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RESEARCH ARTICLE

Computational improvements to multi-scale geographically
weighted regression
Ziqi Li and A. Stewart Fotheringham

Spatial Analysis Research Center, School of Geographical Sciences and Urban Planning, Arizona State
University, Tempe, AZ, USA

ABSTRACT
Geographically Weighted Regression (GWR) has been broadly used in
various fields to model spatially non-stationary relationships. Multi-
scale Geographically Weighted Regression (MGWR) is a recent
advancement to the classic GWRmodel. MGWR is superior in capturing
multi-scale processes over the traditional single-scale GWR model by
using different bandwidths for each covariate. However, themultiscale
property ofMGWRbrings additional computation costs. The calibration
process of MGWR involves iterative back-fitting under the additive
model (AM) framework. Currently, MGWR can only be applied on
small datasets within a tolerable time and is prohibitively time-
consuming to run with moderately large datasets (greater than 5,000
observations). In this paper, we propose a parallel implementation that
has crucial computational improvements to theMGWRcalibration. This
improved computational method reduces both memory footprint and
runtime to allow MGWRmodelling to be applied to moderate-to-large
datasets (up to 100,000 observations). These improvements are inte-
grated into the mgwr python package and the MGWR 2.0 software,
both of which are freely available to download.
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1. Introduction

In recent decades, spatially-varying coefficient (SVC) models have seen increased use in
investigating potentially spatially non-stationary relationships. Geographically weighted
regression (GWR) is one of the most popular and widely used SVC techniques
(Fotheringham et al. 2002). It incorporates a data-borrowing mechanism at each location
to obtain location-specific parameter estimates. Other alternative SVC frameworks include
Bayesian spatially varying coefficient models (Gelfand et al. 2003, Finley 2011) and spatial
eigenvector filtering (Murakami and Griffith 2015). Despite different model formulations
and calibrations, all three methods are reported in the literature to yield similar local
parameter estimates (Finley 2011, Oshan and Fotheringham 2018, Wolf et al. 2018).
However, GWR has been the most widely adopted method due to its interpretability
and accessibility. Various applications of GWR can be found in a wide range of fields, such
as house price modelling (Bitter et al. 2007), atmospheric science (Hu et al. 2013),
criminology (Troy et al. 2012) and public health (Comber et al. 2011).
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Classic GWR is considered as a single-scale model that is based on one bandwidth
parameter which controls the amount of distance-decay in weighting neighbouring
data around each location. The single bandwidth in GWR assumes that processes
(relationships between the response variable and the predictor variables) all operate
at the same scale. The optimal bandwidth in GWR can be considered as the best
‘average’ bandwidth across all the covariate-specific processes. However, this posits
a limitation in modelling potentially multi-scale processes which are likely to occur in
the real world. For example, the measured ambient temperature of a location is
affected by the built environment, regional weather and global warming, all of which
operate at different scales. A recent advancement to GWR, termed Multi-scale GWR
(MGWR), removes the single bandwidth assumption and allows covariate-specific
bandwidths to be optimized (Fotheringham et al. 2017). This results in each para-
meter surface being allowed to have a different degree of spatial variation, reflecting
variation across covariate-specific processes. In this way, MGWR has the capability to
differentiate local, regional and global processes by optimizing a different bandwidth
for each covariate. Additionally, bandwidths in MGWR become explicit indicators of
the scale at which various processes operate. An illustration of local, regional and
global spatial processes can be seen in Figure 1. In GWR, because only one band-
width is used for all covariates, all processes are assumed to have similar spatial
variation and GWR will over-smooth local process and under-smooth global pro-
cesses. However, in MGWR, with a correctly specified bandwidth for each covariate,
the local (global) processes can be accurately captured by small (large) bandwidths.

The advance from a single-scale local model (GWR) to a multi-scale local model
(MGWR) brings flexibility and better model fit at a cost of additional computation.
The latter arises because multi-scale models have more parameters to be estimated
than single-scale models. MGWR, which is formulated as a Generalized Additive

Figure 1. Illustration of local, regional and global spatial processes in GWR and MGWR.
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Model (Buja et al. 1989, Hastie and Tibshirani 1990), utilizes a back-fitting algorithm
for calibration which involves many univariate GWR calibrations. GWR calibration is
not cheap in terms of computational cost since locally weighed regressions need to
be calibrated at all locations. From the existing literature, studies using GWR often
have fewer than 15,000 units of analysis (Li et al. 2019). Two major reasons why GWR
has not generally been applied to large-scale data are (1) memory limitations of the
hardware; and (2) inefficiency of the available software. Though there have been
previous efforts to improve GWR calibration efficiency (Harris et al. 2010, Zhang 2010,
Tran et al. 2016), few of these have obtained drastic improvements or developed
accessible operational software. Recently, however, a parallel GWR computational
improvement algorithm called FastGWR has been developed to solve various com-
putational issues in GWR calibration (Li et al. 2019). Based on an example dataset
with 15,000 spatial locations, FastGWR is around 350 times faster than the widely
used R package GWmodel on a normal desktop without losing accuracy in parameter
estimation. Additionally, the FastGWR parallel implementation addresses memory
limitation and enables calibration of a GWR model with hundreds of thousands of
locations within a reasonable time on a desktop machine. This brings new opportu-
nities for geographically weighted regression models to be applied to large datasets.
Because MGWR involves many GWR calibrations, this development can naturally
benefit MGWR calibration by lowering runtime and memory.

