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1. Introduction

Non-commutative Lipschitz properties of functions have been studied for a long time 
and go back at least to the work of M.G. Krein [26]. One question raised in [26] in 
this direction is whether every Lipschitz function f : R → C is also a non-commutative 
Lipschitz function in the sense that the mapping

B(H)sa → B(H) : A �→ f(A), (1.1)

is Lipschitz. Here B(H)sa is the self-adjoint part of the bounded operators on a Hilbert 
space B(H). In its original statement, Krein’s question has a negative answer as was 
shown in [16], [17], [18]. In fact already for f the absolute value map the statement fails 
[10], [23]. Only after imposing additional smoothness/differentiability properties on f

the mapping (1.1) is Lipschitz. Indeed, in [3], [4] Birman and Solomyak showed that for 
f ′ ∈ Lipε(R) ∩ Lp(R) ∩ L∞(R) with ε > 0, p ≥ 1 we have that (1.1) is Lipschitz. The 
result was improved on by Peller in [28], [29] who showed that it suffices to take f in the 
Besov space B1

∞1, see [19] for Besov spaces.
Krein’s question can be altered by replacing the uniform operator norms in (1.1) by 

non-commutative Lp-norms with 1 < p < ∞ associated with the Schatten-von Neu-
mann classes Sp. In this case a complete answer to the non-commutative differentiability 
properties of (1.1) was found [30], namely any Lipschitz function is a non-commutative 
Lipschitz function in the sense that there is a constant cp such that for any self-adjoint 
operators A, B ∈ Sp we have,

‖f(A) − f(B)‖p ≤ cp‖f ′‖∞‖A − B‖p.

The constant cp grows to ∞ if either p → 1 or p → ∞. In fact the asymptotic behaviour 
was found in [7] (see also [8]) where it was shown that asymptotically cp 
 p2(p − 1)−1.

In this paper we start the investigation of perturbation of commutators and non-
commutative Lipschitz functions from two new view points: BMO-spaces and vector 
valued estimates.

We use the theory of BMO-spaces to obtain ‘end-point estimates’ of Krein’s problem. 
The optimal behaviour for the constant cp hints towards the existence of such an end-
point estimate but so far the proof was not obtained. In this context we use the theory of 
semi-group BMO-spaces, in the commutative case extensively studied by e.g. [33], [36], 
and much more recently in [14], [15]. For non-commutative BMO-spaces the theory was 
developed in [20], see also [22].

BMO-spaces depend on the choice of a semi-group. This is just as for other definitions 
of BMO, which depend on the filtration of a von Neumann algebra or in the classical 
setting the choice of cubes/shapes over which means are taken. This choice gives a 
flexibility in finding the appropriate BMO-space for Krein’s problem. In the current paper 
we introduce a natural BMO-space to resolve such problems in perturbation theory. In 
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particular, we prove the result announced in the abstract. Our main theorem which 
makes this all work, proved in Section 6, yields as follows.

Theorem 1.1. Let (M, τ) be a finite von Neumann algebra and let f : R → R be Lipschitz 
with ‖f ′‖∞ ≤ 1. For every A = A∗ ∈ M,

(i) The semi-group of double operator integrals IA = (IA
e−tF )t≥0 with symbol

F (λ, μ) = |λ − μ|2 + |f(λ) − f(μ)|2, λ, μ ∈ R,

is Markov (i.e. a strongly continuous semi-group of trace preserving unital com-
pletely positive maps);

(ii) The double operator integral IA
f [1] with f [1] the divided difference of f maps M to 

bmoIA(M) and its norm is bounded by an absolute constant cabs.

As a corollary of Theorem 1.1 we retrieve many existing results in perturbation theory, 
in particular the ones from [23], [10], [25], [12], [13], [30], [7], and partly [24]. We also 
retrieve the optimal estimates in case p = ∞ for finite dimensional Schatten classes in 
Theorem 7.6, see [1]. Together with the weak (1, 1) estimate of [8] (see also [27]), which is 
complementary to our paper, they complete the study of the end-point estimates. At the 
same time, we emphasize that our results do not cover the case of infinite von Neumann 
algebras, due to the fact that BMO-spaces, even in the case M = B(H), are not realized 
as spaces of operators. On the other hands, a lot of techniques and proofs developed in 
this paper continue to hold for general semifinite von Neumann algebras almost verbatim 
(see also Section 2.4) and this is a cause for careful optimism that our approach can be 
extended to the latter case as well.

To apply Theorem 1.1 and obtain these corollaries we shall further develop the theory 
of Markov dilations and we obtain some results of independent interest. In particular we 
show that Markov semi-groups can be studied through their discrete subsemi-groups and 
get automatic continuity of a Markov dilation. The following is proved in Theorem 3.2.

Theorem 1.2. Let (M, τ) be a finite von Neumann algebra. Let T = (Tt)t≥0 be a Markov 
semi-group. If (Tt)t∈εN≥0 admits a standard (resp. reversed) Markov dilation for every 
ε > 0, then also T admits a standard (resp. reversed) Markov dilation. Moreover, the 
dilation has continuous path.

We then apply this to Markov semi-groups of double operator integrals and through 
Ricard’s results [31] on dilations of Schur multipliers we prove that they also admit a 
(standard and reversed) Markov dilation.

In the final part of the paper, Section 9, we initiate the study of vector-valued Lip-
schitz functions (in fact von Neumann algebra valued to be precise). As we show in 
Corollary 9.4 Khintchine type inequalities and free probability estimates can be recasted 
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in terms of perturbations of vector valued commutators. Section 9 is strongly based on 
non-commutative Calderón-Zygmund theory as developed in [21]; in particular we obtain 
our results through the non-commutative Hörmander-Mikhlin theorem of [21].

Structure of the paper. Section 2 recalls all preliminaries and settles notation. Section 3
proves our discretization result for reversed Markov dilations, i.e. Theorem 1.2. Then in 
Section 4 we show that Markov semi-groups of double operator integrals admit a reversed 
Markov dilation. We collect the corresponding results on standard Markov dilations in 
Section 5; these results are not used in this paper but we believe they are of independent 
interest and state them for convenience of the reader. Section 6 proves Theorem 1.2 and 
we derive all its corollaries for perturbation theory in Section 7. In Section 8 and in 
Section 9 we retrieve the von Neumann-valued Lipschitz estimates.

Acknowledgments. We thank both anonymous referees for their careful reading and sug-
gesting improvements to the manuscript.

2. Preliminaries

2.1. General notations

For a multi-index α = (α1, . . . , αn) we write |α| =
∑n

k=1 αk. For a finite von Neu-
mann algebra M with faithful normal trace τ we write L2(M) for the non-commutative 
L2-space with respect to τ . We let Ωτ = 1M ∈ L2(M) be the cyclic vector. We identify el-
ements of M as vectors in L2(M) if necessary. We write Lp(M) for the non-commutative 
Lp-space, 1 ≤ p < ∞, associated with M and τ . It is the space of all closed densely 
defined operators x affiliated with M such that ‖x‖p = τ(|x|p)1/p is finite. Naturally 
M ⊆ Lp(M). We set L∞(M) = M. The L2-topology on M is then the topology of the 
norm ‖ ‖2.

2.2. Non-commutative finite BMO-spaces

We recall the following from [20]. Fix a finite von Neumann algebra (M, τ). We restrict 
ourselves here to the finite case in order to avoid several technicalities. We then treat 
the (non-finite) Euclidian case separately in Section 2.4.

Definition 2.1. We say that a semi-group T = (Tt)t≥0 of linear maps M → M is a 
Markov semi-group if:

(i) Tt(1) = 1 and Tt completely positive for every t ≥ 0;
(ii) for every x, y ∈ M and for every t ≥ 0 we have τ(xTt(y)) = τ(Tt(x)y);
(iii) for every x ∈ M, we have t �→ Tt(x) is continuous in measure.
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Fix such a Markov semi-group T = (Tt)t≥0. By a standard interpolation argument 
for every t ≥ 0 the map Tt extends to a completely contractive map,

T p
t : Lp(M) → Lp(M) : x �→ Tt(x), ∀x ∈ M ⊆ Lp(M).

We set

M◦ =
{

x ∈ M | lim
t→∞

Tt(x) = 0
}

,

where the limit is a σ-weak limit. For 1 ≤ p < ∞ we set by a norm limit,

L◦
p(M) =

{
x ∈ Lp(M) | lim

t→∞
T p

t (x) = 0
}

.

It is a straightforward verification that L◦
p(M) is a Banach space in the induced norm. 

For x ∈ M◦ we set the column BMO-norm,

‖x‖bmoc
T = sup

t≥0
‖Tt(x∗x) − Tt(x)∗Tt(x)‖

1
2∞. (2.1)

Further set,

‖x‖bmor
T = ‖x∗‖bmoc

T , ‖x‖bmoT = max(‖x‖bmor
T , ‖x∗‖bmoc

T ). (2.2)

We define bmoT = bmo(M, T ) as the completion of the space of x ∈ M◦ with ‖x‖bmoT <

∞; it carries norm ‖ ‖bmoT . We have contractive inclusions, see [6, Lemma 3.6],

M◦ ⊆ bmo(M, T ) ⊆ L1(M).

This allows us to represent elements of bmo as concrete operators that are affiliated with 
M and which are L1 and in particular τ -measurable; this is again a reason to prefer 
working in the finite setting. In particular L1(M) and bmo(M, T ) form a compatible 
couple of Banach spaces. Also we impose the operator space structure,

Mn(bmo(M, T )) = bmo(Mn ⊗ M, idn ⊗ T ).

We will also make use of the following alternative BMO-norm. For x ∈ M◦ we set

‖x‖BMOc
T = sup

t≥0
‖Tt

(
|x − Tt(x)|2

)
‖

1
2∞.

Then put ‖x‖BMOr
T = ‖x∗‖BMOc

T and ‖x‖BMOT = max(‖x‖BMOc
T , ‖x‖BMOr

T ). The com-
pletion of M for ‖ · ‖BMOT is then defined as BMOT := BMO(M, T ). We observe that 
L1(M) and BMO(M, T ) form a compatible couple of Banach spaces.

For later use, we record the following lemma here.



