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1. Introduction

Non-commutative Lipschitz properties of functions have been studied for a long time
and go back at least to the work of M.G. Krein [26]. One question raised in [26] in
this direction is whether every Lipschitz function f : R — C is also a non-commutative
Lipschitz function in the sense that the mapping

B(H)sqa — B(H) : A— f(A), (1.1)

is Lipschitz. Here B(H)s, is the self-adjoint part of the bounded operators on a Hilbert
space B(H). In its original statement, Krein’s question has a negative answer as was
shown in [16], [17], [18]. In fact already for f the absolute value map the statement fails
[10], [23]. Only after imposing additional smoothness/differentiability properties on f
the mapping (1.1) is Lipschitz. Indeed, in [3], [4] Birman and Solomyak showed that for
f' € Lip,(R) N LP(R) N Loo(R) with € > 0,p > 1 we have that (1.1) is Lipschitz. The

result was improved on by Peller in [28], [29] who showed that it suffices to take f in the

1

Besov space B,

see [19] for Besov spaces.

Krein’s question can be altered by replacing the uniform operator norms in (1.1) by
non-commutative L,-norms with 1 < p < oo associated with the Schatten-von Neu-
mann classes Sp. In this case a complete answer to the non-commutative differentiability
properties of (1.1) was found [30], namely any Lipschitz function is a non-commutative
Lipschitz function in the sense that there is a constant c, such that for any self-adjoint

operators A, B € S, we have,

1£(A) = F(B)llp < cpll flloc A = Bllp-

The constant ¢, grows to oo if either p — 1 or p — oc. In fact the asymptotic behaviour
was found in [7] (see also [8]) where it was shown that asymptotically ¢, ~ p?(p — 1)1

In this paper we start the investigation of perturbation of commutators and non-
commutative Lipschitz functions from two new view points: BMO-spaces and vector
valued estimates.

We use the theory of BMO-spaces to obtain ‘end-point estimates’ of Krein’s problem.
The optimal behaviour for the constant c, hints towards the existence of such an end-
point estimate but so far the proof was not obtained. In this context we use the theory of
semi-group BMO-spaces, in the commutative case extensively studied by e.g. [33], [36],
and much more recently in [14], [15]. For non-commutative BMO-spaces the theory was
developed in [20], see also [22].

BMO-spaces depend on the choice of a semi-group. This is just as for other definitions
of BMO, which depend on the filtration of a von Neumann algebra or in the classical
setting the choice of cubes/shapes over which means are taken. This choice gives a
flexibility in finding the appropriate BMO-space for Krein’s problem. In the current paper
we introduce a natural BMO-space to resolve such problems in perturbation theory. In
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particular, we prove the result announced in the abstract. Our main theorem which
makes this all work, proved in Section 6, yields as follows.

Theorem 1.1. Let (M, 1) be a finite von Neumann algebra and let f : R — R be Lipschitz
with ||f'||eoc < 1. For every A = A* € M,

(i) The semi-group of double operator integrals T* = (I .1 )¢>0 with symbol

FOup) = A=l +[f) = (WP, A peR,

is Markov (i.e. a strongly continuous semi-group of trace preserving unital com-
pletely positive maps);

(ii) The double operator integral ij‘m with 1Y the divided difference of f maps M to
bmoza (M) and its norm is bounded by an absolute constant cqps.

As a corollary of Theorem 1.1 we retrieve many existing results in perturbation theory,
in particular the ones from [23], [10], [25], [12], [13], [30], [7], and partly [24]. We also
retrieve the optimal estimates in case p = oo for finite dimensional Schatten classes in
Theorem 7.6, see [1]. Together with the weak (1,1) estimate of [8] (see also [27]), which is
complementary to our paper, they complete the study of the end-point estimates. At the
same time, we emphasize that our results do not cover the case of infinite von Neumann
algebras, due to the fact that BMO-spaces, even in the case M = B(H), are not realized
as spaces of operators. On the other hands, a lot of techniques and proofs developed in
this paper continue to hold for general semifinite von Neumann algebras almost verbatim
(see also Section 2.4) and this is a cause for careful optimism that our approach can be
extended to the latter case as well.

To apply Theorem 1.1 and obtain these corollaries we shall further develop the theory
of Markov dilations and we obtain some results of independent interest. In particular we
show that Markov semi-groups can be studied through their discrete subsemi-groups and
get automatic continuity of a Markov dilation. The following is proved in Theorem 3.2.

Theorem 1.2. Let (M, T) be a finite von Neumann algebra. Let T = (T});>0 be a Markov
semi-group. If (Ti)iceN., admits a standard (resp. reversed) Markov dilation for every
€ > 0, then also T admits a standard (resp. reversed) Markov dilation. Moreover, the
dilation has continuous path.

We then apply this to Markov semi-groups of double operator integrals and through
Ricard’s results [31] on dilations of Schur multipliers we prove that they also admit a
(standard and reversed) Markov dilation.

In the final part of the paper, Section 9, we initiate the study of vector-valued Lip-
schitz functions (in fact von Neumann algebra valued to be precise). As we show in
Corollary 9.4 Khintchine type inequalities and free probability estimates can be recasted
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in terms of perturbations of vector valued commutators. Section 9 is strongly based on
non-commutative Calderén-Zygmund theory as developed in [21]; in particular we obtain
our results through the non-commutative Hérmander-Mikhlin theorem of [21].

Structure of the paper. Section 2 recalls all preliminaries and settles notation. Section 3
proves our discretization result for reversed Markov dilations, i.e. Theorem 1.2. Then in
Section 4 we show that Markov semi-groups of double operator integrals admit a reversed
Markov dilation. We collect the corresponding results on standard Markov dilations in
Section 5; these results are not used in this paper but we believe they are of independent
interest and state them for convenience of the reader. Section 6 proves Theorem 1.2 and
we derive all its corollaries for perturbation theory in Section 7. In Section 8 and in
Section 9 we retrieve the von Neumann-valued Lipschitz estimates.

Acknowledgments. We thank both anonymous referees for their careful reading and sug-
gesting improvements to the manuscript.

2. Preliminaries
2.1. General notations

For a multi-index o = (a,...,q,) we write |a] = Y7'_| ax. For a finite von Neu-
mann algebra M with faithful normal trace 7 we write L2 (M) for the non-commutative
Lo-space with respect to 7. We let Q, = 14 € La(M) be the cyclic vector. We identify el-
ements of M as vectors in Lo (M) if necessary. We write L, (M) for the non-commutative
L,-space, 1 < p < oo, associated with M and 7. It is the space of all closed densely
defined operators z affiliated with M such that ||z||, = 7(|=|?)}/? is finite. Naturally
M C L,(M). We set Lo (M) = M. The Lo-topology on M is then the topology of the

norm || ||o.
2.2. Non-commutative finite BMO-spaces

We recall the following from [20]. Fix a finite von Neumann algebra (M, 7). We restrict
ourselves here to the finite case in order to avoid several technicalities. We then treat
the (non-finite) Euclidian case separately in Section 2.4.

Definition 2.1. We say that a semi-group 7 = (7});>0 of linear maps M — M is a
Markov semi-group if:

(i) T¢(1) = 1 and T; completely positive for every ¢ > 0;
(ii) for every x,y € M and for every t > 0 we have 7(zT}(y)) = 7(T3(z)y);
(iii) for every x € M, we have ¢t — T;(z) is continuous in measure.
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Fix such a Markov semi-group 7 = (T}):>0. By a standard interpolation argument
for every t > 0 the map T} extends to a completely contractive map,

TP : Ly(M) — L,(M) : z — Ty(z), Ve e M C L,(M).
We set
Moz{xEM|tli>I£10Tt(z):0},
where the limit is a o-weak limit. For 1 < p < oo we set by a norm limit,
LyM) = {z € Ly(M) | lim TP (@) = 0}

It is a straightforward verification that Lj(M) is a Banach space in the induced norm.
For x € M° we set the column BMO-norm,

1
[ /lbmos. = sup 1T (z" ) — Ty(2) Tt () S (2.1)
t>
Further set,

[ llbmos = 2" [lbmos»  1Z[[bmor = max([|2{[bmos» 127 [|bmos- ) (2.2)

We define bmos = bmo(M, T') as the completion of the space of x € M° with ||2|/bmo, <
00; it carries norm || ||bmo,. We have contractive inclusions, see [6, Lemma 3.6],

M°® Cbmo(M,T) C Li(M).

