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Abstract The paper presents a reliable method using deep learning to recognize solar fil-
aments in Ho full-disk solar images automatically. This method cannot only identify fila-
ments accurately but also minimize the effects of noise points of the solar images. Firstly, a
raw filament dataset is set up, consisting of tens of thousands of images required for deep
learning. Secondly, an automated method for solar filament identification is developed using
the U-Net deep convolutional network. To test the performance of the method, a dataset with
60 pairs of manually corrected Ho images is employed. These images are obtained from the
Big Bear Solar Observatory/Full-Disk H-alpha Patrol Telescope (BBSO/FDHA) in 2013.
Cross-validation indicates that the method can efficiently identify filaments in full-disk Ho
images.
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1. Introduction

Solar filaments (also called prominences when they appear at the solar limb) are one of
the most obvious characteristics on the Sun. They are the projection of prominences on
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Figure 1 One example of filament recognition using traditional image processing method. There are a lot of
noise points in the solar disk, which are represented by the scattered and isolated yellow dispersion points in
the right panel.

the solar surface, and look like elongated dark ribbons with irregular edges on the brighter
solar disk. Solar filaments consist of relatively cool and dense gas suspended above the solar
photosphere, generally lying along magnetic neutral lines (Lang 2001). Their temperatures
and densities are much cooler and denser, respectively, than those of the surrounding corona.
Furthermore, the eruptions of filaments are often associated with flares and coronal mass
ejections (CMEs) (Gilbert et al. 2000; Gopalswamy et al. 2003; Jing et al. 2004; Chen 2008,
2011; Zhang et al. 2012). For example, with the improvement of observation, the eruptions
of filaments show some typical characteristics of flares, and there are also flare ribbons and
post flare loops after the eruptions of filaments (Priest and Forbes, 2002). Forbes (2000)
points out that filament eruptions, flares, and CMEs can be regarded as the same physical
process of release of magnetic energy in a different time and solar atmosphere height. Thus,
it is crucial to study the evolution of solar filaments observationally and theoretically. The
statistical analysis is equally important.

Since the rapid development of telescopes and computers, tremendous data has been
created. Then the question of how to recognize filaments efficiently and automatically is
raised, in particular on the data from Hat full-disk observations. Several automated detection
algorithms have been proposed to recognize filaments in Ho images, concerning the finding
of a threshold (Gao, Wang, and Zhou, 2002; Shih and Kowalski, 2003; Qu et al., 2005;
Fuller, Aboudarham, and Bentley, 2005; Yuan et al., 2011; Hao, Fang, and Chen, 2013).
Labrosse, Dalla, and Marshall (2010) have applied the support vector machine (SVM) to
distinguish filaments from sunspots.

We notice that the methods, as mentioned above, are mainly designed to find an optimal
threshold, which will raise the following two problems. First, no matter what threshold is
chosen, there will always be a large number of non-filament structures (noises or contam-
inations) (Figure 1) mixing in the recognition results, and another threshold should be set
to remove them. This may rule out smaller filaments located around larger ones. In other
words, there is no such a perfect threshold capable of removing noises and contaminations
and keeping all filaments undamaged in Ho full-disk solar images. Second, when there are
slightly uneven intensity distributions caused by the stable shutter effect or other problems
in the instrument, the above methods may mistakenly regard the dark contaminated areas as

@ Springer



Solar Filament Recognition Based on Deep Learning Page 3 of 13 117

filaments. In that case, more methods need to be adopted to remove the uneven distribution
on the solar disk.

Hinton and Salakhutdinov (2006) formally proposed the concept of deep learning with
two viewpoints. Firstly, the features obtained from the deep learning networks can better
reflect the essential attributes of the original data. Secondly, the results of upper training
are used as initialization parameters in the lower training process, which can better solve
the optimal problem. Once the method was implemented, it made a massive response in the
academic circles. In particular, the team led by Geoffrey Hinton won the championship in
the prestigious ImageNet Image Recognition Competition with the deep learning model —
AlexNet in 2012 (Krizhevsky, Sutskever, and Hinton 2012). Since then, the algorithms for
deep learning have achieved remarkable performance in many fields such as the medical,
financial, art, and autopilot fields.