6 M. Caspers et al. / Journal of Functional Analysis 278 (2020) 108317
Lemma 2.2. Let M be a finite von Neumann algebra. Let T = (Tt)t≥0 and T l =
(T l

t )t≥0, l ∈ N be semigroups on M. Suppose T is continuous in measure in the sense 
of Definition 2.1 (iii). If Tl is Markov for each l and if T l

t (x) → Tt(x) in measure for 
x ∈ M as l → ∞, then T is Markov.

2.3. Markov dilations

Recall the following definition from [20, Page 717].

Definition 2.3. We say that a Markov semi-group T = (Tt)t≥0 on a finite von Neumann 
algebra (M, τ) admits a standard Markov dilation if there exist:

(i) a finite von Neumann algebra (B, τB);
(ii) an increasing filtration Bs, s ≥ 0 of B;
(iii) trace preserving ∗-homomorphisms πs : M → Bs;

satisfying the property:

EBs
◦ πt = πs ◦ Tt−s, t ≥ s,

where EBs
: B → Bs are the τB-preserving conditional expectations.

Definition 2.4. We say that the dilation has continuous path if, for every x ∈ M the 
mapping R≥0 → B : t → πt(x) is continuous in measure.

In [20, Theorem 5.2 (i)] the following interpolation result was obtained.

Theorem 2.5. Let (M, τ) be a finite von Neumann algebra and let T be a Markov semi-
group on M that admits a standard Markov dilation. Then the complex interpolation 
space [BMOT , L◦

2(M)] 2
p

equals L◦
p(M) with equivalence of norms up to a constant 
 p.

2.4. The Heat semi-group and Euclidean BMO-spaces

In the Euclidean (non-finite) case we describe BMO-spaces separately. For f ∈ L2(Rn)
let

f̂(ξ) = (2π)− n
2

ˆ

Rn

f(ξ) exp(i〈ξ, η〉)dξ,

be its unitary Fourier transform. Define the gradient and Laplace operator

∇ = 1
i

(
∂

∂x1
, . . . ,

∂

∂xn

)
, Δ = −∇ · ∇ =

n∑ ∂2

∂2xj
.

j=1



M. Caspers et al. / Journal of Functional Analysis 278 (2020) 108317 7
So Δ ≤ 0. For t ≥ 0 let etΔ : L∞(Rn) → L∞(Rn) be the normal unital completely 
positive map, which is also described by

̂etΔf = Hn
t f̂ , f ∈ L∞(Rn) ∩ L2(Rn),

with positive definite function Hn
t (ξ) = exp(−t‖ξ‖2

2), ξ ∈ Rn, i.e. the Heat kernel. Then 
S = (etΔ)t≥0 is a semi-group of completely positive maps that preserve the Haar integral 
on L∞(Rn). Moreover, for f ∈ L∞(Rn) ∩ L2(Rn) we have that etΔ(f) ∈ L2(Rn) and 
t �→ etΔ(f) is continuous for the norm of L2(Rn).

We may define BMO-spaces with respect to the Heat semi-group as operator spaces as 
follows. Let M be a von Neumann algebra (not necessarily finite) and let L∞(Rn, M) 

M ⊗ L∞(Rn) be the space of all σ-weakly measurable essentially bounded functions 
f : Rn → M. We may tensor amplify to get a new Markov semi-group S⊗M := (idM ⊗
etΔ)t≥0. Consider the subspace L◦

∞(Rn, M) of all functions f ∈ L∞(Rn, M) such that 
(idM ⊗ etΔ)(f) → 0 in the σ-weak topology as t → ∞. On L◦

∞(Rn, M) we may define a 
column BMO-norm by,

‖f‖bmoc
S⊗M = sup

t≥0
‖(idM ⊗ etΔ)(f∗f) − (idM ⊗ etΔ)(f)∗(idM ⊗ etΔ)(f)‖ 1

2 .

Then set the row BMO- and the BMO-norm by,

‖f‖bmor
S⊗M = ‖f∗‖bmoc

S⊗M , ‖f‖bmoS⊗M = max(‖f‖bmoc
S⊗M , ‖f‖bmor

S⊗M ).

The completion of the elements in L◦
∞(Rn, M) ∩L2(Rn, M) with finite ‖f‖bmoS⊗M -norm 

with respect to ‖f‖bmoS⊗M is then denoted by bmo(Rn, S⊗M) or simply bmoS⊗M . 
bmo(Rn, S⊗M) has the operator space structure given by the natural identification,

Mn(bmo(Rn, S⊗M)) = bmo(Rn, S⊗Mn(M)).

2.5. Completely bounded Fourier multipliers

Definition 2.6. A symbol m : Rn\{0} → C is called homogeneous if for all ξ ∈ Rn\{0}
and λ ∈ R≥0 we have m(λξ) = m(ξ). For such a symbol we extend it by m(0) = 0.

By spectral calculus m(∇) is the Fourier multiplier with symbol m; more precisely 
̂m(∇)(f) = m̂f where we recall that f �→ f̂ is the unitary Fourier transform. The 

following proposition with just bounds instead of complete bounds is a consequence of 
the Hörmander-Mikhlin multiplier theorem. For the complete bounds we base ourselves 
on [21]. Recall that S = (etΔ)t≥0 is the Heat semi-group on Rn.

We call a function f ∈ L∞(Rn, N ) trigonometric if it is in the linear span of functions 
eη,x(ξ) = ei〈η,ξ〉x, ξ, η ∈ Rn, x ∈ N . Let A be the ∗-algebra of trigonometric functions in 
L∞(Rn, N ).
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Proposition 2.7. Let N be a semi-finite von Neumann algebra. Let m : Rn\{0} → C

be a smooth homogeneous symbol and set m(0) = 0. For every trigonometric function 
f ∈ L∞(Rn, N ), we have

‖(m(∇) ⊗ idN )(f)‖bmo(L∞(Rn)⊗N ,S⊗idN ) ≤ cm‖f‖∞,

where the constant cm depends only on the function m (that is, it does not depend either 
on N or f).

Proof. We first note that as m(0) = 0 we find that m(∇)(f) ∈ L◦
∞(Rn, N ) for every 

f ∈ A. We check Conditions (i) and (ii) of [21, Lemma 2.3]. As m is bounded as a function 
(by homogeneity) [21, Remark 2.4] immediately gives Condition (i). Next homogeneity
of m implies that there exists a constant cn such that for all multi-indices β with |β| ≤
n + 2,

|(∂β m)(ξ)| ≤ cn‖ξ‖−|β|
2 , ξ ∈ Rn\{0}.

This implies Condition (ii) for the Fourier transform k = m̂ of [21, Lemma 2.3] by 
[32, p. 75, Theorem 6]. Then [21, Lemma 2.3] shows that there is a constant cm, only 
depending on m, such that for f ∈ A we have

‖(m(∇) ⊗ idN )(f)‖bmoc(L∞(Rn)⊗N ,S⊗idN ) ≤ cm‖f‖∞. (2.3)

This yields the column estimate. Further, as we have, for f ∈ A,

‖(m(∇) ⊗ idN )(f)‖bmor(L∞(Rn)⊗N ,S⊗idN )

= ‖((m∨)(∇) ⊗ idN )(f)‖bmoc(L∞(Rn)⊗N ,S⊗idN ),

with m∨(ξ) = m(−ξ) we also get the row estimate; in combination with the column 
estimate (2.3) we see that there is a constant cm such that for every f ∈ A we have

‖(m(∇) ⊗ idN )(f)‖bmo(L∞(Rn)⊗N ,S⊗idN ) ≤ cm‖f‖∞. �
2.6. Double operator integrals

We recall the following from [11]. Let M be a von Neumann algebra (not necessarily 
finite). Let Al ∈ M, 1 ≤ l ≤ n be commuting self-adjoint operators. Briefly set A =
(A1, . . . , An). Let E : B(Rn) → M be the joint spectral measure of A on the Borel 
sets B(Rn). So that we have spectral decompositions Al =

´
Rn ξldE(ξ) with ξl the 

l-th coordinate function. We define a spectral measure F : B(R2n) → B(L2(M)) by 
F (X × Y )(x) = E(X)xE(Y ) where X, Y ⊆ Rn are Borel sets and x ∈ L2(M). So F
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takes values in the projections on L2(M). Then for φ : R2n → C a bounded Borel 
function we set the double operator integral,

IA
φ =

ˆ

R2n

φ(η1, η2)dF (η1, η2) ∈ B(L2(M)),

we shall also use the notation,

IA
φ (x) =

ˆ

R2n

φ(η1, η2)dE(η1)xE(η2), x ∈ L2(M).

In case A is just a single operator A we write IA
φ .

In this paper we shall be interested in extensions of IA
φ to BMO- and Lp-spaces 

associated with M. Here we record the relation that if M is finite and A =
∑

λ∈σ(A) λpλ

has discrete spectrum with pλ = E({λ}) then,

IA
φ (x) =

∑
λ,μ∈σ(A)

φ(λ, μ)pλxpμ, x ∈ M.

For B ∈ M self-adjoint set �B� :=
∑

i∈Z iχ[i,i+1)(B) with χ the indicator function. 
We shall repeatedly make use of the following Lemma 2.8 without further reference.

Lemma 2.8. Let A ∈ M be self-adjoint and for l ∈ N≥1 let Al = l−1�lA�. Let φ : R2 → C

be continuous. For every x ∈ L2(M) we have ‖IAl

φ (x) − IA
φ (x)‖2 → 0 as l −→ ∞.

Proof. We have IAl

φ = IA
φl

with φl(ξ) = φ(l−1�lξ�). Then ‖IA
φl

(x) − IA
φ (x)‖2 → 0, cf. [9, 

Lemma 5.1]. �
2.7. Vector valued double operator integrals

We define vector valued analogues of double operator integrals. To this end suppose 
that M and N are finite von Neumann algebras. Let φ : Rn ×Rn → N be an essentially 
bounded σ-weakly continuous function. Then in particular we also have the same map 
φ : Rn × Rn → L2(N ) and this mapping is norm continuous for L2(N ). As before let A
be an n-tuple of mutually commuting self-adjoint operators. For x ∈ L2(M) we define 
the double operator integral IA

φ (x) as the unique element in L2(N ) ⊗ L2(M) that is 
characterized by,

〈IA
φ (x), ξ ⊗ η〉 = 〈IA

ξ∗◦φ(x), η〉L2(M),L2(M), ξ ∈ L2(N ), η ∈ L2(M). (2.4)

Here ξ∗(η) = 〈η, ξ〉 so that ξ∗ ◦ φ : Rn × Rn → C is a continuous bounded function and 
the right hand side of (2.4) is the usual double operator integral.
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In case the spectrum of A is finite our constructions simplify. We may view IA
φ (x), x ∈

L2(M) ∩ M as an element of N ⊗ M given by,

IA
φ (x) =

∑
i,j∈σ(A)

φ(i, j) ⊗ pixpj ,

where pi =
∏n

k=1 χ{ik}(Ak) is a spectral projection of A.

