
utility function in (11) for the PMSM vector control problem
is defined as

2
U(?xdq» T’m’q» k) = \/(isd(k) - i?d(k))z + (isq(k) - l?q(k)> .
(12)

In this paper, we choose y = 1, which makes the cost-to-go
function of the ADP-based PMSM control problem as

N
Clisagd) =) \/ [isak) = 15,0 + [isg ) — 12,80
k=j

2

13)

The objective of training the NN controller for a PMSM is to
have the NN output control actions Vsdq k), k=j,j+1,...,N
so that the cost-to-go function C(e) of (13) is minimized. It
is worth pointing out that although the control action Vg, (k)
is not involved in (13), it affects (13) indirectly through (8).
This impact is considered in the training of the NN as shown
in the following section.

B. NN Training Mechanism

The NN is trained to approximate optimal control by using
gradient descent to adjust the weights of the NN until its out-
puts minimize (13). As shown in Fig. 1, the NN receives the dg
current feedback signal from the PMSM. Thus, the output con-
trol action of the NN at time step k changes the output current
of the PMSSM at time step k+ 1 via (7) or (8), the output motor
current then changes NN inputs at time step k+ 1 via (9) and,
then, the NN output control action at time step k + 1 is mod-
ified via (10). This recursive process continues, making the
combined system of the PMSM -+ NN similar to a recurrent
NN. This combined “recurrent network™ is shown in Fig. 2,
unrolled in time, illustrating how the PMSM and the NN inter-
act with each other. The recurrence in this architecture needs
to be fully considered when computing the gradient of the
ADP cost function (11) so as to enable learning by the gra-
dient descent [34]. Doing so allows the trained NN to gain
strong multistep-ahead predictive control ability that is much
more powerful than the conventional predictive controllers.

Learning was accelerated wusing the Levenberg—
Marquardt (LM) optimization method [35]. The LM algorithm
has been widely used to train feedforward networks, and
provides a nice compromise between the speed of Newton’s
method and the guaranteed convergence of the steepest
descent. For a moderate number of network weights, LM
appears to be one of the fastest NN training algorithms.
However, since the NN and PMSM are treated as a recurrent
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treated as a recurrent NN, shown unrolled in time here.

network, it is necessary to modify the LM algorithm slightly
using the method detailed by Fu et al. [32] and summarized
below.

First, the gradient of (13) is computed with respect to the
weight vector C/d7 . In the matrix form this is

ac  ayYN 1(V(k))2 al AV (k)
ﬁ = ZZV(k)——ZJ( Yy
(14)
where V(k) = ,/U(?qu,?/sdq,k), V is a vector containing

V(1) to V(N), and JP(W) is a Jacobian matrix defined for
a recurrent NN by

wva v

owy Iwy V(l)

LWy =| |, v=| o (15)
AV(N) AV(N)
e V)

Then, using these definitions, the weight update is applied as

AW

—[J, 1, () + ] T,V (16a)
Woupdae = W + AW (16b)
where I is the identity matrix and w is a scalar that is
dynamically adjusted by the LM algorithm [35].

As (14)-(16a) show, the Jacobian matrix, ]p(Tv)), is the
kernel for training used by the LM method. To efficiently
compute the Jacobian matrix, we used a forward accumu-
lation through time (FATT) algorithm, described in detail
by Fu et al. [32]. FATT is analogous to the better-known
backpropagation through time algorithm [36]; but with the dif-
ferences that FATT accumulates its result via a forward-mode
automatic differentiation [37], and also that FATT delivers
a whole Jacobian matrix as opposed to a single gradient vector.
Please note that the use of FATT, in this case, is chosen merely
because it is slightly more computationally efficient than com-
puting the Jacobian matrix by a backward accumulation, but
gives exactly the same result subject to floating-point round-
ing errors. It should be emphasized that to correctly compute
J,,(Tv)) by FATT, it is necessary to differentiate through the
known motor model equations (8), and feed these derivatives
into the next time step’s neural inputs, via (9) and (10), and
the chain-rule, and ultimately feed this chain of derivatives
into the accumulating cost function (13), at each subsequent
time step. Fuller details are given by Fu et al. [32].

