
Resource-Efficient Computing in Wearable Systems
Mahdi Pedram∗, Mahsan Rofouei†, Francesco Fraternali‡, Zhila Esna Ashari∗, Hassan Ghasemzadeh∗

∗Electrical Engineering and Computer Science, Washington State University
{mahdi.pedram, z.esnaashariesfahan, hassan.ghasemzadeh}@wsu.edu

†Google
rofouei@gmail.com

‡Computer Science and Engineering, University of California San Diego
frfrater@eng.ucsd.edu

Abstract—We propose two optimization techniques to minimize
memory usage and computation while meeting system timing
constraints for real-time classification in wearable systems. Our
method derives a hierarchical classifier structure for Support
Vector Machine (SVM) in order to reduce the amount of com-
putations, based on the probability distribution of output classes
occurrences. Also, we propose a memory optimization technique
based on SVM parameters, which results in storing fewer support
vectors and as a result requiring less memory. To demonstrate the
efficiency of our proposed techniques, we performed an activity
recognition experiment and were able to save up to 35% and 56%
in memory storage when classifying 14 and 6 different activities,
respectively. In addition, we demonstrated that there is a trade-
off between accuracy of classification and memory savings, which
can be controlled based on application requirements.

I. INTRODUCTION

Emerging embedded wireless sensor systems are targeting a
broad range of applications such as on-body monitoring sys-
tems. Examples of such systems are activity logging systems
[1], sleep monitoring devices [2] and on-body temperature
measurement systems [3]. Although the signals measured
from these sensor systems contain valuable information, they
require certain amount of processing, memory and power for
interpreting these signals and detecting a specific condition.
Many of the emerging applications that benefit from such sys-
tems require real-time interpretation of sensor measurements.

Due to the limitations such as storage and processing power,
most of current embedded sensor systems assume that data
is transferred to a base-node for offline processing. However,
some emerging applications require resource-efficient algo-
rithms that can run real-time. As body-worn sensor systems
are becoming more pervasive, local processing is becoming
desirable because of avoiding interference effects from other
radio signals transmitting data. Therefore, it is beneficial
in terms of reliability. Also, time constraints imposed by
application needs, is crucial in the execution of tasks. A
small time delay may cause malfunctioning or even failure
in execution. In addition, communication system is the main
culprit to consume most of the energy in wearable sensors
[4]. Therefore, local processing is also beneficial in terms of
minimizing the amount of traffic.

Low energy consumption is one of the key design goals of
the current embedded sensor systems. Typically programmable
processors are the core of such systems. Power analysis of

these processors indicates that a significant amount of power
is consumed in the on-chip (instruction) memory hierarchy
[5]. Also, minimizing memory requirements has direct impact
on systems performance, power dissipation, reducing the size
and overall cost of an embedded system [6]. Thus, from an-
other perspective reducing the number of instructions executed
based on real-time events lowers the system overall power
consumption.

In addition to application-specific requirements, real-time
annotated classified data can also enable further power saving
mechanisms that include turning off sensor nodes which are
not needed based on activity being performed. Also, classified
data enables memory saving in this way that only annotated
features can be stored instead of complete raw signals. Fur-
thermore, real time classification can reduce the amount of
processing based on specific activities required processing. For
instance, a fall detection application or a gait cycle detection
such as [7] and [8] are interested in certain gait features to
predict events early enough for alerting the user. Therefore,
user activities need to be classified in real-time and before a
deadline to enable this. Thus, real-time classification can be
used for detecting context (e.g. Physical activity), in ubiquitous
context-aware applications.

In this work, we use Support Vector Machine (SVM) [9],
as a supervised learning framework for interpreting real-time
measured signals and classifying states. SVMs are in wide-
spread use and are popular in medical applications mainly
because of their robustness when minimal training data is
available. Based on the above discussion, our contribution in
this work is twofold: First, we derive a hierarchical classifier
model using Support Vector Machines (SVM) that inherently
reduces the amount of computation by classifying events more
likely to happen, earlier in the decision path while at the same
time guaranteeing to meet time constraints for classification.
Our second contribution is a memory optimization technique
that organizes classifier parameters and results in requiring less
memory for classifier implementation.

