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Bandwidth, a key parameter in geographically weighted regression models, is closely related to the spatial

scale at which the underlying spatially heterogeneous processes being examined take place. Generally, a

single optimal bandwidth (geographically weighted regression) or a set of covariate-specific optimal

bandwidths (multiscale geographically weighted regression) is chosen based on some criterion, such as the

Akaike information criterion (AIC), and then parameter estimation and inference are conditional on the

choice of this bandwidth. In this article, we find that bandwidth selection is subject to uncertainty in both

single-scale and multiscale geographically weighted regression models and demonstrate that this uncertainty

can be measured and accounted for. Based on simulation studies and an empirical example of obesity rates in

Phoenix, we show that bandwidth uncertainties can be quantitatively measured by Akaike weights and

confidence intervals for bandwidths can be obtained. Understanding bandwidth uncertainty offers important

insights about the scales over which different processes operate, especially when comparing covariate-specific

bandwidths. Additionally, unconditional parameter estimates can be computed based on Akaike weights

accounts for bandwidth selection uncertainty. Key Words: Akaike weight, bandwidth, model selection
uncertainty, multiscale geographically weighted regression, spatial processes scale.

带宽是地理加权回归模型中的一个关键参数，此参数与所研究潜在空间异构过程中所发生
的空间尺度密切相关。在此过程中，通常会根据某些准则（例如赤池信息准则（AIC））选择
单一最佳带宽（地理加权回归）或一组根据特定于协变量的最佳带宽（多尺度地理加权回
归），然后以该带宽选择为条件，进行参数估计和推断。本文的作者发现，带宽选择在单
尺度和多尺度地理加权回归模型中均受到不确定性的影响。作者还证明了这种不确定性可
以被测量和解释。基于凤凰城关于肥胖率的模拟研究和实证举例，作者表明可以通过赤池
权重对带宽不确定性进行定量测量，可以获得带宽的置信区间。理解带宽不确定性为不同
进程的运行尺度提供了重要见解，尤其是在比较特定于协变量的带宽时更是如此。另外，
赤池权重所揭示的带宽选择的不确定性，还可以用于计算无条件参数估值。关键词: 赤池
权重，带宽，模型选择不确定性，多尺度地理加权回归，空间过程规模。

La amplitud de banda, un par�ametro clave en los modelos de regresi�on geogr�aficamente ponderada, est�a
estrechamente relacionada con la escala espacial en la cual ocurren los procesos subyacentes con

heterogeneidad espacial, bajo escrutinio. En general, una amplitud de banda �optima individual (regresi�on
geogr�aficamente ponderada) o un conjunto �optimo de amplitudes de banda con covariaciones espec�ıficas
(regresi�on geogr�aficamente ponderada a multiescala) son escogidas a partir de un criterio determinado, tal

como el criterio de informaci�on Akaike (AIC), y desde ah�ı el estimativo e inferencia del par�ametro quedan

condicionados por la escogencia de esta amplitud de banda. En este art�ıculo, encontramos que la selecci�on
de amplitud de banda est�a sujeta a incertidumbre en los modelos de regresi�on geogr�aficamente ponderada

tanto a escala sencilla como a multiescala, y demostramos que esta incertidumbre puede medirse y explicarse.

Con base en estudios de simulaci�on y en un ejemplo emp�ırico de tasas de obesidad en Phoenix, mostramos

que las incertidumbres de amplitud de banda pueden medirse cuantitativamente con pesos Akaike, y se

pueden derivar los intervalos de confianza para las amplitudes de banda. Entender la incertidumbre de

amplitud de banda ofrece perspectivas importantes acerca de las escalas a que operan diferentes procesos,
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especialmente cuando se comparan amplitudes de banda de covariaci�on espec�ıfica. Por otro lado, los c�alculos
incondicionales de par�ametro pueden computarse tomando en cuenta los pesos Akaike para la incertidumbre

en la selecci�on de amplitud de banda. Palabras clave: amplitud de banda, escala de procesos espaciales,
incertidumbre en la selecci�on del modelo, peso Akaike, regresi�on geogr�aficamente ponderada a multiescala.

I
nvestigating spatial processes through associations

between a response variable and a set of explana-

tory variables has been one of the most important

and fertile research areas in geography and related

fields. Spatial processes, however, have the intrinsic

properties of potentially being both heterogeneous

and operational over different spatial scales. Classic

global models ignore both of these properties and

return only stationary (single) parameter estimates

and provide no information on spatial scale. Local

models such as geographically weighted regression

(GWR) can capture the heterogeneity of processes

but inadequately incorporate multiscale properties of

processes into the modeling. Their major limitation is

the use of only a single kernel bandwidth across the

set of covariates, which is the equivalent of assuming

that the different processes being modeled all operate

at the same scale (Fotheringham, Yang, and Kang

2017; Murakami et al. 2019). Such an assumption

seems unrealistic in the real world. For example, the

measured ambient temperature of a location is

affected by the local built environment, regional

weather patterns, and trends in global warming, all

of which operate at different scales. A recent

advancement to GWR termed multiscale GWR

(MGWR) removes the single bandwidth assumption

and allows the bandwidths for each covariate to vary

(Fotheringham, Yang, and Kang 2017). This results

in each parameter surface being allowed to have a

different degree of spatial heterogeneity, reflecting

variation across covariate-specific processes.
Comparisons of MGWR with other single-scale and

multiscale spatially varying coefficient (SVC) models

are available, such as the comparison with classic

GWR (Fotheringham, Yang, and Kang 2017; Harris

2019; Murakami et al. 2019), with Bayesian SVC

(Wolf et al. 2018), with eigenvector spatial filtering

(ESF; Oshan and Fotheringham 2018), and with ran-

dom-effects eigenvector spatial filtering (RE-ESF;

Murakami et al. 2019). All comparisons agree that in

terms of parameter estimation accuracies, MGWR is

superior to the classic GWR and comparable to much

more complicated models such as Bayesian SVC and

RE-ESF. Additionally, an analytical inferential frame-

work (Yu et al. 2020), computational improvements by

parallelization (Li and Fotheringham 2019; Li et al.