In this paper, we present a reliable algorithm using the improved U-Net, part of the deep
convolutional neural networks, to recognize filaments for Ho full-disk solar images. The
U-Net, first presented for biomedical image segmentation (Ronneberger, Fischer, and Brox
2015), is a new approach to the study of filament segmentation in solar physics. We can iden-
tify the position of filaments and also accurately recognize them with few noise in the binary
images. This paper is arranged as follows. The method of the improved U-Net network is
described in Section 2. Moreover, in Section 3, we describe the details of the training pro-
cess before filament identification. Then in Section 4 are the experimental results. We draw
our conclusions in the last section.

2. Methods

In this section, we introduce the fully convolutional networks (FCNs) proposed for semantic
segmentation, then demonstrate the architecture of the improved U-Net network, in which
we add several dropout layers in the network in order to enable it to work on the task of fila-
ment recognition. Moreover, the interpolation method is employed instead of deconvolution
to reduce the training time.

2.1. Fully Convolutional Networks

Before the FCNs proposed by Long, Shelhamer, and Darrell (2015), it was still a problem
to realize pixel-level segmentation for dense end-to-end learning in an image. Most of the
research focuses on image classification using the convolutional neural networks (CNNss,
also referred to as “convnet”). It is the first time that the full convolution layer is used
to replace the fully connected layer to realize pixel-level image segmentation. In addition,
Long’s other significant contribution is to define the skip architectures that can combine
the rough information from deep layers with the detailed information from shallow layers.
Unlike CNNs, which classifies images, the FCNs can classify every pixel in an image to
achieve image recognition.

The FCNs modify the classical CNNs classification network (Krizhevsky, Sutskever, and
Hinton, 2012) consisting of five convolution layers and three full connected layers into fully
convolutional networks (Figure 2). A basic convnet consists of convolution, pooling, and
activation functions. The purpose of convolution is to extract feature maps from the prior
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Figure 2 Architecture of the fully convolutional networks (FCNs). The entire network is composed of con-
volutional layers without any fully connected layer. The FCNs combine coarse and high layer information
with fine and low layer information.

layer by the learned convolution kernels. The activation function “Rectified Linear Unit”
(ReLU, Nair and Hinton 2010) is used to add non-linear elements to the feature maps. The
position element s (i, j) in the feature map can be computed by

N
s(i, j) =ReLU{ Y " (Xx @ W) (i, j) +b e

k=1

where ReLU(x) = max(0, x), N is the total channel number of input layer, X, is the kth
input channel, W; is the kth convolution kernel of one of the input channels, and b represents
the adjustable bias. The basic function, “ReLu”, is to make those negative values to 0. The
convolution layer is aimed at extracting multi-dimensional feature maps from the previous
layer.

In order to obtain more prominent feature information, the resolution of feature maps
is compressed in the pooling layer under the effect of translation invariance. Generally,
there are two kinds of pooling operations, “average” pooling and “max” pooling. The FCNs
chooses the latter as its pooling strategy. The value at location (i, j) in the /th pooling layer
can be denoted

afj:max(afn’nl), i<m,n<i+?2, )

where m (n) is the overlapped region of pooling kernel in the (! — 1)th convolution layer.
The size of the pooling kernel is 3 x 3 with a stride of 1. The pooling layer mainly reduces
the size of the feature map of the upper layer and reduces the computational complexity of
the network.

Although the FCNs can efficiently learn to make a dense prediction for per-pixel tasks
like semantic segmentation, the original FCNs are not perfect enough because their seg-
mentation results are still rough. Therefore, lots of studies have been done to improve the
precision of image segmentation. Generally, there are two kinds of work dealing with this
problem.
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The first is to add dilated convolution behind the standard convolution layer to avoid
losing information in the pooling process (Yu and Koltun 2016), and to improve the dilated
convolution such as atrous spatial pyramid pooling (Chen et al. 2014), and fully connected
conditional random fields (CRFs, Chen et al. 2016).

The second is to build up the skip connections between the max-pooling layers and
the up-sampling layers, for example, the DeconvNet (Noh, Hong, and Han 2015), SegNet
(Badrinarayanan, Kendall, and Cipolla 2017), and the U-Net (Ronneberger, Fischer, and
Brox 2015). Due to the high efficiency and accuracy of the U-Net, we plan to apply it to
do the task of segmentation of solar filaments. Also, it can be further improved to achieve
better performance.