II. RELATED WORK

Advances in bio-engineering have led to increasing num-
ber of systems that require real-time classification of bio-
signals. For example, real-time classification of EMG signals
for prosthetic devices for paralyzed individuals [10]. Another

example is real-time classification of ECG data for detecting
heart rhythm irregularities [11]. Other systems are ones that
classify different states of the body by monitoring various
physiological measurements with applications to fall detection,
energy expenditure calculations and etc. [1].

One of the limitations of on-line classification on nodes is
memory requirements. In order to reduce energy consumption
of the memory subsystem in embedded systems, researchers
have investigated the ways to decrease the energy needed for
both instruction and data memory. For decreasing instruction
memory energy, several approaches have been suggested in-
cluding reducing memory access count [12] and reducing bus
activity [13]. The work in [12] applies instruction compression
to reduce memory access count. Several approaches have also
been suggested for reducing data memory energy, including
loop transformation and data layout optimization [6].

In this work, we use Support Vector Machine (SVM) [9]
to perform activity recognition. The SVM classifier approach
is a popular choice specifically in activity recognition [14],
[15]. The work in [14] presents an SVM-based classification
approach that achieves 98% average accuracy for classifying
six different postures and activities. A multimodal physical
activity recognition system is developed in [15] by fusing
both ambulatory Electrocardiogram (ECG) and accelerometer
information together to reach a classification accuracy of
97.3%.

There has been several attempts to enable real-time classi-
fication using SVMs on embedded systems [16], [17]. [16]
focuses on proposing new a approach for implementing SVM
on digital architectures such as FPGAs. Lee, et. al. [18] present
a formulation for kernel function of a SVM classifier. Their
proposed changes result in reductions in the amount of real-
time computations required for classification. However the
changes in [18] only apply to kernel functions employing
polynomial transformations.

As mentioned in [18], the SVM model can be derived
offlineand thus, the energy for its training is not of primary
concern. Therefore, the main concern, which is the focus
of this manuscript, is optimizing the real-time classification
process by preparing a set of memory-optimized support
vectors off-line and use them in real-time classification.

III. PROBLEM STATEMENT

In this section we propose the problem of constructing our
classification model based on SVM. The classifier’s type and
configuration are determined using the constraints of the real-
time systems, such as time and power limitations. In addition,
we formulate the problem of storage minimization on the
basis of the designed classification architecture and prove the
complexity of the problem.

A. Classification Model

In this manuscript, we have selected a variation of SVM,
that is Hierarchical classifier. SVM is primarily designed for
binary classification problems. However, in order to classify
multi-class problems, new structures are required. Generally,

multi-class classification problems are decomposed into many
binary class problems arranged in a structure called Hierarchi-
cal Classifiers.

In the hierarchical classification approach, multiple classi-
fiers are constructed at different levels. First off, an activity is
classified at the top level and it is classified to one or more
lower levels. This process continues until all activities have
been classified. The structure of the hierarchical classifier can
be constructed in various ways and one of the most basic
ones is using tree structure. A specific form of a tree structure
classifier is the Binary Hierarchical Classifier (BHC) described
in [19]. Another known structure is a Directed Acyclic Graph
(DAG) structure in which a node can have more than one
parent, as opposed to tree structure. Based on these two
generic structures, more specific structures have been built
and discussed, such as one-against-all [20], and one-against-
one [21] classifiers. In both of these structures leaf nodes
represent activities, while internal nodes represent classifiers.
Therefore, based on this definition, an n-class classifier has n
leaves. [22] describes an example of the DAG structure SVM
classifier.

There are different ways of constructing a BHC or a DAG
classifier for a n-class classification problem. For example the
number of different binary trees on n nodes is Cn, the nth
catalan number, which equals to 1

n+1

(
2n
n

)
. Also, there are

n(n − 2)! different ways of constructing the DAG. However,
selecting one of these structures depends on many factors.

In our model, we choose the structure of the classifier
using the statistical information on probability of activities
occurrences within an application. In this way, by choosing the
activity with highest probability to be placed on the top (root)
of the tree, the expected amount of computations required for
classification of different activities is minimized.

B. Problem Formulation

1) Main Problem: In this manuscript, we propose a
solution to the following problem.
Problem 1. Given a set of n possible activities
A = {A1, A2, .., An} with a probability distribution
of P = {P1, P2, ..., Pn} and a time constraint
T = {T1, T2, .., Tn} for classifying each activity, the
task is to classify real-time sensor data to one of the activities
in A, meeting time constraint T , while optimizing memory
usage and the amount of processing.