In this study, our objective is to develop an efficient implementation of the MGWR
model and to provide the spatial local modelling community with fast, scalable,
reliable and accessible software that can be used in applied studies. This paper is
organized as follows. First, we review the basics of the MGWR model which includes
its back-fitting calibration process and statistical inference. Second, the computa-
tional challenges of MGWR are presented. Third, improvements to both the speed
and memory of MGWR are described. Fourth, we propose a data-generating process
to synthesize a dataset used for evaluating MGWR computation. Fifth, comparisons
and evaluations of MGWR computation are presented. The paper concludes with
possible future directions.

2. MGWR basics

2.1. MGWR formulation under GAM framework

A Generalized Additive Model (GAM) is formulated as

y ¼ f1 X1ð Þ þ f2 X2ð Þ þ . . .þ fk Xkð Þ þ ε (1)

where y is a column vector of a response variable, f1 X1ð Þ; � � �fk Xkð Þ are additive
components which are smooth functions of covariates, and ε is a column vector of i.i.d.
error (Hastie and Tibshirani 1990). The formulation of MGWR falls under this GAM frame-
work (Fotheringham et al. 2017). The response variable y is the data observed over
a spatial surface and f1; � � �fk are spatial additive components estimated with covariate-
specific bandwidths, so MGWR can be formulated as

y ¼ fbw1 X1ð Þ þ fbw2 X2ð Þ þ . . .þ fbwk Xkð Þ þ ε (2)
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and

fbwj ¼

β1jx1j
β2jx2j

..

.

βnjxnj

0BBB@
1CCCA (3)

where xij is jth covariate Xj at location i, and βij is MGWR local parameter of the jth

covariate location i. The response variable can be viewed as the sum of multiple
spatial layers. To estimate local parameters β, we could re-arrange Equation (2) and
knowing ε is independent of Xj gives the following component-wise conditional
expectation.

fbwj ¼ E y �
X
p�j

fbwp � εjXj

 !
¼ E y �

X
p�j

fbwp jXjÞ ¼ Aj y �
X
p�j

fbwp

 ! 
(4)

where Aj is E �jXjÞ
�

which can be viewed as a projection (hat) matrix from a univariate GWR

model of Xj that maps y �Pp�j fbwp to bfbwjThis GWR hat matrix Aj is expressed as

Aj ¼
x1jðXT

j W1XjÞ�1X
T
j W1

. . .
xnjðXT

j WnXjÞ�1X
T
j Wn

0B@
1CA

n�n

(5)

whereWi is a diagonal spatial weight matrix computed with covariate-specific bandwidth
and a kernel function (e.g. bi-square or Gaussian). Putting all the additive components in
Equation (4) into a matrix form gives the following normal equations:

I A1 � � � A1

A2 I � � � A2

..

. ..
. . .

. ..
.

Ak Ak � � � I

26664
37775

fbw1

fbw2

..

.

fbwk

26664
37775 ¼

A1

A2

..

.

Ak

26664
37775y (6)

Equation (6) can be written in abbreviated form as

Pf ¼ Qy (7)

where P is an nk by nkmatrix and Qmatrix is an nk by nmatrix. On rearranging, this gives
additive components fbw1 ; � � �fbwk as

f ¼
fbw1

fbw2

..

.

fbwk

26664
37775 ¼ P�1Qy (8)

provided that matrix P is invertible. Then, covariate-specific hat matrices can be
obtained by
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R ¼
R1

R2

..

.

Rk

26664
37775 ¼ P�1Q (9)

The normal equations in Equation (6) are not described in the MGWR literature but
are useful as they provide a closed form of local parameter estimates and their
variances as derived in MGWR. From a practical perspective, directly solving Equation
(8) takes a time cost of O n3k3ð Þ which is feasible for small datasets but is often
prohibitive for even moderately large datasets. Another issue is that the solution
from Equation (8) assumes that the smoothing matrices Aj are known a priori. In the
context of MGWR, this means that the bandwidth of each covariate is known.
However, this piece of information is usually unknown and MGWR model calibration
relies on a data-driven bandwidth search routine to find an optimal-fitted model that
minimizes a goodness-of-fit criterion (e.g. AICc, cross-validation, etc.).