Feedback loop between the NN and the PMSM [via the system equations (8), and via the neural inputs (9)]. The combined PMSM+NN system is

TABLE I
PMSM DATA USED IN SIMULATION/EXPERIMENTAL STUDY

Parameter Simulation | Hardware Units
Rated Power 50 0.24 kW
Nominal Speed 1200 2800 RPM
Nominal Torque 250 1.5 N-m
Maximum Speed 6000 3800 RPM
- Permanent magnet flux 0.1758 0.01544 Wb
g Inductance in g-axis, Lg 1.598 0.255 mH
= Inductance in d-axis, Lg 1.598 0.255 mH
Stator copper resistance, Ry 0.0065 0.22 Q
Inertia 0.089 0.0004 kgm®
Friction coefficient 0.1 0.001 N-m-s/rad
Pole pairs 4 4
5 Inverter rating 60 0.4 kVA
5 dc voltage 500 42 A\
E Switching frequency 6 10 kHz

V. TRAINING/TUNING PMSM CURRENT- AND
SPEED-LOOP CONTROLLERS FOR
SIMULATION AND HARDWARE CASES

The PMSM nested-loop control has been considered in two
SPM motor cases: one for simulation and one for hardware
experiment. The simulation case uses parameters of a PMSM
that are typical for an electric vehicle application [38]. The
hardware experiment is based on a laboratory PMSM [39],
which has a smaller power rating and is mainly used for the
purpose of experimental validation. Table I shows the PMSM
parameters used in each case.

A. Tuning Speed-Loop Controller

The PI parameters of the speed-loop controller are tuned
using the PI-derivative (PID) tuner function within the PID
controller block in MATLAB. Fig. 3 shows the closed-loop
Simulink model used to tune the speed-loop PI parameters.
The transfer function in Fig. 3 is ¥y - P/(Bq + s - Jeg) [derived
from (2) and (3a) in Section II-A], where B, was set to
zero. The phase margin was 60°, while the controller band-
width in terms of angular frequency was chosen as 200 rad/s.
Then, the PI gains were adjusted until a better speed track-
ing performance was achieved. Note that both the NN and
conventional controllers use the same speed-loop PI gains.

B. Tuning Conventional Current-Loop Controller

The PI gains of the conventional current-loop controller
were also tuned using the PID tuner function. The transfer
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Fig. 3. Using Simulink to tune the speed- and current-loop controllers.

function in Fig. 3 is 1/(Rs + s - Ly) or 1/(Rs + s - L) (see
Section II-B). The current controller bandwidth in terms of
angular frequency was 2000 rad/s while the phase margin was
kept the same as that of the speed-loop controller. Since the
current controller is in the inner loop, the bandwidth has to
be larger to track the current well. Similarly, the PI gains
were then adjusted until a better tracking performance was
obtained.

C. Training Neural Network Controllers

For both simulation and hardware experimental cases, an
NN was trained using the method of Section IV and the motor
parameters of Table I. The training procedure is as follows.

1) Randomly generate changing sample reference dg cur-
rent trajectories.

2) Randomly generate a sample initial state isq, (1).

3) Unroll the PMSM current trajectory from the initial
state.

4) Train the NN as detailed in Section IV.

5) Repeat the process for all of the reference dg current
trajectories and sample initial states until reaching a stop
criterion.

Each initial state isg; (1) was generated randomly within
acceptable d- and g-axis current ranges that are within the rated
current limit in terms of the current amplitude and also can-
not cause the controller to operate beyond the PWM saturation
limit, i.e.,

v I gd + ng = ]sdq_rated’ \V ng + Vszq = Vsa’q_ max

where Iy raeed and Vg max denote the rated motor dg cur-
rent amplitude and maximum dg voltage amplitude that can be
applied to the motor due to the motor inverter PWM satura-
tion constraint, respectively. Each trajectory was unrolled for
a duration of 1 s, with a sampling time of 75 = 0.1 ms, and the
reference dq current was changed randomly every 0.1 s also
within acceptable d- and g-axis current ranges. All network
weights were initially randomized using a uniform distribution
within £0.1, and ten randomized reference current trajecto-
ries were created during each training epoch. Fig. 4 shows
a successful training convergence. Note that the NN is
trained offline, and no training occurs in the real-time control
stage.