Time constraints imposed by application needs, is often
crucial in the execution of tasks and a small time delay may
cause malfunctioning or missing real-time events. Thus in this
problem, T represents the deadlines for classification of each
activity.

We break the stated problem into two different sub-
problems: finding a classifier that meets the T time constraint
for all paths of the hierarchical classifier; And performing
memory optimization on the derived classification structure
from the first part, to achieve a memory-efficient design, di-
rectly impacting system’s performance and power dissipation.

The algorithm designed for acquiring a unique BHC config-
uration for the first sub-problem, is proposed in Section IV-A.
This configuration will be the input to the second sub-problem.
Then, we propose our designed algorithm for memory opti-
mization in Section IV-B.

In the rest of this section, we elaborate on the formulation
of the second sub-problem.

2) Memory Optimization Problem: Consider a simple SVM
classifier, used for classification of events of interest. Based on
Equation 1 [9] a set of support vectors extracted through the
training phase need to be stored in the memory of the sensor
node.

f(x) =
∑

αi.yi.x
T
i .x+ b (1)

These support vectors are then used to perform classification
in real-time on the sensor node. Therefore, the key to minimize
memory requirements for implementation of a hierarchical
classifier is reducing the number of support vectors needed to
be stored at each level. Solely reducing the number of support
vectors, will result in decrease of classification accuracy at
each level and then in the overall hierarchical classifier. How-
ever, substitution of support vectors with vectors within certain
distances from them, might be beneficial while maintaining a
lower-bound on the accuracy of the hierarchical classifier.

The whole idea is that by substitution of vectors, we can
derive a set of support vectors for each layer in the hierarchical
classifier in such a way that some support vectors are shared
within different layers. In other words, we suggest replacing
support vectors with vectors near them in such a way the
number of overlapping support vectors between layers of
the hierarchical classifier are maximized. With this approach,
we can minimize the amount of storage required for storing
support vectors while at the same time maintaining a certain
accuracy level.

Our memory optimization technique runs on a set of n
Input Support Vectors (ISVi) extracted from an initial run of
a hierarchical classifier and results in n Final Support Vectors
(FSVi).
Definition 1.(SECONDARY SUPPORT VECTOR): Vector vi
is considered as a Secondary Support Vector (SSV) of SVi
if:

d(vi, SVi) ≤ ε (2)

Where d(a, b) represents the Euclidean distance of a and b.

Definition 2.(OVERLAPPING SUPPORT VECTOR): Vector
vi is considered as an Overlapping Support Vector (OSV) if
vi is a Secondary Support Vector of SVl and SVt where l 6= t
and vi is chosen as a final support vector.

At the intuitive level, Maximal Overlap Classification prob-
lem may be defined as the selection of final support vectors
in such a way that total number of overlapping vectors is
maximized. We can formulate a simplified version of the
Maximal Overlapping Classification (MOC) problem in the
following way:

Problem 2. MAXIMAL OVERLAPPING CLASSIFICATION
(MOC): Given a finite set ISV = ISV1, ISV2, ...ISVn of

initial support vectors from running an initial SVM hier-
archical classifier of c classifiers, a finite set of SSV =
SSV1, SSV2, ...SSVm, consisting of all Secondary Support
Vectors, the task is to select a set of n FSVs in such a way that
the number of Overlapping Support Vectors are maximized
while achieving a minimum bound of CA percent on the
classifier accuracy.
In order to clarify Problem 2, assume aij is a given binary
that determines if vector i is a secondary support vector of
ISVj .

aij =

{
1 if vector i is a SSV forISVj
0 o.w.

(3)

and xi is a binary variable that indicates whether or not
secondary support vector i is selected as a final support vector.

xi =

{
1 if SSVi is selected as a FSV
0 o.w.

(4)

Below is the corresponding Integer Linear Programming
(ILP) formulation of the MOC problem (Problem 2).

