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ABSTRACT
Recent advances in machine learning and deep neural networks
have led to the realization of many important applications in the
area of personalized medicine. Whether it is detecting activities
of daily living or analyzing images for cancerous cells, machine
learning algorithms have become the dominant choice for such
emerging applications. In particular, the state-of-the-art algorithms
used for human activity recognition (HAR) using wearable inertial
sensors utilize machine learning algorithms to detect health events
and to make predictions from sensor data. Currently, however, there
remains a gap in research on whether or not and how activity recog-
nition algorithms may become the subject of adversarial attacks. In
this paper, we take the first strides on (1) investigating methods of
generating adversarial example in the context of HAR systems; (2)
studying the vulnerability of activity recognition models to adver-
sarial examples in feature and signal domain; and (3) investigating
the effects of adversarial training on HAR systems. We introduce
Adar1, a novel computational framework for optimization-driven
creation of adversarial examples in sensor-based activity recog-
nition systems. Through extensive analysis based on real sensor
data collected with human subjects, we found that simple evasion
attacks are able to decrease the accuracy of a deep neural network
from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convo-
lutional neural network. With adversarial training, the robustness
of the deep neural network increased on the adversarial examples
by 49.1% in the worst case while the accuracy on clean samples
decreased by 13.2%.
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1 INTRODUCTION
Human activity recognition (HAR) is a major research area in the
field of mobile and ubiquitous computing. Its applications in health
monitoring, patients rehabilitation, assessment of performance in
athletes, and gaming industry [6] are the contributing factors for
the active research in this area. Moreover, advances in sensor tech-
nology and detection algorithms allow for real-time continuous
detection of activities with battery-powered devices of small form
factor to be used in daily life. In particular, the state-of-the-art
algorithms used for HAR using wearable inertial sensors utilize
machine learning algorithms to detect various biomarkers and to
provide real-time and continuous clinical interventions based on
the sensor data.

Recent studies have found that machine learning systems are
often vulnerable to adversarial perturbations. Even the addition of a
small amount of carefully computed perturbations to the clean sam-
ples degrade the performance of machine learning systems signifi-
cantly [5, 14, 23, 27]. What distinguishes adversarial perturbations
from random noise is that adversarial examples are misclassified
far more often than samples that have been perturbed by random
noise, even if the magnitude of noise is much larger compared
to the adversarial perturbation [27]. Adversarial inputs were first
formally described in [11], in which the researchers studied the
techniques used by spammers to circumvent spam filters. In recent
years, research on adversarial examples has witnessed tremendous
growth and in particular have been investigated in great details in
computer vision and audio processing researches [8, 14, 17].

Human activity recognition shares many challenges common to
other areas such as computer vision and natural language process-
ing but it also has its own unique challenges and requires dedicated
set of computational methods [7]. For example, the data used for
the classification of activities often comes from a collection of het-
erogeneous sensors with different characteristics unlike fixed and
well-defined sensing modules such as cameras and microphones.
Furthermore, unlike other areas where the problem is well defined
(e.g., "Is this an image of a dog?" or "Is the word Harry present in
this sentence?"), HAR algorithms need to deal with new challenges
due to (1) complexity of human movements captured from individ-
ual body joints and observed partially with wearable sensors; and
(2) lack of concrete definitions, languages or structure of human
activities [7]. For starter, human activity is highly complex and
diverse and the sensor readings for an activity can be very different
even if the activity is performed by the same person under similar
conditions compared to, for example, image classification where
an image of a dog is always a dog independent of the presentation
and context.

All this leads to the conclusion that HAR though sharing many
common points with the other research areas also have unique
sets of problems and challenges with socially unique outcomes. In
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fact, the issue of adversarial examples in HAR is mostly an unex-

plored topic despite the great magnitude of the consequences of

adversarial machine learning in behavioral medicine. For example,

imagine that someone falls and the detection algorithm fails to

detect this event or the system used to estimate clinical measures

such as activity level, eating, medication, etc. is underestimating or

overestimating due to an adversary. These events can have fatal out-

comes and therefore requires that we define and assess the effects

of adversarial examples in mobile health and behavioral medicine.

In this paper, we study the consequences of adversarial examples

for activity recognition models and propose an optimization-driven

framework called Adar for generating adversarial examples in ac-

tivity recognition systems. The contributions of this paper are as

follows.

• We introduce Adar framework for adversarial examples gen-

eration for human activity recognition systems.

• We successfully investigate optimization methods of gener-

ating adversarial examples in the context of HAR system.