This allows us to represent elements of bmo as concrete operators that are affiliated with
M and which are L; and in particular 7-measurable; this is again a reason to prefer
working in the finite setting. In particular L, (M) and bmo(M,T) form a compatible
couple of Banach spaces. Also we impose the operator space structure,

M,,(bmo(M,T)) = bmo(M,, ® M,id,, ® T).
We will also make use of the following alternative BMO-norm. For z € M° we set

1
z]Bmos. = sup | Ty (| — Ti(2)]?) [[%.
t>0

Then put HIHBMOTT = ||x*||BMOf,— and ||x||BMOT = IIlELX(HIHBMO%_7 ||x||BMO$—) The com-
pletion of M for || - |[mo, is then defined as BMO7 := BMO(M, T)). We observe that
Li(M) and BMO(M, T) form a compatible couple of Banach spaces.

For later use, we record the following lemma here.
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Lemma 2.2. Let M be a finite von Neumann algebra. Let T = (Ti)i>0 and T =
(Ttl)tzo,l € N be semigroups on M. Suppose T is continuous in measure in the sense
of Definition 2.1 (iii). If T is Markov for each | and if T} (x) — Ty(x) in measure for
x €M asl — oo, then T is Markov.
2.3. Markov dilations

Recall the following definition from [20, Page 717].

Definition 2.3. We say that a Markov semi-group 7 = (7}):>0 on a finite von Neumann
algebra (M, 7) admits a standard Markov dilation if there exist:

(i) a finite von Neumann algebra (B, 75);
(ii) an increasing filtration By, s > 0 of B;
(iii) trace preserving x-homomorphisms 75 : M — Bg;
satisfying the property:
EBS omy =ms0Ty_g, t > s,

where Eg_ : B — B, are the 7-preserving conditional expectations.

Definition 2.4. We say that the dilation has continuous path if, for every x € M the
mapping R>g — B :t — m(x) is continuous in measure.

In [20, Theorem 5.2 (i)] the following interpolation result was obtained.
Theorem 2.5. Let (M, T) be a finite von Neumann algebra and let T be a Markov semi-
group on M that admits a standard Markov dilation. Then the complex interpolation
space [BMO7T, L3(M)]z equals L, (M) with equivalence of norms up to a constant = p.
P

2.4. The Heat semi-group and Fuclidean BMO-spaces

In the Euclidean (non-finite) case we describe BMO-spaces separately. For f € La(R™)
let

f(6) = (2m) / F(6) exp(i(e, m)dé.
R~

be its unitary Fourier transform. Define the gradient and Laplace operator

1/ 0 0 92
V= () A= VYD
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So A <0.Fort>0lete®: Loo(R") — Loo(R™) be the normal unital completely
positive map, which is also described by

¢BF=HI'f,  f € Lo(R")N Ly(R™),

with positive definite function HJ*(£) = exp(—t||£]|3),& € R™, i.e. the Heat kernel. Then
S = (em)tzo is a semi-group of completely positive maps that preserve the Haar integral
on Lo (R™). Moreover, for f € Lo (R™) N Ly(R™) we have that e'®(f) € Ly(R™) and
t > e!2(f) is continuous for the norm of Ly(R™).

We may define BMO-spaces with respect to the Heat semi-group as operator spaces as
follows. Let M be a von Neumann algebra (not necessarily finite) and let Lo, (R™, M) ~
M ® Lo (R™) be the space of all o-weakly measurable essentially bounded functions
f:R™ — M. We may tensor amplify to get a new Markov semi-group S®M := (idy ®
et®);>0. Consider the subspace LS (R™, M) of all functions f € Lo (R"™, M) such that
(idp @ e2)(f) — 0 in the o-weak topology as t — co. On LS_(R™, M) we may define a
column BMO-norm by,

1F lomot o pe = sUp [|(idae @ €2)(£* £) = (idp @ €2)(£)" (idpq ® ) (£)]2.
N t>0
Then set the row BMO- and the BMO-norm by,

Hf”bmog@M = Hf*llbmog@Mv Hf”bm%@/w = maX(Hbemog@M ) ”f”bmog@M)'

The completion of the elements in L5, (R™, M)NLa(R™, M) with finite || f[[bmo e -n0rm
with respect to || f|[bmoggr 18 then denoted by bmo(R™, S®M) or simply bmogea.

bmo(R”, S¥M) has the operator space structure given by the natural identification,
M, (bmo(R™, S®M)) = bmo(R", S&M»(M),
2.5. Completely bounded Fourier multipliers

Definition 2.6. A symbol m : R"\{0} — C is called homogeneous if for all £ € R"\{0}
and A € R> we have m(A§) = m(§). For such a symbol we extend it by m(0) = 0.

By spectral calculus m(V) is the Fourier multiplier with symbol m; more precisely
m(/VYf) = n/17 where we recall that f — f is the unitary Fourier transform. The
following proposition with just bounds instead of complete bounds is a consequence of
the Hormander-Mikhlin multiplier theorem. For the complete bounds we base ourselves

n [21]. Recall that S = (e'2);>¢ is the Heat semi-group on R™.

We call a function f € Lo, (R™, ) trigonometric if it is in the linear span of functions
enx(&) = M8z ¢ neR™ x € N. Let A be the -algebra of trigonometric functions in
Loo(R™, N).
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Proposition 2.7. Let N be a semi-finite von Neumann algebra. Let m : R"\{0} — C
be a smooth homogeneous symbol and set m(0) = 0. For every trigonometric function
f € Loo(R™", N'), we have

[1(m(V) @ idar) (f)lbmo (Lo RM)@N,S@idr) < Cm | flloo

where the constant ¢, depends only on the function m (that is, it does not depend either

on N or f).

Proof. We first note that as m(0) = 0 we find that m(V)(f) € LS (R™,N) for every
f € A. We check Conditions (i) and (ii) of [21, Lemma 2.3]. As m is bounded as a function
(by homogeneity) [21, Remark 2.4] immediately gives Condition (i). Next homogeneity
of m implies that there exists a constant ¢, such that for all multi-indices 8 with |5]| <
n+ 2,

(85 m)(©)] < ealiéll,”, € e R™\{0}.

This implies Condition (ii) for the Fourier transform k¥ = m of [21, Lemma 2.3] by
[32, p. 75, Theorem 6]. Then [21, Lemma 2.3] shows that there is a constant ¢,,, only
depending on m, such that for f € A we have

[(m(V) @ id/\/)(f)HbmoC(Lw(R”)(@/\/,S@idN—) < em | flloo- (2.3)

This yields the column estimate. Further, as we have, for f € A,

[(m(V) @ idar) (f) lbmor (Lo (R™) QN S@idx)
= [|((m")(V) @ idar) (f) bmoe (Lo (R™) @A, S@id)

with mY(£) = m(—£) we also get the row estimate; in combination with the column
estimate (2.3) we see that there is a constant ¢, such that for every f € A we have

[(m(V) @ ida ) () lbmo(Loe R )eN Ssidy) < Cmlflloc: O
2.6. Double operator integrals

We recall the following from [11]. Let M be a von Neumann algebra (not necessarily
finite). Let A; € M,1 <1 < n be commuting self-adjoint operators. Briefly set A =
(A1,...,A,). Let E : B(R") — M be the joint spectral measure of A on the Borel
sets B(R™). So that we have spectral decompositions A; = [, &AE(E) with & the
l-th coordinate function. We define a spectral measure F : B(R?") — B(Ly(M)) by
F(X xY)(z) = E(X)zE(Y) where X,Y C R™ are Borel sets and © € Ly(M). So F



M. Caspers et al. / Journal of Functional Analysis 278 (2020) 108317 9

takes values in the projections on Lo(M). Then for ¢ : R?® — C a bounded Borel
function we set the double operator integral,

T4 = | é(n,m)dF (1, m2) € B(La(M)),
R2n

we shall also use the notation,

I5(x) = [ ¢(m.n2)dE(m)zE(n2),  x € Ly(M).
]R2TL

In case A is just a single operator A we write I(‘;‘.