Objective:

Minimize

m+n∑
i=1

xi (5)

Subject to:

Minimize
m+n∑
i=1

aijxi ≥ 1 for all j: 1 ≤ j ≤ n (6)

xi ∈ {0, 1} 1 ≤ i ≤ m+ n (7)

C. Problem Complexity
In this section, we provide problem complexity analysis for

the Maximal Overlapping Classification (MOC) problem. In
order to prove that the MOC problem is NP-complete, we
transform an instance of Hitting Set problem, into MOC.
Hitting Set problem is the dual of Set Cover and is NP-
complete. An instance of the classic Set Cover problem can
be viewed as a bipartite graph, where sets and elements of
the universe represent left and right vertices respectively and
edges show the inclusion of elements in sets. In the Hitting
Set problem, the objective is to cover the left vertices (sets)
using a minimum subset of the right vertices (elements). By
considering each classifier in the hierarchical classifier tree
as a set and each vector vi in V as an element, the MOC
problem becomes the problem of covering each classifier using
a minimum subset of vectors, which is solved by Set Cover or
Hitting Set. Therefore, it can be concluded that MOC problem
is NP-complete.

IV. MEMORY-EFFICIENT BHC
In this section, we provide our proposed solution for Prob-

lem 1 in two parts. In the first part in Section IV-A, we describe
how we perform classifier structure extraction for a set of
activities with the given probability distribution meeting time
constraint T . The result of this section is a Binary Hierarchical
Classifier with a unique structure. Then, in Section IV-B,
we perform memory optimization based on the classification
structure extracted in Section IV-A.

A. Classifier Structure Extraction
There are many different possible structures for a binary tree

of n nodes. However, the choice of tree structure is crucial in
meeting the constraints of the system. Instead of using one
of the generic classifier structures such as one-against-all, we
show how the BHC tree structure can be chosen in order
to minimize the expected number of instructions executed
in run-time, while at the same time meeting system timing
constraints.

E(I) =
n∑

i=1

pili (8)

Algorithm 1 which is based on Huffman coding [23] finds
the optimal tree structure for the BHC such that the expected
number of instructions (I) for a given activity determined in
run-time is minimized (Equation 8).

Algorithm 1 Classification Tree Decomposition
1: Input: Activities A = {A1, A2, ..., An}
2: Input: Corresponding probability distribution of P =
{P1, P2, ..., Pn}

3: Input: Time constraint of T = {T1, T2, ..., Tn}
4: Output: A unique Tree structure
5: Construct a forest N = {N1, N2, ..., Nn} of n binary trees

of only one node with empty left and right children. The
value of each node is its corresponding Pi.

6: Select two trees Ni and Nj with minimum probability
values from P to construct a new binary tree Ny with
Ni and Nj as its children. The probability of the root is
the sum of Pi and Pj .

7: N ← N − {Ni,Nj}
8: N ← NU{Ny}
9: Repeat steps 6-8 until |N | = 1 which contains the

resulting tree.

Here li represents distance from root (li = 0 for root). We
assume that the number of executed instructions is propor-
tional to the number of classifiers. Therefore, the number of
instructions executed for an activity at li = 2 is proportional
to 2 since it has to pass through two classifiers (one at the
root and one at li = 1).

Algorithm 1 finds an optimal tree structure for BHC, but
does not necessarily satisfy timing constraints. Based on the
above stated assumption that the number of instructions is
proportional to the number of classifiers, time of execution
is also proportional to the number of classifiers and in turn
to the depth of the tree. Therefore, to meet system timing
constraints, the depth of the BHC should not exceed a Tmin,
where Tmin is the earliest time constraint in T and a is a
constant parameter.

One of the known algorithms for producing Huffman codes
with a constraint on code length is the Package-Merge al-
gorithm described in [24], which is an O(nL) algorithm
where L is maximum code length. We modify the package-
merge algorithm in order to meet system timing constraints for
classification. This algorithm consists of two parts of package

and merge. In the package step an item at level i is constructed
by merging two items at level i−1. We use Algorithm 1 for the
packaging step and keep the merge step unchanged. Details of
the package-merge algorithm are in [24]. The time complexity
of the classification tree decomposition considering constraints
on the depth of the classifier is O(nlogn.L).

B. Memory Minimization
Algorithm 2 represents our proposed algorithm for memory

minimization.