2019), and accessible software (Oshan, Li, et al. 2019)

have been developed for MGWR, all of which greatly

enhance the utility of MGWR in modeling multiscale

spatially heterogeneous processes.
Bandwidth is a key parameter in the GWR

framework. The major advance of MGWR over GWR

is that covariate-specific bandwidths are obtained

rather than a single “average” bandwidth.

Consequently, GWR can be considered as a special

case of MGWR when all bandwidths are the same.

Often the optimal bandwidth selection is data driven

based on model selection statistics such as the Akaike

information criterion (AIC), the Bayesian information

criterion (BIC), generalized cross-validation, or some

other panelized fit score. The fundamental goal of

choosing the optimal bandwidth is to find the best

trade-off between bias and variance for parameter esti-

mates. A large bandwidth produces local parameter

estimates with low variance at the cost of high bias

(underfitting), whereas a small bandwidth yields

parameter estimates with low bias but high variance

(overfitting). Once the optimal bandwidth is deter-

mined, it can be interpreted in terms of the spatial

scale of the underlying data generating process. In

other words, a larger bandwidth determined by the

data indicates a more spatially smoothed process that

has regional or no variability, whereas a smaller band-

width reveals spatially localized relationships.

Therefore, covariate-specific optimal bandwidths

obtained in MGWR can be used as explicit indicators

of the scale at which various processes operate

(Fotheringham, Yang, and Kang 2017). The band-

width also has an interpretable real-world meaning

and can be either a distance-based measure or the

number of nearest neighbors used in each local regres-

sion. The interpretation of a bandwidth of, for exam-

ple, fifty nearest neighbors is that the process being

estimated at the current location is affected by other

neighboring locations in a spatially discounted manner

up to a radius of fifty nearest neighbors. Data at the

local regression point are given a weight of one and

data borrowed from neighboring locations are given a

discounted weight less than one depending on how far

they are from the regression point.

2 Li et al.



The use of multiple bandwidths gives MGWR the

capability to potentially differentiate local, regional,

and global processes by comparing the optimal band-

widths for different covariates. If the analyst wants to

make an inference about bandwidths as indicators of

the relative spatial scales of different processes, how-

ever, it is naive to simply compare the covariate-spe-

cific bandwidths that are obtained based on the

single observed data set (i.e., deterministic) and draw

a conclusion that one process is more local or global

than another. It is quite possible that the covariate-

specific bandwidths are different by chance and sub-

ject to the sampling variation of the uncaptured noise

(i.e., stochastic). Understanding the covariate-specific

bandwidth uncertainty is thus crucial to being able to

make inferences about the different spatial scales over

which processes operate. Smoothing parameter (e.g.,

bandwidth, in the context of GWR) uncertainties

have been recognized in the statistical literature for

spline-based generalized additive models (Hastie,

Tibshirani, and Friedman 2009; Wood, Pya, and

S€afken 2016). Additionally, previous studies show

that GWR and MGWR bandwidths are not fixed

from the evidence of Monte Carlo simulations and

subsampling results (Fotheringham, Yang, and Kang

2017; Wolf, Oshan, and Fotheringham 2018; Oshan,

Wolf, et al. 2019). Nevertheless, there are no meth-

ods in the context of a GWR framework to quantita-

tively measure such bandwidth uncertainties. Another

issue of neglecting bandwidth uncertainty is that

parameter estimation and inference are conditional

on the optimal bandwidths and therefore incorpora-

tion of bandwidth uncertainty into parameter uncer-

tainty is important (Wolf, Oshan, and Fotheringham

2018). By doing so, parameter estimates would be

unconditional of the chosen bandwidth, thus making

inference more robust. Ignoring the uncertainties

from bandwidth selection will lead to underestimates

of the variances for local parameter estimates because

the variance of the component stemming from band-

width selection uncertainty is missing and, conse-

quently, this will make it easier to declare local

results as interesting or significant.

Overview of the Procedure for Measuring

Bandwidth Uncertainty

Burnham and Anderson (1998) extensively discussed

the uncertainty regarding model selection and proposed

using the Akaike weight, an information theory–based

statistic, to measure model selection uncertainties. This

method has drawn great attention and is widely

used in applied statistics (Johnson and Omland

2004; Posada and Buckley 2004; Koh 2008; Pinsky

et al. 2013). Akaike weights are computed based

on AIC and can be interpreted as the relative like-

lihood of a certain model being selected given the

data. For instance, a model with an Akaike weight

of 0.6 indicates that given the data at hand, it has

a 60 percent chance of being selected as the opti-

mal model among other candidate models. In the

context of GWR, bandwidth selection is a type of

model selection. Candidate bandwidths are evalu-

ated based on AIC (or an equivalent measure) and

the bandwidth with minimum AIC is selected as

the optimal one. It is a natural extension, there-

fore, to use the Akaike weights to measure the rel-

ative likelihood of a bandwidth being selected as

optimal and to quantify the bandwidth selection

uncertainty. Moreover, Akaike weights can be

used to average parameter estimates and variances

following a multimodel inference framework with

the advantage that the resulting parameters are

unconditional of the selected model. This approach

has been shown to be useful in the statistical

literature and in applied studies (Burnham and

Anderson 1998; Wagenmakers and Farrell 2004;

Burnham, Anderson, and Huyvaert 2011; Symonds

and Moussalli 2011).

In this article, we demonstrate that bandwidth

has intrinsic uncertainty from the evidence of

bootstrapping and from Akaike weights, which can

both be used to obtain confidence intervals (CIs)

for bandwidths in MGWR. We also examine the

use of Akaike weights to compute unconditional

parameter estimates and variances and compare

them with their conditional equivalents. The arti-

cle proceeds as follows. First, the background of

MGWR is reviewed. Second, bandwidth uncertain-

ties are examined with a simulation data set using

bootstrapping and Akaike weights. Third, an

empirical example of obesity rate modeling for the

city of Phoenix is presented. Finally, the article

concludes with remarks.

Background of MGWR Related to

Akaike Weights

MGWR was developed under the generalized

additive model framework of Hastie and Tibshirani

Measuring Bandwidth Uncertainty 3



(1990) by Fotheringham, Yang, and Kang (2017).