2.8. Exterior algebra

Let HR be a real Hilbert space and let H = HR ⊗C be its complexified Hilbert space. 
Let F ◦ = CΩ ⊕

⊕∞
n=1 H⊗n with unit vector Ω (the vacuum vector). The pre-inner 

product on F ◦ is set by,

〈ξ1 ⊗ . . . ⊗ ξn, η1 ⊗ . . . ⊗ ηk〉 = δn,k

∑
σ∈Sn

(−1)i(σ)〈ξσ(1) ⊗ . . . ⊗ ξσ(n), η1 ⊗ . . . ⊗ ηk〉

where i(σ) is the number of inversions on σ, i.e. then number of pairs (a, b) with a < b

such that σ(b) < σ(a). Let F be the completion of F ◦ modulo its degenerate part. We 
denote ξ1 ∧ . . .∧ ξn ∈ F for the equivalence class of ξ1 ⊗ . . .⊗ ξn ∈ F ◦. So with the wedge 
product F is the usual exterior algebra (or Clifford algebra with the zero quadratic form; 
note if dim(H) < ∞ also dim(F ) < ∞). For ξ ∈ H we set

l(ξ)η = ξ ∧ η, l∗(ξ)(η1 ∧ . . . ∧ ηn) =
n∑

k=1

(−1)k 〈ηk, ξ〉η1 ∧ . . . ∧ η̂k ∧ . . . ∧ ηn,

and extend them to bounded operators on F . Here η̂k means that the k-th wedge term 
is excluded from the term. l∗(ξ) is the adjoint of l(ξ). We set s(ξ) = l(ξ) + l∗(ξ). And 
further Γ := Γ(HR) := {s(ξ) | ξ ∈ HR}′′. We record the fundamental property of the 
exterior algebra:

s(ξ)s(η) + s(η)s(ξ) = 2〈ξ, η〉, ξ, η ∈ HR. (2.5)

The von Neumann algebra Γ has faithful normal tracial state τΩ(x) = 〈xΩ, Ω〉, the 
vacuum state, cf. [5] for these results in greater generality.

3. Discrete Markov dilations

We show how Markov dilations of discrete semi-groups can be used to get Markov 
dilations of a continuous one through ultraproduct techniques. In particular we show 
that we can always guarantee path continuity (in measure topology) of Markov dilations 
for finite von Neumann algebras.

In the special case, when G = R≥0, the definition below coincides with Definition 2.3
above.
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Definition 3.1. Let G be a subsemi-group of R≥0. We say that a Markov semi-group 
(Tt)t∈G acting on the probability space (M, τ) admits a standard Markov dilation if 
there exist:

(i) a finite von Neumann algebra (B, τB);
(ii) an increasing filtration (Bt)t∈G of B;
(iii) trace preserving ∗-homomorphisms πt : M → Bt, t ∈ G;

such that for t, s ∈ G with s ≥ t, we have

EBt
◦ πs = πt ◦ Ts−t.

Here, EBt
: B → Bt are the τB-preserving conditional expectations.

Theorem 3.2. Let (M, τ) be a finite von Neumann algebra. Let T = (Tt)t≥0 be a Markov 
semi-group. If the Markov semi-group (Tt)t∈εN≥0 admits a standard Markov dilation for 
every ε > 0, then so does T . Moreover, the dilation has continuous path.

We prove this theorem in the next couple of lemmas. We shall repeatedly make use 
of the fact that the measure topology and the L2-topology coincide on the unit ball of a 
finite von Neumann algebra.

Lemma 3.3. Set the semi-group G = ∪l∈N≥02−lN≥0. Under the assumptions of Theo-
rem 3.2, (Tt)t∈G admits a standard Markov dilation.

Proof. For l ≥ 0, let Gl = 2−lN≥0 so that G = ∪l≥0Gl. We see G as a subsemi-group 
of R≥0 and equip it with the Euclidean topology. By assumption (with ε = 2−l), there 
exists:

(i) a finite von Neumann algebra (Bl, τBl);
(ii) an increasing filtration (Bl

m)m∈Gl
of Bl;

(iii) trace preserving ∗-homomorphisms πl
m : M → Bl

m;

such that for m, k ∈ Gl with k ≥ m, we have

EBl
m

◦ πl
k = πl

m ◦ Tk−m.

Set Ocneanu ultrapowers (see e.g. [2]) (B, τB) =
∏

l,ω(Bl, τBl) and Bm =
∏

l,ω(Bl
m, τBl

)
for m ∈ G. The second ultraproduct runs over large enough l, namely such that m ∈ Gl.

Fix m1, m2 ∈ G such that m2 ≤ m1 and choose l0 such that m1, m2 ∈ Gl for all l ≥ l0. 
We have

Bm1 =
∏

(Bl
m1

, τBl
), Bm2 =

∏
(Bl

m2
, τBl

),

l,ω l,ω
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where ultrafilter runs over all l ≥ l0. Since for every l ≥ l0 we have

Bl
m2

⊂ Bl
m1

,

it follows that

Bm2 ⊂ Bm1 .

Therefore, we have an increasing filtration. Let EBm
be the trace preserving conditional 

expectation of B onto Bm. Note that

EBm
((xl)l,ω) = (EBl

m
(xl))l,ω.

For m ∈ G, define a trace preserving ∗-homomorphism πm : M → Bm by the formula

πm(x) = (πl
m(x))l,ω.

For m, k ∈ G with k ≥ m, we have

(EBm
)(πk(x)) = (EBl

m
(πl

k(x)))l,ω = (πl
m(Tk−m(x)))l,ω = πm(Tk−m(x)). �

Lemma 3.4. Let G be a subsemi-group in R+ and let (Tt)t≥0 be a Markov semi-group. If 
(Tt)t∈G admits a standard Markov dilation, then for every x ∈ M,

‖πt(x) − πs(x)‖2
2 ≤ 2‖x‖2‖x − T|s−t|(x)‖2, t, s ∈ G.

Proof. Without loss of generality, s ≥ t. For x ∈ M, we have by [34, p. 211 (3) and (4)],

τB(πt(x)∗πs(x)) = (τB ◦ EBt
)(πt(x)∗πs(x))

=τB(πt(x)∗EBt
(πs(x))) = τB(πt(x)∗πt(Ts−t(x))).

Since πt is trace preserving, it follows that

τB(πt(x)∗πs(x)) = τ(x∗Ts−t(x)), t, s ∈ G, s ≥ t.

Similarly,

τB(πs(x)∗πt(x)) = τ(xTs−t(x∗)), t, s ∈ G, s ≥ t.

Therefore, we have

‖πt(x) − πs(x)‖2
2 =τB(πt(x)∗πt(x)) + τB(πs(x)∗πs(x))

− τB(πt(x)∗πs(x)) − τB(πs(x)∗πt(x))

=2τ(x∗x) − τ(x∗Ts−t(x)) − τ(xTs−t(x∗))

=τ(x∗(x − T (x))) + τ(x(x − T (x))∗).
s−t s−t
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Applying the Cauchy-Schwarz inequality, we conclude the argument. �
We call a family (πt)t≥0 of ∗-homomorphisms M → B continuous in the point-measure 

topology if for every x ∈ M we have that t �→ πt(x) is continuous in measure.

Lemma 3.5. Let G be a dense subsemi-group in R+ and let (Tt)t≥0 be a Markov semi-
group. If (Tt)t∈G admits a standard Markov dilation, then (πt)t∈G extends to a family 
(πt)t≥0 of trace preserving ∗-homomorphisms so that, for every x ∈ M, the mapping 
t → πt(x) is continuous in measure.

Proof. From the fact that Markov semi-groups are by definition continuous in measure 
this is a direct consequence of Lemma 3.4. �
Proof of Theorem 3.2. Let G = ∪l∈N≥02−lN≥0 be the set of all non-negative binary 
rationals. By Lemma 3.3, (Tt)t∈G admits a standard Markov dilation. Set

Bt =
( ⋃

u≤t
u∈G

Bu

)′′
.

In the following equations we shall take the limit u → t over the sets in the subscript of 
the limit. By construction, we have

EBt
(w) = lim

u≤t
u∈G

EBu
(w), w ∈ B,

in the L2-topology. Let (πt)t≥0 be an L2-continuous family of trace preserving 
∗-homomorphisms constructed in Lemma 3.5.

If s ≥ t and s ∈ G, then

EBt
(πs(x)) = lim

u≤t
u∈G

EBu
(πs(x)) = lim

u≤t
u∈G

πu(Ts−u(x)).

By assumption, we have

lim
u≤t
u∈G

Ts−u(x) = lim
u≤t
u∈G

Tt−u(Ts−t(x)) = Ts−t(x)

in the L2-norm. Each πu, u ≥ 0, is a trace preserving ∗-homomorphism and therefore 
contracts the L2-norm. Hence, as (πt)t∈G are ∗-homomorphisms of a Markov dilation we 
see by Lemma 3.5 that we have a limit in measure,

EBt
(πs(x)) = lim

u≤t
πu(Ts−t(x)) L.3.5= πt(Ts−t(x)).
u∈G
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Let now s ≥ t ≥ 0. If sk ∈ G, sk ↘ s, then πsk
(x) → πs(x) in the L2-norm. Since EBt

contracts the L2-norm, it follows that

EBt
(πs(x)) = lim

k→∞
EBt

(πsk
(x)) = lim

k→∞
πt(Tsk−t(x))

We have Tsk−t(x) = Tsk−s(Ts−t(x)). By assumption, Tsk−s(x) → x in the L2-norm and 
hence,

EBt
(πs(x)) = lim

k→∞
πt(Tsk−t(x)) = πt(Ts−t(x)).