Algorithm 2 Greedy Memory Optimization
1: Input: A unique BHC from Algorithm 1, A set of n initial

support Vectors (ISV s), ε: maximum distance from ISV.
2: Output: A set of n Final Support Vectors (FSV s).
3: Construct the set SSV = SSV1, SSV2, ...SSVm, of all

secondary support vectors.
4: V ← Set of all vectors vi where vi ∈ ISV or vi ∈ SSV .

(n+m elements).
5: Sort set V in order of frequency of overlapping initial

Support vectors (ISVs).
6: FSV ← .
7: Select a vector vi ∈ V that maximizes |vi ∩ ISV |
8: ISV ← ISV - corresponding ISV elements covered by
vi .

9: FSV ← FSV ∪ vi.
10: Repeat steps 7-9 until ISV is empty.

The outcome of Algorithm 2 is a set of n Final Support
Vectors (FSV). This set is initially empty (line 6) and is con-
structed by selecting vi vectors from Set V which is initially
composed of a sorted list of all Initial Support Vectors and
Secondary Support Vectors (lines 4-5). At every step, a vector
vi is selected from V in such a way that as many possible
uncovered ISV s are covered (the number of overlaps are
maximized). In other words the vector which covers/overlaps
with most of ISV s is chosen as a FSV . The corresponding
ISV s which are covered by vi are eliminated from ISV (lines
(7-9). The selection procedure continues until n Final Support
Vectors are chosen (line 10).

V. EXPERIMENTAL RESULTS

A. Experimental Set-up

In order to demonstrate the efficiency of our proposed
methods, we performed an experiment. A set of 14 different
activities were performed by 3 healthy subjects with the
average age of 27 years old. Sensor measurements were col-
lected from 7 sensor nodes placed on different body locations,
comprising of a 3-axis accelerometer and 2-axis gyroscope
with sampling rate of 50Hz. Sensor locations are waist, right
wrist, left wrist, right arm, left thigh, right ankle and left ankle;
selected based on having diversity in samples, keeping most
informative ones and ignoring the highly correlated samples
gained from some symmetric body parts. The 14 activities
performed by subjects are: stand to sit(A1), sit to stand(A2), sit
to lie(A3), lie to sit(A4), jump(A5), turn clockwise(A6), grasp
object from ground(A7), rise to bend(A8), step forward(A9),

step backward(A10), look back(A11), Kneel(A12), rise from
kneeling(A13), and return from looking back(A14). Then, we
developed a Binary Hierarchical Classifier, optimized for both
memory and expected value of instructions, while satisfying
classification time constraints.

B. Results

We first focus on efficiency of our memory optimization
technique. Figure 1 shows the results for using Algorithm 2
on the dataset of 14 activities, while the memory optimization
is performed on a derived tree structure from Algorithm 1.
This figure shows the amount of memory savings for different
values of ε, determining the number of SSVs, with respect to
the memory usage of the initial classifier before optimization.
It also includes their corresponding classification accuravy
values. It can be seen that in the best case, we achieve up to
35% memory savings with a classification accuracy of 60%.

60

65

70

75

80

85

90

95

100

0

2

4

6

8

10

12

14

16

18

20

A
cc

u
ra

cy
 (

%
)

M
e

m
o

ry
 S

av
in

gs
 (

%
)

Radius

Memory Savings Accuracy

Fig. 1 Memory Savings and Classification Accuracy vs. Radius

As Figure 1 suggests, when we have increase in memory
savings, the accuracy of classification decreases. This is due
to the fact that with increase in ε, the number of secondary
support vectors for each initial support vector increases and
this in turn increases the chances of finding more overlap-
ping support vectors between different ISVs and results in
a decrease in classification accuracy. Therefore, there is a
trade-off between memory savings and accuracy and based
on application constraints and requirements, different choices
of ε can be made. For instance, to avoid significant decrease
in accuracy for medical applications, we need to limit memory
savings.

In the next step we show the effect of tree structure
selection, as the output of Algorithm 1, in overall savings both
in terms of memory optimization and reducing the number of
executed instructions. We have explored various tree structures
based on probability distributions for a smaller subset of
activities consisting of 6 activities of A1, A3, A5, A6, A7,
A9. We constructed this subset in order to test this part on a
different dataset compared to last part; and also to control the

the depth of hierarchical tree structures. However, to include
more diversity in the experiment, five different randomly
generated probability distributions have been assigned to the
dataset as input P of algorithm. Table I shows various in-
formation for the classifier structure generated based on given
probability distributions such as depth of the tree (which needs
to satisfy system timing constraints), E(I) (Expected number
of Instructions executed at run-time and calculated by equation
8), and initial memory overlap (indicating the amount of
Overlapping Support Vectors found in the initial Hierarchical
classifier without performing memory optimization).