MGWR is formulated as

y ¼ f1ðx1Þ þ f2ðx2Þ þ :::þ fkðxkÞ þ e, (1)

where y is a column vector of response variables,

f1 x1ð Þ, :::, fkðxkÞ are additive components that are

smooth functions of covariates, and e is a column

vector of independent and identically distributed

error terms. The response variable y is the data

observed over a spatial surface and f1, :::, fk are spa-

tial additive components estimated with covariate-

specific bandwidths, so MGWR can be formulated as

y ¼ fbw1
ðx1Þ þ fbw2

ðx2Þ þ :::þ fbwk
ðxkÞ þ e, (2)

where each jth additive component fbwjðxjÞ is a prod-

uct of element-wise multiplication (8) of local

parameters bj and covariate xj:

fbwj xjð Þ ¼ bj8xj ¼

b1jx1j
b2jx2j
..
.

bnjxnj

0
BBBB@

1
CCCCA: (3)

The calibration of each smoothing function fbwj in

the MGWR model uses the back-fitting algorithm

developed by Buja, Hastie, and Tibshirani (1989).

The estimation procedure can be initialized in vari-

ous ways (e.g., using GWR estimates; Fotheringham,

Yang, and Kang 2017) and then parameters are esti-

mated and updated by calibrating univariate GWR

models that regress the current estimated additive

component plus partial residual on each covariate

(̂f j þ ê � xj) successively. The back-fitting converges

when parameter estimates are unchanging within a

predefined threshold. A detailed description and

implementation of the back-fitting algorithm can be

found in Fotheringham, Yang, and Kang (2017) and

Oshan, Li, et al. (2019). Covariate-specific optimal

bandwidths are estimated within univariate GWRs

by minimizing the corrected AIC (AICc), which is

formulated as

AICc ¼ �2log ‘ð Þ þ 2n
tr Sð Þ þ 1

n� trðSÞ � 2

 !
, (4)

where ‘ is the model likelihood given the data and

tr Sð Þ is the trace of the hat matrix. AICc is a small

sample bias adjustment to the classic AIC and

should be used when the ratio of data points to the

number of parameters is below forty, which is fre-

quently the case in GWR if processes have high

heterogeneity. When the ratio is greater than forty,

the AICc rapidly approaches the classic AIC

(Hurvich and Tsai 1993; Burnham and Anderson

1998). Therefore, in general, this corrected version

of AIC is often suggested in GWR for bandwidth

selection (Fotheringham, Brunsdon, and Charlton

2002). The use of AIC or its variant AICc for

model selection is based on the information-theo-

retic relationship between expected Kullback–Leibler

distance (information lost) and the maximized log-

likelihood. The best model represents the process

that generates the data with minimum informa-

tion lost.

To obtain Akaike weights, we first need to define

the “comparison set” of models. In the context of

MGWR, of interest is the set of covariate-specific

bandwidths that best approximate the underlying

spatial processes. During the bandwidth selection of

each univariate GWR within the back-fitting of

MGWR, the optimal bandwidth is selected based on

the minimum AICc. For simplicity, we will use AIC

here (rather than AICc) as a generic term for all

AIC variants. A candidate set of R bandwidths can

be defined as fbw1, bw2, bw3, :::, bwRg beforehand or

within the bandwidth search routine. In either case,

we consider a set of candidate bandwidths to evalu-

ate AIC and the minimum AIC obtained within the

R bandwidths is denoted as AICmin: For bandwidth k
within the candidate set R, AIC differences can be

computed as Dk ¼ AICk � AICmin: Then, the

Akaike weight of a candidate bandwidth k 2
f1, :::,Rg can be obtained by

wk ¼
exp � 1

2
Dk

� �
PR

r¼1 exp � 1
2
Dr

� � : (5)

The numerator expð� 1
2
DkÞ denotes the likelihood of

the bandwidth k given the maximum likelihood esti-

mators based on the same data, which also measures

the relative strength of evidence for each bandwidth

(Akaike 1983; Burnham and Anderson 1998). The

denominator is used to normalize the Akaike weights

so that all values lie between zero and one with the

sum being one (
P

wk ¼ 1; Burnham and Anderson

1998). The resulting Akaike weight is the likelihood

of a given bandwidth being the optimal one. For

instance, an Akaike weight of 0.75 for a bandwidth

indicates that this bandwidth has a 75 percent

chance of being the bandwidth that best approxi-

mates the corresponding underlying process.

4 Li et al.



Following this approach, the Akaike weight curve
can be plotted against a set of candidate bandwidths

for each covariate in the MGWR model and the
bandwidth probability distribution can be obtained.
In the following section, we examine the use of

Akaike weights for measuring bandwidth uncertainty
based on a simulated data set.

Investigating Bandwidth Uncertainty in a

Controlled Experiment

Construction of a Simulated Data Set with Two
Different Spatially Heterogeneous Processes

We simulate a study area with 1,000 locations

that are randomly distributed in a circular coordinate
space. The x and y coordinates of location i 2
f1, ::: ng are denoted as ui and vi and are constructed
with Equations 6 and 7:

ui ¼ 12:5þ 12:5
ffiffiffi
ri

p
coshi (6)

vi ¼ 12:5þ 12:5
ffiffiffi
ri

p
sinhi, (7)

where a radius ri and an angle hi are randomly selected
from uniform distributions U(0, 1) and U(0, 2p),
respectively. Then we synthesize two spatial processes
using Equations 8 and 9; these true parameter surfaces,
b1 and b2, are shown in Figure 1.

b1i ¼ 1þ 1=324�ð36�ð6�ui=2Þ2Þ�ð36�ð6�vi=2Þ2Þ
(8)

b2i ¼ 2þ 1=24�ðui þ viÞ, (9)

where b1i and b2i are the parameters of location i 2
f1, :::, ng, and ui and vi are the x and y coordinates

of location i: The resulting process b1 has high spa-

tial heterogeneity, with high values in the center of

the map and low values at the periphery. The

parameters range between 0 and 5. The process b2
has relative low heterogeneity, with a positive trend

from southeast to northwest ranging from 2.4 to 3.7.