In this paper we shall be interested in extensions of I(f to BMO- and L,-spaces
associated with M. Here we record the relation that if M is finite and A =3,/ 4) Apa
has discrete spectrum with py = E({A}) then,

I:;(.’I?) = Z (b()‘v M)pAl’Pu, x € M.

A\ p€a(A)

For B € M self-adjoint set |B| := » ;5 iX[i,i+1)(B) with x the indicator function.
We shall repeatedly make use of the following Lemma 2.8 without further reference.

Lemma 2.8. Let A € M be self-adjoint and for| € N>y let Ay =171[IA]. Let ¢ : R? — C
be continuous. For every x € La(M) we have ||I:;“ (x) — Z(f(ac)Hg — 0 asl — 0.

Proof. We have Z)"' = T4 with ¢;(§) = (I [I¢]). Then ||Z3 (z) — T2 ()2 — 0, cf. [9,
Lemma 5.1]. O

2.7. Vector valued double operator integrals

We define vector valued analogues of double operator integrals. To this end suppose
that M and N are finite von Neumann algebras. Let ¢ : R™ x R™ — A be an essentially
bounded o-weakly continuous function. Then in particular we also have the same map
¢ :R" x R"™ — Ly(N) and this mapping is norm continuous for La(N). As before let A
be an n-tuple of mutually commuting self-adjoint operators. For € La(M) we define
the double operator integral Ig(x) as the unique element in La(N) @ La(M) that is
characterized by,

<I£(I),£® 77> = <I?*o¢(x)v 77>L2(M)7L2(M)7 § € LQ(N)? ne LQ(M) (24)

Here £*(n) = (n,€) so that £* o ¢ : R™ x R™ — C is a continuous bounded function and
the right hand side of (2.4) is the usual double operator integral.
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In case the spectrum of A is finite our constructions simplify. We may view Ig (x),z €
Ly(M) N M as an element of N'® M given by,

IA Z ¢ { .7 Q pixpy,
i,jEa(A)

where p; = [[,_; X{i,} (Ax) is a spectral projection of A.
2.8. FExterior algebra

Let Hg be a real Hilbert space and let H = Hr ® C be its complexified Hilbert space.
Let F° = CQ @ @, H®" with unit vector € (the vacuum vector). The pre-inner
product on F*° is set by,

(61®..06,m®...0nN) nkz D) @ ® (), ® .. @)
o€eSy,

where (o) is the number of inversions on o, i.e. then number of pairs (a,b) with a < b
such that o(b) < o(a). Let F be the completion of F° modulo its degenerate part. We
denote &1 A ... A&, € F for the equivalence class of {; ®...®&, € F°. So with the wedge
product F' is the usual exterior algebra (or Clifford algebra with the zero quadratic form;
note if dim(H) < oo also dim(F') < o). For £ € H we set

n

WOn=EAn, TEOMmAAn)=> (DF e Om A AT A A,
k=1

and extend them to bounded operators on F. Here 7, means that the k-th wedge term
is excluded from the term. I*(£) is the adjoint of (£). We set s(&) = I(§) + *(£). And
further I' := I'(HR) := {s(&) | £ € Hr}". We record the fundamental property of the
exterior algebra:

s(€)s(n) +s(n)s(§) = 2(&,m), & n € Hr. (2.5)

The von Neumann algebra I' has faithful normal tracial state Tq(x) = (z,Q), the
vacuum state, cf. [5] for these results in greater generality.

3. Discrete Markov dilations

We show how Markov dilations of discrete semi-groups can be used to get Markov
dilations of a continuous one through ultraproduct techniques. In particular we show
that we can always guarantee path continuity (in measure topology) of Markov dilations
for finite von Neumann algebras.

In the special case, when G = R, the definition below coincides with Definition 2.3
above.
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Definition 3.1. Let G be a subsemi-group of R>o. We say that a Markov semi-group
(T})tec acting on the probability space (M, 7) admits a standard Markov dilation if
there exist:

(i) a finite von Neumann algebra (B, 75);
(ii) an increasing filtration (B;):ec of B;
(iii) trace preserving x-homomorphisms m; : M — By, t € G;

such that for ¢,s € G with s > t, we have

EBf, omg =m0 Ty_y.

Here, Ep, : B — B; are the 7p-preserving conditional expectations.

Theorem 3.2. Let (M, T) be a finite von Neumann algebra. Let T = (T})i>0 be a Markov
semi-group. If the Markov semi-group (Tt)téeNZg admits a standard Markov dilation for
every € > 0, then so does T. Moreover, the dilation has continuous path.

We prove this theorem in the next couple of lemmas. We shall repeatedly make use
of the fact that the measure topology and the Ls-topology coincide on the unit ball of a
finite von Neumann algebra.

Lemma 3.3. Set the semi-group G = UZGNZOQ’INZO. Under the assumptions of Theo-
rem 3.2, (Tt)iec admits a standard Markov dilation.

Proof. For [ > 0, let G; = 2_ZNZO so that G = U;>¢G;. We see G as a subsemi-group
of R and equip it with the Euclidean topology. By assumption (with e = 27!), there
exists:

(i) a finite von Neumann algebra (B, 75:);
(ii) an increasing filtration (B!,)meq, of B;
(iii) trace preserving *-homomorphisms 7!, : M — B!

such that for m, k € G; with k& > m, we have
Ep o =7l 0 Thm.

Set Ocneanu ultrapowers (see e.g. [2]) (B, 75) = Hlvw(Bl,TBl) and B,, = Hl,w(BimTBl)
for m € G. The second ultraproduct runs over large enough [, namely such that m € G;.

Fix mq, mo € G such that ms < m; and choose [y such that my, ms € G; for all I > .
We have

Bml = H(Binl,TBz)v Bmz = H(BinyTBz)?

lw lw
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where ultrafilter runs over all [ > . Since for every [ > [y we have

B, c B

my?

it follows that
B, C B, .

Therefore, we have an increasing filtration. Let Eg,_ be the trace preserving conditional
expectation of B onto B,,. Note that

Eg, ((z)iw) = Ep (21))1,0
For m € G, define a trace preserving *-homomorphism m,, : M — B, by the formula
T () = (77, ()10
For m, k € G with k > m, we have
(Es,,)(m(2)) = (B, (1(2))1w = (Mo (Th-m (@)1 = T (To-m(2)). O

Lemma 3.4. Let G be a subsemi-group in Ry and let (T})¢>0 be a Markov semi-group. If
(T})tec admits a standard Markov dilation, then for every x € M,

I7me(2) = ms(@)||3 < 2llzll2llz — Tjs—g(@)]l2s t,5 €G.
Proof. Without loss of generality, s > t. For x € M, we have by [34, p. 211 (3) and (4)],

8(mi () ms(x)) = (78 0 E, ) (me(x) s (2))
=78(m(2) " Ep, (7s(2))) = m8(me () 7 (Ts—e (2))).
Since m; is trace preserving, it follows that
e(m(z)*ms(2)) = T(x"Ts—4(x)), t,s€G, s>t
Similarly,
Ta(ms(x) 1 () = T(2Ts—t(2¥)), t,s€G, s>t
Therefore, we have
Ime(z) — s ()13 =75 (me(2) me(2)) + 75(7s (2) 75 (2))

= 15(mi(2) w5 (2)) — 75 (75 () e (7))

=27(z"x) — 7(x" Ts—(x)) — T(aTs—¢ (™))

=7(x"(z — Ts_¢(2))) + 7(x(x — Ts—4(x))").
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Applying the Cauchy-Schwarz inequality, we conclude the argument. 0O

We call a family (7;)¢>0 of *-homomorphisms M — B continuous in the point-measure
topology if for every x € M we have that ¢ — m;(x) is continuous in measure.

Lemma 3.5. Let G be a dense subsemi-group in Ry and let (Ti)i>0 be a Markov semi-
group. If (Ty)iec admits a standard Markov dilation, then (mi)icc extends to a family
(m¢)e>0 of trace preserving *-homomorphisms so that, for every x € M, the mapping
t — m(x) is continuous in measure.