This completes the proof. �
As a direct corollary of Lemma 3.4 we obtain the following automatic continuity 

property for finite von Neumann algebras.

Corollary 3.6. Let (M, τ) be a finite von Neumann algebra. Let T = (Tt)t≥0 be a Markov 
semi-group that admits a standard Markov dilation. Then the dilation has continuous 
path.

4. Markov dilations for semi-groups of double operator integrals

In [31] Ricard proved that discrete semi-groups of Schur multipliers admit a stan-
dard Markov dilation. In this section we show that also semi-groups of double operator 
integrals have a standard Markov dilation. In what follows, this fact, together with The-
orem 2.5 allows us to interpolate between respective BMO-space and L2-space.

Theorem 4.1. Let (M, τ) be a finite von Neumann algebra and let T = (Tt)t≥0 be a 
Markov semi-group such that there exists A = A∗ ∈ M and φt : R2 → C continuous 
with Tt = IA

φt
, t ≥ 0. Then the semi-group T admits a standard Markov dilation.

The crucial part of the argument is similar to that of Ricard [31].

Proposition 4.2. Let (M, τ) be a finite von Neumann algebra and let A = A∗ ∈ M be 
such that spec(A) ⊂ Z. Let φ : Z2 → R be a positive matrix such that for all i we 
have φ(i, i) = 1. The semi-group ((IA

φ )n)n∈N≥0 acting on M admits a standard Markov 
dilation.

Proof. As A is bounded, we have spec(A) ⊂ {−n, 1 − n, · · · , n − 1, n} for some n ∈ N. 
Denote for brevity pi = χ{i}(A), −n ≤ i ≤ n. As φ is positive, the expression

〈ξ, η〉 =
n∑

φ(i, j)ξiηj , (4.1)

i,j=−n
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defines a positive (possibly degenerate) inner product on R2n+1. Let HR be R2n+1

equipped with inner product (4.1) and quotienting out the degenerate part. Construct 
the associated exterior algebra Γ = Γ(HR) from it.

Let {ei}n
i=−n be the standard orthonormal basis of R2n+1 viewed as elements (e.g. 

equivalence classes) of HR. Let B = M ⊗ Γ⊗∞ with tensor product trace τB = τ ⊗ τ⊗∞
Ω

(tensor products constructed from the vacuum state, see [35] for infinite tensor powers). 
We infer from (2.5) that s(ei)2 = 1. Define a unitary

u =
n∑

i=−n

pi ⊗ s(ei) ∈ M ⊗ Γ,

which we view as a unitary in the first two tensor legs of B = M ⊗Γ⊗∞ = M ⊗Γ ⊗Γ⊗∞

by identifying it with u ⊗ 1⊗∞
Γ . Let S be the tensor shift on Γ⊗∞ determined by,

S(x1 ⊗ . . . ⊗ xm ⊗ 1 ⊗ . . .) = 1 ⊗ x1 ⊗ . . . ⊗ xm ⊗ 1 ⊗ . . . ,

and then set the ∗-homomorphism β(x) = u∗(idM ⊗ S)(x)u. For k ≥ 0, define a trace-
preserving ∗-homomorphism πk : M → B as follows:

π0 : x �→ x ⊗ 1 ⊗ 1 . . .

and

πk : x �→ (βk ◦ π0)(x), k ∈ N≥0.

Using induction we obtain that,

πk(x) =
n∑

i,j=−n

pixpj ⊗ (s(ei)s(ej))⊗k ⊗ 1⊗∞
Γ ∈ B. (4.2)

Indeed,

πk+1(x) =u∗(idM ⊗ S)

⎛⎝ n∑
i,j=−n

pixpj ⊗ (s(ei)s(ej))⊗k ⊗ 1⊗∞
Γ

⎞⎠ u

=u∗

⎛⎝ n∑
i,j=−n

pixpj ⊗ 1Γ ⊗ (s(ei)s(ej))⊗k ⊗ 1⊗∞
Γ

⎞⎠ u

=
n∑

i,j=−n

pixpj ⊗ (s(ei)s(ej))⊗k+1 ⊗ 1⊗∞
Γ .

Define the increasing family of subalgebras Bm as the von Neumann algebras M ⊗
Γ⊗m ⊗1∞

Γ ⊆ B. If k ≥ m and if x ∈ M is such that pixpj = x, then a direct computation 
yields
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Em(x ⊗ (s(ei)s(ej))⊗k ⊗ 1⊗∞
Γ ) = τΩ(s(ei)s(ej))k−mx ⊗ (s(ei)s(ej))⊗m ⊗ 1⊗∞

Γ .

We get that for x ∈ M and for k ≥ m,

(Em ◦ πk)(x) =
n∑

i,j=−n

τΩ(s(ei)s(ej))k−m pixpj ⊗ (s(ei)s(ej))⊗m ⊗ 1∞
Γ .

By (2.5) and (4.1),

τΩ(s(ei)s(ej)) = 〈ei, ej〉 = φ(i, j).

Therefore,

τΩ(s(ei)s(ej))k−m pixpj = φ(i, j)k−mpixpj = (IA
φ )k−m(pixpj) = pi((IA

φ )k−m(x))pj .

Hence,

(Em ◦ πk)(x) =
n∑

i,j=−n

pi((IA
φ )k−m(x))pj ⊗ (s(ei)s(ej))⊗m ⊗ 1∞

Γ . (4.3)

By (4.2) and (4.3) we get,

(Em ◦ πk)(x) = πm((IA
φ )k−m(x)).

This completes the proof. �
The passage to operators A with arbitrary spectrum (not just integral) requires the 

approximation result below.

Proposition 4.3. Let T and Tl be unital trace preserving maps on M such that Tl(x) →
T (x) strongly for all x ∈ M. If every semi-group (T n

l )n∈N≥0 admits a standard Markov 
dilation, then so does the semi-group (T n)n∈N≥0 .

Proof. By assumption, there exists

(i) a finite von Neumann algebra (Bl, τBl);
(ii) an increasing filtration (Bl

m)m∈N≥0 ;
(iii) trace preserving ∗-homomorphisms πl

m : M → Bl
m;

such that for m, k ∈ N≥0 with k ≥ m, we have

EBl ◦ πl
k = πl

m ◦ T k−m
l .
m
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Fix a non-principal ultrafilter ω on N≥1 and let B =
∏

l,ω(Bl, τl) and Bm =
∏

ω(Bl
m, τl)

be the Ocneanu ultrapowers, see [2]. Let Em : B → Bm be the expectation preserving 
the ultraproduct trace τB on B. We have that {Bm}m≥0 is an increasing filtration of 
subalgebras of B and that

Em((xl)l,ω) = (El
m(xl))l,ω.

For every m ≥ 0, define a trace-preserving ∗-homomorphism πm : M → Bm by setting

πm : M → Bm : x �→ (πl
m(x))l,ω.

We find that for x ∈ M, k, m ∈ N≥0 and k ≥ m,

(Em ◦ πk)(x) =
(

(El
m ◦ πl

k)(x)
)

l,ω
=

(
(πl

m ◦ T k−m
l )(x)

)
l,ω

. (4.4)

Since πl
m is trace preserving, it follows that∥∥∥(

(πl
m ◦ T k−m

l )(x)
)

l,ω
−

(
(πl

m ◦ T k−m)(x)
)

l,ω

∥∥∥
2

= lim
l→ω

∥∥∥T k−m
l (x) − T k−m(x)

∥∥∥
2
.

By the triangle inequality, we have

∥∥∥T k−m
l (x) − T k−m(x)

∥∥∥
2

≤
k−m−1∑

j=0

∥∥∥(
T k−m−j−1

l ◦ (Tl − T ) ◦ T j
)

(x)
∥∥∥

2

≤
k−m−1∑

j=0
‖Tl‖k−m−1−j

L2→L2

∥∥∥(Tl − T )(T jx)
∥∥∥

2
≤

k−m−1∑
j=0

∥∥∥(Tl − T )(T jx)
∥∥∥

2
.

Therefore, ∥∥∥(
(πl

m ◦ T k−m
l )(x)

)
l,ω

−
(

(πl
m ◦ T k−m)(x)

)
l,ω

∥∥∥
2

≤(k − m) max
0≤j<k−m

lim sup
l→∞

∥∥∥(Tl − T )(T jx)
∥∥∥

2
.

By assumption, we have that

(Tl − T )(T jx) → 0, l → ∞,

in L2-norm. We conclude that(
(πl

m ◦ T k−m
l )(x)

)
−

(
(πl

m ◦ T k−m)(x)
)

= 0.

l,ω l,ω
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Substituting into (4.4), we obtain

(Em ◦ πk)(x) =
(

(πl
m ◦ T k−m)(x)

)
l,ω

= πm(T k−m(x)). �
Proof of Theorem 4.1. Fix l ∈ N≥1 and ε > 0. The matrix (φε( i

l , 
j
l ))i,j∈Z and the oper-

ator

�lA� :=
∑
i∈Z

iχ[i,i+1)(lA)

satisfy the condition of Proposition 4.2. Hence, the semi-group ((I
1
l �lA�

φε
)n)n∈N≥0 admits 

a standard Markov dilation. Since φε is continuous, it follows that

I
1
l �lA�

φε
(x) → IA

φε
(x), l → ∞,

in L2. By Proposition 4.3, the semi-group ((IA
φε

)n)n∈N≥0 admits a standard Markov 
dilation. By Theorem 3.2 so does the semi-group (IA

φt
)t≥0. �

5. Complements on reversed Markov dilations

As we believe these results are of independent use, we also state the corresponding 
results for reversed Markov dilations. These shall not be used in the current paper. The 
proofs are completely analogous to the proofs in Sections 3 and 4.

Definition 5.1. Let T = (Tt)t≥0 be a Markov semi-group on a finite von Neumann algebra 
(M, τ). Let G be a subsemi-group of R≥0. We say that (Tt)t∈G admits a reversed Markov 
dilation if there exist:

(i) a finite von Neumann algebra (B, τB);
(ii) a decreasing filtration Bs, s ≥ 0 with conditional expectations EBs

: B → Bs;
(iii) trace preserving ∗-homomorphisms πs : M → Bs

such that the following property holds

EBt
◦ πs = πt ◦ Tt−s, s, t ∈ G, t ≥ s.