• We study the vulnerability of activity recognition models

to adversarial examples with a comprehensive set of experi-

ments.

• We compare the robustness of a HAR system in feature and

signal domain. We also present the result after adversarial

training of an activity recognition model.

Note that most of the study focusing on adversarial examples stems

from the field of computer vision and speech recognition and it

remains to be shown the effect of adversarial examples in other

fields such as ubiquitous computing and mobile health. In general,

machine learning models that are both highly accurate and robust

to adversarial examples remains an open research problem to the

research community.

The rest of the paper is structured as follows: In section 2 we

explain the Adar framework and we also briefly review the human

activity recognition pipeline and explain different adversarial at-

tack methods and defense strategies. Following it, in section 3 we

describe our experiments and results.

2 ADAR FRAMEWORK DESIGN

Before discussing the details of the Adar framework, we will briefly

discuss human activity recognition pipeline and different types of

adversarial attacks.

2.1 Human Activity Recognition Pipeline

The problem of human activity recognition can be defined as: Given

a setW = {W0, ...,Wm−1} ofm equally sized temporal window of

sensor readings, such that each windowWi contains a set of sensor

reading S = {Si,0, ..., Si,k−1}, and a set A = {a0, ...an − 1} of n
activity labels, the goal is to find a mapping function f : Si → A
that can be evaluated for all possible values of Si [19]. As shown
in Figure 1 the activity recognition system generally consists of

sensing, signal processing, signal segmentation, feature extraction

and selection, and classification stages [20]. Raw data from vari-

ous sensors, such as accelerometer, gyroscope, magnetometer, etc.

are collected and passed into the signal processing stage, where

filtering, noise removal, etc. are applied to the sensor signals. This

is followed by a segmentation stage, where a continuous stream

of a signal is divided into temporal windows. For segmentation

the sliding window method is used most widely due to its simplic-

ity and real-time performance. After segmentation, statistical and

structural features are extracted from each window segment. In

feature extraction, the size of the sliding window has significant

effects on the accuracy and speed of the system. Larger window size

can support the detection of complex activities but result in slower

processing whereas smaller window supports faster processing at

the expense of accuracy [12]. Usually, a window size of 1-2 second

with 50% overlap between the successive windows is considered a

good choice[3]. Following the feature extraction, feature selection

may be used to select out the best features from the collection of

features. Finally, a machine learning classifier is trained on the fea-

ture data and the trained classifier is used to make the inference on

the future unseen data. Recently, with the success of convolutional

neural networks (CNN) several works have been published [4, 15]

where a CNN is used for activity detection.What separates the CNN

approach from other machine learning approaches is that CNN’s

completely remove the need to compute features from raw sensor

signal for classification. The input to the CNN model is usually

the raw sensor signal with or without segmentation, and the CNN

model learns the features and the classifier simultaneously during

the training process.

Signal Processing

Sensors

Signal Segmentation

Sensor System

Feature Extraction

Learning and Inference

Recognition Model

Figure 1: The general framework of human activity recognition sys-

tem.

2.2 Adversarial Attacks

Adversarial examples are inputs formed by applying small but

intentional perturbation to the inputs from the dataset such that

the perturbed inputs are almost indistinguishable from the true

inputs and results in the model outputting an incorrect answer with

high confidence [14]. The objective of adversarial learning is to

find a perturbation δ which when added to the true inputs X i.e.,

Xadv = X + δ changes the output of the model. The noise level

of the perturbation is constrained by the l∞ norm denoted by ϵ
such that the added perturbation is sufficiently small. In general,

an adversary can attack a machine learning system in three ways:
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(1) Confidence reduction or poisoning attack: In confidence

reduction or poisoning the adversary attempts to degrade

the system performance by inducing false connection during

training process by corrupting the training data.

(2) Evasion attack: There are two types of evasion attack: (1) Mis-

classification attack, and (2) Source/target misclassification

attack. In misclassification attack, the adversary computes

adversarial examples which are intended to be classified into

any class other than the true class. This is also called un-

targeted attack. In source/target misclassification attack the

adversary defines the target class in which it intends to have

the model misclassify an input belonging to any class. This

is also called targeted attack.

(3) Exploratory attack: In exploratory attack, an adversary tries

to gain as much knowledge as possible about the learning

algorithm of the target system and the pattern in its training

data.