2.2. Improved U-Net Based Filament Segmentation

The U-Net is based on the FCNs. The developers modify and expand the network framework
so that it can use very limited quantity of training images to obtain more accurate recognition
results. Its architecture consists of a contracting path in which the dimensions of the feature
maps are reduced due to the max-pooling, and an expansive path in which feature maps
are combined with up-sampling maps at corresponding location (Ronneberger, Fischer, and
Brox 2015). There are several down-sampling and up-sampling blocks in the network.

Usually, filaments occupy quite small areas on the solar disk, and it is difficult to get accu-
rate segmentation to the filaments using U-Net directly. Therefore, based on classic U-Net,
we introduce the dropout layers (Srivastava et al. 2014) behind the two convolutional layers
in the first four down-sampling blocks. Additionally, we employ up-sampling operation with
the function of the nearest-neighbor interpolation instead of deconvolution operation in the
up-sampling blocks (Figure 3).
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Figure 3 Architecture of the improved U-Net network. It contains a contracting path shown with blue and
an expansive path with green. The number below each box represents the number of channels. The size of
feature maps is provided at the left and right sides of the box. Each box contains more operations as shown in
Figure 4.
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Figure 4 Architecture of each colored box as shown in Figure 3. The blue dashed box contains two convolu-
tion layers, one dropout layer, and one max-pooling layer. The green dashed box consists of an up-sampling
layer, a convolutional layer, a merging layer, and two convolutional layers. The size of convolution kernels
is 3 x 3. Each convolution layer is followed by an activation function. The dropout layer discards neurons
at a 50% probability. The up-sampling layer use the nearest-neighbor interpolation instead of deconvolu-
tion. Merging operation is used to connect the second convolution layer in each down-sampling box and the
up-sampling layers in each corresponding up-sampling box.

The first down-sampling block contains two convolution layers with the activation func-
tion of the “ReLLU” and one max-pooling layer (Figure 4). In the first two convolution layers,
there are 64 convolution kernels, the size of which is 3 x 3 and the step size is 1. In the fol-
lowing down-sampling blocks, the number of convolution kernels is twice that of the former,
and the size of kernels remains unchanged. To prevent over-fitting, we add several dropout
layers after two convolution layers in the first four down-sampling blocks (Figure 4). The
formula of the dropout layer is given by

7' = B(p) x y', 3)

where p is the probability of discarding neurons, generally being set as 0.5. B function
randomly generates O or 1. The neuron y; in the ( + 1)th layer can be calculated as

v = w5+ e i=1,2,. N, )

It is designed to discard each neuron at a 50% probability.

In the up-sampling blocks, we use nearest-neighbor interpolation to resize image instead
of deconvolution in order to guarantee the results to be reliable and at the same time, improve
the speed of training (Figure 4). Because of the representativeness of features, the reliability
comes from the approximate adjustment of the former feature layer by interpolation. The
width and height of the original image are w; and &, and those of the scaled image are w,
and h,, respectively. The coordinates of the scaled image can be computed as:
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wi
w=—, wy #0,
wr
hy
=it O, )

Xo = int(x * w),

Yo =int(y * h),

where (xg, o) in the scaled image is equal to (x, y) in the original image.

3. Implementation Details
3.1. Data Preprocessing

Since there is no common training sets available for filaments segmentation so far, we built
up a filament segmentation dataset! containing tens of thousands of images. The dataset
includes two parts: the full-disk How solar images and the ground-truth maps. For filament
recognition, the ground-truth maps refer to the correct segmentation results map for the su-
pervised learning. They are binary maps, where 1 represents the filament region and O refers
to the non-filament point. However, to obtain better segmentation results, further manual
correction for the ground-truth maps is required.

We selected 30 typical pairs of preprocessed and ground-truth images as original training
set from tens of thousands of images, 20 pairs of them are chosen as the validation set and
10 pairs of them chosen to test the performance of the proposed method. Limb darkening is
removed from the original images to avoid introducing too much noises and other undesir-
able factors. All the pixels outside the solar disk are set to gray. The raw images are labeled
as ground truth using Photoshop software and traditional digital image processing.

Data augmentation is also critical for network invariance and robustness when a small
number of training images are available (Table 1). Flipping, shifting, and rotation invariance
are the main methods. In order to obtain a usable model, only those images with distinct
features are selected as training samples. Finally, 6040 training samples are generated from
30 high-quality Ho full-disk solar images.