A similar data generating process can be seen in

Fotheringham, Yang, and Kang (2017).
Covariate column vectors x1 and x2 are randomly

drawn from a normal distribution with mean of 0

and variance of 1. A spatially random noise vector e
is added to the surface with mean of 0 and variance

of 1. Those two column vectors of processes, b1 and

b2, along with two covariates, x1 and x2, and a ran-

dom noise are used to generate the synthetic

response variable y in the following manner:

y ¼ b18x1 þ b28x2 þ e: (10)

An MGWR model is calibrated on this synthetic

data set using the mgwr Python package (Oshan, Li,

et al. 2019). For consistency, in the following simu-

lation and empirical studies we use an adaptive bi-

square kernel (Fotheringham, Brunsdon, and

Charlton 2002) where the bandwidth is interpreted

as the number of nearest neighbors and the largest

possible bandwidth is the total number of locations

in the data set. For this model, the two covariate-

Figure 1. Generated spatial processes with low and high heterogeneity.

Measuring Bandwidth Uncertainty 5



specific optimal bandwidths are 70 and 300 for the

local process b1 and the regional process b2, respec-

tively. Recovered parameter estimate surfaces for this

synthetic data set are shown in Figure 2.

Bandwidth Selection Uncertainty: Evidence from
Bootstrapping

Bootstrapping is a variant of Monte Carlo estima-

tion for CIs based on random sampling with

replacement (Efron and Tibshirani 1994). The tech-

nique is popularly used for deriving empirical CIs of

a statistic when the analytical solution is unavail-

able. In this article, we are interested in assessing

how the selected optimal bandwidths vary across

each bootstrap sample, from which the empirical dis-

tribution of optimal bandwidths can be obtained.

We use a nonparametric residual-based bootstrap

method by randomly resampling residuals that are

added to the fitted values. This specific type of

Figure 2. Recovered parameter surfaces using multiscale geographically weighted regression with optimal bandwidths 70 and 300 for the

high- and low-heterogeneity processes, respectively.

Figure 3. Optimal bandwidth distributions of two processes in Figure 1 under bootstrapping (smooth lines are plotted based on kernel

density estimation). MGWR¼multiscale geographically weighted regression; bw¼ bandwidth; GWR¼ geographically weighted regression.

6 Li et al.



bootstrap method has been widely used in regression

problems and can also be found in the GWR litera-

ture (Mei, Xu, and Wang 2016; Harris et al. 2017).
In the context presented here, we first calibrate

an MGWR model with the original response vector

y and two covariates x1, x2 and save the fitted values

ŷ and residuals ê: Then we generate B (B¼ 1,000)

bootstrap samples with each sample containing a

new response vector y� ¼ ŷ þ êrand where êrand is a

residual vector randomly drawn with replacement

from ê: For each bootstrap sample, we regress y�

onto X using MGWR and save the optimal covari-

ate-specific bandwidths from MGWR. Finally, the

estimated bootstrap optimal bandwidth distribution

can be acquired from these B bootstrap samples, and

these bandwidth selection frequencies represent the

uncertainty of a bandwidth j being selected as the

optimal bandwidth. A 95 percent empirical CI can

be obtained by using the 2.5th and 97.5th

percentiles of the bandwidths from the bootstrap

samples (Efron and Tibshirani 1994). This bootstrap

method is applied to GWR for comparison with

MGWR. The bootstrap results are presented in

Figure 3 and Table 1.
Figure 3 shows the distribution of the optimal

bandwidths from the bootstrap samples for GWR (in

green) and MGWR (in blue and orange). The opti-

mal bandwidth selected for the original data set is

90 (number of nearest neighbors) for GWR and the

optimal covariate-specific bandwidths are 70 and

300 for MGWR. It is clear that the MGWR covari-

ate-specific bandwidths adequately describe the rela-

tive amounts of heterogeneity in the underlying data

generating processes b1 and b2: In contrast, the sin-

gle optimal bandwidth in GWR lies between the

two covariate-specific bandwidths in MGWR and

does not differentiate between the two processes or

represent either particularly accurately. Bandwidth

statistics are summarized in Table 1. For GWR,

the single optimal bandwidths have a mean of 93.6

and standard deviation of 10.1 across the 1,000 boot-

strap samples. The empirical 95 percent CI is [80,

110]. For MGWR, the optimal bandwidth for the

high-heterogeneity process b1 has a mean of 73.5 and

standard deviation of 8.4, and the empirical 95 percent

CI is [60, 90]. The optimal bandwidth for the low-

heterogeneity process b2 has a mean of 300.5, standard

deviation of 80.1, and empirical CI of [130, 440]. By

comparing the two covariate-specific bandwidths in

Table 1. Summary statistics for the optimal bandwidths
obtained from the bootstrap samples

Optimal M SD
95% Confidence

interval Width

GWR BW 90 93.6 10.1 [80, 110] 30

MGWR b1 BW 70 73.5 8.4 [60, 90] 30

b2 BW 300 300.5 80.1 [130, 440] 310

Notes: GWR¼ geographically weighted regression; BW¼ bandwidth;

MGWR¼multiscale geographically weighted regression.

Figure 4. Akaike weights and bootstrap frequencies for different bandwidths (smooth lines are plotted based on kernel

density estimation).

Measuring Bandwidth Uncertainty 7



MGWR, we can see that the selection of the band-

width for the low-heterogeneity process b2 tends to be

more uncertain than that of the high-heterogeneity

process b1 and has a much wider CI (310 vs. 30).
Given the evidence from bootstrapping, it is clear

that bandwidth selection in both GWR and MGWR

is subject to the sampling variation of the random

noise contained in the data. Bootstrapping provides

a useful way for quantifying this bandwidth selection

uncertainty and for deriving empirical CIs for band-

widths. The mutually exclusive CIs for the band-

widths associated with processes b1 and b2 imply that

the two processes have significantly different optimal

bandwidths at the 95 percent confidence level; we

can thus claim that process b1 operates at a rela-

tively more local scale than process b2: Following

the same bootstrapping method described previously,

we conducted another three simulations: (1) using

the same model described in Equation 10 but cali-

brated with a fixed Gaussian kernel instead of an

adaptive bi-square kernel (see Appendix A); (2)

adding a spatially varying intercept to the model

described in Equation 10 (see Appendix B); and (3)

changing the orientation of the process b2 holding

the level of heterogeneity constant (see Appendix

C). Results all indicate that the optimal bandwidths

in MGWR are subject to the sampling variation of

the noise, and bandwidth variation is a function

solely of the scale over which the processes operate.