Furthermore, the strength of an adversary is characterized by its

ability to operate either in a white-box setting or in a black-box

setting [13]. An adversary with access to the target system’s ar-

chitecture, parameters, and data is said to operate in a white-box

setting and an adversary with no knowledge of the target system

is said to operate in a black-box setting. A large number of evasion

attack methods has been proposed that can be used to compute ad-

versarial examples. In our experiments, we have used the simplest

attack methods because of their low computational cost. Now, we

will briefly explain these attack methods by using the following

notations.

• X , is a true input taken from the dataset. In our case X can

be either a feature vector or a window of raw sensor values.

• Xadv , is an adversarial sample. It’s type will be the same as

the type of X .
• ytrue , is the true class label for the input X .
• Jθ (X ,y), is the cross-entropy cost function of the neural net-
work with parameters θ , given inputX and labely. Note that
after training the network, the parameters of the network

remains fixed.

• Clipx,ϵ (A), denotes the element-wise clipping ofA, withAi, j
clipped in the range of [Xi, j − ϵ , Xi, j + ϵ].

2.2.1 Fast gradient sign method (FGSM). Fast gradient sign method

is one of the simplest and computationally efficient technique of

generating adversarial examples. Proposed by Goodfellow et al. [14],

this method is motivated by the linearizing of the cost function and

solving for perturbations bounded by ϵ that maximizes the cost
subject to the L∞ norm.

Xadv = X + ϵsiдn(∇X Jθ (X ,ytrue )) (1)

2.2.2 One step target class method. One step target class method

tries to maximize the probability p(ytarдet |X ) of some specific
target class ytarдet , which is unlikely to be the true class for the
input X . This is different from the FGSM, in which we try to find

adversarial perturbations that increase loss for all classes[17].

Xadv = X − ϵsiдn(∇X Jθ (X ,ytarдet )) (2)

2.2.3 Basic iterative method. This method is a simple extension

of the fast gradient sign method and applies FGSM multiple times

with small step size.

Xadv
0 = X ,

Xadv
N+1 = ClipX ,ϵ {Xadv

N + αsiдn(∇X Jθ (X ,ytrue ))}
(3)

α is the step size and is set to ϵ/number of iterations in our ex-

periments. The number of iterations is set to 10 for all iterative

methods.

2.2.4 Iterative least-likely class method. Similar to the basic itera-

tive method which applies FGSM multiple times the iterative least-

likely class method applies the one step target class methodmultiple

times with target class set to the least likely class for the given input.

Xadv
0 = X ,

Xadv
N+1 = ClipX ,ϵ {Xadv

N − αsiдn(∇X Jθ (X ,
(4)

2.3 Generating Adversarial Examples

Direction sensitivity
estimation 

Perturbation selection

X
Misclassification check 
M(X + dx) = y_target

dx

X + dx

No

Adversarial examples 

Yes 
X* = X + dx

Sensor System

Recognition Model (M)

Human Activity Recognition Pipeline

Clean samples
White-box Attack Setting

Figure 2: Adar framework for adversarial examples generation in

human activity recognition systems.

Figure 2 shows the proposed Adar framework for computing

adversarial examples in human activity recognition systems. This

is a general framework and is based on the white-box attack set-

ting, in which an adversary has complete knowledge of the target

system. The framework has two components: (1) the human ac-

tivity recognition pipeline, and (2) the gradient-based attack in a

white-box setting. After the HAR pipeline, the trained model is

used to compute adversarial examples using gradient-based attacks

methods such as fast gradient sign method, basic iterative method

or one step target class method. Direction sensitivity estimation

finds dimensions of inputsX that will produce the desired adversar-

ial behavior with the smallest perturbation. Perturbation selection

uses this knowledge to select perturbations δ affecting sample X ’s
classification [24]. If the resulting sample X + δ is misclassified by
the modelM into the target class ytarдet , an adversarial example
X ∗ has been found. If not, the steps can be repeated with updated
input X + δ . It has been shown that an adversarial example that
was designed to be misclassified by model M1 is often also misclas-

sified by modelM2 [27]. This is called the transferability property

of adversarial examples and it means that we can generate adver-

sarial examples and perform misclassification attack on a system

without having any knowledge of the system [23]. Therefore an

adversary operating in a black-box setting can attack a machine
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learning system by building a substitute model and then computing

the adversarial examples using the substitute model. This approach

has been successfully demonstrated in [22]. Due to this reason and

for the low computational cost of generating adversarial examples

the Adar framework is based on the white-box setting.

2.4 Defense Strategies

There has been a lots of work to build practical defenses against

adversarial examples, but a defense technique that is robust against

the entire spectrum of adversarial attack is still an open problem.