The proposed method takes Ho full-disk solar images and ground-truth maps as inputs
that are resized to 512 x 512 and sent to the improved U-Net architecture to generate an

Table 1 Parameters of data

enhancement of the improved Methods Range
network.
Rotation 0.2°
Shift 0.5 on both horizontal and vertical direction
Shear 0.05
Zoom 0.05
Flip horizontally 50% probability
Flip vertically 50% probability
Fill mode Nearest

IThe filament segmentation dataset is available in http://sun.bao.ac.cn/hsos_data/download/filaments-unet-
dataset/.
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appropriate weight model, which is used to segment filaments in Ho images. The improved
U-Net network can train end-to-end even for a minimal number of images at high speed.

3.2. Training

Due to the hardware limitation of the experiment, the input tiles are scaled to 512 x 512. For
GeForce 1070Ti GPU, the memory will be exhausted if the batch size is set at 4 or greater.
Therefore, it has to be set at 2. We choose “Adam” as the optimizer (Kingma and Ba 2014),
with the learning rate of 0.0001, betal of 0.9, and beta2 of 0.999. All weights are initialized
by the “He” normal initializer (He er al. 2015) with the mean value of 0 and the standard
deviation of sqrt(2/fan_in), and all biases are initialized as 0.

In the task, the U-Net divides the solar full-disk into filament regions and non-filament
regions. The sigmoid function S(x) is applied to sort out the results, which is a kind of
logistic function that converts all the results to probabilities within (0, 1). Its expression is

Sx) =

, 6
l14+e~ ©
where x is the processed result of the aforementioned network. The closer its value is to 1,
the more likely the pixel is the target object.

The binary cross-entropy is the loss of the network,

loss=—Y ilogy; +(1—9)log(1—y), i=12,...N, )

i=1

where y; is the prediction result and y; is the ground truth.

Without using a pre-trained model, our method can use the GPU to train a remarkable
model in about 49.3 minutes. For the CPU, it takes about 57.1 hours to train an available
model.

4. Experiments
4.1. Performance Evaluation

The dice similarity coefficient (DSC), a measure of similarity between two binary sets, and
the True Positive Rate (TPR) from common semantic segmentation evaluation strategy was
measured in our filament segmentation. For the detected filaments, DSC provides the overlap
measurement between marked regions in ground-truth map and the segmentation results,
which is

2TP
~ 2TP+FP+FN’

where TP, FP and FN denote the true positive, false positive, and false negative measure-
ments, respectively.
Additionally, the TPR measurement is as follows:

DSC 3)

TP

TPR = —,
TP +FN

®
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and the false positive rate (FPR) is

FP

FPR= ———.
FP + TN

(10)
The training loss and the binary accuracy are also showed in Figure 7, which describes the
training process of this deep neural network. The binary accuracy is an evaluation metric to
the accuracy of binary classification problems (Equation 7).

4.2. Experimental Results

We select ten pairs of images (including ten original images and ten ground-truth images)
containing various shapes of filaments as our samples to evaluate the performance of the
proposed network architecture. As the segmentation result is a probability map, different
probability thresholds will have different effects on the final segmentation accuracy. The re-
ceiver operating characteristic (ROC, Fawcett 2006) analysis, which is often used to evaluate
the pros and cons of a binary classifier, is performed by plotting TPR and FPR at various
threshold settings. So, we use the ROC curve to judge the quality of the segmentation and de-
termine an appropriate probability threshold. We sort the non-zero probability values in each
probability map incrementally and then divide them into ten groups. The maximum value of
each group of probability values is used as the candidates’ probability thresholds to obtain
10 groups of filament segmentation results for each probability map. In Figure 5, accord-
ing to TPR and FPR calculated between segmentation results and ground truths, the ROC
curves have been drawn for the selected test set. For each probability map, the point close
to the upper left corner of the ROC plot is the point of the appropriate probability threshold.
As shown in the figure, our method can achieve very low FPR and very high TPR. If the
manual corrections of ground truth in the training set are more accurate, the accuracy of
segmentation might be further improved. Theoretically, when the predicted probabilities of
these small regions around large filaments are below the appropriate probability thresholds
on the ROC curve, they would be neglected. However, it should be noted that these small
regions with lower intensity (higher predicted probability) can still be recognized.

Figure 5 ROC curve of the
proposed network for ten testing
samples (represented by different
colors).

