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Abstract—While inferring human activities from sensors em-
bedded in mobile devices using machine learning algorithms
has been studied, current research relies primarily on sensor
data that are collected in controlled settings often with healthy
individuals. Currently, there exists a gap in research about how to
design activity recognition models based on sensor data collected
with chronically-ill individuals and in free-living environments.
In this paper, we focus on a situation where free-living activity
data are collected continuously, activity vocabulary (i.e., class
labels) are not known as a priori, and sensor data are annotated
by end-users through an active learning process. By analyzing
sensor data collected in a clinical study involving patients with
cardiovascular disease, we demonstrate significant challenges that
arise while inferring physical activities in uncontrolled environ-
ments. In particular, we observe that activity labels that are
distinct in syntax can refer to semantically-identical behaviors,
resulting in a sparse label space. To construct a meaningful label
space, we propose LabelMerger, a framework for restructuring
the label space created through active learning in uncontrolled
environments in preparation for training activity recognition
models. LabelMerger combines semantic meaning of activity
labels with physical attributes of the activities (i.e., domain
knowledge) to generate a flexible and meaningful representation
of the labels. Specifically, our approach merges labels using
both word embedding techniques from the natural language
processing domain and activity intensity from the physical
activity research. We show that the new representation of the
sensor data obtained by LabelMerger results in more accurate
activity recognition models compared to the case where original
label space is used to learn recognition models.

Index Terms—Machine learning, mobile health, activity recog-
nition, word embedding.

I. INTRODUCTION

Activity recognition is a an active research area with the
aim of automatically detecting physical activities performed
by people in their daily living situations. The recognition of
physical activities has become a task of significant interest
within the field, in particular for medical and health-related
applications such as in behavioral medicine. An application
of activity recognition in behavioral medicine is to design
interventions for individuals with, or at risk for, diabetes,
obesity, or heart disease where the the individuals are often
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required to follow a well-defined exercise regimen as part of
their treatment [1].

For activity recognition models to be reliable, it is critical
to collect labeled sensor data in end-user settings. The process
involves utilizing an active learning approach where end-users
provide annotations/labels of the sensor data through a user-
interface on their mobile device. However, labels provided
by end-users in uncontrolled environments introduce unique
challenges for learning reliable activity recognition models.
Here we categorize those challenges into three broad groups:

o Spatial disparity: we recognize that different individuals
can have different activity behaviors. When sensor data
are labeled by end-users, the constructed activity vocab-
ulary formed for one user can be different than that of
another user. This inter-user (i.e., spatial) label disparity
results in activity recognition models that cannot be used
across different users. As a result, we need to construct
an activity vocabulary for each user or aggregate labels
gathered from a large group of users to account for cross-
user behavior differences.

e Temporal disparity: because we do not place any re-
strictions on the data collection and sensor annotation
processes, users are not limited to expressing their activ-
ities according to a set of pre-defined labels. Therefore, a
user can express the same activity differently at different
times. This intra-user (i.e., temporal) disparity results
in labels that are different in syntax but identical in
semantic.

e Burden on user: we recognize that the process of data
labeling is a burden on the user, in particular when the
system in adopted by patients with chronic conditions.
Therefore, it is important to develop activity recognition
models using a small number of training instances labeled
by users.

To deal with the challenges of label disparity, LabelMerger
aims to restructure the label space of each user, or a group
of users, by grouping labels that are semantically similar
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Fig. 1: An example of restructured label space in LabelMerger.

and are associated with activities of similar intensities. An
example of such restructured label space in shown in Fig. 1
where 14 labels expressed by users are aggregated into three
groups, shown in green, blue, and red in the new label
space. The labels shown in this figure represent a subset of
labels expressed by participants in our clinical study. For
visualization, here a dimensionality reduction technique (e.g.,
PCA [2], t-SNE [3]) is used to illustrate the clusters in a 2D
coordinate. Because users use different expressions to describe
their activity behavior, there exist a substantial amount of
disparity in the data. As shown in Fig. 1, users use words
such as ‘shop’, ‘buy’, ‘purchasing’, ‘at store’, ‘shopping’, and
‘buying’ to express a particular activity behavior. Such label
disparities not only occur across users but also exist within
the same user at different times. Not addressing the problem
of label disparity (i.e., treating each discrete label expressed
by the user as a class label in the process of machine learning
algorithm training) will result in an unnecessary increase in the
number of classes and a decrease in the number of training
instances within each class. This in turn will result in learning
an activity recognition model that performs poorly because of
the low quality training data.