Proof. From the fact that Markov semi-groups are by definition continuous in measure
this is a direct consequence of Lemma 3.4. 0O

Proof of Theorem 3.2. Let G = UleNZOQ_lNZO be the set of all non-negative binary
rationals. By Lemma 3.3, (T});cc admits a standard Markov dilation. Set

5=(Us)"

u<t

u€eG
In the following equations we shall take the limit u — ¢ over the sets in the subscript of
the limit. By construction, we have

]Egt(w) = ngi Egu(w), w E B,
u€G

in the Lo-topology. Let (m):>0 be an Lg-continuous family of trace preserving
*-homomorphisms constructed in Lemma 3.5.
If s >t and s € G, then

Eg, (ms(x)) = lig% Eg, (7s(z)) = 112 T (Ts—a ().
ZE_G :féc

By assumption, we have

Hm T (2) = Um Ty (Ts—t(2)) = Ts—t(x)
u<t u<t
ueG u€eG
in the Lo-norm. Each m,, © > 0, is a trace preserving x-homomorphism and therefore
contracts the Lo-norm. Hence, as (7;):eg are s-homomorphisms of a Markov dilation we
see by Lemma 3.5 that we have a limit in measure,
. L.3.5
Eg, (7s(x)) = lim m, (Ts—¢(x)) "=

u<t
ueG

Wt(Tsft(l')).
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Let now s >t > 0. If s, € G, s, \ 8, then 7y, (x) = 7s(x) in the Lo-norm. Since Ep,
contracts the Lo-norm, it follows that

lim (T, —¢(2))

Eg,(ry(2)) = lim B, (m,, (2)) = lim

We have Ts, _+(x) = T, —s(Ts—+(x)). By assumption, Ty, —s(x) — = in the Lo-norm and
hence,

Ep, (ms(2)) = lim m(Ts, () = m(Ts—i(2)).

k—o0

This completes the proof. O

As a direct corollary of Lemma 3.4 we obtain the following automatic continuity
property for finite von Neumann algebras.

Corollary 3.6. Let (M, 7) be a finite von Neumann algebra. Let T = (T})>0 be a Markov
semi-group that admits a standard Markov dilation. Then the dilation has continuous
path.

4. Markov dilations for semi-groups of double operator integrals

In [31] Ricard proved that discrete semi-groups of Schur multipliers admit a stan-
dard Markov dilation. In this section we show that also semi-groups of double operator
integrals have a standard Markov dilation. In what follows, this fact, together with The-
orem 2.5 allows us to interpolate between respective BMO-space and Ly-space.

Theorem 4.1. Let (M, 7) be a finite von Neumann algebra and let T = (T})i>0 be a
Markov semi-group such that there exists A = A* € M and ¢y : R? — C continuous
with Ty = I(‘;t,t > 0. Then the semi-group T admits a standard Markov dilation.

The crucial part of the argument is similar to that of Ricard [31].

Proposition 4.2. Let (M, 1) be a finite von Neumann algebra and let A = A* € M be
such that spec(A) C Z. Let ¢ : Z? — R be a positive matriz such that for all i we
have ¢(i,1) = 1. The semi-group ((Ig‘)”)neNZO acting on M admits a standard Markov
dilation.

Proof. As A is bounded, we have spec(4) C {-n,1 —n,---,n —1,n} for some n € N.
Denote for brevity p; = x(;;(4), —n < i < n. As ¢ is positive, the expression

<§>77>: Z (z)(iaj)finj’ (41)

i,j=—n
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defines a positive (possibly degenerate) inner product on R?"*!. Let Hg be R2"*!
equipped with inner product (4.1) and quotienting out the degenerate part. Construct
the associated exterior algebra I' = I'( Hg) from it.

Let {e;}2 be the standard orthonormal basis of R?"*! viewed as elements (e.g.

i=—n
equivalence classes) of Hg. Let B = M ® I'®> with tensor product trace 75 = 7 ® Tg"o
(tensor products constructed from the vacuum state, see [35] for infinite tensor powers).
We infer from (2.5) that s(e;)? = 1. Define a unitary

u= Z pi Qs(e;) E MRT,
i=—n

which we view as a unitary in the first two tensor legs of B = M @I'®*® = M g ['®>®
by identifying it with u ® 11@00. Let S be the tensor shift on I'®>° determined by,

S(11®..2, R1®...)=1001® .., R1® ...,

and then set the x-homomorphism §(x) = u*(idyq ® S)(x)u. For k > 0, define a trace-
preserving x-homomorphism 7, : M — B as follows:

T:rx—rxR®1®1...
and
7 @ (8% o m)(z), k € N>o.
Using induction we obtain that,

me(@) = Y piap; @ (s(es)s(e;))®F @ 18 € B. (4.2)

i,j=—n

Indeed,

ey (@) =u (idp © ) | Y pip; @ (s(en)s(e))®F @18 | u

i,j=—n

=u* | S piap; @ 1p @ (s(ei)s(e;)F @ 18 | u

1,j=—n
n
= > piap; ® (s(en)s(ey) T @ 1E.
i, j=—n

Define the increasing family of subalgebras B,, as the von Neumann algebras M &
I®m@1 C B.If k > m and if x € M is such that p;zp; = x, then a direct computation
yields



16 M. Caspers et al. / Journal of Functional Analysis 278 (2020) 108317

Em(z ® (s(eq)s(e;)®" @ 15%) = ma(s(es)s(e;))" ™z @ (s(ei)s(e;)®™ @ 17

We get that for z € M and for k > m,

n

Emom)@) =Y 7als(e)s(e,)* ™ piap; @ (s(ei)s(e;) ™ @ 15

By (2.5) and (4.1),
Ta(s(ei)s(e;)) = (i €5) = ¢(i, j)-
Therefore,
Ta(s(ei)s(e;) " piap; = ¢(i, 5)* " pirp; = (T3 (piap;) = pi((TF)* ™ (2))p;.-

Hence,

n

Emom)(@)= Y pil(ZH)* ™ (@)p; @ (s(er)s(e;) ™™ © 1F. (4.3)

i,j=—n
By (4.2) and (4.3) we get,

(B o mk) () = 7 ((Z5) " (2)).
This completes the proof. O

The passage to operators A with arbitrary spectrum (not just integral) requires the
approximation result below.

Proposition 4.3. Let T and T; be unital trace preserving maps on M such that T;(x) —
T'(x) strongly for all x € M. If every semi-group (1]")nen., admits a standard Markov
dilation, then so does the semi-group (T")nenNs, -
Proof. By assumption, there exists

(i) a finite von Neumann algebra (B!, 74:);

(i) an increasing filtration (B, )meN.,;
(iii) trace preserving *-homomorphisms 7!, : M — B

such that for m, k € N>g with & > m, we have

Eg ol =nl, oTF™™.
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Fix a non-principal ultrafilter w on N>; and let B = HW(BZ, 7) and By, = [, (B, )
be the Ocneanu ultrapowers, see [2]. Let E,, : B — B, be the expectation preserving
the ultraproduct trace 7 on B. We have that {B,,}m>0 is an increasing filtration of
subalgebras of B and that

En((20)10) = (Bfn (1) )10
For every m > 0, define a trace-preserving *-homomorphism m,, : M — B, by setting
Tt M = By = (74 ()10

We find that for x € M, k,m € N>g and k& > m,

(Emom)(@) = (Bl omh)(@) = ((ah o TF™)(@)) . (4.4)
Since 7l is trace preserving, it follows that

H( oTF™)(@))  — (o T (@) || = lim Hz;k—“l(x)ka*m(x)H .

lw l,wH2 l—w 2

By the triangle inequality, we have

|7 @)~ @) < k_fj_l |(Tt = o (@ =) 0 17 ) ()|
=0

Jj=

2
k—m—1 k—m—1

k—m—1—j i ;
< Y InEnL T @ - < Y |@ - D) .

2
j=0 Jj=0

Therefore,

|(@h o m@), |~ (@ o))

<(k — limss HT—T T H
<(k m>0§§23}§<_m1ﬁi}p (T = T)(T7x)|,

l,wHQ

By assumption, we have that
(T, = T)(T?z) =0, [— o0,
in Lo-norm. We conclude that

(o™ @) = ((wh 0T ™)) =0,

B
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Substituting into (4.4), we obtain

(o m)(@) = ((h 0 T*")(@)) = 7T (). O

lw

Proof of Theorem 4.1. Fix [ € N> and & > 0. The matrix (¢ (4, %))i,jeZ and the oper-

ator

[lA] = Z iXi,i+1)(1A)

i€Z

1
satisfy the condition of Proposition 4.2. Hence, the semi-group ((Z, éELlAJ )" )neNs, admits
a standard Markov dilation. Since ¢, is continuous, it follows that

@) 5 T2 (1), 1> o,

in Ly. By Proposition 4.3, the semi-group ((Iéi)")neNzo admits a standard Markov
dilation. By Theorem 3.2 so does the semi-group (I(;‘t Ji>0. O

5. Complements on reversed Markov dilations

As we believe these results are of independent use, we also state the corresponding
results for reversed Markov dilations. These shall not be used in the current paper. The
proofs are completely analogous to the proofs in Sections 3 and 4.