Most of the current defense methods are not adaptive to all types

of attacks and one method may block one kind of attack but leaves

another vulnerability open for other kinds of attacks [9]. The exist-

ing defense mechanism can be categorized into the following types

based on their method of implementation.

(1) Adversarial training: The general idea of adversarial training

is to augment the training data with adversarial examples

during the training process. Adversarial training increases

the robustness of the model against white-box attacks when

the attack method used to augment the training set is the

same as the method used by the attacker for the attack [10].

In a black-box setting and for an attackmethod different from

that used for adversarial training this approach performs

poorly.

(2) Gradient hiding: Gradient hiding is a natural defense against

gradient-based attacks, and is based on hiding information

about the model’s gradient from an adversary. However, this

defense is easily fooled by learning a substitute model and us-

ing the gradients of the substitute model to craft adversarial

examples [9].

(3) Defensive distillation: Distillation is a way to transfer knowl-

edge from a large neural network to a smaller one. In [24]

the authors used distillation to formulate a defense against

adversarial attacks. In defensive distillation, the output prob-

ability of a neural networkM is used as the label for training

a newer networkM∗ of same architecture on the same train-
ing data.

3 EXPERIMENTS AND RESULTS

3.1 Dataset

In our experiments, we have used the UCI dataset [2] compiled

from a group of 30 participants each wearing a smartphone on their

waist and performing 6 different activities: standing, sitting, laying,

walking, walking upstairs, and walking downstairs. The sensor

data consists of a 3-axial accelerometer and a 3-axial gyroscope

sampled at a frequency of 50Hz. The sensor readingswere filtered to

remove noise and then segmented into windows of size 2.56 seconds

(i.e. 128 readings per window) with 50% overlap. The acceleration

values were separated into gravity and body component using

a Butterworth low pass filter with a cutoff frequency of 0.3 Hz.

From each window, 561 features was computed from time and

frequency domain. There are 10299 samples in the dataset with

7352 training samples and 2947 test samples. The availability of

raw sensor reading in the dataset allows us to explore adversarial

examples in both feature and signal domains.

3.2 Adversarial examples in feature domain

Figure 3: The accuracy of different classifiers computed on 2947 test

samples in the dataset.

In the first experiment, we trained multiple classifiers on the

full (561) features data. Figure 3 shows the accuracy of these classi-

fiers on the test data. A deep neural network (DNN) of architecture

(64, 32, 6) with l2-regularization (0.001) on the first and second

layer gave the best results in terms of accuracy and complexity.

We settled on this configuration after testing multiple DNNs with

different configurations. TensorFlow [1] was used to build the DNN

with training parameters: 50 epoch, mini-batch size of 32, Adam

optimizer, and sparse categorical cross-entropy loss. All other clas-

sifiers were trained with their default settings using the sklearn [25]

library. We used the CleverHans [21] library to compute adversarial

examples in all cases.

Figure 4: The accuracy of the DNNmodel for the untargeted attack.

The value of ϵ varies from 0.01 to 1.0 and for iterative methods the

number of iteration was set to 10.

Figure 4 shows the accuracy of the DNN model at different

values of ϵ ∈ [0.01, 0.05, 0.1, 0.5, 1], for the untargeted attack. With

an increase in the value of ϵ the success rate of the adversarial
examples also increased (as shown by the decrease in accuracy) for

all methods. Initially, the least likely method was the least effective

but with the increase in ϵ it was able to exceed other methods. The
fast gradient sign method and the basic iterative method performed

almost the same at all values of ϵ except at ϵ = 1. At ϵ = 1 the

success rate of the basic iterative method decreased compared to the

fast gradient sign method. We experimented with different values

for the number of iterations and found that with a lower number of

iterations, the basic iterative method was able to achieve a similar
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success rate as that of fast gradient sign method. This is due to

the nature of data, which is normalized between [-1.0, 1.0], such

that at higher values of ϵ , the gradient of the cost function starts
overshooting and the iterative method fails to find the optimum

perturbations.

For the transferability of attack, we tested the adversarial exam-

ples computed for the untargeted attack on the DNN model on all

other classifiers. Figure 6, shows the accuracy of these classifiers.

We can see the transferability of attack exists and the accuracy of all

classifiers decreased with increase in the value of ϵ . The k-nearest
neighbors (kNN) classifier was found to be the most robust com-

pared to other classifiers in all cases. This is consistent with the

observation in [28], where the authors showed that a kNN classifier

is usually more robust to adversarial examples and its robustness

depends on the properties of the data distribution and on the value

of k. However, it has been shown that with complex attack methods

adversarial examples can be computed that can fool a kNN model

with high success rate [26].