Using Akaike Weights for Measuring Bandwidth
Selection Uncertainty

Following Equation 5, we compute Akaike weights

for the simulation model described in Equation 10,

which involves two processes with different degrees

of spatial heterogeneity. For each covariate, we

evaluate candidate bandwidths from 50 to 1,000

nearest neighbors with a ten-neighbor interval.1 Each

candidate bandwidth has a corresponding Akaike

weight representing the probability of it being the

optimal bandwidth (Figure 4). These Akaike weights

can be compared with the bootstrap relative frequen-

cies described in the previous section. There is a

clear similarity between the two approaches for the

processes shown in Figure 4. Following Burnham and

Anderson (1998) and Symonds and Moussalli

(2011), a 95 percent CI of bandwidths can be

obtained by ranking the Akaike weights in descend-

ing order and including bandwidths in the CI until

the cumulative Akaike weight equals 0.95. In some

cases, where a coarse searching interval is used, the

cumulative Akaike weight might not be exactly 0.95;

therefore, the inclusion in the bandwidth CI should

stop when the cumulative Akaike weight is just

above 0.95. Table 2 shows how this procedure oper-

ates for process b1: The optimal bandwidth of 70 has

an Akaike weight of 0.42. Bandwidths of 60, 80, and

90 have descending Akaike weights of 0.25, 0.23,

and 0.05, respectively. Inclusion in the 95 percent

CI stops after the addition of the bandwidth 90

because at this point the cumulative Akaike weight

equals 0.95. Consequently, we can state that the 95

percent CI of bandwidths for process b1 is [60, 90].

The bandwidth CI is not necessarily symmetrical,

and if bandwidth 50 is included this would create a

99 percent CI.

The Akaike weight–based 95 percent bandwidth

CIs can be compared with the 95 percent CIs

obtained from bootstrapping (Table 3). The 95 per-

cent CI computed based on Akaike weights is [60,

90] for process b1, which is exactly the same as the

95 percent CI obtained from bootstrapping. For pro-

cess b2, the Akaike weight–based 95 percent CI is

[160, 500], which is similar to the 95 percent CI

obtained from bootstrapping [130, 440]. Based on

the Akaike weight–based bandwidth CI, we also

arrive at the same conclusion that processes b1 and

b2 have significantly different optimal bandwidths at

Table 2. An example of obtaining the 95 percent
confidence set of bandwidth for process b1 using

Akaike weights

Bandwidth AICc

Akaike

weight

Cumulative

Akaike weight

70 2,907.87 0.42 0.42

60 2,908.94 0.25 0.67

80 2,909.13 0.23 0.90

90 2,911.98 0.05 0.95

50 2,912.69 0.04 0.99

… … … …

Notes: AICc ¼ corrected Akaike information criterion.

Table 3. Ninety-five percent CI of bandwidth based on
Akaike weight and bootstrapping

Process

Optimal

bandwidth

95% Akaike

weight CI

95%

Bootstrap CI

b1 70 [60, 90] [60, 90]

b2 300 [160, 500] [130, 440]

Notes: CI¼ confidence interval.
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the 95 percent confidence level. This result is partic-

ularly robust because Akaike weights and bootstrap-
ping embed two distinct concepts of measuring
model selection uncertainty. The former uses a data-

based weight of evidence, whereas the latter models
the sampling distribution of the bandwidth parame-
ter when each bandwidth is still estimated without

uncertainty. Using the Akaike weights is preferred
because not only is it much less computer intensive
but it also employs the statistically grounded concept
of model likelihood given a set of candidate models

and data (Burnham and Anderson 1998).

Unconditional Inference: Accounting for
Bandwidth Selection Uncertainty in Local
Parameter Estimation

Following the multimodel inference approach of

Burnham and Anderson (1998), averaging models
based on a spectrum of bandwidths can give parame-
ters that are unconditional on the choice of the

bandwidths. In this section, we compare the infer-
ence based on unconditional local parameter esti-
mates with that based on the MGWR results, which
are conditional on the optimized selected bandwidth.

For each set of local parameters for the jth covariate,
bj, unconditional parameter estimates

^bj can be com-
puted based on Akaike weights:

^b j ¼
XR

r¼1
wrjb̂rj, (11)

where there are R candidate bandwidths being evalu-

ated during the bandwidth selection; wrj is the

Akaike weight for bandwidth r; and b̂rj is the set of

local parameter estimates obtained when using band-

width r. The variance of the parameter estimates in

column vector bj can be calculated using the follow-

ing equation (Burnham and Anderson 1998):

v̂ar ^bj

� �
¼

X
wrj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ar b̂rj
� �

þ b̂rj � ^bj

� �2r" #2
:

(12)

Note that there are two components in v̂ar ^bj

� �
:

(1) the variance from parameter estimation,

v̂ar b̂rj
� �

, and (2) the variance from bandwidth

selection uncertainty, b̂rj � ^bj

� �2
: Therefore, usually

the variance of the unconditional parameter esti-
mates will be greater than that of the conditional
parameter estimates because the latter is based purely
on a single set of covariate-specific bandwidths (i.e.,
deterministic) and therefore neglects bandwidth
selection uncertainty (Symonds and Moussalli 2011).
It is worth noting, though, that this might not
always be true in (M)GWR because using a smaller
bandwidth will yield larger parameter variances than

Figure 5. Comparison of conditional and unconditional standard errors of local parameter estimates for processes b1 and b2: bw¼ bandwidth.
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using a larger bandwidth, ceteris paribus. The
weighted parameter variance is expected to yield
more accurate CIs for the local parameter estimates,
however, because bandwidth uncertainty is
accounted for. Additionally, the averaged parameter
estimates have a Bayesian interpretation if the
Akaike weights are specified as prior probabilities on
the bandwidths (Akaike 1979; Bozdogan 1987).