Definition 5.1. Let 7 = (T})¢>0 be a Markov semi-group on a finite von Neumann algebra
(M, 7). Let G be a subsemi-group of R>o. We say that (T}):cc admits a reversed Markov
dilation if there exist:

(i) a finite von Neumann algebra (B, 75);
(ii) a decreasing filtration B, s > 0 with conditional expectations Eg, : B — Bs;
(iii) trace preserving s-homomorphisms s : M — Bj

such that the following property holds

Ep, omg =mo0Ti_g, s,te G t>s.

t

Definition 5.2. We say that a reversed Markov dilation has continuous path if for every
x € M the mapping R>o — B : t — m(x) is continuous in measure.

In the same way as we proved Theorem 3.2 we may now obtain the following result.

Theorem 5.3. Let T = (T})i>0 be a Markov semi-group. If (Tt)ieeN., admits a reversed
Markov dilation for every ¢ > 0, then so does T. Moreover, the dilation has continuous
path.
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In [31, p. 4370] Ricard shows that a semi-group of Schur multipliers (T(’;) keNs, admits
a reversed Markov dilation. By essentially the same argument as in Theorem 4.1 we also
get reversed Markov dilations for double operator integrals.

Theorem 5.4. Let (M, 7) be a finite von Neumann algebra and let A = A* € M. Let
(Ig‘t)tzo be a Markov semi-group of double operator integrals. If each ¢; is continuous,
then this semi-group admits a reversed Markov dilation.

6. Transference of multipliers and BMO-spaces

Fix a Lipschitz function f : R — R and assume || f||oc < 1. For f: R — R we set the
divided difference function fI : R? — R by

BN (D
[1] )\ _ A—p 9 ,U/7
U 1) { 0, -

The main result we prove in this section is the following theorem.

Theorem 6.1. Let (M, 1) be a finite von Neumann algebra and let f : R — R be Lipschitz
with || f'|lco < 1. For every A = A* € M,

(i) the semi-group T4 = (I, )i>0 with

FOp) = A=l +[f) = (WP, A peR,

is Markov;
(ii) the operator I?m maps M to bmo(M,TI4) and its norm is bounded by an absolute
constant cqps-

For n € R?, let e, € Loo(R?) be defined as
en(§) = e'em.

For A = A* € M with finite spectrum, define a unitary element U4 € L., (R?) ® M by
setting

UA = /6()\7}&'()\)) ® dE‘A()\)7
R

where {F4(A\)}acr is a spectral family of A. Due to the finiteness assumption on the
spectrum, the convergence of the integral follows automatically (in fact, integral is a
finite sum of operators).
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Define the *-monomorphism ¢4 : M — L (R?) ® M by setting
oa(r) =Ur1 @)UY, ze M.

Let mg be a smooth homogeneous multiplier such that

mo(Er, 62) = §— when [&] < 6.

Both statements of Theorem 6.1 are proved through the following transference lemma.
Lemma 6.2. If, in the setting of Theorem 6.1, A has finite spectrum, then
paoIlie = (e @idp)opa, waoIpy = (mo(V)®idum)o pa.

Proof. By definition of ¢4, we have

palz) = // e—p fN)—f(w) ® AEAN)2dEa(p).
R2

Clearly,
A - 5
e (eampr -1 ) =€ FOMe o)
(mo(V))(er—pr - rw) =FM s e r 3 - £ ())-
Therefore,
(e @idp)(pa(z)) = //e_tF(’\’”)e(A,#wf(A),f(#)) QR dEA(AN)xdE4(p)
R2
- //%w»f(x)—f(u)) ® dEAN)(Z or (2))dEA(1) = @a(Ther (2))
R?
and

(mo(V) ® idm)(palz)) ://f[1]<)‘7M)e(AﬂL,f()\)—f(y))®dEA(>\)l'dEA(M)
R2

://e(kfu»f(/\)ff(#)) ® dEA(N)(Zfi (2))dEAa(1) = ¢a(Tin(2). O
R2

Next we prove each of the statements 6.1 (i) and (ii) in the following subsections.
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6.1. Proof of Theorem 6.1 (i)

Lemma 6.3. Let (M, T) be a finite von Neumann algebra. Let G : R? — R be a continuous
function. If (2,6 )i>0 is Markov for every A = A* € M with finite spectrum, then

(&

(Z2.¢)i>0 is Markov for every A = A* € M.

Proof. Let A = A* € M and let A; = [71[IA] for [ > 1. If NV is a finite von Neumann
algebra and if z € N ® M is such that 0 < z < 1, then

0 < (idy ® ZY,6)(z) < L.
Clearly,
(idv ® I, ) (2) = (idy @ T2 16 )(2)
in Ly(N ® M) and therefore in measure. Hence,
0< (idy @A 6)(z) < 1.
Thus, (Ifftc)tzo is completely positive. Since (Iﬁtc)tzo is obviously unital, the condi-
tion (i) follows.

By assumption, Ijjtc is self-adjoint on Ls(M). Clearly, IeAltG — If,tc strongly.
Therefore, I ,; is self-adjoint on Ly(M). This yields the condition (ii). The condition
(iii) is obvious. O
Proof of Theorem 6.1 (i). If A has finite spectrum, then the assertion follows by

Lemma 6.2 and the fact that the Heat semi-group is Markov. For generic A, the as-
sertion follows by Lemma 6.3. O

6.2. Proof of Theorem 6.1 (ii)
For A= A* € M, let Ay =1"'|IA] for [ > 1.
Lemma 6.4. Let (M, T) be a finite von Neumann algebra. Let G : R? — R be a continuous

function such that (I?—tc)tz() is Markov for every A = A* € M. We have as | — oo
that,

T2 (TH @) T @) = T (T (0) T (0)).
I (T @) = Tiie (T (@),

in measure for every x € La(M).
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Proof. Denote, for brevity,

A
yi=TIo (@), y=Tpm(@).

We have that y; — y in Le-norm and, therefore, y;y; — y*y in Li-norm as [ — oco. We
have,

IM (i) =T Wiy — y'y) + I (y"y). (6.1)
Since every Markov semi-group is an Li-contraction, it follows that
IEA_LtG(yl*yl —y*y) =0, [ — oo, (6.2)

in the Li-norm and, therefore in measure.

Let z € L1(M) be arbitrary and fix € > 0. Recall that Ly(M) is dense in L; (M), [34,
Theorem IX.2.13]. Therefore choose a decomposition z = 21 + z2 such that ||z1]j1 < €
and such that zo € La(M). We have,

T (2) = Thia(2) = (T (22) = Thio(22)) + T e (1) = Tihi ().

Clearly,

ijtc(zg) — T2 6 (2) =0, 1— oo,
in Lg-norm. Hence, there exists [(€) such that, for I > [(e),

IZ 6 (22) = T e (22) |1 < T2 (22) — Thic (22) 2 < €.
Since,
IZ e ()l < Dzl <6 TR e ()l <zl < e

it follows that

||I;4—ltG (2) = IA 6 (2)|l1 < 3e, 1> 1(e).
So we conclude that for z € L;(M) we have

T (2) = TA 6 (2), 1 — o, (6.3)

in Li-norm. Applying this to z = y*y and combining this with (6.1) and (6.2), we infer

the first assertion. The second (easier) assertion follows as the convergence actually holds

in Ly-norm. O
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Lemma 6.5. If x € Ly(M), then ij‘m (x) € LY(M).