Figure 5: The accuracy of the DNN model for targeted attack. The

value of ϵ varies from 0.01 to 1.0 and for iterative methods the num-

ber of iteration was set to 10.

Figure 5 shows the accuracy of the DNN model at different val-

ues of ϵ for the targeted attack. One step target class method and
the basic iterative method was used to compute the adversarial

examples with Sit activity class as the target class. Figure 7 shows

the confusion matrix of the DNN model on the clean test samples

and adversarial examples. In the figure, WalkU and WalkD repre-

sent walking upstairs and walking downstairs respectively. It is

clear that the one step target class method is more competent at

untargeted misclassification attack than the basic iterative method,

and the basic iterative method is more successful at targeted mis-

classification attack. This is due to the fact that one step target

method adds ϵ-scaled noise to each sample whereas the iterative
methods exploit much finer perturbations and therefore is able to

find perturbations that cause the classifier to classify an input into

a particular class.

3.3 Adversarial examples in signal domain

One another approach of building human activity recognition sys-

tem is by using data-driven methods such as hidden Markov model

(HMM), hidden conditional random fields (HCRF), and convolu-

tional neural network (CNN). These methods learn the features

and classifier simultaneously from the raw sensor signal without

any prior knowledge of sensor signals and eliminate the need to

calculate hand-crafted features for classification. In recent years,

methods involving CNN’s have shown very good results compared

to other methods. This is because the signal representation learned

by CNN models capture the local dependency and scale invariance

in the signal exceptionally well.

In this section, we will discuss adversarial examples in the signal

domain. The UCI dataset has sensor readings from an accelerometer

and a gyroscope, making it a multi-modal dataset. For multi-modal

data 2D convolutional neural networks are considered to work best

because of their ability to capture local dependency among the tem-

poral dimension as well as spatial dimension [16]. For the purpose

of simplicity, we have used a 1D kernel in the following experi-

ments and we are confident that similar results will be obtained

with a 2D kernel. We have used a ConvNet architecture composed

of two 1D convolutional layers with 64, 32 filters and kernel size of

5 and 3 respectively. This is followed by 3 ∗ 1 max-pooling layer
and then three dense layers of sizes 64, 32, and 6.

Table 1: The accuracy of the CNN model for the untargeted attack

with different attackmethods and at different values of ϵ . The accu-

racy was computed on all 2947 test samples in the dataset.

Epsilon (ϵ) Attack methods

Fast gradient sign Basic iterative Least likely

ϵ = 0.01 90.77% 90.63% 92.09%

ϵ = 0.05 70.44% 64.43% 75.63%

ϵ = 0.1 44.18 % 34.06% 39.02%

ϵ = 0.5 26.63% 3.49% 1.69%

ϵ = 1 16.83% 1.42% 1.01%

Table 2: The success rate of the targeted adversarial attack on the

CNN model at different values of ϵ . The values represent the num-

ber of samples that were successfully classified into the target class

over the total number of samples. The target activity class was Sit.

Epsilon (ϵ) Attack methods

One step target class Basic iterative

ϵ = 0.01 17.71% 17.78%

ϵ = 0.05 22.12% 23.31%

ϵ = 0.1 30.50 % 36.81%

ϵ = 0.5 4.64% 95.01%

ϵ = 1 0% 90.19%

Table 1 shows the accuracy of the CNN model for untargeted

misclassification attack. With the increase in the value of ϵ , the ac-
curacy of the model decreases for all attack methods. The decrease

in accuracy for the same value of ϵ is largest for the basic iterative
method. This is because the basic iterative method is better suited

to search the model’s input space and find perturbations that can

fool the target system with higher confidence. The similar pattern

follows for the targeted attack as seen in Table 2. It shows the suc-

cess rate of the targeted attack which is defined as the ratio of the

number of adversarial examples that are classified into the target
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Figure 6: The accuracy of different classifiers on the adversarial examples computed using fast gradient sign, basic iterative, and least likely

methods for the untargeted attack on DNN model. The default settings were used for training all classifiers, except the deep neural network

which we described ahead.

Figure 7: Confusion matrix of the DNN model on true test samples and targeted adversarial examples computed using one step target class

method and basic iterative method at ϵ = 1.0. The y-axis represents the true label and the x-axis represents the predicted label.

class (Sit activity) to the total number of samples. One interesting

thing to note here is that at higher values of ϵ one step target class
method performs poorly compared to at lower values of ϵ . This
is because at higher values of ϵ the input samples are completely
destroyed by the addition of ϵ-scaled noise to them. Since the ad-
versarial examples computed for the CNN model is in the signal

domain, and we call these adversarial signals.