A7)

VI. PERFORMANCE AND STABILITY EVALUATION OF
CONVENTIONAL AND NN VECTOR CONTROLLERS
USING SIMPOWERSYSTEMS

A simulation model of the PM motor drive was developed
using MATLAB SimPowerSystems based on the parameters of
the simulated PMSM in Table 1. Fig. 5 shows the simulation
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model containing conventional and NN controllers as shown
in Fig. 1. The controller sampling rate is 0.1 ms. Details about
how to build a simulation model using SimPowerSystems can
be found in [40]. In the MATLAB environment, the computing
time for each control action of the NN takes about 20 us.
This execution time would reduce further when the NN is
implemented on a DSP chip.

The stability of the NN was evaluated against a testing
dataset, as is a common practice in the NN field [41]. The
training and testing datasets represent different sets of tra-
jectories. The testing dataset covers an extremely wide range
of circumstances to validate the NN controller over various
key criteria. These include speed control; current control;
robustness of speed and current control; robustness against
load disturbance and fluctuations in flux-linkage; improved
tolerance to sampling time variations, etc., as shown in
Sections VI-A-VI-G.

A. Speed Control Evaluation

Fig. 6 compares the motor speed control using conventional
and NN control techniques, in which the friction factor and
the load torque are zero. The motor starts with a reference
rotational speed increasing linearly from O rad/s to 60 rad/s,
stays at 60 rad/s for about 0.75 s and, then, reduces to
40 rad/s. At t = 2 s, the reference speed increases to 80 rad/s
and, then, remains at 80 rad/s. The reference d-axis current is
0 A. Both traditional and NN controllers can track the refer-
ence speed properly. But, for each reference speed increase or
decrease, the traditional controller shows more overshoot and
oscillations, particularly in motor current [Fig. 6(b) and (c)],
implying that there are more torque oscillations when
using the conventional controller. Note: the reference g-axis
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current is generated by the speed-loop controller as shown
in Fig. 1.

B. Current Control Evaluation

In the motor drive industry, evaluation of the current-loop
controllers is normally conducted under the condition that the
speed of the test motor is kept constant and the motor is eval-
uated while tracking reference d- and g-axis currents. This can
be achieved, as in Fig. 5, by changing the load torque block
to speed block and setting the PMSM to operate according
to a specified constant speed value. Fig. 7 compares current-
control performance using conventional and NN controllers.
The initial d-axis reference current is —40 A and changes
to —80 A at 0.4 s. The initial g-axis reference current is
100 A and changes to O A at 0.25 s and then to 50 A at
0.6 s. As shown in Fig. 7, the NN controller is more sta-
ble and reliable, and responds faster than the conventional
controller.

C. Robustness of Speed-Loop Controller

In practical applications, both motor inertia and friction fac-
tor may change depending on the load of the EV and road
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Fig. 8. NN versus conventional. Reference and actual motor rotational speeds
for a higher motor inertia and friction factor.
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Fig. 9. NN versus conventional for 40% decrease of motor resis-
tance/inductance. (a) d-axis current. (b) g-axis current.

conditions. This will affect the performance of the motor
speed-loop controller. Fig. 8 compares the conventional and
NN vector-control methods when the friction factor changes
from O N-m-s in Fig. 6 to 0.2 N-m-s and the inertia is tripled,
while the other conditions are the same as those used in Fig. 6,
except that a load torque of 20 N-m is included. In general,
the speed tracking control is not affected much and shows
a similar performance using both NN and conventional vector
controllers. Compared to Fig. 6, a little more time is needed
for the transition from one reference speed to another, due to
a larger inertia and friction factor.

D. Robustness of Current-Loop Controller

In real applications, the motor resistance and inductance
may deviate from their nominal values by a significant
amount. This affects the PM motor current-loop controllers.
Fig. 9 demonstrates what happens when both motor resistance
and inductance are reduced by 40%, with all other conditions
being the same as those used in Fig. 7. The results show the
NN controller is better able to track the reference and actual
d- and g-axis motor currents under variable parameter condi-
tions, and is more stable and reliable than the conventional
controller.