Proof. Let D4 be the von Neumann algebra generated by the spectral projections of A.
Let D' = DyNM be its relative commutant with trace preserving conditional expectation
Ep M —D. If z € LQ(M), then

I*tF( )%ED’(’Z)a t—)OO,

in measure. Therefore, z € L$(M) if and only if Ep/(2z) = 0. We claim that
ED’(I?[U (QZ)) = 0. Set

Pm,k = X[ﬁ u)(A), Tm = me,kxpm,k'

keZ
We have
Ty (Pm,kxpm,l) = Pk - Lju (%) - Pt
Therefore,
Eo (T (pmsapna ) ) = P - B (Tih (2)) - Do
If k # [, then
ED’( £ (pm,kxpm,z)) = Pk - Pt - Ep (T (2)) = 0.

Therefore,

]ED/ [1] Z Ep: ( (pm ELPm l))

k,l€Z

= Eo (T (pmsepmn) ) = Eor (T ().

keZ
As m — oo, we have convergence in measure
Tm = Ep(2), iy (tm) = Ijn (Ep () = 0.
This concludes the proof. O
Proof of Theorem 6.1 (ii). By the first equality of Lemma 6.2 we see that ¢4, maps

bmo(M,Z4) to bmo(Ls (R?) ® M, S ®id ) isometrically with S the Heat semi-group.
By the second equality of Lemma 6.2 we then further have,
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A A
||If[L1] (x)Hbmo(M,IAl) =[lva, OIf[ll] (‘r)Hbmo(M,IAl)
=[[(mo(V) ® idr) (@4, (%)) lbmo( Lo (R2) @M, S@id A1) -
As 4, () is trigonometric, by Proposition 2.7,
[[(mo(V) @ ida) (@, () lbmo(L e (R2)@ M. S@id ) < Cabs |9, (2)]loo = Cabs [[7]]oo-
Therefore, we have
Ay
HIf[l] (I)”bmo(./\/l,l"“l) < Cabs||Z]|oo-
Thus, for every ¢t > 0, we have
—pslleli < Bi(t) < gl
where
Bi(t) =T (T () T (0)) = T (T () T (T ().
By Lemma 6.4, we have B;(t) — B(t) in measure as | — oo. Here,
B(t) = T (T (0) T (@) ) = Thar (T (0)) Zar (T ().
Therefore,
—psllel% < B(t) < sz
for every ¢t > 0. In other words,
||Ifm (l’)”bmo(M,IA) < Cabs| %] 0o

By Lemma 6.5, we also have I}“m (x) € L§(M). A combination of this fact and the norm
estimate complete the proof. O

We shall need the following auxiliary lemma in the next section.

Lemma 6.6. Suppose that A has finite spectrum. We have that bmo(M,TI4) =
BMO(M,Z4) as vector spaces with equality of norms.

Proof. We have an equality [21, Proof of Lemma 1.3] for f € Loo(R™) ® M,

(" @ida)(f*f) = (" @ idag) (f)* (€™ @ idm) (f)
=(e"* @ida) (If = (" @idm)(f)) -
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For x € M set f = pa(x). We get by Lemma 6.2,

1
2

I#llmsiown 20 = sup (e ®ida) (If = (2 @ idr) (H)]?)

o0

—sup (€2 ©ida) (1) — (¢ @ ida) (1) (2 @ idae) ()|

t>0 0o

:||$||bmo(./\/l,IA)' u

7. Conclusions for BMO-estimates for commutators

We now collect several results in perturbation theory of commutators as a consequence
of Theorem 6.1. In particular we recover the main results from [30] and [7]. We in fact
improve of them in terms of BMO-estimates.

As before we fix a Lipschitz function f: R — R and we assume that || f/||cc < 1. We
set,

YA ) =A—p, YA p) = fN) = f(p)-

Note that I{;‘(x) = Az —xA =[A,z] and Iﬁf () =[f(A),z] for A € M self-adjoint. We
start with the following corollary.

Corollary 7.1. In the setting of Theorem 6.1, there exists a constant cqps such that for
every A € M self-adjoint and every x € M we have,

I/ (A), 2]llbmo, 4 < Cabsl|[A, 2] ]|oo-
Proof of Corollary 7.1. We have,
[f(A), 2] = T (2) = (Tf o Ty) () = Tjiy ([A, 2)).
Hence, by Theorem 6.1,
I1£(A), 2]llbmoga = IZ51 (A, 2D lbmoa < | Zfy : M — bmozall|[4, ]]lec. O

Remark 7.2. For a general von Neumann algebra M one cannot define a canonical
Markov semi-group without further structure. This is why in Corollary 7.1 the semi-
group depends on the self-adjoint operator A € M and the Lipschitz function f and we
believe this is the suitable end-point estimate. After interpolation the dependence of A
and f vanishes in Theorem 7.4 and we obtain best constant estimates.

Next, through our BMO approach we collect many optimal results in perturbation
theory. Firstly we retrieve the main result of [7].
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Theorem 7.3. In the setting of Theorem 6.1, let A € M be self-adjoint. There exists a
constant cqps such that for every 1 < p < oo,

p
|1 Z5h : Lp(M) = Ly(M)|| < Cabs 77

Proof. Setting as before 4; = 1|IA], we infer from Lemma 6.6 that bmo(M,Z4) =

BMO(M, T4).
By Theorem 6.1 and its proof we have

IZ4, -

i M — bmo(M, Z4)|| < [[mo(V) : Los — bmog||cs.

Also,

1778 La(M) = La(M)|| < |1 f'loo < 1

By Theorem 5.4 we see that 74 has a standard Markov dilation. Therefore, by Theo-
rem 2.5 for 2 < p < 0o we have

177 ¢ Lp(M) = Ly(M)|| < cavsp.

Further, for x € M we have ij‘[lll( x) — Ifm
that also

() in measure as | — oco. Hence it follows
||I}4[1] t Lpy(M) = Lp(M)|| < capsp-
Next let 1 < p < 2 and let ¢ be conjugate, i.e. p~' +¢~! = 1. By duality we find that
(I}AU])* t Lp(M) = Lp(M),

is the extension of the double operator integral IJ‘?M. So that,
I;‘U] t Ly(M) = Ly(M) = (Iﬁll t Lg(M) = Lgy(M))”*

is bounded with ||I )t Lpy(M) = Ly(M)|| < caps(p—1)"1. O

Theorem 7.4. In the setting of Theorem 0.1, there exists an absolute constant cqps such
that for any operators A € M self-adjoint and x € M, and any 1 < p < 0o, we have

p2
I/ (A), ]l < L — 1A, z]loo-
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Proof. We derive the proof from Theorem 7.3 as in Corollary 7.1. We find that for
T €M,

ILF(A), 2l = 15 (A, )]l
(7.1)

2
A p
ST = Lp = Lyll[4; 2]llp < cavs =7 lI14: 2]l D

Corollary 7.5. There exists a constant cqps such that for any self-adjoint operators B, C' €
M we have

p2

I£(B) = FOlly < cans

1B = Cllp-

Proof. Apply Theorem 7.4 to

As

[A’x]:<CEB Bgo>’

we find |[[A, 2], = 27| B — C||, and similarly [|[f(A), ][, = 27| f(B) — f(C)],.
Theorem 7.4 gives

p2

221 £(B) = FO)llp = 11 (A), 2]l < €avs

2
1 p
1A, 2Jllp = 27 cans 7 11B = Cllp- - T

As another corollary we get a proof of the Aleksandrov-Peller results in [1, Theorem
11.4].

Theorem 7.6. There exists a constant cqps such that for any two self-adjoint operators
A, B € B(C™) and any Lipschitz function f : R — C we have

[£(B) = f(C)lloc < Caps(1 +1og(n))[|B = C-

Proof. Let S)' be the Schatten class associated with B(C™). We have that B(C") C S}’

contractively. The converse inclusion S} C B(C™) has norm at most nr by complex
interpolation between p = 1 and p = oco.
We find that for log(2) < p < oo,

1F(B) = F(O)lloo < 1(B) = F(O)llp < Caps B = Cllp < capapn || B = Clloc
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Now for n > 2 take p = log(n) so that we get,
1£(B) = £(C)lls < caps log(n)e? || B = Cllag = caps log(n)e?|| B = C|lu
This yields the theorem as in case n = 1 it is obvious. O
8. Estimates for vector-valued double operator integrals
8.1. Assumptions and statements

As before we let (M, 7) be a finite von Neumann algebra. Throughout the entire
section we fix a finite von Neumann algebra N whose trace shall not be used explicitly.
We write 8™ for the Heat semi-group on R™ to stipulate the dimension. We let C'(R™, \)
be the space of norm continuous functions R™® — N.