Figure 8 shows the x-channel of the body acceleration signal at

different values of ϵ for fast gradient sign method and basic iterative
method. As we can see, the fast gradient sign method is just adding

ϵ-scaled noise to the clean signal whereas the basic iterative method
is following the signal pattern more closely and the added noise

preserves the temporal characteristics of the signal.

Figure 8: Adversarial signal for the x-channel of body acceleration

at different values of ϵ .

3.4 Adversarial training as a defense

Adversarial training, which augments the training data with ad-

versarial examples, is a well-known defense used to improve the

robustness of a machine learning system against adversarial attacks.

In this section, we will discuss the effect of adversarial examples

on a deep neural network (DNN) trained using adversarial training.

We also compare the performance of this model with a baseline

mode i.e., a DNN model without adversarial training. We used the

algorithm defined in [18] for adversarial training of the DNNmodel.

In all cases we trained the model with a mini-batch size of 32, in

which half the samples were clean and the other half were adversar-

ial. It has been shown that if a fixed value of ϵ is used to compute
adversarial examples during adversarial training then the trained

model become robust only to that specific value of ϵ [18]. Hence, in
our experiments at each epoch a random value of ϵ , taken from a

truncated normal distribution defined in interval [0, 1] with under-

lying normal distribution N (μ = 0,σ = 0.5) was used to compute
adversarial examples. In particular, we tested three cases of adver-

sarial training for the DNN model. In the first case, we used the fast

gradient sign method to compute adversarial examples during the

adversarial training. After training, the robustness of the trained

model was tested on the adversarial examples computed using fast

gradient sign method at different values of ϵ . Table 3 shows the
accuracy of the baseline model and an adversarially trained model.

As we can see adversarial training increased the robustness of the

baseline model at all values of ϵ but also resulted in decrease in
accuracy by 13.88% on clean test samples.
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Table 3: Accuracy of the baseline and an adversarially trained mod-

els on clean test samples and adversarial examples. Fast gradient

sign method was used to compute adversarial examples for both

training and testing.

Epsilon (ϵ) Classifiers

Baseline Adversarial training

clean 95.11% 81.23%

ϵ = 0.01 92.97% 90.12%

ϵ = 0.05 51.95% 57.31%

ϵ = 0.1 23.85% 46.31%

ϵ = 0.5 4.37% 50.69%

ϵ = 1 3.42% 52.49%

Table 4: Accuracy of the baseline and an adversarially trained mod-

els on clean test samples and adversarial examples. One step target

class method with the least likely class as the target class was used

to compute adversarial examples for both training and testing.

Epsilon (ϵ) Classifiers

Baseline Adversarial training

clean 95.11% 81.23%

ϵ = 0.01 92.53% 94.70%

ϵ = 0.05 48.18% 69.05%

ϵ = 0.1 22.97% 55.24%

ϵ = 0.5 1.9% 23.04%

ϵ = 1 1.15% 16.38%

Table 5: Accuracy of the baseline and an adversarially trained mod-

els on clean test samples and adversarial examples computed using

the basic iterative method at different ϵ values. The target classes

for the adversarial examples were set to the least likely class. Here

the first adversarially trained model M1 uses fast gradient sign

method to compute adversarial examples and model M2 uses one

step target class method with the least likely class as the target la-

bel to compute adversarial examples during adversarial training.

Epsilon (ϵ) Classifiers

Baseline Adversarial train-

ing fgsm

Adversarial train-

ing one step target

clean 95.11% 81.23% 81.23%

ϵ = 0.01 94.09% 94.97% 95.38%

ϵ = 0.05 69.83% 85.91% 80.59%

ϵ = 0.1 45.47% 82.21% 67.05%

ϵ = 0.5 0.23% 44.14% 4.3%

ϵ = 1 0% 3.35% 0.61%

In the second case, we used the one step target class method

with the least likely class as the target class to compute adversarial

examples for both training and testing. Table 4 shows the accuracy

of the baseline model and an adversarially trained model. Compared

to the adversarial training using the FGSM method, the one step

target class method has improved the model performance at smaller

values of ϵ but at larger values, the performance has decreased
significantly.

Finally, in the third case, we tested the robustness of adversarially

trained models M1(trained using fast gradient sign method) and

M2 (trained using one step target class method) on the adversarial

examples computed using the basic iterative method with least

likely class as the target class. Table 5 shows the result. As expected

the iterative method was able to degrade the performance of both

M1 andM2 severely at higher values of ϵ . This shows that iterative
methods are more competent at finding adversarial examples that

can fool a model with high confidence.