II. LABEL MERGER
A. Problem Statement

Let D = {(z1, v1), (%2, Y2), --.» (Tm.ym)} be the data
collected through the process of active learning where z;
represents i-th input sensor data instance and y; represents the
activity label associated with z;. The labels y; are drawn from
the set Lyser = {a1,a9,...,a,} of n discrete activity labels
expressed by the user. Our goal is to construct a compact and
meaningful label space Lierge = {l1,02,.... 15} with k < n
classes.

Having defined our input and desired output, we are in-
terested in finding a mapping function ® : R" — RF
that automatically transforms noisy labels in L., into k

groups, each consisting of similar activity labels. Therefore,
by applying our mapping function ® on the input labels L, ¢,
we will obtain & different groups of labels.

Since our machine learning task is activity recognition, a
reasonable objective is to ensure that activities that reside
in the same group in our final label space represent similar
physical activities. This problem is naturally a clustering
problem; however, we need to define appropriate features that
quantify similarity/dissimilarity among various activity labels
expressed by the user.

B. Feature Design for Label Space

We propose to extract two broad sets of attributes in label
space. The first set captures semantic meanings of the labels
using word embedding while the second set incorporates
physical attributes of human activities. Our feature vector uses
word vectors to obtain meaning of each label as well as
domain-specific measures such as metabolic equivalent of task
(MET) value associated with each activity. The use of semantic
meanings is motivated by spatial and temporal disparities
among labels acquired by different users or/and at different
time frames.

To construct the label space feature vector, instead of using
atomic symbols to represent each word, we use their vector
representations, which is a common approach to overcome
limitations of using atomic symbols. This approach utilizes a
window-based method where we count the number of times
that each word appears within a window of a particular size
centered around the word of interest. To this end, we use the
GloVe algorithm [4] and its available pre-trained vectors to
convert words to vectors.

However, as depicted in Figure Fig. 2(a), the GloVe algo-
rithm, takes only the meaning of the labels into account and
is not concerned about physical meaning/attributes of each
activity. For example, it can be observed that ‘swimming’
and ‘watching’ (or ‘swimming’ and ‘relaxing’) belong to the
same group while they are very different in terms of physical
attributes, activity intensity, and their impact on physical
health.

To address the limitation of using only semantic meaning
when defining features in the label space, we propose to
utilize a general form of ‘domain knowledge’ features which
can be application-dependent. For example, when designing
interventions for physical health, one may consider activity
intensity as a measure of physical fitness and well-being.
In contrast, activities such as ‘reading’, ‘swimming’, and
‘watching’ may need to be placed in the same group in the
label space for such health interventions.

To incorporated the domain knowledge, we use a well-
known measure of human physical activities, namely MET
(metabolic equivalent of task), as the sole feature used in
our domain-knowledge feature portion of the feature vector
computed in the label space. One motivation behind choosing
MET is that there is already calculated values for nearly all
common activities by Taylor Compendium of Physical Activity
[5]. However, our methodology presented in this research is
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Fig. 2: Importance of combined semantic and domain-
knowledge features for label merging: clusters formed using
only semantic features (a) and clusters obtained with combined
semantic meaning and MET values (b).

not limited to only MET values and one can use any valid
representation of human activities for inclusion in the feature
vector.

C. Algorithm

Here, we introduce a formal procedure to transform noisy
labels L, .., expressed by the user, to a target label set L,erge
in the new label space. For each activity label a; in Lyge,., We
perform the following tasks:

1) We obtain the equivalent word embedding of the activity
labels in L, qe;-

2) Because we might not have the MET value of the activity
label in our MET database (e.g., there is no pre-defined
MET value for ‘at Walmart store’), we find semantically
closest activity in the database and use its MET value
during computation of the feature vector. In this study,
we use cosine distance as a measure of similarity for
two word vectors. Note that if we have the exact same

Algorithm 1 LabelMerger Algorithm

1: Input: Noisy label set L,se-, number of clusters K, A
domain knowledge coefficient, word vectors W, and MET
values M
Output: clustering labels for Ly,erge
initialize feature vectors F' as an empty matrix.
for each label a; in L., do
v; = word vector of a;
w = argmin(cosine distance(l,v;))
m = normalized MET value of w
assign f = concatenate m X A
add f to feature vectors F’
end for
: do k-Means clustering on each row of F' as a data point
to get K clusters.
: return clustering labels as Liyerge
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activity in the MET database, the closest word will be
the the given label itself.

3) We add the MET value of the label to our feature vector.
However, we use the factor A to control the importance
of domain-knowledge with respect to semantic meaning
(i.e., word embeddings). A higher value of \ translates
into a higher weight assigned to domain knowledge (e.g.,
physical activity information) factor while constructing
a clustering of the labels.