Let A = (Ay,...,A,) be an n-tuple of commuting self-adjoint elements in M. Let
EA :R™ — M be their joint spectral measure.

Definition 8.1. The semi-group J* : M ® M5(C) — M @ My(C) is defined by the

formula
%A(I(X)eij) :IgtFij () ®eiy;, €M,

where

Foupy = AT =g
o N2+ [ul?, i

Let L: Loo(R™,N) = Lo (R?",N) be defined by the formula

(Lh)(t,s) = / h(0s + (1 — 0)t)do. (8.1)
0

We need the following Hérmander-Mikhlin-type condition.

Condition 8.2. The function h € C(R™, N) is a compactly supported C"2-function such
that

de

f la|
h = max up ||t O.h)(t <1 8.2
|| HHMn 0<|al<n 22 EH Hz ||( )( )HN = ( )

The following Theorem 8.3 is the main result we prove in this sections from which we
derive vector valued commutator estimates.
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Theorem 8.3. Let A = (A4y,...,A,) be an n-tuple of commuting self-adjoint elements in
M. The following statements hold.

(i) The semi-group J* in Definition 8.1 is Markov.
(i) If h € C(R™,N) satisfies the Condition 8.2 and h(0) = 0, then

TA ()@ e H < eullz r € M.
H £h(7) ® e12 bmo(N @M@ My (C),idy@TA) — nllzlam,

8.2. Transference of multipliers

Let again e, € Lo (R™) be given by e4(t) = €***. When A has finite spectrum, define
unitary operators U,V € Lo (R™) ® Loo(R™) ® M by the formula

U= /65 ®1lp ®n) ® dEA(S), V= / Il . ®rr)y®e_s® dEA(S)
R~ R~

Set
W=U®en +V ® e,
and further
ma(z) =Wl ®r) @1l ®e) @)W, € M® M(C).
The map
corner : M — M ® M5(C)
is defined by the formula z — = ® ejs.

Proposition 8.4. Let A = (A, ..., A,) be an n-tuple of commuting self-adjoint elements
in M with finite spectrum.

(i) for everyt > 0, we have
(S?n & idM@MQ((C)) OTMA = TA © L7tA.
(ii) for every k € C(R*",N), we have

(k(VRr2n) ® idpgnsy(c)) © ma o corner = (idy ® 74 ) o (idy ® corner) o Z/*.
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Proof. If x € M, then

malz®ep) =UzU" @ ey1 = / / es—u @1y (rr) ® dEA(s)deA(u) R eqy.

R» R™
Therefore,
(an X idM@Mz((C)) (WA(I ® 611))
= / / el L ® 1 (rn) ® dE®(s)zd E® (u) ® ey
R R™
:wA(/ /e‘tls_“|2dEA(s)xdEA(t) ® 611)
R R
=(7a 0 th)(x ®e11).
Also,

ma(r®ern) =UzV* Qejn = / / es Qe ® dEA(s)xdEA(t) ® eqa.
R» R”

Therefore,

<5t2" ® idM®M2(C)) (ra(z ®e12))

= / / e~tsle, @ e t’e, ® dEA(s)zdE™ (u) ® e1a
R» Rn

:ﬁA(//e*t|5‘27t|“|2dEA(s)xdEA(u)®e12>

Rn R»
Z(ﬂ'A o ZA)(.’I? X 612>.

The argument for x ® es; and for x ® ey goes mutatis mutandi. This proves the first

assertion.
We have,
mAa(T ®er2) = / / es @ ey @ dEA(s)zd EA (1) @ eqs.
R» Rn
Therefore,

(k(VR%) ® idM®M2(<C)) (ma(z ®e12))
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= / / k(s,u) @ es @ e, ® dEA(s)achA(u) ® e
Rn Rn

=(idy ® wa) (/ / k(s,u) ® dEA(s)xdEA(u) ® 612)
R~ R

~(idy ® 7a) (T8 () @ e12).
This proves the second assertion. O
8.8. Smooth vector valued multipliers

Fix a convolution kernel K : R™\{0} — N. Assume K determines a convolution
operator by the principal value integral,

(K * g)(x /K y)dy, x € R",

and g : R®™ — C smooth and compactly supported; the domain of K* will be extended
shortly. We shall also write K for K, the convolution operator (Calderén-Zygmund
operator). We say that a function K : R™\{0} — A satisfies the Hormander-Mikhlin
condition if,

swp [ K@) Ky < . (53
rzeR=n"
yERZ™ lyll2>2]|z |2

Note that if & € C(R™,N) is integrable it has a Fourier transform h : R™ — A that is
uniquely determined by woh = w o h for all w € N,. The following is essentially proved
in [21, Lemma 2.3 and Lemma 3.3]; we explain how it can be derived.

Proposition 8.5. If h € C(R™, N) satisfies Condition 8.2 and h(0) = 0, then
h(Vin) @ idat : Loo(R™) @ M — bmo(N @ Lo (R™) @ M, idy ® 8" @ id )

and its norm is bounded by an absolute constant c,. only depending on the dimen-
sion n.

Proof. Let w € N, with ||w|| = 1 then h* := wo h is a C"F2- functlon whose associated
Fourier transform is given by K = wo K. We still have sup |, <;,42 ||§||2 |H8 wohla < 1.
The proof of [21, Lemma 3.3] (more precisely, the statement in its first line) shows that
we have the gradient estimate, |||s||T"TH(VK®)(s)| < 7., s € R™\{0}, for an absolute
constant ¢, . independent of w. Taking the supremum over all w in the unit ball of
N, concludes that in fact ||[(VK)(s)|x < ¢.lls]7" 1, s € R"\{0}. So that certainly

abs?
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(8.3) holds. So [21, Lemma 2.3, Condition (ii)] is fulfilled. Further [21, Lemma 2.3,
Condition (i)] is satisfied by Remark [21, Remark 2.4]. Hence, [21, Lemma 2.3] gives the
result for the column estimate. The row estimate follows by taking adjoints. Note that
as in Proposition 2.7 the condition h(0) = 0 guarantees that h(Vgn)(1) = 0 so that
h(Vrn)(f) € N ® LS (R™) with f € LS (R™) trigonometric. 0O

Proposition 8.6. If h € C(R™,N) satisfies Condition 8.2 and h(0) = 0, then for y €
Lo (R?™) @ M,

L) (Vgen) @ id ) H
H(( )(Veen) @id, ) (y) bmo(N®L oo (R27)@M, id yy 52" ®id aq )

< enllyll Lo 2@,
Proof. Set hg(t,s) = h(0s+ (1 — 0)t). Set go(t) = h(t - /0% + (1 — 0)?). By definition,

we have

1
((Lh)(Taon) 9idaa) () = [ (ho(Tron) ) (1),
0

where the integral is a Bochner integral in L. Therefore, we have

| ((2h)(Tren) @ idad) )|

S/H(he(vﬂw) ®idM><y)H de.

bmo(N QLo (R27)QM,id ;RS2 ®id aq)
0

bmo(N QL oo (R27")QM,id pr @S2 Qid oq)

By the rotation invariance, we have

ho(Vgen) ©id ) H
H< 0( R )®1 M (y) bmo(N QLo (R27)QM,id \r @S2 Qid A1)

= (90(V2e) @ iz oy @it ) ()| :
H(ge( re) ®idp_(rr) ®idam ) (y) DAL (RS My &S i nc)

By Proposition 8.5, we have

Vi) @idp ) @ ida ) (9)
H(ge( R) @idr. @) @ ida ) () bmo(N® Lo (R2) @M, idy @527 @id 1)
<cnllyllae = cnllylla-

Combining these inequalities, we complete the proof. O

8.4. Proof of Theorem 8.3

In order to explicitly give the proof of Lemma 8.8 below we single out the following
fact.
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Fact 8.7. Let M; and M5 be von Neumann algebras. Suppose that

(i) 7' = (T})i>0 is a semi-group of positive unital operators on My;
(i) 72 = (T#)i>0 is a semi-group of positive unital operators on Mo;
(iii) *-monomorphism 7 : M; — M is such that
Tlom=moT? t>0.
We have
(a) If 71 is completely positive, then so is 72 and
(idy @ TH o (idpr @ 7) = (idpr @ ) o (idpy @ T2).
(b) If Tt and T2 are Markov, then
I(dy @ ) (2) bmoW ey janeT) = [Zlbmo(NeMa idveT?), 2 €N ® Ms.
Lemma 8.8. The assertion of Theorem 8.3 holds provided that A has finite spectrum.
Proof. Let
My = Loo(R*") @ M @ M2(C), My =M@ M,(C),
and
T =8"@ id pmean(C)s T?=J% n=nma.
Denote for brevity
y=n(r®e1s), z= If‘h(x) ® e1s.
By Lemma 8.4, we have
Tlom=moT? t>0.