2.2. MGWR calibration

The solution to solve Equation (8) is to use the back-fitting process introduced in
Buja et al. (1989) and explained in Hastie and Tibshirani (1990). Back-fitting estima-
tors will converge to the solution in Equation (8), provided that the inverse of matrix
P exists. Fotheringham et al. (2017) incorporated this back-fitting algorithm into the
calibration process for MGWR with automatic bandwidth searching. The detailed
calibration process is as follows (see also Algorithm 1 below). Firstly, the parameter
estimates at all locations are initialized from a GWR model containing the response
variable and all covariates. Fitted additive terms bf1...k are computed accordingly by
element-wise multiplying parameter estimates with covariates. The current model
residuals bε can be computed by bε ¼ y � by. Then, a univariate GWR model is cali-

brated using the residuals bε plus the first additive term bf1 as a response variable and
first covariate X1.

Univariate GWR : bf1 þbε ~ X1 (10)

The optimal bandwidth found in the univariate GWR model then temporarily
become the optimal bandwidth bw1 for the first covariate. With that bandwidth
bw1, bf1 and residuals bε are updated. This procedure is then repeated for covariate

X2 to update the second additive term bf2 and residuals bε. The process continues in

this way through to the final covariate Xk when bfk and bε are updated. This finishes
the first-round iteration and the second-round starts from the first additive term

using the new values for the estimated bfk and bε . The iterations continue until the
change in a convergence indicator (such as the residual sum of squares) becomes
sufficiently small between successive iterations. When the convergence threshold is
met, parameter estimates and the final set of bandwidths bw1 . . . k can be obtained
from the last iteration of back-fitting.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



Algorithm 1: MGWR Back-fitting Calibration
1: Calibrate a GWR model of y ~ X and obtain fitted additive terms bf1...k and model

residual bε.
2: Do until bf1...k converge:
3: For each term j from 1 to k:

Calibrate univariate GWR model of bfj þ bεeXj and get optimal bandwidth bwj,
new fitted
term bf�j , and residual bε�.
Update bfj  bf�j and bε bε�.

4: End for
5: End do

2.3. MGWR inference

Yu et al. (2019) analytically derive the hat matrix for MGWR and the standard errors of the
MGWR parameter estimates, which provides an inferential framework for MGWR under
a GAM framework. In this section, we will follow the notations used in Yu et al. (2019) to
describe the computation of inference. The principal is to express each fitted component as
follows:

bfj ¼ Rjy (11)

where Rj is an n by n covariate-specific hat matrix that maps response variable y to

each fitted additive component bfj . Then, the covariance of bfj can be obtained by

RjRj
Tσ2 where σ2 is the error variance of the MGWR model. The covariate-specific hat

matrix Rj is computed within the back-fitting process after each univariate GWR by
updating

Rj  Aj I�
Xk

p�j
Rp

� �
(12)

where Aj is the hat matrix of each univariate GWR model (Equation (4)). Conveniently, let

I �Pk
p�j Rp be denoted as Rj

� so that Equation (12) becomes

Rj  AjRj
� (13)

Then, the MGWR hat matrix S that maps y onto by can be obtained by summing the
R matrices from the last iteration in the back-fitting once the convergence threshold is
satisfied.

S ¼
Xk

1
Rj (14)

With the R and Smatrices computed, important model diagnostics can then be obtained
as follows:

(1) Covariate-specific Effective Number of Parameters (ENP):

ENPj ¼ tr Rj
� �

(15)
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(2) Model Effective Number of Parameters:

ENPmodel ¼ tr Sð Þ (16)

(3) Model AICc:

AICc ¼ 2n ln
RSS
n

� �
þ nln 2πð Þ þ n

nþ tr Sð Þ
n� 2� tr Sð Þ
� �

(17)

where RSS is the residual sum of squares.

(4) The standard errors of the parameters can be obtained by:

SE bβj� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag CCT σ̂2

� �r
(18)

where C ¼ diag XjÞ
� 	�1

Rj

h
and diag Xj

� �
 	�1
is the inverse of a diagonal matrix with Xj

being its diagonal elements.
Detailed descriptions can be found in Yu et al. (2019).