TABLE I Tree Decomposition Results

Probability
Distribution

{A1, A3, A5, A6, A7, A9}

Depth
of
Tree

E(I) Overlap
(%)

P1 = {20, 20, 5, 5, 10, 40} 5 230 33.33
P2 = {33, 5, 10, 10, 12, 30} 3 282 42.42
P3 = {10, 13, 42, 10, 5, 20} 4 234 28
P4 = {10, 10, 15, 15, 25, 25} 3 250 30
P5 = {8, 10, 7, 12, 21, 42} 4 231 34.48

Figure 2 presents memory optimization results with respect
to initial savings for the 5 different classifiers in Table I,
showing the effect of initial tree structure selection on memory
savings. As mentioned, the results are for the same 6 activities
but with different probability distributions. Also, Figure 3
presents their corresponding classification accuracy numbers.

20

30

40

50

60

70

80

90

M
e

m
o

ry
 S

av
in

gs
 (

%
)

Radius

C1 C2 C3 C4 C5

Fig. 2 Memory Savings vs. Radius for Five Classifiers.

From figures 2 and 3, it is seen that up to 56.6% memory
savings can be achieved for classifier 4, when accuracy is 56%.
Also, while maintaining a 100% accuracy, as the upper-bound,
we can achieve 18.1% memory savings for classifier 1. Note
that the subset of 6 activities includes more distinct activities
compared to the original set of 14 activities which results in
higher accuracy for upper-bound. The achieved results confirm
the capability of our proposed methods in saving memory in
real-time classification systems. In addition, from these two

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Radius
C1 C2 C3 C4 C5

Fig. 3 Classification Accuracy vs. Radius for Five Classifiers.

figures, the trade-off between accuracy and memory efficiency
is concluded, which is in accordance with figure 1, and can
be controlled based on applications requirements.

VI. CONCLUSIONS

We presented two optimization techniques for real-time
signal classification in lightweight embedded systems. We
proposed a technique to extract the hierarchical classifier
structure based on statistical information about occurrences of
various events. This method minimizes the expected amount
of required computations while meeting system timing con-
straints. In addition, we proposed a memory optimization
technique that results in a memory-efficient implementation
of the multi-class SVM classifier for embedded systems. We
demonstrated the efficiency of our proposed algorithms using
the datasets collected from 3 subjects performing 14 and 6
different activities, and we could achieve up to 35% and 56%
of saving the memory respectively. Also, we demonstrated
that there is a trade-off between accuracy of classification and
memory savings, which can be controlled based on application
requirements.

ACKNOWLEDGMENT

This work was supported in part by the United States
Department of Education, under Graduate Assistance in Areas
of National Need (GAANN) Grant P200A150115, and the
United States National Science Foundation, under grant CNS-
1750679. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding organiza-
tions.

REFERENCES

[1] T. Shany, S. Redmond, M. Narayanan, and N. Lovell, “Sensors-based
wearable systems for monitoring of human movement and falls,” Sensors
Journal, IEEE, vol. 12, no. 3, pp. 658 –670, march 2012.

[2] S. Milici, A. Lázaro, R. Villarino, D. Girbau, and M. Magnarosa, “Wire-
less wearable magnetometer-based sensor for sleep quality monitoring,”
IEEE Sensors Journal, vol. 18, no. 5, pp. 2145–2152, 2018.

[3] M. Blank and M. Sinclair, “Non-invasive and long-term core temperature
measurement,” in Proceedings of the First ACM Workshop on Mobile
Systems, Applications, and Services for Healthcare, ser. mHealthSys ’11.
New York, NY, USA: ACM, 2011, pp. 11:1–11:2.

[4] S. C. Mukhopadhyay, “Wearable sensors for human activity monitoring:
A review,” IEEE sensors journal, vol. 15, no. 3, pp. 1321–1330, 2015.