E. Impact of Rotor Magnet Flux Linkage

In a PM motor, the rotor-magnet flux linkage may change
due to an increase or decrease in the motor temperature. This
would affect the performance of the motor. A test was carried
out to evaluate the conventional and NN vector-control meth-
ods when the rotor magnet flux linkage is lower or higher
than the nominal value listed in Table I. Fig. 10 compares the

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 27,2020 at 22:53:30 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

TABLE 11
0 TRACKING ERRORS RELATED TO FIGS. 6-11: MAXIMUM,
20 b i AVERAGE, AND STANDARD DEVIATION VALUES

%’-40 N

o Maximum Average Std

5 -60 - 7 Fi #

3 80 |- ‘sure NN Conv. NN Conyv. NN Conv.
100 (@) | Fig. 6(a) | 1.3031 [ 1.5132 | 0.0594 | 0.0586 | 0.1620 | 0.1585
120 T b5 20—~ Fig. 8 3.5608 | 3.5610 [ 0.1854 | 0.1851 | 0.4905 | 0.4901

D=

T 8f g %’é@ Fig. 11(al)| 1.3030 | 1.5133 | 0.0763 | 0.0755 | 0.1708 | 0.1676

= B

§ 40f B Fig. 11(b1)| 1.7839 [ 2.1820 | 0.0797 | 0.0790 | 0.1836 | 0.1862

3 of (b) g | Fig.7(a) | 24.53 | 29.90 0.54 0.79 0.57 141
-40 - L L : ! : ! : i:/n Fig. 7(b) | 99.25 | 99.58 0.79 0.86 1.65 1.71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1 = -
Time (s) = Fig. 9(a) | 17.24 | 24.81 0.93 1.05 0.78 1.88
g Fig. 9(b) | 99.66 | 100.13 1.70 1.65 1.73 1.71

Fig. 10: NN versus conyentional for 40% increase of rotor flux linkage. g Fig. 10(a) | 22.36 | 28.83 0.64 0.84 0.59 1.40

(a) d-axis current. (b) g-axis current. g -

O | Fig. 10(b) | 99.77 | 99.86 1.19 1.18 1.68 1.73

Ref .- .. _-._ NN s Conv
Speed-loop 7s: 0.1ms Speed-loop Ts: 2ms

100
2 8
£ 60 /—\—/_
B 40
P L@y \[ " ®n r:.—*\‘c'“"“

100 |I|n“~ %
g % S \j;
) u— 2 i
Sl -

-100 (@2)

100 |
< 50 N A\
g ol U—Jl o .|
3 50

b3
oo L2 (b3)
0o 05 1 5 2 25 3 0 05 1 15 2 25 3
Time (S) Time (s)

Fig. 11. NN versus conventional—load disturbance and speed-loop sam-

pling time impacts. (al) and (bl) Reference/actual motor rotational speeds.
Reference/actual g-axis currents using (a2) and (b2) NN control and
(a3) and (b3) conventional PI control.

current tracking using the conventional and NN control meth-
ods, when the rotor magnet flux linkage increases by 40%,
while the other conditions remain the same as those used in
Fig. 7. The study shows a better dynamic response of d- and
g-axis current tracking using the NN controller.

F. Impact of Load Disturbance and Sampling Rate

Load disturbance and sampling rate impact to motor speed
control were also investigated. Fig. 11(a) shows the PM motor
performance, using conventional and NN controllers, under
an impulse load disturbance while the other conditions are
the same as those used in Fig. 6. The impulse disturbance
of an additional 30 N-m appears at 1.5 s and lasts for 0.1 s.
Fig. 11(b) shows the motor performance when a large sam-
pling interval of 2 ms is applied to the speed-loop controller
and to read motor position/speed data while the other condi-
tions are the same as those used in Fig. 11(a). The sampling
time for the current-loop controller is still 0.1 ms as the motor
current changes much faster than the motor speed. The results

show that the NN controller is less impacted by load distur-
bance and more reliable for a large sampling interval applied
to the speed control loop than the conventional one.