2.4. Available software for calibrating MGWR model

Currently, there are two software packages that are available to calibrate an MGWRmodel,
and both are actively maintained. One is GWmodel in the R environment (Gollini et al.
2015)1 which provides an array of geographically weighted models. With the latest
update in February 2019 (version 2.0–8), GWmodel is able to perform an MGWR calibration
with inference based on the work of Fotheringham et al. (2017) and Yu et al. (2019). It also
has the capability of calibrating Parameter-specific Distance Metrics (PSDM) models (Lu
et al. 2018), which is a special use case of MGWR when different distance metrics are
desired. A detailed comment on PSDM and MGWR can be found in Oshan et al. (2019b).
The second is MGWR 1.0 software released in November 2018. It is built on the mgwr
python package2 (Oshan et al. 2019a) and has a user-friendly graphical interface and is
available for both MacOS and Windows platforms. The computational improvements
developed in this paper are integrated into the mgwr python package (version 2.1.0)
and built into the MGWR 2.0 software3 which supersedes the previous MGWR 1.0 version.

3. Computational cost of MGWR

MGWR is computationally intensive due to the iterative back-fitting algorithm that
involves many univariate GWR calibrations. The total number of univariate GWR calibra-
tions needed is k × d, where k is the number of covariates and d is the number of iterations
before convergence is reached. Though d is hard to predict, there are three general rules
of thumb from experiments which show that:

(1) The greater the number of covariates, the more iterations are needed for
convergence.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



(2) Higher levels of multicollinearity among covariates increase the number of itera-
tions needed before convergence.

(3) Local processes need more iterations to converge than regional or global
processes.

Further analysis is needed to provide confirmatory evidence of these rules. In addition,
standardization of both response and covariates is suggested before running the MGWR
model (Fotheringham et al. 2017). This is not only for better comparison of parameter
estimates and associated bandwidths, but it also speeds up convergence. Li et al. (2019)
show that for a multivariate GWR model with k covariates, the time complexity of the GWR
algorithm is O k3n2lognð Þ where the log nð Þ comes from a golden-section search for the
optimal bandwidth. BecauseMGWR only needs univariate GWR calibrations in its back-fitting,
the time complexity of an MGWR calibration is approximately O kdn2lognð Þ as shown in
Table 1. The computational cost of the inference calculation is much more intensive because
after each univariate GWR during the back-fitting, a multiplication of two n by nmatrices Aj

and Rj
� (Equation (13)) is needed at a cost of O n3ð Þ time complexity. In total, there would be

k × d numbers of O n3ð Þ operations needed. The time for updating Rj is negligible when n is
relatively small (e.g. n < 5,000). However, as n increases, this operation does not scale well and
will dominate the runtime of the back-fitting more than the parameter estimation procedure.
Further evidence of this statement will be shown in the Results section. On the other hand,
regarding the memory constraint, storing the kby n by n matrix R has a memory complexity
of O kn2ð Þ. Figure 2 shows the theoretical memory allocation needed with varying n and
k based on double-precision (64-bit for each number) matrices. Considering today’s

Table 1. Computational complexity of MGWR calibration.
Back-fitting Inference

Time Memory Time Memory

O kdn2 lognð Þ O knð Þ O kdn3ð Þ O kn2ð Þ

Figure 2. Theoretical memory demand of MGWR calibration with varying numbers of observations
and covariates.
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hardware, this will place a severe limitation inMGWR for calibrating amoderately largemodel
(>10,000 locations). For example, a desktop computer with 16 GB of available memory would
fail to calibrate an MGWR model with more than 15,000 locations and with more than 5
covariates. What is more, in practice, because intermediate results are needed to be cached
during the calibration, we often need more memory space than the theoretical memory.

4. Solutions to address the computational issues in MGWR

MGWR calibration can be separated into two steps. The first is to estimate parameters and
find the set of optimal bandwidths during a back-fitting procedure. The second is to
compute MGWR inference to obtain parameter uncertainties, covariate-specific and over-
all model effective number of parameters (ENP) andmodel diagnostics (e.g. AICc). The first
step of an MGWR calibration mainly involves univariate GWR calibrations; thus, here we
can take advantage of the parallelization and optimization methods described in FastGWR
(Li et al. 2019). For inference computation, we need to develop a novel parallel imple-
mentation that computes covariate-specific hat matrices Rj in column chunks to reduce
the memory demand. We now describe these two developments.

4.1. MGWR back-fitting with FastGWR

Traditional GWR calibration consists of independent locally weighted least square regres-
sion at each location. Then, local statistics are combined to compute model diagnostics
such as AICc to assess model fit. This process is repeated for different bandwidths to find
which bandwidth yields the best model fit using, for example, AICc. FastGWR utilizes the
parallelizable nature of GWR and computes all local statistics in parallel without storing
large matrices such as the weight matrix and hat matrix. Then, AICc can be efficiently
computed and compared across different bandwidths with the help of a golden-section
search routine. The approach is described in detail in the context of MGWR. For a given
bandwidth, there are two local statistics that are needed to compute AICc: the local
influence value ri (also the diagonal element of hat matrix) and the local residual ε̂i . Both
can be computed as follows:

ri ¼ xij XT
j WiXj

� ��1
XT
j Wi (19)