Definition 5.2. We say that a reversed Markov dilation has continuous path if for every 
x ∈ M the mapping R≥0 → B : t → πt(x) is continuous in measure.

In the same way as we proved Theorem 3.2 we may now obtain the following result.

Theorem 5.3. Let T = (Tt)t≥0 be a Markov semi-group. If (Tt)t∈εN≥0 admits a reversed 
Markov dilation for every ε > 0, then so does T . Moreover, the dilation has continuous 
path.
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In [31, p. 4370] Ricard shows that a semi-group of Schur multipliers (T k
φ )k∈N≥0 admits 

a reversed Markov dilation. By essentially the same argument as in Theorem 4.1 we also 
get reversed Markov dilations for double operator integrals.

Theorem 5.4. Let (M, τ) be a finite von Neumann algebra and let A = A∗ ∈ M. Let 
(IA

φt
)t≥0 be a Markov semi-group of double operator integrals. If each φt is continuous, 

then this semi-group admits a reversed Markov dilation.

6. Transference of multipliers and BMO-spaces

Fix a Lipschitz function f : R → R and assume ‖f ′‖∞ ≤ 1. For f : R → R we set the 
divided difference function f [1] : R2 → R by

f [1](λ, μ) =
{

f(λ)−f(μ)
λ−μ , λ �= μ,

0, λ = μ.

The main result we prove in this section is the following theorem.

Theorem 6.1. Let (M, τ) be a finite von Neumann algebra and let f : R → R be Lipschitz 
with ‖f ′‖∞ ≤ 1. For every A = A∗ ∈ M,

(i) the semi-group IA = (IA
e−tF )t≥0 with

F (λ, μ) = |λ − μ|2 + |f(λ) − f(μ)|2, λ, μ ∈ R,

is Markov;
(ii) the operator IA

f [1] maps M to bmo(M, IA) and its norm is bounded by an absolute 
constant cabs.

For η ∈ R2, let eη ∈ L∞(R2) be defined as

eη(ξ) = ei〈ξ,η〉.

For A = A∗ ∈ M with finite spectrum, define a unitary element UA ∈ L∞(R2) ⊗ M by 
setting

UA =
ˆ

R

e(λ,f(λ)) ⊗ dEA(λ),

where {EA(λ)}λ∈R is a spectral family of A. Due to the finiteness assumption on the 
spectrum, the convergence of the integral follows automatically (in fact, integral is a 
finite sum of operators).
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Define the ∗-monomorphism ϕA : M → L∞(R2) ⊗ M by setting

ϕA(x) = UA(1 ⊗ x)(UA)∗, x ∈ M.

Let m0 be a smooth homogeneous multiplier such that

m0(ξ1, ξ2) = ξ2

ξ1
when |ξ2| ≤ |ξ1|.

Both statements of Theorem 6.1 are proved through the following transference lemma.

Lemma 6.2. If, in the setting of Theorem 6.1, A has finite spectrum, then

ϕA ◦ IA
e−tF = (etΔ ⊗ idM) ◦ ϕA, ϕA ◦ IA

f [1] = (m0(∇) ⊗ idM) ◦ ϕA.

Proof. By definition of ϕA, we have

ϕA(x) =
¨

R2

e(λ−μ,f(λ)−f(μ)) ⊗ dEA(λ)xdEA(μ).

Clearly,

etΔ(e(λ−μ,f(λ)−f(μ))) =e−tF (λ,μ)e(λ−μ,f(λ)−f(μ))

(m0(∇))(e(λ−μ,f(λ)−f(μ))) =f [1](λ, μ)e(λ−μ,f(λ)−f(μ)).

Therefore,

(etΔ ⊗ idM)(ϕA(x)) =
¨

R2

e−tF (λ,μ)e(λ−μ,f(λ)−f(μ)) ⊗ dEA(λ)xdEA(μ)

=
¨

R2

e(λ−μ,f(λ)−f(μ)) ⊗ dEA(λ)(IA
e−tF (x))dEA(μ) = ϕA(IA

e−tF (x))

and

(m0(∇) ⊗ idM)(ϕA(x)) =
¨

R2

f [1](λ, μ)e(λ−μ,f(λ)−f(μ)) ⊗ dEA(λ)xdEA(μ)

=
¨

R2

e(λ−μ,f(λ)−f(μ)) ⊗ dEA(λ)(IA
f [1](x))dEA(μ) = ϕA(IA

f [1](x)). �

Next we prove each of the statements 6.1 (i) and (ii) in the following subsections.
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6.1. Proof of Theorem 6.1 (i)

Lemma 6.3. Let (M, τ) be a finite von Neumann algebra. Let G : R2 → R be a continuous 
function. If (IA

e−tG)t≥0 is Markov for every A = A∗ ∈ M with finite spectrum, then 
(IA

e−tG)t≥0 is Markov for every A = A∗ ∈ M.

Proof. Let A = A∗ ∈ M and let Al = l−1�lA� for l ≥ 1. If N is a finite von Neumann 
algebra and if x ∈ N ⊗ M is such that 0 ≤ x ≤ 1, then

0 ≤ (idN ⊗ IAl

e−tG)(x) ≤ 1.

Clearly,

(idN ⊗ IAl

e−tG)(x) → (idN ⊗ IA
e−tG)(x)

in L2(N ⊗ M) and therefore in measure. Hence,

0 ≤ (idN ⊗ IA
e−tG)(x) ≤ 1.

Thus, (IA
e−tG)t≥0 is completely positive. Since (IA

e−tG)t≥0 is obviously unital, the condi-
tion (i) follows.

By assumption, IAl

e−tG is self-adjoint on L2(M). Clearly, IAl

e−tG → IA
e−tG strongly. 

Therefore, IA
e−tG is self-adjoint on L2(M). This yields the condition (ii). The condition 

(iii) is obvious. �
Proof of Theorem 6.1 (i). If A has finite spectrum, then the assertion follows by 
Lemma 6.2 and the fact that the Heat semi-group is Markov. For generic A, the as-
sertion follows by Lemma 6.3. �
6.2. Proof of Theorem 6.1 (ii)

For A = A∗ ∈ M, let Al = l−1�lA� for l ≥ 1.

Lemma 6.4. Let (M, τ) be a finite von Neumann algebra. Let G : R2 → R be a continuous 
function such that (IA

e−tG)t≥0 is Markov for every A = A∗ ∈ M. We have as l → ∞
that,

IAl

e−tG

(
IAl

f [1](x)∗IAl

f [1](x)
)

→ IA
e−tG

(
IA

f [1](x)∗IA
f [1](x)

)
,

IAl

e−tG

(
IAl

f [1](x)
)

→ IA
e−tG

(
IA

f [1](x)
)

,

in measure for every x ∈ L2(M).
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Proof. Denote, for brevity,

yl = IAl

f [1](x), y = IA
f [1](x).

We have that yl → y in L2-norm and, therefore, y∗
l yl → y∗y in L1-norm as l → ∞. We 

have,

IAl

e−tG(y∗
l yl) = IAl

e−tG(y∗
l yl − y∗y) + IAl

e−tG(y∗y). (6.1)

Since every Markov semi-group is an L1-contraction, it follows that

IAl

e−tG(y∗
l yl − y∗y) → 0, l → ∞, (6.2)

in the L1-norm and, therefore in measure.
Let z ∈ L1(M) be arbitrary and fix ε > 0. Recall that L2(M) is dense in L1(M), [34, 

Theorem IX.2.13]. Therefore choose a decomposition z = z1 + z2 such that ‖z1‖1 < ε

and such that z2 ∈ L2(M). We have,

IAl

e−tG(z) − IA
e−tG(z) =

(
IAl

e−tG(z2) − IA
e−tG(z2)

)
+ IAl

e−tG(z1) − IA
e−tG(z1).

Clearly,

IAl

e−tG(z2) − IA
e−tG(z2) → 0, l → ∞,

in L2-norm. Hence, there exists l(ε) such that, for l > l(ε),

‖IAl

e−tG(z2) − IA
e−tG(z2)‖1 ≤ ‖IAl

e−tG(z2) − IA
e−tG(z2)‖2 < ε.

Since,

‖IAl

e−tG(z1)‖1 < ‖z1‖1 ≤ ε, ‖IA
e−tG(z1)‖1 < ‖z1‖1 ≤ ε,

it follows that

‖IAl

e−tG(z) − IA
e−tG(z)‖1 < 3ε, l ≥ l(ε).

So we conclude that for z ∈ L1(M) we have

IAl

e−tG(z) → IA
e−tG(z), l → ∞, (6.3)

in L1-norm. Applying this to z = y∗y and combining this with (6.1) and (6.2), we infer 
the first assertion. The second (easier) assertion follows as the convergence actually holds 
in L2-norm. �
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Lemma 6.5. If x ∈ L2(M), then IA
f [1](x) ∈ L◦

2(M).

Proof. Let DA be the von Neumann algebra generated by the spectral projections of A. 
Let D′ = D′

A∩M be its relative commutant with trace preserving conditional expectation 
ED′ : M → D. If z ∈ L2(M), then

IA
e−tF (z) → ED′(z), t → ∞,

in measure. Therefore, z ∈ L◦
2(M) if and only if ED′(z) = 0. We claim that 

ED′(IA
f [1](x)) = 0. Set

pm,k = χ[ k
m , k+1

m )(A), xm =
∑
k∈Z

pm,kxpm,k.

We have

IA
f [1]

(
pm,kxpm,l

)
= pm,k · IA

f [1](x) · pm,l.

Therefore,

ED′

(
IA

f [1]

(
pm,kxpm,l

))
= pm,k · ED′(IA

f [1](x)) · pm,l.

If k �= l, then

ED′

(
IA

f [1]

(
pm,kxpm,l

))
= pm,k · pm,l · ED′(IA

f [1](x)) = 0.

Therefore,

ED′(IA
f [1](x)) =

∑
k,l∈Z

ED′

(
IA

f [1]

(
pm,kxpm,l

))
=

∑
k∈Z

ED′

(
IA

f [1]

(
pm,kxpm,k

))
= ED′(IA

f [1](xm)).