In Figure 5 we compare the uncertainties associ-

ated with the conditional parameter estimates

obtained from MGWR with covariate-specific opti-

mal bandwidths with their unconditional equivalents

obtained using Akaike weights for the two processes

b1 and b2: For both processes we plot three sets of

unconditional local parameter standard errors (on

the y axis) against their equivalent conditional stan-

dard errors. These are obtained by (1) using the

lower bound of the 95 percent bandwidth CI (in

green); (2) using the upper bound of the 95 percent

bandwidth CI (in orange); and (3) using the

Akaike-weighted standard errors (in blue). For pro-

cess b1 the upper and lower bounds of the 95 percent

bandwidth CI are 60 and 90, respectively. Using a

bandwidth of 60 (90) for the calibration gives higher

(lower) parameter standard errors than those

obtained using the optimal bandwidth of 70. This is

due to the bandwidth’s bias–variance trade-off prop-

erty: Using a smaller bandwidth results in greater

parameter uncertainty but reduced bias. Akaike-

weighted parameter standard errors are computed

based on bandwidths from 60 to 90 (95 percent

bandwidth CI) with weights derived from Equation

12 and, as expected, these generally have slightly

larger uncertainty than the conditional parameter

estimates because they include bandwidth uncer-

tainty. For process b2 the results are similar to those

for b1, although the range of both the conditional

and unconditional standard errors is much lower.

This is because the bandwidth CI lies between 160

and 490 nearest neighbors for process b2, whereas it
is between 60 and 90 nearest neighbors for b1, creat-
ing more variability in the results. When the optimal

bandwidth is large and the level of process heteroge-

neity is low, the results are relatively insensitive to

bandwidth variation within the 95 percent CI.
This is also seen in Figure 6, where the results of

the unconditional and conditional local estimates of

b1 and b2 are shown and where the horizontal axis

depicts the conditional local parameter estimates

from MGWR and the vertical axis depicts the

unconditional local parameter estimates using the

Akaike weights procedure described earlier. We also

represent the Akaike-weighted 95 percent CI (red)

and the upper (green) and lower (orange) 95 per-

cent CI using the bandwidth CI based on the

cumulative Akaike weights. The Akaike-weighted

parameter estimate 95 percent CI is computed by

^bj61:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ar ^b j

� �r
: All of the local parameter

Figure 6. Comparison of conditional and unconditional local parameter estimates for processes b1 and b2: bw¼ bandwidth.
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estimates using the lower and upper bounds of the

bandwidth CI are within the Akaike-weighted param-

eter CI, indicating that using any bandwidth within

the 95 percent bandwidth CI will produce parameter

estimates within the Akaike-weighted parameter CI.

This helps in interpreting how bandwidth change will

affect the local parameter estimates; that is, we can

now determine what degree of bandwidth change will

generate significantly different local parameter esti-

mates. Our results indicate that using any bandwidth

within the 95 percent CI of the optimal bandwidth

does not have a significant impact on the local

parameter estimates.
To examine whether unconditional local parame-

ter estimates, which account for bandwidth uncer-

tainty, are more accurate than conditional

parameters, which do not, we conduct a Monte

Carlo simulation using the model described in

Equation 9. The model was run for 1,000 realizations

using fixed covariates and randomly drawn errors.

Within each realization we compute conditional and

unconditional parameter estimates and CIs and

count how many times each type of CI contains the

true parameters b1 and b2: A good 95 percent CI

should contain true parameters 95 percent of the

time. Results indicate that the Akaike-weighted

parameter estimate CIs have marginally better cover-

age probabilities than the conditional CIs (0.81 vs.

0.80 for b1) and (0.89 vs. 0.87 for b2), although

94.1 percent and 97.2 percent of total locations,

respectively, have increased CI coverage probabilities

of more than 1 percent. Wolf, Oshan, and

Fotheringham (2018) compared MGWR parameter

standard errors with those obtained by a Bayesian

spatially varying coefficients model and found that

the MGWR parameter CIs were much smaller than

the Bayesian counterparts, potentially because of

neglecting bandwidth uncertainty in MGWR. In

this study, however, we show that even after taking

bandwidth uncertainty into account, parameter CI

coverage probability is still less than the nominal 95

percent level, which reveals that there might exist

other sources of parameter estimate uncertainty that

are neglected.

An Empirical Example of Obesity

Modeling in Phoenix

A real-world study is used to illustrate the use of

Akaike weights in quantifying bandwidth uncer-

tainty through an MGWR analysis of obesity rate

determinants. The example uses the percentage of

adults (aged eighteen and older) defined as obese

(body mass index � 30.0 kg/m2) by the Centers for

Disease Control and Prevention in each of the 815

census tracts in the Phoenix metropolitan area2 as

the response variable and the five most influential

covariates that determine obesity rates identified by

the study of Oshan, Smith, and Fotheringham

Figure 7. Corrected AICc values against bandwidth for each of the five covariates and the intercept. The red line is the optimal

covariate-specific bandwidth based on the minimum AICc value. AICc¼ corrected Akaike information criterion; BW¼ bandwidth.
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(2019): percentage of population visiting a doctor for

a routine checkup within the past year, median age of

people living in the census tract, percentage of popu-

lation of Hispanic origin, percentage of households

receiving Supplemental Nutrition Assistance Program

(SNAP) benefits, and percentage of people with a

college degree. The obesity and annual checkup data

were downloaded from the 2014 500 Cities Project

from the Centers for Disease Control and Prevention

(2016), and the sociodemographic covariates were

retrieved from the American Community Survey

2015 five-year estimates data set (U.S. Census Bureau

2015). The regression model is formulated as follows:

Pct Obesityi ¼ b0i þ b1iPct Checkupi

þ b2iMedian Agei þ b3iPct Hispanici

þ b4iPct SNAPi þ b5iPct Collegei þ ei,

(13)

where obesity percentage (Pct_Obesity) is regressed

on percentage of population undergoing yearly

checkups (Pct_Checkup), median age of people in

the census tract (Median_Age), percentage of

Hispanic population, percentage of SNAP recipi-

ents (Pct_SNAP), and percentage of population

with college degrees (Pct_College); b0i, :::, b5i are the

local parameter estimates of MGWR. We apply an

adaptive bi-square kernel using nearest neighbors to

calibrate the MGWR model. The largest possible

bandwidth in this setting is the total number of

census tracts in the study area, which is 815. Both

the covariates and the response variable are stan-

dardized as suggested by Fotheringham, Yang, and

Kang (2017) so that bandwidths and local parame-

ters are comparable and invariant to the scale of

the data.
For each of the covariates and the intercept, we

determine optimal bandwidths using AICc within a

range of 40 to 815 nearest neighbors with a step size

of ten. Figure 7 shows the bandwidth search history

where the x axis is the bandwidth being evaluated

and the y axis is the AICc value. Covariate-specific

Figure 8. Akaike weights computed for different bandwidths for each set of local parameter estimates. The dashed line is the optimal

bandwidth found by MGWR. The dotted lines depict the lower and upper bounds of the 95 percent confidence interval for each optimal

bandwidth. MGWR¼multiscale geographically weighted regression; BW¼ bandwidth; CI¼ confidence interval.