β̂ij
� ¼ Xj XT

j WiXj

� ��1
XT
j Wi

bf j þbε� �
(20)

ε̂i
� ¼ β̂ijxij � β̂ij

�
xij þ ε̂i (21)

where xijis the measurement of the jth covariate at location i, Xj is a column vector of
the jth covariate, Wi is a diagonal weight matrix (can be stored as a column vector to
reduce memory) computed locally using the current bandwidth as a pre-specified

kernel (e.g. bi-square or Gaussian), β̂ij and ε̂i are the parameter estimate and residual

from the last iteration of back-fitting. The computation of three local statistics can be
evenly assigned to multiple processors for parallel computing. Then, once all proces-
sors finish their assigned tasks, covariate-specific AICc values can be computed as
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AICc ¼ 2n ln

Pn
1 ε̂i
�

n

� �
þ nln 2πð Þ þ n

nþPn
1 ri

n� 2�Pn
1 riÞ

� �
(21)

This procedure is repeated along with the golden-section routine as detailed in
Algorithm 2.

Algorithm 2: MGWR Back-fitting Calibration using parallel implementation from FastGWR
1: Calibrate a GWR model of y ~ X and obtain fitted additive terms bf1...k and model

residual bε.
2: Do until bf1...k converge:
3: For each term j from 1 to k:
4: For bw in golden-section search:
5: Parallel computing local statistics ε̂i

�, ri, and β̂ij
�
for all locations i.

6: Compute and assess covariate-specific AICc.
7: Obtain the optimal bandwidth as bwj with minimum AICc and update bfj  bβ�j Xj

and ε̂ ε̂�

4: End for
5: End do

4.2. Chunk-wise parallel computing of MGWR inference

From the previous discussion, it is known that the inference computation in MGWR
requires a large memory allocation for the computation of the covariate-specific hat
matrices R (dimension n by n by k), which can easily exceed the memory limit of
a standard desktop computer; even for a moderately sized dataset. In this section, we
propose a partitioning method that can compute the Rmatrix in small chunks of columns,
each of which can easily fit into the memory of even a modest computer. From Equation
(13) we can see that each covariate-specific hat matrix Rj is computed as Rj  AjRj

�

during back-fitting, where Aj is a univariate GWR hat matrix that projects Rj
� to Rjwith the

dimension nby n, and Rj
� is I�Pk

p�j Rp of shape nby n. From the property of a projection

matrix, it is known that updating each column of Rj is independent of updating other
columns of Rj. This provides the opportunity to compute Rj by chunks of columns. Since
both Aj and Rj

� are nby n matrices, in the case when both cannot fit into memory, we
partition Aj by rows and Rj

� by columns to update a block of Rj. The updating is illustrated
in Figure 3 where we evenly split Aj and Rj

� into two chunks. This procedure is repeated in
the back-fitting algorithm, and when the back-fitting converges we get a column chunk of
Rj , which can be denoted as Rjc. Partial inference can be computed based on the chunk of

Rjc, such as the calculation of the effective number of parameters and the matrix CCT in
Equation (18) to further compute parameter uncertainties. After that, we iterate to
the second chunk of Rj , and obtain the corresponding partial inference. Each chunk can
be computed independently in parallel to fully utilize a multi-processor system. Once all
chunks are computed, full MGWR inference can be combined using partial inference
obtained from each chunk, and the formulas are given as follows:

ENPjc ¼
Xq

c¼1 partialtrace Rjc
� �

(22)

10 Z. LI AND A. S. FOTHERINGHAM



CCT
jc ¼

Xq

c¼1
Rjc

Xj

� �2

axis¼1
(23)

where c is the current chunk and q is the total number of chunks and the subscript axis = 1
indicates that the summation is applied to columns and reduces to a column vector.
Details are shown in Algorithm 3.

Algorithm 3: Chunk-wise parallel computing of MGWR inference
1: Initialize Rj from GWR, ENPj ¼ 0, and CCT

j ¼ 0n�1
2: Parallel computing each chunk c in the total number of q chunks
3: Given bandwidths history in back-fitting iterations from parameter estimation
4: For each term j from 1 to k:
5: Block-update Rj and get a column chunk of Rj