As m → ∞, we have convergence in measure

xm → ED′(x), IA
f [1](xm) → IA

f [1](ED′(x)) = 0.

This concludes the proof. �
Proof of Theorem 6.1 (ii). By the first equality of Lemma 6.2 we see that ϕAl

maps 
bmo(M, IAl) to bmo(L∞(R2) ⊗ M, S ⊗ idM) isometrically with S the Heat semi-group. 
By the second equality of Lemma 6.2 we then further have,



24 M. Caspers et al. / Journal of Functional Analysis 278 (2020) 108317
‖IAl

f [1](x)‖bmo(M,IAl ) =‖ϕAl
◦ IAl

f [1](x)‖bmo(M,IAl )

=‖(m0(∇) ⊗ idM)(ϕAl
(x))‖bmo(L∞(R2)⊗M,S⊗idM).

As ϕAl
(x) is trigonometric, by Proposition 2.7,

‖(m0(∇) ⊗ idM)(ϕAl
(x))‖bmo(L∞(R2)⊗M,S⊗idM) ≤ cabs‖ϕAl

(x)‖∞ = cabs‖x‖∞.

Therefore, we have

‖IAl

f [1](x)‖bmo(M,IAl ) ≤ cabs‖x‖∞.

Thus, for every t ≥ 0, we have

−c2
abs‖x‖2

∞ ≤ Bl(t) ≤ c2
abs‖x‖2

∞,

where

Bl(t) = IAl

e−tF

(
IAl

f [1](x)∗IAl

f [1](x)
)

− IAl

e−tF

(
IAl

f [1](x)
)∗

IAl

e−tF

(
IAl

f [1](x)
)

.

By Lemma 6.4, we have Bl(t) → B(t) in measure as l → ∞. Here,

B(t) = IA
e−tF

(
IA

f [1](x)∗IA
f [1](x)

)
− IA

e−tF

(
IA

f [1](x)
)∗

IA
e−tF

(
IA

f [1](x)
)

.

Therefore,

−c2
abs‖x‖2

∞ ≤ B(t) ≤ c2
abs‖x‖2

∞

for every t ≥ 0. In other words,

‖IA
f [1](x)‖bmo(M,IA) ≤ cabs‖x‖∞.

By Lemma 6.5, we also have IA
f [1](x) ∈ L◦

2(M). A combination of this fact and the norm 
estimate complete the proof. �

We shall need the following auxiliary lemma in the next section.

Lemma 6.6. Suppose that A has finite spectrum. We have that bmo(M, IA) =
BMO(M, IA) as vector spaces with equality of norms.

Proof. We have an equality [21, Proof of Lemma 1.3] for f ∈ L∞(Rn) ⊗ M,

(etΔ ⊗ idM)(f∗f) − (etΔ ⊗ idM)(f)∗(etΔ ⊗ idM)(f)

=(etΔ ⊗ id )
(
|f − (etΔ ⊗ id )(f)|2

)
.
M M
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For x ∈ M set f = ϕA(x). We get by Lemma 6.2,

‖x‖BMO(M,IA) = sup
t>0

∥∥∥(etΔ ⊗ idM)
(
|f − (etΔ ⊗ idM)(f)|2

) ∥∥∥ 1
2

∞

= sup
t>0

∥∥∥(etΔ ⊗ idM)(f∗f) − (etΔ ⊗ idM)(f)∗(etΔ ⊗ idM)(f)
∥∥∥ 1

2

∞

=‖x‖bmo(M,IA). �
7. Conclusions for BMO-estimates for commutators

We now collect several results in perturbation theory of commutators as a consequence 
of Theorem 6.1. In particular we recover the main results from [30] and [7]. We in fact 
improve of them in terms of BMO-estimates.

As before we fix a Lipschitz function f : R → R and we assume that ‖f ′‖∞ ≤ 1. We 
set,

ψ(λ, μ) = λ − μ, ψf (λ, μ) = f(λ) − f(μ).

Note that IA
ψ (x) = Ax − xA = [A, x] and IA

ψf
(x) = [f(A), x] for A ∈ M self-adjoint. We 

start with the following corollary.

Corollary 7.1. In the setting of Theorem 6.1, there exists a constant cabs such that for 
every A ∈ M self-adjoint and every x ∈ M we have,

‖[f(A), x]‖bmoIA
≤ cabs‖[A, x]‖∞.

Proof of Corollary 7.1. We have,

[f(A), x] = IA
ψf

(x) = (IA
f [1] ◦ IA

ψ )(x) = IA
f [1]([A, x]).

Hence, by Theorem 6.1,

‖[f(A), x]‖bmoIA
= ‖IA

f [1]([A, x])‖bmoIA
≤ ‖IA

f [1] : M → bmoIA‖‖[A, x]‖∞. �
Remark 7.2. For a general von Neumann algebra M one cannot define a canonical 
Markov semi-group without further structure. This is why in Corollary 7.1 the semi-
group depends on the self-adjoint operator A ∈ M and the Lipschitz function f and we 
believe this is the suitable end-point estimate. After interpolation the dependence of A
and f vanishes in Theorem 7.4 and we obtain best constant estimates.

Next, through our BMO approach we collect many optimal results in perturbation 
theory. Firstly we retrieve the main result of [7].
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Theorem 7.3. In the setting of Theorem 6.1, let A ∈ M be self-adjoint. There exists a 
constant cabs such that for every 1 < p < ∞,

‖IA
f [1] : Lp(M) → Lp(M)‖ ≤ cabs

p2

p − 1 .

Proof. Setting as before Al = 1
l �lA�, we infer from Lemma 6.6 that bmo(M, IAl) =

BMO(M, IAl).
By Theorem 6.1 and its proof we have

‖IAl

f [1] : M → bmo(M, IAl)‖ ≤ ‖m0(∇) : L∞ → bmoS‖cb.

Also,

‖IAl

f [1] : L2(M) → L2(M)‖ ≤ ‖f ′‖∞ ≤ 1.

By Theorem 5.4 we see that IAl has a standard Markov dilation. Therefore, by Theo-
rem 2.5 for 2 ≤ p < ∞ we have

‖IAl

f [1] : Lp(M) → Lp(M)‖ ≤ cabsp.

Further, for x ∈ M we have IAl

f [1](x) → IA
f [1](x) in measure as l → ∞. Hence it follows 

that also

‖IA
f [1] : Lp(M) → Lp(M)‖ ≤ cabsp.

Next let 1 < p ≤ 2 and let q be conjugate, i.e. p−1 + q−1 = 1. By duality we find that

(IA
f [1])∗ : Lp(M) → Lp(M),

is the extension of the double operator integral IA
f̄ [1] . So that,

IA
f [1] : Lp(M) → Lp(M) = (IA

f
[1] : Lq(M) → Lq(M))∗

is bounded with ‖IA
f [1] : Lp(M) → Lp(M)‖ ≤ cabs(p − 1)−1. �

Theorem 7.4. In the setting of Theorem 6.1, there exists an absolute constant cabs such 
that for any operators A ∈ M self-adjoint and x ∈ M, and any 1 < p < ∞, we have

‖[f(A), x]‖p ≤ cabs
p2

p − 1‖[A, x]‖∞.
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Proof. We derive the proof from Theorem 7.3 as in Corollary 7.1. We find that for 
x ∈ M,

‖[f(A), x]‖p = ‖IA
f [1]([A, x])‖p

≤‖IA
f [1] : Lp → Lp‖‖[A, x]‖p ≤ cabs

p2

p − 1‖[A, x]‖p. � (7.1)

Corollary 7.5. There exists a constant cabs such that for any self-adjoint operators B, C ∈
M we have

‖f(B) − f(C)‖p ≤ cabs
p2

p − 1‖B − C‖p.

Proof. Apply Theorem 7.4 to

x =
(

0 1
1 0

)
, A =

(
B 0
0 C

)
.

As

[A, x] =
(

0 B − C

C − B 0

)
,

we find ‖[A, x]‖p = 2
1
p ‖B − C‖p and similarly ‖[f(A), x]‖p = 2

1
p ‖f(B) − f(C)‖p.

Theorem 7.4 gives

2
1
p ‖f(B) − f(C)‖p = ‖[f(A), x]‖p ≤ cabs

p2

p − 1‖[A, x]‖p = 2
1
p cabs

p2

p − 1‖B − C‖p. �
As another corollary we get a proof of the Aleksandrov-Peller results in [1, Theorem 

11.4].

Theorem 7.6. There exists a constant cabs such that for any two self-adjoint operators 
A, B ∈ B(Cn) and any Lipschitz function f : R → C we have

‖f(B) − f(C)‖∞ ≤ Cabs(1 + log(n))‖B − C‖∞.

Proof. Let Sn
p be the Schatten class associated with B(Cn). We have that B(Cn) ⊆ Sn

p

contractively. The converse inclusion Sn
p ⊆ B(Cn) has norm at most n

2
p by complex 

interpolation between p = 1 and p = ∞.
We find that for log(2) ≤ p < ∞,

‖f(B) − f(C)‖∞ ≤ ‖f(B) − f(C)‖p ≤ cabs p‖B − C‖p ≤ cabspn
2
p ‖B − C‖∞.
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Now for n ≥ 2 take p = log(n) so that we get,

‖f(B) − f(C)‖∞ ≤ cabs log(n)e
2
p log(n)‖B − C‖∞ = cabs log(n)e2‖B − C‖∞

This yields the theorem as in case n = 1 it is obvious. �
8. Estimates for vector-valued double operator integrals

8.1. Assumptions and statements

As before we let (M, τ) be a finite von Neumann algebra. Throughout the entire 
section we fix a finite von Neumann algebra N whose trace shall not be used explicitly. 
We write Sn for the Heat semi-group on Rn to stipulate the dimension. We let C(Rn, N )
be the space of norm continuous functions Rn → N .

Let A = (A1, . . . , An) be an n-tuple of commuting self-adjoint elements in M. Let 
EA : Rn → M be their joint spectral measure.

Definition 8.1. The semi-group J A : M ⊗ M2(C) → M ⊗ M2(C) is defined by the 
formula

J A
t (x ⊗ eij) = IA

e−tFij (x) ⊗ eij , x ∈ M,

where

Fij(λ, μ) =
{

|λ − μ|2, i = j,

|λ|2 + |μ|2, i �= j.