Table 4. Ninety-five percent confidence interval of
bandwidth based on Akaike weight for each covariate

Covariates

Optimal

bandwidth

95% Confidence

interval

Intercept 70 [60, 100]

Pct_Checkup 40 [40, 50]

Median_Age 815 [440, 815]

Pct_Hispanic 260 [160, 450]

Pct_SNAP 500 [370, 815]

Pct_College 815 [290, 760]
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optimal bandwidths with minimum AICc values are

70, 40, 815, 260, 815, and 500 for Intercept,
Pct_Checkup, Median_Age, Pct_Hispanic, Pct_SNAP,
and Pct_College, respectively. We can see that for

Intercept and Pct_Checkup, with small optimal band-

widths, AICc values increase dramatically with

increasing bandwidths, which suggests that the data

generating processes in both cases are very local. For

the covariates Median_Age and Pct_SNAP, the AICc

value decreases with increasing bandwidths, suggest-

ing that the data generating processes for these rela-

tionships are global. For the covariates Pct_Hispanic
and Pct_College, the optimal bandwidths suggest pro-

cesses that exhibit some degree of spatial heteroge-

neity, although this is not very pronounced.
Akaike weights and bandwidth CIs are computed

for these five covariates plus the intercept as shown

in Figure 8. In each case the red line shows the opti-

mal bandwidth and the two green lines show the

upper and lower bounds of the 95 percent bandwidth

CI. The sum of the area under the Akaike weight

curve is equal to 1 and the sum of the area bounded

by green dashed lines is approximately equal to 0.95.

The optimal bandwidth and CIs are summarized in

Table 4. The Intercept has an optimal bandwidth of

70 with a bandwidth CI from 60 to 100. The opti-

mal bandwidth of the covariate Pct_Checkup is 40

with a bandwidth CI from 40 to 50, indicating a

very locally heterogeneous relationship with obesity

rate. The covariates Median_Age and Pct_SNAP
both have global bandwidths of 815 with similar

bandwidth CIs of [440, 815] and [370, 815],

respectively. The covariate Pct_Hispanic has an opti-

mal bandwidth of 260 with a CI from 160 to 450,

indicating that the associated process is heteroge-

neous over a moderate spatial scale. Finally, the

covariate Pct_College has an optimal bandwidth of

500 with a CI from 290 to 760, again indicating a

process that exhibits a low degree of spatial hetero-

geneity. Consequently, we can conclude that the

local parameter estimates for the Intercept and

Pct_Checkup are significantly more heterogeneous

than the estimates of the other covariates; the local

parameter estimates for Median_Age and Pct_SNAP
exhibit no significant spatial heterogeneity and the

relationships between these variables and obesity

rates are constant across Phoenix; and the relation-

ships between obesity rates and Pct_Hispanic and

Pct_College exhibit significant spatial heterogeneity

but this heterogeneity is significantly less than that

for the Intercept and Pct_Checkup.
For context, we also report the ordinary least

squares (OLS) parameter estimates, along with the

minimum and maximum of the significant MGWR

Akaike-weighted parameter estimates in Table 5.

The MGWR model has a better fit than the OLS

model, with a higher R2 value (0.93 vs. 0.88) and

lower AICc (287.3 vs. 606.0). Maps of each of the

four sets of local Akaike-weighted parameter esti-

mates are shown in Figure 9. These are very similar

to the conditional parameter estimates obtained

from MGWR; comparisons between the two sets of

parameter estimates and standard errors (uncondi-

tional and conditional) can be found in Figures 10

and 11. Figure 9 shows the significant Akaike-

weighted local parameters for each covariate using

the same color scheme. Insignificant parameters,

based on the critical t values with multiple hypothe-

sis testing adjustment (da Silva and Fotheringham

2016; Yu et al. 2020), are masked out and shaded in

gray. The different degrees of heterogeneity observed

from the local parameter maps are closely related to

the variations in the optimal bandwidths previously

discussed. The local parameter estimates for Intercept
and Pct_Checkup are visually much more heteroge-

neous than the local estimates associated with the

other covariates that have larger bandwidths. The

estimates for the local Intercept include both signifi-

cantly positive and significantly negative estimates,

both of which are locally clustered. The cluster of

significantly positive estimates in central Phoenix

indicates that here obesity rates are significantly

Table 5. Summary of OLS parameter estimates and
MGWR Akaike-weighted parameter estimates

OLS

MGWR Akaike

weighted

Covariates Est. SE t Value Est. mina Est. maxa

Intercept 0.000 0.012 0.000 –0.297 0.503

Pct_Checkup –0.235 0.030 –7.756 –0.610 –0.144

Median_Age 0.186 0.027 6.755 0.119 0.136

Pct_Hispanic 0.136 0.018 7.397 0.056 0.133

Pct_SNAP 0.536 0.021 25.230 0.323 0.332

Pct_College –0.286 0.020 –14.439 –0.450 –0.362

R2 0.88 0.93

AICc 606.0 287.3

Notes: OLS¼ ordinary least squares; MGWR¼multiscale geographically

weighted regression; AICc¼ corrected Akaike information criterion.
aMinimum and maximum of MGWR parameter estimates shown in the

table are calculated for the significant (0.05) estimates only.
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Figure 9. Maps of Akaike-weighted local parameter estimates with insignificant parameters masked out and shaded in gray.

BW¼ bandwidth; CI¼ confidence interval.

14 Li et al.



Figure 10. Comparison of conditional parameter estimates (based on the optimal bandwidths) with unconditional parameter estimates

(calculated with Akaike weights).