4 CONCLUSIONS AND FUTUREWORK

In this paper, we introduced the Adar computational framework

for computing adversarial examples for inertial sensor-based activ-

ity recognition systems. We investigated different gradient-based

evasion attack methods and showed that even computationally

simple attack methods can significantly degrade the performance

of the activity recognition models. In particular, we found that the

accuracy of the deep neural networks trained on the features data

decreased from 95.2% to 3.4% and the accuracy of the convolutional

neural network trained on the window segments of sensor signal

decreased from 93.1% to 16.8%. We also showed the transferability

of untargeted attacks in the feature domain and found that the

k-nearest neighbor and decision tree classifiers were more robust

compared to the other classifiers at all values of ϵ . We observed that

adversarial training provides robustness to adversarial examples

generated using one-step attack methods, but fails against iterative

attack methods. In the worst case with adversarial training the

robustness of the deep neural networks increased by 49.1% but at

the same time suffered a loss in accuracy by 13.2% on clean test

samples.

Our results in this paper have extremely important implications

in behavioral medicine and mobile health, where detecting human

behavior is at the center of clinical interventions. The vulnerability

of activity recognitionmodels to adversarial examples not only jeop-

ardize the validity of behavioral interventions that rely on accurate

detection of physical and behavioral context such as dietary intake,

medication adherence, opioid dependence, smoking behavior, hy-

dration status, and physical activity but also opens up risk points

that can have serious impacts on people lives. In this work, we only

scratched the surface studying the consequences of adversarial ex-

amples in human activity recognition systems, and there remains

a need to fully understand and define adversarial attacks for HAR

systems in a much greater extent. From the lack of standardization

to the nature of the HAR systems, the topic of adversarial example

has many facets in activity recognition models. The results of our

work also ask many important questions. Should we consider the

CNN model more suitable for activity recognition acknowledging

the fact that the CNN models were more robust compared to DNN

models and also has an advantage of learning features and classifier

directly from the sensor data? We also showed the existence of

adversarial signals using CNN models. This opens up newer di-

mensions in the study of adversarial attacks because the ability to

generate adversarial examples at the raw signal level implies that

many other data processing blocks such as segmentation and pre-

processing are also vulnerable to adversarial attacks. This suggests

that the study of adversarial attacks in the context of sensor-based
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systems need to extend beyond conventional feature-level attacks.
What are ramifications of adversarial signals and how can we use
the information from the adversarial signals to impact the sensor
system remains an open question. Some of the limitations of our
work are as follows:

(1) Since there are no standard datasets and activity recognition
models we have carried out our experiments with simple
models built from scratch and trained on a single dataset.
A follow up on our work can show the effects of adversar-
ial examples on activity recognition models with multiple
datasets.

(2) In our experiments, we have only considered the white-box
attack setting. A follow up on our work will be to design
adversarial attacks on activity recognitionmodel in the black-
box setting.

ACKNOWLEDGMENTS
This work was supported in part by the United States National Sci-
ence Foundation under grant CNS-1750679. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
funding organizations.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis
Reyes Ortiz. 2013. A public domain dataset for human activity recognition
using smartphones. In 21th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2013. 437–442.

[3] Oresti Banos, Juan-Manuel Galvez, Miguel Damas, Hector Pomares, and Ignacio
Rojas. 2014. Window Size Impact in Human Activity Recognition. Sensors (Basel,
Switzerland) 14, 4 (April 2014), 6474–6499. https://doi.org/10.3390/s140406474

[4] Antonio Bevilacqua, Kyle MacDonald, Aamina Rangarej, Venessa Widjaya, Brian
Caulfield, and Tahar Kechadi. 2019. Human Activity Recognition with Con-
volutional Neural Networks. In Machine Learning and Knowledge Discovery
in Databases. Vol. 11053. Springer International Publishing, Cham, 541–552.
https://doi.org/10.1007/978-3-030-10997-4_33

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion Attacks against
Machine Learning at Test Time. arXiv:1708.06131 [cs] 7908 (2013), 387–402.
https://doi.org/10.1007/978-3-642-40994-3_25

[6] Judit Bort-Roig, Nicholas D. Gilson, Anna Puig-Ribera, Ruth S. Contreras, and
Stewart G. Trost. 2014. Measuring and influencing physical activity with smart-
phone technology: a systematic review. Sports Medicine (Auckland, N.Z.) 44, 5
(May 2014). https://doi.org/10.1007/s40279-014-0142-5

[7] Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A Tutorial on Human
Activity Recognition Using Body-worn Inertial Sensors. ACM Comput. Surv. 46,
3 (Jan. 2014), 33:1–33:33. https://doi.org/10.1145/2499621

[8] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah
Sherr, Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden Voice
Commands. 513–530. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/carlini

[9] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. 2018. Adversarial Attacks and Defences: A Survey.
arXiv:1810.00069 [cs, stat] (Sept. 2018). http://arxiv.org/abs/1810.00069 arXiv:
1810.00069.