After constructing feature vectors from all the noisy labels
in Lyger, we use k-Means to obtain k clusters in the label
space. Algorithm 1 shows the LabelMerger algorithm.

III. EXPERIMENTS AND RESULTS

A. Data Collection

This study was reviewed and approved by the appropriate
Institutional Review Boards. Participants were recruited from
a single outpatient tertiary care clinic, as well as by word of
mouth referrals. Participants were screened for study inclu-
sion to ensure their eligibility. Each participant was trained
about how to use smartphone device and respond to activity
prompts. They were asked to charge the phone each night. The
researchers sent an activity prompt to each participant as a test,
and observed them demonstrate their ability to respond prior
to beginning the data collection process. Participants were
instructed to respond to as many prompts each day as possible,
but to avoid responding or using the phone when driving or
operating heavy machinery. They were also instructed how to
add an activity to the list of activities in the Activity Learning
application [6]. Each participant was asked to provide labels
in response to activity prompts for two weeks. The activity
learning application was programmed to issue an activity
prompt on the smartphone every 2 hours between 8:00am and
8:00pm daily. We used the data of 13 participants who had
completed data collection by the time of conducting this data
analysis.



B. Learning Activity Recognition Model

For each acquired label, we assigned the label to a 5-second
window of the signal segment. From each signal segment,
we extracted various statistical features for gyroscope and
accelerometer which has been shown effective in identifying
daily living activities [7], [8]. This allowed us to form a
training dataset. To learn an activity recognition model using
this dataset, we split the data into 80% for training and 20%
for testing. Different classifiers that were used for classification
include ‘Random Forest® [9], ‘Support Vector Machine’ [10],
and ‘K-Nearest Neighbors’ [11] with K =1 and K = 3.

C. Results

As shown in Table I, by increasing the number of clusters
in label merging, which translates into an increased number
of classes for activity recognition, the machine learning task
becomes more difficult. The hardest problem is the baseline
approach where we do not perform any label merging and lean
an activity recognition model to classify activities according
to the initial labels expressed by each participant.

We compared the performance of the baseline approach
to that of scenarios where the number of clusters are less
that the number of initial classes (due to label merging). For
each participant, we calculated all of the following different
scenarios and reported the best performance:

« Using different number of clusters (2, 3 and 4) in addition

to the baseline.

o Using classifiers Random Forest, Support Vector Ma-

chine, 1-Nearest-Neighbor, and 3-Nearest-Neighbors

o Using different values from {1, 5, 10, 15, 20, 30, 40} for

A as defined in Algorithm 1.

participant \ baseline 2 clusters 3 clusters 4 clusters
1 0.48 0.77 0.71 0.55
2 0.67 1.0 1.0 0.67
3 0.56 0.89 0.78 0.56
4 0.33 0.95 0.81 0.52
5 0.6 1.0 1.0 0.8
6 0.4 0.9 0.9 0.8
7 1.0 1.0 1.0 1.0
8 0.72 0.94 0.83 0.89
9 0.2 0.9 0.7 0.7
10 0.57 0.86 0.71 0.71
11 0.5 1.0 1.0 1.0
12 0.17 0.72 0.72 0.56
13 0.2 1.0 0.8 0.6

average 0.49 0.91 0.84 0.72

TABLE I: Best activity recognition accuracy obtained with
participant-specific data.

In Table II, we report classification accuracy, recall, pre-
cision and F1 score for the case where we aggregated data
from individual participants into a large dataset. This problem
is much harder than the per-participant learning since we will
have many more different labels for a similar activity concept.
We can see a 50% improvement in accuracy if we only aim to
classify high-intensity versus low-intensity activities and 10%

improvement if we only group two similar labels together and
reach 16 different labels.

clusters AC RE PR F1
2 0.84 0.57 091 0.58
4 0.64 037 0.62 037
8 0.53 033 039 032
16 041 027 030 0.25

30 (baseline) 0.31 0.19 0.19 0.18

TABLE II: Performance with aggregated data from all users.

IV. CONCLUSION

We introduced several challenges that arise when deploying
human activity recognition in real-world settings. In particular,
we discussed that activity labels that are distinct in syntax
can refer to semantically-identical behaviors when data col-
lection occurs in uncontrolled environments. We proposed
LabelMerger to restructure the label space by combining
semantic meaning of activity labels with physical attributes of
the activities to generate a flexible and meaningful representa-
tion of the labels. We showed that this approach is promising
in improving activity recognition accuracy while maintaining
a meaningful representation of the labels.
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