A summary in terms of maximum, average, and stan-
dard deviation of the absolute tracking errors associated
with Figs. 6-11 for the NN and conventional controllers is
presented in Table II.

G. Sampling Time Impact at High Speed

The rotating speed of a PM motor is directly related to
the electrical frequency of the stator voltage and current. As
the rotating speed increases, the electrical frequency increases
too. This requires the sampling rate to increase as the max-
imum demanded motor rotating speed increases. The study
shows that for sampling times of 100, 80, 40, and 20 us,
respectively, the NN controller can provide stable control in
terms of rotational speed up to 10000, 11000, 13500, and
16500 rpm, while the traditional controller crashes at 7500,
9000, 10000, and 13 000 rpm, respectively. Fig. 12 shows the
performance using conventional and NN controllers (includ-
ing flux weakening control) for sampling times of 100 and
20 ps, respectively. The study shows that the NN controller is
more stable in supporting the high-speed operation of a PM
motor.

The stability of the PMSM control depends strongly on
the abc to dq transformation. Especially, when the rotational
speeds increase, the rotor electrical angular position would
change quickly. Thus, to capture the three-phase current and
the electrical angular position information correctly, a small
sampling time would be needed. Otherwise, the calculated
dq current can be distorted. Similar to Fig. 11, using the
same sampling rate, the NN controller is more robust than
the conventional controller at a high motor operating speed,
as illustrated by Fig. 12. A tentative explanation for this is
that the NN is a comparatively flexible function approximator,
compared to a PI or alternative controllers, and is specifically
optimized to have a fast response time and low overshoot.
On the other hand, the conventional PI-based controller only
has two parameters to tune and, therefore, cannot compete
in fast response time and low overshoot. As a result, the NN
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controller has a stronger ability to compensate for the dqg trans-
formation distortion caused by a low sampling rate than the
conventional controller.

VII. HARDWARE EXPERIMENT
A. Experimental Setup

To further verify the feasibility and stability of the NN
vector controller, a DSP-based digital control system was
implemented (Fig. 13). The experimental setup [Fig. 13(a)]
consists of three major parts.

1) A motor drive system containing an SPM motor from

Motorsolver coupled to a dc motor [39].

2) A power converter board from Vishay HiRel systems
which has two independent three-leg converters.

3) A dSPACE DS1103 controller board to collect various
input signals, e.g., current, voltage, and motor speed,
and to generate PWM output for controlling the SPM
and dc motors.

One converter was formed as a dc/ac converter to control the
SPM motor, while the other one was formed as an H-bridge
dc/dc converter to control the dc motor.

The control algorithms for both SPM and dc motors were
built in Simulink [Fig. 13(b)]. They were then compiled and
loaded as the assembly code to the DSP chip within the
DS1103 controller board. In Fig. 13(b), the measurements
of the PM motor’s speed and rotor position are obtained
by the DS1103ENC_POS module, and the voltage and cur-
rent measurements are obtained by the DS1103ADC module.
The speed measurements are passed to both dc and PM
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Fig. 13. Hardware laboratory testing and control systems. (a) Circuit
connection. (b) dSPACE-based real-time controller. (c) Experimental setup.

motor controllers; the three-phase PM motor current mea-
surements are passed to the PM motor controller; and the
dc motor current measurement is passed to the dc motor
controller.

The PMSM controller block implements either the conven-
tional or NN vector control, according to Fig. 1, and outputs
the o and B reference voltages to the space-vector modulation
block, which generates T1, T2, and sector information needed
by the DS1103SL_DSP_PWMSYV block to generate the driv-
ing pulses. The driving pulses are applied to the three-phase
dc/ac converter to control the PMSM. The dc motor controller
block generates two complementary duty ratio signals that
are passed to DS1103SL_DSP_PWM block to produce the
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driving pulses applied to the dc/dc converter to control the
dc motor.

Detailed information on how to build a hardware experiment
using MATLAB Simulink and dSPACE can be found in [42].
Information about online processing capabilities of dSPACE
DS1103 and its real-time coding specifications can be found
in [42] and [43].