6: Update column chunk of Rj
�

7: For each term j from 1 to k:
8: ENPj ¼ ENPj þ ENPjc
9: CCT

j ¼ CCT
j þ CCT

jc

10: End for
11: End do

Splitting covariate-specific hat matrices R into two chunks (q = 2) should reduce the
memory needed by approximately half. For example, if the allocation of R needs 32 GB of
memory, if we use the chunk-wise computation described above and split R into two
chunks, then memory allocation needed will be reduced to around 16 GB. Splitting R into
q chunks is expected to reduce memory by a factor of q. However, it worth noting that
since Aj is not stored and will be computed repeatedly for each chunk of Rj, it will add
additional cost if we specify the number of chunks greater than 1. In this way, we need to
decide the minimum number of chunks that can make the chunk of R fit into the available
memory. A simple calculation to decide q would be

Figure 3. Illustration of the block update covariate-specific matrix Rj by chunks (e.g. the number of
chunks = 2).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



q ¼ 8� k � n� n

m� 10243
(24)

where m is the available memory in the hardware, and we assume we use double-
precision matrices (64-bit). For example, if the available memory is 16 GB on a machine,
and we have an MGWRmodel with 40,000 data points and 10 covariates, qwill need to be
at least 15 chunks to avoid memory problems.

5. Testing dataset and environment

5.1. A data-generating process for deriving a test dataset

For testing the performance of the improved MGWR software, we develop a data-
generating process (DGP) that can automatically synthesize multi-scale spatial processes
for a varying number of covariates and observations. Detailed steps can be found in the
supplementary materials. In this study, we generated 15 parameter surface grids with
a dimension of 200 by 200 in a total of 40, 000 locations. The resulting parameter surfaces
b1;b2; . . . ;b15 are spatial random fields with different heterogeneities, which can be seen in

Figure 4. The response variable y� is constructed by y� ¼P15
j¼1 bjxj þ ε where each covari-

ate xj and the error term ε are randomly drawn from the normal distribution N(0, 1).

5.2. Testing environment

The single desktop used in comparing performance across MGWR software packages is equipped
with an Intel i7-4790 4-core CPU at 3.60 GHz and 16 GB RAM. The Python environment used is
version 3.6. The R environment used is version R 3.5.2. Runtimes are measured based on Python
and R’s built-in time modules. Memory usages are measured based on the memory_profiler4

module for Python and the built-in memory module for R. To enhance reproducibility, all testing
codes, datasets used and results can be found publicly in a Github repository.5

6. Results

6.1. Runtime comparison with the original MGWR implementation

First, we benchmark our improved algorithm with the original implementation of MGWR
used in Fotheringham et al. (2017) to show that the improved method reduces various
issues of computation. To demonstrate this, we reproduce MGWR models and record
runtimes using the example datasets in Fotheringham et al. (2017).6 Figure 5 shows the
comparison of runtimes from MGWR 2.0 and runtimes explicitly reported in, Fotheringham
et al. (2017) using two example datasets. The simulation 1 dataset used in, 2017 consists of
three covariates with 625 observations. For this synthetic dataset, the calibration takes 4.8
min in Fotheringham et al. (2017, p. 1257), while it only takes 7.4 s after the improvements
described here. For the other example used in that paper, the Irish potato famine dataset
with 2317 locations and 9 covariates, the paper reported that the calibration process took 51
h (Fotheringham et al. 2017,p. 1260). In comparison, using the improved method proposed
in this paper, the runtime is reduced to around 6 min, which is 510 times faster than the
original implementation. For both examples, our improved method shows a crucial
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performance increase. Also, the speed-up is projected to be greater for more complicated
models which contain more observations and covariates.

6.2. Comparison against GWmodel

Second, we compare our proposed improvement against GWmodel package’s MGWR imple-
mentation. We randomly draw a subset of data points from the synthetic dataset described in
Section 5.1 and calibrate MGWRmodels using both software packages to record the runtimes
and maximum memory usage. Results are presented in Table 2. With a sample size of N =
1,000,MGWR2.0 is around 16 times faster thanGWmodel. WhenN=2,000,MGWR is around 30
times faster than GWmodel and when N increases to 5,000, MGWR 2.0 is around 140 times
faster than GWmodel. When the sample size increases to 10,000, GWmodel generates

Figure 5. Runtime comparison based on two example datasets from Fotheringham et al. (2017).

Figure 4. Synthesized known parameter surfaces with varying scales from local to global.
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a memory allocation error on the testing machine but MGWR 2.0 is able to complete the
calibration within an hour. For sample size N = 20,000, MGWR 2.0 takes around 6.5 h to
complete and for N = 40,000, MGWR 2.0 takes around 4 days to finish. This is becausememory
allocation exceeds the memory limit of the testing machine so the software has to use more
chunks to split the inference computation in order to fit in the memory, which slows the
calibration. If amachinewithmorememorywere used, the calibration byMGWR 2.0 would be
accelerated by several orders of magnitude. From a memory perspective, MGWR 2.0 caps out
the memory usage at around 11 GB (approximate available memory on the test machine)
when N is great than around 15,000 and the software starts to bring the chunk parameter into
action to avoid memory allocation error.