Figure 11. Comparison of conditional parameter standard errors (based on the optimal bandwidths) with unconditional parameter

standard errors (calculated with Akaike weights).
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higher than expected given the socioeconomic con-

ditions modeled in this part of the city. Conversely,

in the northwest and southeast areas of the greater

Phoenix region, there are areas where obesity rates

are significantly lower than expected given the mod-

eled conditions in those areas. In the remaining

parts of the city, the local intercept estimates are

not significantly different from zero. The local

estimates for Pct_Checkup have the greatest spatial

variability with a range between –0.61 and 0.35

(including insignificant estimates), and significant

negative relationships between obesity and having

regular checkups are found across wide parts of cen-

tral Phoenix in a band that stretches from the west-

ern to the most eastern parts of the city. No

significant relationships are found in the rest of the

city. The local parameter estimates for Median_Age
are significantly positive everywhere—as we age,

we have a tendency to become obese—and they

vary only gradually across the city. Similarly, there

are only minor variations in the local estimates for

the parameters associated with the covariate

Pct_Hispanic, and these are generally insignificant

except in Scottsdale and Tempe. The local parame-

ter estimates for Pct_SNAP and Pct_College are vir-

tually identical everywhere, indicating again the

global nature of these relationships. As expected,

obesity rates are higher in areas with high percen-

tages of families on SNAP and lower in areas where

higher proportions of the population have a col-

lege degree.

Conclusion and Future Work

Bandwidths in GWR are essentially related to the

scale over which the underlying spatial processes oper-

ate. The recent advancement of MGWR allows covar-

iate-specific optimal bandwidths to be determined,

allowing comparisons of the spatial scales over which

different processes operate to be made (Fotheringham,

Yang, and Kang 2017). Bandwidth selection based on

optimizing a goodness-of-fit criterion such as AICc,

however, contains an intrinsic uncertainty associated

with it because bandwidth uncertainty is not

accounted for. In this article, we correct this omis-

sion and show from the evidence of bootstrapping

that the selection of the optimal bandwidth is sub-

ject to random sampling variation and that it is

important to account for this uncertainty when relat-

ing bandwidths to the scales of spatial processes.

In addition, we examine the use of Akaike

weights, an information theory statistic, to measure

covariate-specific bandwidth uncertainty and to

obtain bandwidth CIs. Akaike weights quantify

the probability that a given bandwidth is optimal,

which is a natural extension of AIC-based model

selection (Burnham and Anderson 1998). For exam-

ple, a bandwidth with an Akaike weight of 0.6 has a

probability of 0.6 of being selected as the optimal

bandwidth given the data. Based on both simulated

data and an empirical example of modeling

Phoenix obesity rates, we find that Akaike weight–

derived bandwidth CIs can provide useful insights

into the spatial scale over which different processes

operate. Akaike weights can also be perceived as

the prior probability of a model being the true

model and therefore can be used to weight parame-

ter estimates across candidate bandwidths and

obtain unconditional local parameters that are

independent of a single bandwidth. We find that

unconditional local parameter estimates generally

have more accurate CIs, although the improve-

ments are marginal in the examples used here. It

remains to be seen whether bandwidth uncertainty

has generally little impact on parameter estimate

uncertainty. The computation of Akaike weights is

implemented in the mgwr Python package (Oshan,

Li, et al. 2019) to increase accessibility of the

methodology introduced in this article.
Model selection uncertainty has gained increasing

attention in statistical modeling, although the

majority of the literature about model selection

relates to variable selection. Within the GWR

framework, bandwidth selection is essentially a

model selection problem. In this article, we therefore

pay attention to the issue of model uncertainty from

the aspect of bandwidth selection to help understand

how spatial processes operate. An important future

task is to investigate variable selection uncertainty

and bandwidth uncertainty simultaneously in terms

of their impact on local parameter estimates. It

would be useful to investigate how the optimal

bandwidth(s) and their associated uncertainties

behave under the presence of omitted variable bias,

which is an often-encountered scenario in real-world

applications. It is expected that model parameter

estimates will be more robust when simultaneously

accounting for both bandwidth uncertainty and vari-

able selection uncertainty so that they are not con-

ditional on a preselected bandwidth or a set of
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preselected variables. These tasks and the work pre-

sented here provide great potential to enhance the

quantification of process heterogeneity and scale.

Notes

1. Using a step size smaller than ten will produce more
detailed Akaike weight curve but with additional
computation.

2. Six sparsely populated tracts are removed in
this example.
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Appendix A

This simulation example used the model described in Equation 10 in the text but calibrated with a fixed
Gaussian kernel (distance based) instead of an adaptive bi-square kernel. We found that the results show simi-

lar bandwidth distributions (see Figures A.1 and A.2).

Figure A.1. Bootstrapping bandwidth distributions of the model described in Equation 10 with a distance-based fixed kernel. MGWR ¼
multiscale geographically weighted regression; BW ¼ bandwidth; GWR ¼ geographically weighted regression.

Figure A.2. Akaike weights for two processes shown in Figure 1 with a distance-based fixed kernel. AICc ¼ corrected Akaike

information criterion.

Measuring Bandwidth Uncertainty 19



Appendix B

In this simulation example, we added a spatially varying intercept b0 (with heterogeneity between b1 and

b2) to the model described in Equation 10 in the text, and the simulated processes can be seen in Figure B.1.
The MGWR bandwidth distributions can be seen in Figure B.2 accordingly.

Appendix

In this simulation example, we rotate the spatial process b2 (Figure 2 in the text) to reproduce four spatial

processes with different orientations but each having the same degree of heterogeneity, as illustrated in Figure
C.1. The objective is to explore how the optimal bandwidths and associated uncertainties respond to variations
in the orientation of the process holding the level of heterogeneity constant. We found that process orienta-

tion has no effect on the optimal bandwidths obtained from MGWR (see Figure C.2); bandwidth variation is a
function solely of the scale over which the processes operate.

Figure B.1. Simulated processes.

Figure B.2. Optimal bandwidth distributions for simulated processes in Figure B.1 under bootstrapping. MGWR ¼ multiscale

geographically weighted regression; BW ¼ bandwidth.
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Figure C.1. Four generated spatial processes with the same degree of heterogeneity.

Figure C.2. Optimal bandwidth distributions of four same heterogeneity processes in Figure C.1 under bootstrapping. MGWR ¼
multiscale geographically weighted regression; bw ¼ bandwidth.
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