—— Sample 1
—— Sample 2

Sample 3
—*— Sample 4
—+— Sample 5

Sample 6
—=— Sample 7
—*— Sample 8
—+— Sample 9

True Positive Rate

Sample 10

0~ I I I I I L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

False Positive Rate
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Table 2 Performance indicators of TPR, FPR and DSC. PThr represents the appropriate probability thresh-
old.

Samplel Sample2 Sample3 Sample4 Sample5S Sample6 Sample7 Sample8 Sample9 Samplel0

TPR 0.8482 0.9186 0.9642 0.8622 0.9060 0.9653 0.8597 0.9165 0.9535 0.9504
FPR 0.0005 0.0003 0.0013 0.0008 0.0002 0.0006 0.0005 0.0007 0.0017 0.0012
DSC 0.8818 0.9152 0.8904 0.8799 0.9400 0.9542 0.8876 0.8527 0.8282 0.9144
PThr 0.4838 0.3037 0.3679 0.5317 0.4769 0.5182 0.7238 0.6811 0.6470 0.7586

Table 2 lists not only the DSC results but also the TPR and the FPR that are generated
from Figure 5 when the proper probability thresholds are chosen. The probability thresholds
that usually located in the upper left corner in Figure 5 must satisfy the requirements of FPR
as small as possible while those of TPR as large as possible. The position close to the upper
left corner of Figure 5 is the proper probability threshold, which makes the segmentation
result the best. In the 10 samples, the highest TPR reaches 0.9642, while the corresponding
lowest FPR is as low as 0.0002. The averaged TPR is 0.9145, and the averaged DSC is
0.8944. These show that our network is a viable strategy for solar filament recognition.
We also find that the larger filaments are, the higher is the segmentation accuracy. On the
contrary, the more scattered small filaments are, the lower is the segmentation accuracy. This
is because, for large filaments, those apparent features can be detected easily.

Figure 6 shows some segmentation results compared with the ground truth. Meanwhile,
the results generated with the traditional digital image processing are also compared with
those with the proposed method. As is shown in Figure 6(e), the traditional image processing
method produces numerous noise points that have to be removed in subsequent operations,
which consequently may also cause the removal of some fragmented parts around the fila-
ments at the same time. The results show that our method is a viable method for filament
segmentation in full-disk Hot solar images.

Figure 7 shows the influence of training epochs on the segmentation performance of the
proposed method that uses images of the training set and validation set. As is shown in
the left panel, the loss of the training set of the proposed network architecture converges
steeply at the first five epochs and settles at 0.005 after 20 epochs. The loss of the validation
set shows an overall downward trend. For the right panel, the accuracy of the training set
increases rapidly and is up to 0.997 at the epoch of 5. It settles at about 0.998 after 20 epochs.
The accuracy of validation set shows an overall upward trend. Therefore, it is reasonable to
set training epochs at 20 in the training process of the proposed network.

5. Conclusions

In this paper, we present a fully automated filament detection and segmentation method
for Ho full-disk solar images using the improved U-Net deep convolution networks.?
A dataset consisting of tens of thousands of images is available online. We demonstrate that
our method can provide efficient segmentation compared with the semi-manual processed
ground truth. In addition, our improved U-Net network can segment filaments directly and
avoid generating segmentation with a large number of noise points. The proposed network
can take less than an hour to get a usable model.

2The code and model are available on GitHub (https://github.com/GF-Zhu/Filament-Unet).
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Figure 6 One example of
segmentation results using the
improved U-Net network. (a) The
preprocessed Hot images. (b) The
ground truths. (¢) The probability
maps. (d) The segmentation
results. (e) The segmentation
result using traditional image
processing.
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Figure 7 Loss and accuracy in the training process of the proposed network using a training set.

Even though we have achieved an inspiring result, there are still some limitations in
the current work. First, for the images with obviously uneven intensity on the solar disk,
the model may recognize those locations with too low intensity as filaments. The intensity
features of these locations have strong similarities with typical filaments, which may lead to
the misrecognition of the network. So, expanding network depth or increasing the diversity
of the training set may be effective to solve the problem. Secondly, the network has the risk
of falling into local optimum. In that case, we have to retrain the model. A fixed learning
rate may be the cause of the problem. Adaptive adjustment to the learning rate is a possible
strategy to address this kind of problem, which is our future research direction.
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