6.3. Effectiveness of memory reduction in inference computation

With the improved implementation borrowed from FastGWR, memory is not an issue in the
parameter estimation component of MGWR. In the inference component, we need to use the
method described in Section 3.4 to separately compute covariate-specific hat matrices in
chunks of columns. To demonstrate the effectiveness of partitioning this computation into
chunks,we calibrate twoMGWRmodelswith sample sizes of N=10,000 andN=20,000 and10
covariates, and record the memory usage with varying numbers of chunks. Figure 6(a) shows
howmemory is reducedwhen thenumber of chunks is increased.When thenumber of chunks
is 1, the inference computation does not involve any partitioning and covariate-specific
matrices are computed as described in Yu et al. (2019). When the number of chunks increases
to 2, memory is reduced by approximately half, and this behaviour is consistent for both
sample sizes. For example, when N = 20,000, thememory demand is reduced from around 40
GB to around 20GB.When the number of chunks is increased to 4, thememory requirement is
reduced further to around10GB. This implies that if amachinehas a RAMof 16GB, it is not able
to computeMGWR inference for a sample size of 20,000 due to thememory needed, but if we
use the improved method presented in this paper, we could increase the number of chunks
and compute inference chunk-by-chunk to get around the memory constraint. However,
increasing the number of chunks comes with the cost of increasing calibration time. Figure
6(b) shows how runtime is increasedwhen the number of chunks is increased. As can be seen,
when two chunks are being used, it only adds a small amount of extra runtime. When more
chunks are used, runtime goes up but only slowly. Figure 6(a,b) combined show that using
more chunks does not add too much extra computation time but does decrease memory
demand drastically.

Table 2. Runtime and memory comparison between MGWR 2.0 and GWmodel.
MGWR calibration with inference (10 covariates)

Sample size MGWR 2.0 GWmodel

N Time (Seconds) Memory Time Memory
1000 50 1.3 GB 802 0.5 GB
2000 127 2.0 GB 3818 0.8 GB
5000 370 3.2 GB 52,119 (~15 h) 5.5 GB
10,000 2652 10 GB Memory error NA
15,000 10,068 (~3 h) 11 GB Memory error NA
20,000 23,236 (~6.5 h) 11 GB Memory error NA
40,000 301,126 (~4 day) 11 GB Memory error NA
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6.4. On the scalability of MGWR parallelization

In this section, we examine the scalability of the parallelization used in the MGWR calibration.
First, we calibrate MGWR models with sample sizes of N = 5,000 and N = 10,000 with varying
numbers of cores. Since the parallelization mechanism is different for parameter estimation
and inference, we separately record the runtimes for the two components. In Figure 7, stacked
bar plots (a) and (c) show the actual runtimes, respectively, for parameter estimation and
inference computation for the two sample sizes using 1 to 4 processors. It can be seen that
when N = 5,000, parameter estimation takes more time than inference computation, while
whenN= 10,000, inference computation takesmore time than parameter estimation. Asmore
processors are used, runtimes decrease logarithmically for both sample sizes. The line plots in
Figure 7(b,d) show the speed-up factors for parameter estimation, inference and
a combination of both (total) based on runtime using a single processor so that the speed-
up factor is 1 when using only 1 processor. Parameter estimation has strong scalability when
using more processors, and using 4 processors generates a speed-up factor close to 3.
Inference computation scales less well than parameter estimation but still the use of 4 proces-
sors generates a speed-up factor around 2. When combined, the MGWR calibration overall is
around2.4 times fasterwhenusing4processors thanwhenusingonly a single processor. Since
the testing machine only has four physical cores, it is hard to infer the scalability if a machine
has more processors. Thus, we used another desktop machine with eight physical cores to
examine both the compatibility and scalability of theMGWR parallelization. The results can be
seen in Figure 8 where it can be seen that using 8 processors speeds-up the overall MGWR
algorithm by a factor of 4.8. The speed-up factor of parameter estimation is around 6 and
speed-up factor of inference computation is around 4. Generally speaking, the scalability of
MGWR parallelization is reasonable. There are two reasons for not getting perfect linear
scalability. First, based on Amdahl’s law about parallel computing that the speed-up of
a program is limited by its serial part, the back-fitting procedure of the MGWR calibration
involves sequential updating of parameter estimates and residuals which reduces
performance. Second, parallelization can be implemented by either multi-threading or multi-

Figure 6. Memory demand and runtime change with varying numbers of chunks used.
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processing. Multi-processing is more desirable in this situation because multi-threading is
limited by the Global Interpreter Lock (GIL) of Python. However, the downside of using multi--
processing is that there is a noticeable amount of time needed for data copying to different
processors, even though we limit this by minimizing the amount of data being copied.