The simulation cases shown by Figs. 612 in Section V
are divided into two categories: one corresponds to speed and
current tracking control (Figs. 6, 8, 11, and 12), while the
other corresponds to current tracking control under constant
motor speed (Figs. 7, 9, and 10). Then, hardware experiments
were performed based on the laboratory setup for each of
these cases, with Section VII-B showing the results associated
with the speed and current tracking control and Section VII-C
presenting the results associated with current tracking under
constant motor speed. The parameters of the laboratory motor
are shown in Table I and the controller sampling rate is 0.1 ms.
The minimum rotational speed that can be measured using the
speed sensor was found to be 1.31 rad/s, or 12.5 rpm in the
experimental setup. In the experimental arrangement, the SPM
motor parameters could be different from the nominal values
shown in Table I [44], [45] and there could be unexpected
disturbances and noises.

B. PM Motor Speed and Current Control

In this test, both speed and current controls are applied to the
PM motor while the dc motor is idle. The speed- and current-
loop controllers of the PM motor were redesigned based on
the parameters shown in Table I, and were tested first in the
simulation, and then on the hardware motor. The test sequence
was scheduled as follows, with # = O s as the starting point
for data recording: at r = 1 s, the input speed increases from
0 to 100 rad/s, and then stays at 100 rad/s; at t = 2 s, the
speed decreases to 50 rad/s and retains this value till 1 =3 s;
and at r = 3 s, the speed increases to 200 rad/s and decreases
again to 100 rad/s at t = 4 s.

Fig. 14 presents the simulation results. Due to the low rat-
ings of the laboratory motor, the relevant oscillation of the
simulated stator current looks worse than that of the 50-kW
PM motor in tracking the current variation in a much larger
range in Section VI. The result of the hardware experiment
(Fig. 15) is a little bit different from the simulation result.
A potential reason is that the actual motor inertia and fric-
tion coefficient are more complicated and different from those
used in the simulation. Due to uncertain motor parameters,
noises and disturbances, more oscillations of the PM motor
were found in the hardware experiment results (Fig. 15). Under
these challenging laboratory condition, the NN controller
performed better than the conventional controller (Fig. 15).
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C. PM Motor Current Control Under Constant Speed

In this case, only the current control is applied to the PM
motor while the dc motor is controlled to ensure the speed
of the whole system constant. Fig. 16(a) shows the simulation
result of the g-axis current for the laboratory PMSM oper-
ating at 100 rad/s and zero d-axis reference current. Again,
the much smaller current tracking range makes the relevant
oscillation of the motor current apparently worse than that
of the 50-kW PM motor shown in Section VI. Fig. 16(b)
presents the hardware experiment results of the g-axis current
under the same condition. The NN controller clearly displays
less oscillation than the conventional controller for the labo-
ratory PM motor, showing a strong adaptive control ability of
the NN controller under uncertain, noisy, and disturbing lab-
oratory conditions. The success of the hardware experiments
indicates that it is possible to implement the NN controller in a
real-life PMSM.

A summary in terms of maximum, average, and standard
deviation of the absolute tracking errors associated with the
experiment results shown by Figs. 14 and 16 for the NN and
conventional controllers is presented in Table III.

VIII. CONCLUSION

PMSMs are widely used in electric drive applications par-
ticularly in electric drive vehicles. This paper presents an
NN-based vector-control method to overcome the limitations
of conventional vector-control approaches. It describes how to
achieve approximately optimal vector control using an NN,
which is trained to minimize an ADP-based cost function.
Compared to the conventional vector control, the NN vector
controller produces the fastest response speed, lowest over-
shoot, and, in general, the best performance. In addition, since
an NN is trained under variable system parameters, the NN-
based vector controller shows the enhanced performance when
the sampling time changes and system parameters are difficult
to identify, especially in hardware experiment conditions. The
hardware experiment confirmed that the NN-based controller
is able to track reference commands while maintaining a high
power quality, making it possible to implement the NN vector
controller in a real PMSM environment. In hardware experi-
mental conditions, a conventional controller usually needs to
be retuned whenever the motor parameters change. In con-
trast, the NN-based controller retains good performance under
a variety of runtime PM motor parameters, despite the NN
being trained using the nominal motor parameters of Table I.
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