[5] [Online]. Available: http://www.ti.com
[6] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,

C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and
memory optimization techniques for embedded systems,” ACM Trans.
Des. Autom. Electron. Syst., vol. 6, no. 2, pp. 149–206, Apr. 2001.

[7] F. Wu, H. Zhao, Y. Zhao, and H. Zhong, “Development of a wearable-
sensor-based fall detection system,” International journal of telemedicine
and applications, vol. 2015, p. 2, 2015.

[8] Y. Ma, Z. Esna Ashari, M. Pedram, N. Amini, D. Tarquinio, K. Nouri-
Mahdavi, M. Pourhomayoun, R. D. Catena, and H. Ghasemzadeh, “Cy-
clepro: A robust framework for domain-agnostic gait cycle detection,”
IEEE Sensors Journal, vol. 19, no. 10, pp. 3751–3762, 2019.

[9] C. Cortes and V. Vapnik, “Support-vector networks,” in Machine Learn-
ing, 1995, pp. 273–297.

[10] B. Crawford, K. Miller, P. Shenoy, and R. Rao, “Real-time classification
of electromyographic signals for robotic control,” in In AAAI (2005,
2006, pp. 523–528.

[11] S. Datta, C. Puri, A. Mukherjee, R. Banerjee, A. D. Choudhury,
R. Singh, A. Ukil, S. Bandyopadhyay, A. Pal, and S. Khandelwal,
“Identifying normal, af and other abnormal ecg rhythms using a cascaded
binary classifier,” in 2017 Computing in Cardiology (CinC). IEEE,
2017, pp. 1–4.

[12] L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective instruction
compression for memory energy reduction in embedded systems,” in
Proceedings of the 1999 international symposium on Low power elec-
tronics and design, ser. ISLPED ’99. New York, NY, USA: ACM,
1999, pp. 206–211.

[13] P. Petrov, S. Member, and A. Orailoglu, “Low-power instruction bus
encoding for embedded processors,” IEEE Trans. Very Large Scale
Integr. Syst, vol. 12, 2004.

[14] E. Sazonov, G. Fulk, J. Hill, Y. Schutz, and R. Browning, “Monitoring
of posture allocations and activities by a shoe-based wearable sensor,”
Biomedical Engineering, IEEE Transactions on, vol. 58, no. 4, pp. 983–
990, 2011.

[15] M. Li, V. Rozgic, G. Thatte, S. Lee, A. Emken, M. Annavaram,
U. Mitra, D. Spruijt-Metz, and S. Narayanan, “Multimodal physical
activity recognition by fusing temporal and cepstral information,” Neural
Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 18,
no. 4, pp. 369–380, 2010.

[16] D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella, “A hardware-
friendly support vector machine for embedded automotive applications,”
in Neural Networks, 2007. IJCNN 2007. International Joint Conference
on, aug. 2007, pp. 1360 –1364.

[17] Z. Chen, Q. Zhu, Y. C. Soh, and L. Zhang, “Robust human activity
recognition using smartphone sensors via ct-pca and online svm,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3070–3080,
2017.

[18] K. Lee, S. Kung, and N. Verma, “Low-energy formulations of support
vector machine kernel functions for biomedical sensor applications,”
Journal of Signal Processing Systems, pp. 1–11, 2012.

[19] S. Kumar, J. Ghosh, and M. M. Crawford, “Hierarchical fusion of
multiple classifiers for hyperspectral data analysis,” Pattern Analysis and
Applications, vol. 5, pp. 210–220, 2002.

[20] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” J.
Mach. Learn. Res., vol. 5, pp. 101–141, Dec. 2004.

[21] J. Fürnkranz, “Round robin classification,” J. Mach. Learn. Res., vol. 2,
pp. 721–747, Mar. 2002.

[22] J. C. Platt, N. Cristianini, and J. Shawe-taylor, “Large margin dags for
multiclass classification,” in Advances in Neural Information Processing
Systems. MIT Press, 2000, pp. 547–553.

[23] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the Institute of Radio Engineers, vol. 40, no. 9,
pp. 1098–1101, September 1952.

[24] L. L. Larmore and D. S. Hirschberg, “A fast algorithm for optimal
length-limited huffman codes,” J. ACM, vol. 37, no. 3, pp. 464–473,
Jul. 1990.