Let L : L∞(Rn, N ) → L∞(R2n, N ) be defined by the formula

(Lh)(t, s) =
1ˆ

0

h(θs + (1 − θ)t)dθ. (8.1)

We need the following Hörmander-Mikhlin-type condition.

Condition 8.2. The function h ∈ C(Rn, N ) is a compactly supported Cn+2-function such 
that

‖h‖HMn

def= max
0≤|α|≤n+2

sup
t�=0

‖t‖|α|
2 ‖(∂αh)(t)‖N ≤ 1. (8.2)

The following Theorem 8.3 is the main result we prove in this sections from which we 
derive vector valued commutator estimates.
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Theorem 8.3. Let A = (A1, . . . , An) be an n-tuple of commuting self-adjoint elements in 
M. The following statements hold.

(i) The semi-group J A in Definition 8.1 is Markov.
(ii) If h ∈ C(Rn, N ) satisfies the Condition 8.2 and h(0) = 0, then

∥∥∥IA
Lh(x) ⊗ e12

∥∥∥
bmo(N ⊗M⊗M2(C),idN ⊗J A)

≤ cn‖x‖M, x ∈ M.

8.2. Transference of multipliers

Let again es ∈ L∞(Rn) be given by es(t) = ei〈s,t〉. When A has finite spectrum, define 
unitary operators U, V ∈ L∞(Rn) ⊗ L∞(Rn) ⊗ M by the formula

U =
ˆ

Rn

es ⊗ 1L∞(Rn) ⊗ dEA(s), V =
ˆ

Rn

1L∞(Rn) ⊗ e−s ⊗ dEA(s).

Set

W = U ⊗ e11 + V ⊗ e22,

and further

πA(x) = W (1L∞(Rn) ⊗ 1L∞(Rn) ⊗ x)W ∗, x ∈ M ⊗ M2(C).

The map

corner : M → M ⊗ M2(C)

is defined by the formula x → x ⊗ e12.

Proposition 8.4. Let A = (A1, . . . , An) be an n-tuple of commuting self-adjoint elements 
in M with finite spectrum.

(i) for every t ≥ 0, we have

(S2n
t ⊗ idM⊗M2(C)) ◦ πA = πA ◦ J A

t .

(ii) for every k ∈ C(R2n, N ), we have

(k(∇R2n) ⊗ idM⊗M2(C)) ◦ πA ◦ corner = (idN ⊗ πA) ◦ (idN ⊗ corner) ◦ IA
k .
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Proof. If x ∈ M, then

πA(x ⊗ e11) =UxU∗ ⊗ e11 =
ˆ

Rn

ˆ

Rn

es−u ⊗ 1L∞(Rn) ⊗ dEA(s)xdEA(u) ⊗ e11.

Therefore, (
S2n

t ⊗ idM⊗M2(C)

)
(πA(x ⊗ e11))

=
ˆ

Rn

ˆ

Rn

e−t|s−u|2
es−u ⊗ 1L∞(Rn) ⊗ dEA(s)xdEA(u) ⊗ e11

=πA

( ˆ
Rn

ˆ

Rn

e−t|s−u|2
dEA(s)xdEA(t) ⊗ e11

)
=(πA ◦ J A

t )(x ⊗ e11).

Also,

πA(x ⊗ e12) = UxV ∗ ⊗ e12 =
ˆ

Rn

ˆ

Rn

es ⊗ et ⊗ dEA(s)xdEA(t) ⊗ e12.

Therefore, (
S2n

t ⊗ idM⊗M2(C)

)
(πA(x ⊗ e12))

=
ˆ

Rn

ˆ

Rn

e−t|s|2
es ⊗ e−t|u|2

eu ⊗ dEA(s)xdEA(u) ⊗ e12

=πA

( ˆ
Rn

ˆ

Rn

e−t|s|2−t|u|2
dEA(s)xdEA(u) ⊗ e12

)
=(πA ◦ J A

t )(x ⊗ e12).

The argument for x ⊗ e21 and for x ⊗ e22 goes mutatis mutandi. This proves the first 
assertion.

We have,

πA(x ⊗ e12) =
ˆ

Rn

ˆ

Rn

es ⊗ et ⊗ dEA(s)xdEA(t) ⊗ e12.

Therefore, (
k(∇R2n) ⊗ idM⊗M2(C)

)
(πA(x ⊗ e12))
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=
ˆ

Rn

ˆ

Rn

k(s, u) ⊗ es ⊗ eu ⊗ dEA(s)xdEA(u) ⊗ e12

=(idN ⊗ πA)
( ˆ
Rn

ˆ

Rn

k(s, u) ⊗ dEA(s)xdEA(u) ⊗ e12

)
=(idN ⊗ πA)

(
IA

k (x) ⊗ e12

)
.

This proves the second assertion. �
8.3. Smooth vector valued multipliers

Fix a convolution kernel K : Rn\{0} → N . Assume K determines a convolution 
operator by the principal value integral,

(K ∗ g)(x) =
ˆ

Rn

K(y)g(x − y)dy, x ∈ Rn,

and g : Rn → C smooth and compactly supported; the domain of K∗ will be extended 
shortly. We shall also write K for K∗, the convolution operator (Calderón-Zygmund 
operator). We say that a function K : Rn\{0} → N satisfies the Hörmander-Mikhlin 
condition if,

sup
x∈R2n

ˆ

y∈R2n,‖y‖2>2‖x‖2

‖K(x − y) − K(y)‖N dy < ∞. (8.3)

Note that if h ∈ C(Rn, N ) is integrable it has a Fourier transform ĥ : Rn → N that is 
uniquely determined by ω ◦ ĥ = ̂ω ◦ h for all ω ∈ N∗. The following is essentially proved 
in [21, Lemma 2.3 and Lemma 3.3]; we explain how it can be derived.

Proposition 8.5. If h ∈ C(Rn, N ) satisfies Condition 8.2 and h(0) = 0, then

h(∇Rn) ⊗ idM : L∞(Rn) ⊗ M → bmo(N ⊗ L∞(Rn) ⊗ M, idN ⊗ Sn ⊗ idM)

and its norm is bounded by an absolute constant cn
abs only depending on the dimen-

sion n.

Proof. Let ω ∈ N∗ with ‖ω‖ = 1 then hω := ω ◦ h is a Cn+2-function whose associated 
Fourier transform is given by Kω = ω◦K. We still have sup|α|≤n+2 ‖ξ‖|α|

2 ‖∂αω◦h‖N ≤ 1. 
The proof of [21, Lemma 3.3] (more precisely, the statement in its first line) shows that 
we have the gradient estimate, |‖s‖+n+1(∇Kω)(s)| ≤ cn

abs, s ∈ Rn\{0}, for an absolute 
constant cn

abs independent of ω. Taking the supremum over all ω in the unit ball of 
N∗ concludes that in fact ‖(∇K)(s)‖N ≤ cn

abs‖s‖−n−1, s ∈ Rn\{0}. So that certainly 



32 M. Caspers et al. / Journal of Functional Analysis 278 (2020) 108317
(8.3) holds. So [21, Lemma 2.3, Condition (ii)] is fulfilled. Further [21, Lemma 2.3, 
Condition (i)] is satisfied by Remark [21, Remark 2.4]. Hence, [21, Lemma 2.3] gives the 
result for the column estimate. The row estimate follows by taking adjoints. Note that 
as in Proposition 2.7 the condition h(0) = 0 guarantees that h(∇Rn)(1) = 0 so that 
h(∇Rn)(f) ∈ N � L◦

∞(Rn) with f ∈ L◦
∞(Rn) trigonometric. �

Proposition 8.6. If h ∈ C(Rn, N ) satisfies Condition 8.2 and h(0) = 0, then for y ∈
L∞(R2n) ⊗ M,∥∥∥(

(Lh)(∇R2n) ⊗ idM2

)
(y)

∥∥∥
bmo(N ⊗L∞(R2n)⊗M,idN ⊗S2n⊗idM)

≤ cn‖y‖L∞(R2n)⊗M,

Proof. Set hθ(t, s) = h(θs + (1 − θ)t). Set gθ(t) = h(t ·
√

θ2 + (1 − θ)2). By definition, 
we have

(
(Lh)(∇R2n) ⊗ idM

)
(y) =

1ˆ

0

(
hθ(∇R2n) ⊗ idM

)
(y)dθ,

where the integral is a Bochner integral in L2. Therefore, we have∥∥∥(
(Lh)(∇R2n) ⊗ idM

)
(y)

∥∥∥
bmo(N ⊗L∞(R2n)⊗M,idN ⊗S2n⊗idM)

≤
1ˆ

0

∥∥∥(
hθ(∇R2n) ⊗ idM

)
(y)

∥∥∥
bmo(N ⊗L∞(R2n)⊗M,idN ⊗S2n⊗idM)

dθ.

By the rotation invariance, we have∥∥∥(
hθ(∇R2n) ⊗ idM

)
(y)

∥∥∥
bmo(N ⊗L∞(R2n)⊗M,idN ⊗S2n⊗idM)

=
∥∥∥(

gθ(∇Rn) ⊗ idL∞(Rn) ⊗ idM
)

(y)
∥∥∥

bmo(N ⊗L∞(R2n)⊗M,idN ⊗S2n⊗idM)
.

By Proposition 8.5, we have∥∥∥(
gθ(∇Rn) ⊗ idL∞(Rn) ⊗ idM

)
(y)

∥∥∥
bmo(N ⊗L∞(R2n)⊗M,idN ⊗S2n⊗idM)

≤cn‖y‖M = cn‖y‖M.

Combining these inequalities, we complete the proof. �
8.4. Proof of Theorem 8.3

In order to explicitly give the proof of Lemma 8.8 below we single out the following 
fact.
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Fact 8.7. Let M1 and M2 be von Neumann algebras. Suppose that

(i) T 1 = (T 1
t )t≥0 is a semi-group of positive unital operators on M1;

(ii) T 2 = (T 2
t )t≥0 is a semi-group of positive unital operators on M2;

(iii) ∗-monomorphism π : M1 → M2 is such that

T 1
t ◦ π = π ◦ T 2

t , t ≥ 0.