Since T is completely positive semi-group, then, by Fact 8.7, so is 72. Since A has finite
spectrum, it follows immediately that 72 is symmetric and strongly continuous at 0. In
other words, 7?2 is Markov. This proves the first assertion of Theorem 8.3.

By Proposition 8.6 (applied to the algebra Msj), we have

| (@) (Vo) @idans ) )

<cnllylla, = enllzlr

bmo(N@M1,idy®@771)
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By Lemma 8.4, we have

((h) (Vo) @ ida, ) () = (idy & 7)(2).

Therefore, we have

< callzla

idy @ m)(z
( N )( ) bmo(N Q@M 1,idy®T1)

By Fact 8.7, we have

||Z||bm0(./\/.®./\/12,id/\/®7’2) < Con”M
This proves the second assertion of Theorem 8.3. O

Proof of Theorem 8.3. Suppose now A is arbitrary. Set Al = (}[lA], -+, +|lA,]). By

Lemma 8.8, JA' is Markov. Clearly, thl (r) — JA(z) in Lo-norm and hence in measure

for x € M as | — co. By Lemma 2.2 J? is also Markov. This proves the first assertion.
We briefly sketch the proof of the second assertion. By Lemma 8.8, we have

l
Hth(x)®€12H <cpllzllm, TeE M.

bmo(N@M®@M2(C),idy@ITAY)

In other words, we have
—(enllzllp)? < Bi(t) < (enllzllan)?,
where
def LAl Al eTAl Al Al * (Al Al
Bi(t) & T, (T (2) T80 (0) ) — (T2r (T80, (@))) (T2 (T ().
An argument identical to that in Lemma 6.4 yields B;(t) — B(t) in measure, where
def % *
B(t) < T2 oy (T8 @) T (2)) — (T2 s @ (@) (T2 r2 (T4 ().
Therefore, we have
—(enllzllag)?® < B(t) < (enllzllag)?.
In other words,

TA (2)®e H <cp,llz reM. O
H Lh(7) ®er2 bmo(N @M@ Ms(C),idy@TA) — nllzlla
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9. Vector valued perturbations and Lipschitz estimates

In this section we consider vector valued commutator estimates. Consider a function
f:R" = N,

which we assume to be differentiable. Shortly, we shall require additional smoothness
assumptions on f. The function f plays the role of the Lipschitz function in Section 6.
For a differentiable function g : R — C and s < t we have,

1
g(t) —g( t—s/g 0)s + 6t)do.
0

Therefore taking directional derivatives in the direction of the unit vector ||t —s||5 ' (t—s)
we find,

1

7t) - () =lit — sl / (Vla-oyesonf) - T—ad?
1
_ /8kf 0)s + 0) (s — ti)d0 (9.1)
0

7 1

(LOkf)(s:t) (5K — ti).

~
Il
_

Lemma 9.1. Let ¢ > 0.

(i) There exist Schwartz functions ¢ : R™ — [0, 1] that are compactly supported with
@1(€) =1 for [[€]l2 <1 and [€]15"10ap)(€)] < ¢ for all 1 < |a] < n+2.

(ii) If h € C(R™,N) is a C""%-function that satisfies (8.2) then (1 + c-2"T3)"1ph
satisfies Condition 8.2.

Proof. In case n=1and [ =1 let ¢} : R — [0, 1] be a function satisfying the conditions
and then set ¢} (£) = ¢ (171€) which proves the lemma for n = 1. For general n set the
rotational invariant function 7(€) = ¢} (||€]|2) which are Schwartz and satisfy (i) and
(ii). We have for & € R that [(9a¢1)(£1,0,...,0)] = djaj=a, [(Fa, 7 ) ()] < cll€]|3*. By
rotation of variables this gives |(Oqa1)(§)| < cH{HQ_M. By the Leibniz rule,

Dalth) = 3" ¢a(0501) (0,1),

Bty=a

for certain combinatorical coefficients g, € N which satisfy > 5, _ cg, = = 2l°l. So
that,
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(Gaph)©) < D caal(@0)(©)]1(0,h)(E)]

Bty=a

<llel™ + N erenllell il < (1 e 21 e,
B+y=a,8#0

So for all |a] < n + 2 we obtain that [(Oap1f)(§)] < (1+c¢- 2”*2)||§||2_|a|, i.e. Condi-
tion 8.2. O

For a function f € C(R™, ) and an n-tuple A of commuting self-adjoint operators
in M we define,

f(A) = / £(6) ® dEAE) € N @ M,

R~

where E* was the spectral measure of the n-tuple A. It is the unique element in N ® M
such that for every w € N, we have

(w®id)(f(A)) = / wo F(O)AEME) € M.

R~

Theorem 9.2. Let f : R® — N be a C"3-function such that each of the functions
hi = Oxf,k = 1,...,n satisfy (8.2). There exists a constant ¢, only depending on the
dimension n such that for every x € Lo(M)NL,(M) and every n-tuple A = (A1, ..., A,)
of commuting self-adjoint operators in M we have [f(A),1®x] € L,(N @ M). Moreover,

2
7 max((lhxllmar,) > Ak 2]l

l1£(A) 1 @l < en T
k=1

Proof. As the theorem is true for the coordinate functions g : R™ = R : £ — &, 1 <
k < n, we may replace f by f — > ;_;(9xf)(0)gx and assume without loss of generality
that (0xf)(0) =0,1 <k <n.

By Lemma 9.1 let ¢, : R® — [0,1],/ € N> be as in Lemma 9.1 with ¢ = 2772
By Lemma 9.1 we have that 27 1¢;hy, satisfies Condition 8.2. Let Iy € N be larger than
maxy, || Ag| and set ¢ = ¢y, .

Consider the function ¥y (s,t) = sp — t, and ¥¢(s,t) = f(s) — f(t). We have by (9.1)
that

for all £ € R™ with & < || Ag|.
As in the proof of Theorem 7.3, by Theorem 8.3 and Theorem 2.5 we find through a
discretization of A and complex interpolation that for 2 < p < oo,
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IZ8 o) * Lp(M) = Ly(N @ M)|| < cnp.

So that,
[f(A), 2] =T, (x) = > TRy 0 T (€) = > Tpion,) ([Ar, 2]).
k=1 k=1
Then,
n n
I[f(A), ][, < m,gX(l\Ii‘(@hk) Ly = L) Y Ak 2]llp < cap D lI[Ak, 2]l
k=1 k=1

This concludes the proof for 2 < p < co. For 1 < p < 2 the proof follows by duality just
as in Theorem 7.3. O

Theorem 9.3. Let f : R" — N be a C"F3-function such that each of the functions
he = Ocf,k = 1,...,n satisfy (8.2). There exists a constant ¢, such that for every
n-tuples of self-adjoint operators B= (A1,...,A,) and C= (Cy,...,Cy) of commuting
self-adjoint operators in M we have

2 n
I£(B) = F(C)llp < en - > 11Be = Cilly-
k=1

By,
Proof. Apply Theorem 9.2 to the n-tuple ( Ok CO ) with kK = 1,...,n and z =
k

1
<(1) 0 ) See Corollary 7.5 for details. O

We apply our results to the particular case that N is an algebra of freely independent

semi-circular elements.

Corollary 9.4. Let s;,i € N be freely independent semi-circular random variables and let
fi : R — C be C*-functions. Put F, = Zizl $; ® f; and assume that F; satisfies (8.2).
We have for every | that,

2
1B~ Clly.

stl®f1 Zsz®fz ||P<cnp_

Proof. This follows from Theorem 9.3 with n = 1 and B = B and A = a a single operator
and further f = F;. O
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