6.5. Computational evaluation of MGWR

In this section, we evaluate the computation of MGWR using the synthesized dataset described
in Section 5.1. We calibrate MGWR models including inference for a varying number of sample
sizes and with 5, 10 and 15 covariates. Given that convergence rates may vary in empirical
studies, we also include three categories of convergence rate which are: fast convergence (10
back-fitting iterations); moderate convergence (50 back-fitting iterations); and slow conver-
gence (100back-fitting iterations). Figure 9 shows the approximate timeneeded to complete an
MGWR calibration (with parameter estimation and inference) under the three different

Figure 7. Runtime and speed-up factor of the new MGWR calibration for parameter estimation,
inference and total calibration on a 4-processor machine based on a sample size of 10,000.
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convergence rates and for varyingnumbersof bothobservations andcovariates.7 Theblue areas
on each figure show what model size can be fitted in under 10 min; the green areas show the
model size that can be calibrated within 1 h; the yellow areas show the model size can be
calibratedwithin 6 h; the red areas show themodel size that can be calibratedwithin 1 day; and
the purple areas show themodel size needingmore than 1 day for calibration. For example, for
10 covariates, amodel with a sample size of 2000 can be fitted in under 10min if it converges at
amoderate rate. In general, we can see thatMGWR is able tobe calibratedonmodelswith fewer
than 20,000 observations within a reasonable time (less than a day) if it converges moderately.
When the sample size is larger than 20,000 ormore covariates are involved, itmight take several
days to calibrate anMGWRmodel onanormal desktop computer. However, using aworkstation
with more processors and memory will accelerate MGWR calibration several times so the task
would probably be completed within 1 day. The ability of MGWR 2.0 to utilize more computing
resources opens the possibility for handling up-to 100,000 observations in anMGWRcalibration.

7. Conclusions

In this paper, we make critical computational improvements to the newly developed Multi-
scale Geographically Weighted Regression (MGWR) model (Fotheringham et al. 2017). We

Figure 8. Speed-up factor of the new MGWR calibration for parameter estimation, inference and total
calibration on an 8-processor machine based on a sample size of 10,000.
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extend the parallelization framework introduced in the FastGWR algorithm (Li et al. 2019) to
speed-up each univariate GWR model within the MGWR back-fitting parameter estimation.
Also, using the recently developed MGWR inference framework (Yu et al. 2019), we introduce
a parallel chunk-wise partitioning method for computing MGWR inference to solve memory
problems. We compare our improved calibration method with the original implementation
used in Fotheringham et al. (2017) and find it is around 500 times faster. Also, we compare our
newmethod with the GWmodel package in the R environment (Gollini 2015) and find it to be
30 to 140 times faster than GWmodel for sample sizes ranges from N = 1000 to N = 5000. For
sample sizes larger than 5000, only our improvedmethod is able to calibrate anMGWRmodel.
We further demonstrate that our new algorithm scales well onmulti-processor machines with
a speed-up ratio of 2.4 on a 4-processormachine and 4.8 on an 8-processor machine. With the
current improvement, an MGWR model with around 20,000 observations can be calibrated
within a day on a normal desktop machine with 4 processors and 16 GB of memory. With
aworkstationwithmore processors andmemory, it is expected that it is feasible to calibrate an
MGWR model with up to 100,000 data points.

The methodology introduced in this paper has been integrated into the mgwr python
package and theMGWR 2.0 GUI software, both of which are freely available to download. This
not only enhances the accessibility of theMGWRmodel for new applications to exploremulti-
scale spatial heterogeneity but also brings the possibility of much larger scale local multi-scale
analysis. In addition, the computational improvements described here can also benefit some
recent spatial analysis models developed based on the MGWR framework such as the
Parameter Specific Distance Metric Model (Lu et al. 2018) and the Multiscale Geographically
and Temporally Weighted Regression model (Wu et al. 2019) both of which have severe
computational restrictions.

Notes

1. The GWmodel R library is available at https://cran.r-project.org/web/packages/GWmodel.
2. The mgwr python library is hosted at https://github.com/pysal/mgwr.

Figure 9. Approximate runtime needed to complete an MGWR calibration (with parameter estimation
and inference) under three different convergence rates and for varying numbers of both observations
and covariates.
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3. The MGWR 2.0 software is freely available at https://sgsup.asu.edu/sparc/mgwr.
4. https://github.com/pythonprofilers/memory_profiler.
5. https://github.com/c040120/com_improv_mgwr_data_codes.
6. The computer used in Fotheringham et al. (2017) has dual 2.6 GHz 8-core CPUs and 64 GB of

memory.
7. Results shown are based on testing machine described in Section 5.2; actual runtime may

vary on different machines.
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