[10] Ting-Jui Chang, Yukun He, and Peng Li. 2018. Efficient Two-Step Adversarial
Defense for Deep Neural Networks. arXiv:1810.03739 [cs, stat] (Oct. 2018). http:
//arxiv.org/abs/1810.03739 arXiv: 1810.03739.

[11] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. 2004.
Adversarial classification. In Proceedings of the 2004 ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’04. ACM Press, 99.
https://doi.org/10.1145/1014052.1014066

[12] G. Ding, J. Tian, J. Wu, Q. Zhao, and L. Xie. 2018. Energy efficient human activity
recognition using wearable sensors. In 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW). 379–383. https://doi.org/10.1109/
WCNCW.2018.8368980

[13] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. 2018. Making Machine
Learning Robust Against Adversarial Inputs. Commun. ACM 61, 7 (June 2018),
56–66. https://doi.org/10.1145/3134599

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. CoRR (2014). https://doi.org/abs/1412.6572

[15] S. Ha and S. Choi. 2016. Convolutional neural networks for human activ-
ity recognition using multiple accelerometer and gyroscope sensors. In 2016
International Joint Conference on Neural Networks (IJCNN). 381–388. https:
//doi.org/10.1109/IJCNN.2016.7727224

[16] S. Ha, J. Yun, and S. Choi. 2015. Multi-modal Convolutional Neural Networks for
Activity Recognition. In 2015 IEEE International Conference on Systems, Man, and
Cybernetics. 3017–3022. https://doi.org/10.1109/SMC.2015.525

[17] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. arXiv:1607.02533 [cs, stat] (July 2016). http://arxiv.org/abs/
1607.02533 arXiv: 1607.02533.

[18] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial Machine
Learning at Scale. arXiv:1611.01236 [cs, stat] (Nov. 2016). http://arxiv.org/abs/
1611.01236 arXiv: 1611.01236.

[19] Oscar D. Lara and Miguel A. Labrador. 2013. A Survey on Human Activity
Recognition using Wearable Sensors. IEEE Communications Surveys & Tutorials
15 (2013), 1192–1209. https://doi.org/10.1109/SURV.2012.110112.00192

[20] Loc Tan Nguyen. 2017. Enhanced Human Activity Recognition on Smartphone by
Using Linear Discrimination Analysis Recursive Feature Elimination Algorithm.
In Context-Aware Systems and Applications. Springer International Publishing,
72–81.

[21] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Fein-
man, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexan-
der Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin
Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke,
Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber, and Rujun Long.
2018. Technical Report on the CleverHans v2.1.0 Adversarial Examples Library.
arXiv preprint arXiv:1610.00768 (2018).

[22] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. 2017. Practical Black-Box Attacks Against Machine
Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’17). ACM, New York, NY, USA, 506–519.
https://doi.org/10.1145/3052973.3053009 event-place: Abu Dhabi, United Arab
Emirates.

[23] Nicolas Papernot, Patrick McDaniel, and Ian J. Goodfellow. 2016. Transferability
in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial
Samples. ArXiv e-prints (2016). http://arxiv.org/abs/1605.07277

[24] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2015. Distillation as a Defense to Adversarial Perturbations against Deep Neural
Networks. arXiv:1511.04508 [cs, stat] (Nov. 2015). http://arxiv.org/abs/1511.04508
arXiv: 1511.04508.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[26] Chawin Sitawarin and DavidWagner. 2019. On the Robustness of Deep K-Nearest
Neighbors. arXiv:1903.08333 [cs, stat] (March 2019). http://arxiv.org/abs/1903.
08333 arXiv: 1903.08333.

[27] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
ICLR (2014). https://doi.org/abs/1312.6199

[28] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. 2017. Analyzing the Ro-
bustness of Nearest Neighbors to Adversarial Examples. arXiv:1706.03922 [cs,
stat] (June 2017). http://arxiv.org/abs/1706.03922 arXiv: 1706.03922.