We have

(a) If T 1 is completely positive, then so is T 2 and

(idN ⊗ T 1) ◦ (idN ⊗ π) = (idN ⊗ π) ◦ (idN ⊗ T 2).

(b) If T 1 and T 2 are Markov, then

‖(idN ⊗ π)(z)‖bmo(N ⊗M1,idN ⊗T 1) = ‖z‖bmo(N ⊗M2,idN ⊗T 2), z ∈ N ⊗ M2.

Lemma 8.8. The assertion of Theorem 8.3 holds provided that A has finite spectrum.

Proof. Let

M1 = L∞(R2n) ⊗ M ⊗ M2(C), M2 = M ⊗ M2(C),

and

T 1 = S2n ⊗ idM⊗M2(C), T 2 = J A, π = πA.

Denote for brevity

y = π(x ⊗ e12), z = IA
Lh(x) ⊗ e12.

By Lemma 8.4, we have

T 1
t ◦ π = π ◦ T 2

t , t ≥ 0.

Since T 1 is completely positive semi-group, then, by Fact 8.7, so is T 2. Since A has finite 
spectrum, it follows immediately that T 2 is symmetric and strongly continuous at 0. In 
other words, T 2 is Markov. This proves the first assertion of Theorem 8.3.

By Proposition 8.6 (applied to the algebra M2), we have∥∥∥(
(Lh)(∇R2n) ⊗ idM2

)
(y)

∥∥∥
bmo(N ⊗M1,idN ⊗T1)

≤cn‖y‖M1 = cn‖x‖M.
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By Lemma 8.4, we have(
(Lh)(∇R2n) ⊗ idM2

)
(y) = (idN ⊗ π)(z).

Therefore, we have ∥∥∥(idN ⊗ π)(z)
∥∥∥

bmo(N ⊗M1,idN ⊗T1)
≤ cn‖x‖M.

By Fact 8.7, we have

‖z‖bmo(N ⊗M2,idN ⊗T2) ≤ cn‖x‖M.

This proves the second assertion of Theorem 8.3. �
Proof of Theorem 8.3. Suppose now A is arbitrary. Set Al = (1

l �lA1�, · · · , 1l �lAn�). By 

Lemma 8.8, J Al is Markov. Clearly, J Al

t (x) → J A
t (x) in L2-norm and hence in measure 

for x ∈ M as l → ∞. By Lemma 2.2 J A is also Markov. This proves the first assertion.
We briefly sketch the proof of the second assertion. By Lemma 8.8, we have∥∥∥IAl

Lh(x) ⊗ e12

∥∥∥
bmo(N ⊗M⊗M2(C),idN ⊗J Al )

≤ cn‖x‖M, x ∈ M.

In other words, we have

−(cn‖x‖M)2 ≤ Bl(t) ≤ (cn‖x‖M)2,

where

Bl(t)
def= IAl

e−tF22

(
IAl

Lh(x)∗IAl

Lh(x)
)

−
(

IAl

e−tF12 (IAl

Lh(x))
)∗(

IAl

e−tF12 (IAl

Lh(x))
)

.

An argument identical to that in Lemma 6.4 yields Bl(t) → B(t) in measure, where

B(t) def= IA
e−tF22

(
IA

Lh(x)∗IA
Lh(x)

)
−

(
IA

e−tF12 (IA
Lh(x))

)∗(
IA

e−tF12 (IA
Lh(x))

)
.

Therefore, we have

−(cn
n‖x‖M)2 ≤ B(t) ≤ (cn‖x‖M)2.

In other words,∥∥∥IA
Lh(x) ⊗ e12

∥∥∥
bmo(N ⊗M⊗M2(C),idN ⊗J A)

≤ cn‖x‖M, x ∈ M. �
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9. Vector valued perturbations and Lipschitz estimates

In this section we consider vector valued commutator estimates. Consider a function

f : Rn → N ,

which we assume to be differentiable. Shortly, we shall require additional smoothness 
assumptions on f . The function f plays the role of the Lipschitz function in Section 6. 
For a differentiable function g : R → C and s ≤ t we have,

g(t) − g(s) = (t − s)
1ˆ

0

g′((1 − θ)s + θt)dθ.

Therefore taking directional derivatives in the direction of the unit vector ‖t −s‖−1
2 (t −s)

we find,

f(t) − f(s) =‖t − s‖2

1ˆ

0

(∇|(1−θ)s+θtf) · t − s

‖t − s‖2
dθ

=
n∑

k=1

1ˆ

0

(∂kf)((1 − θ)s + θt)(sk − tk)dθ

=
n∑

k=1

(L∂kf)(s, t)(sk − tk).

(9.1)

Lemma 9.1. Let c > 0.

(i) There exist Schwartz functions ϕl : Rn → [0, 1] that are compactly supported with 
ϕl(ξ) = 1 for ‖ξ‖2 ≤ l and ‖ξ‖|α|

2 |∂αϕl)(ξ)| ≤ c for all 1 ≤ |α| ≤ n + 2.
(ii) If h ∈ C(Rn, N ) is a Cn+2-function that satisfies (8.2) then (1 + c · 2n+2)−1ϕlh

satisfies Condition 8.2.

Proof. In case n = 1 and l = 1 let ϕ1
1 : R → [0, 1] be a function satisfying the conditions 

and then set ϕ1
l (ξ) = ϕ1

l (l−1ξ) which proves the lemma for n = 1. For general n set the 
rotational invariant function ϕn

l (ξ) = ϕ1
l (‖ξ‖2) which are Schwartz and satisfy (i) and 

(ii). We have for ξ1 ∈ R that |(∂αϕl)(ξ1, 0, . . . , 0)| = δ|α|=α1 |(∂α1ϕ1
l )(ξ1)| ≤ c‖ξ‖α1

2 . By 

rotation of variables this gives |(∂αϕl)(ξ)| ≤ c‖ξ‖−|α|
2 . By the Leibniz rule,

∂α(ϕlh) =
∑

β+γ=α

cβ,γ(∂βϕl) (∂γf),

for certain combinatorical coefficients cβ,γ ∈ N which satisfy 
∑

β+γ=α cβ,γ = 2|α|. So 
that,
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|(∂αϕlh)(ξ)| ≤
∑

β+γ=α

cβ,γ |(∂βϕl)(ξ)| |(∂γh)(ξ)|

≤‖ξ‖−|α|
2 +

∑
β+γ=α,β �=0

c · cβ,γ‖ξ‖−|β|
2 ‖ξ‖−|γ|

2 ≤ (1 + c · 2|α|)‖ξ‖−|α|
2 .

So for all |α| ≤ n + 2 we obtain that |(∂αϕlf)(ξ)| ≤ (1 + c · 2n+2)‖ξ‖−|α|
2 , i.e. Condi-

tion 8.2. �
For a function f ∈ C(Rn, N ) and an n-tuple A of commuting self-adjoint operators 

in M we define,

f(A) =
ˆ

Rn

f(ξ) ⊗ dEA(ξ) ∈ N ⊗ M,

where EA was the spectral measure of the n-tuple A. It is the unique element in N ⊗ M
such that for every ω ∈ N∗ we have

(ω ⊗ id)(f(A)) =
ˆ

Rn

ω ◦ f(ξ)dEA(ξ) ∈ M.

Theorem 9.2. Let f : Rn → N be a Cn+3-function such that each of the functions 
hk = ∂kf, k = 1, . . . , n satisfy (8.2). There exists a constant cn only depending on the 
dimension n such that for every x ∈ L2(M) ∩Lp(M) and every n-tuple A = (A1, . . . , An)
of commuting self-adjoint operators in M we have [f(A), 1 ⊗x] ∈ Lp(N ⊗M). Moreover,

‖[f(A), 1 ⊗ x]‖p ≤ cn
p2

p − 1 max
k

(‖hk‖HMn
)

n∑
k=1

‖[Ak, x]‖p.

Proof. As the theorem is true for the coordinate functions gk : Rn → R : ξ �→ ξk, 1 ≤
k ≤ n, we may replace f by f −

∑n
k=1(∂kf)(0)gk and assume without loss of generality 

that (∂kf)(0) = 0, 1 ≤ k ≤ n.
By Lemma 9.1 let ϕl : Rn → [0, 1], l ∈ N≥0 be as in Lemma 9.1 with c = 2−n−2. 

By Lemma 9.1 we have that 2−1ϕlhk satisfies Condition 8.2. Let l0 ∈ N be larger than 
maxk ‖Ak‖ and set ϕ = ϕl0 .

Consider the function ψk(s, t) = sk − tk and ψf (s, t) = f(s) − f(t). We have by (9.1)
that

ψf (ξ) =
n∑

k=1

L(hk)ψk(ξ) =
n∑

k=1

L(ϕlhk)ψk(ξ),

for all ξ ∈ Rn with ξi ≤ ‖Ak‖.
As in the proof of Theorem 7.3, by Theorem 8.3 and Theorem 2.5 we find through a 

discretization of A and complex interpolation that for 2 ≤ p ≤ ∞,
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‖IA
L(ϕhk) : Lp(M) → Lp(N ⊗ M)‖ ≤ cnp.

So that,

[f(A), x] = IA
ψf

(x) =
n∑

k=1

IA
L(ϕhk) ◦ IA

ψk
(x) =

n∑
k=1

IA
L(ϕhk)([Ak, x]).

Then,

‖[f(A), x]‖p ≤ max
k

(‖IA
L(ϕhk) : Lp → Lp‖)

n∑
k=1

‖[Ak, x]‖p ≤ cn p
n∑

k=1

‖[Ak, x]‖p.

This concludes the proof for 2 ≤ p < ∞. For 1 < p ≤ 2 the proof follows by duality just 
as in Theorem 7.3. �
Theorem 9.3. Let f : Rn → N be a Cn+3-function such that each of the functions 
hk = ∂kf, k = 1, . . . , n satisfy (8.2). There exists a constant cn such that for every 
n-tuples of self-adjoint operators B = (A1, . . . , An) and C = (C1, . . . , Cn) of commuting 
self-adjoint operators in M we have

‖f(B) − f(C)‖p ≤ cn
p2

p − 1

n∑
k=1

‖Bk − Ck‖p.

Proof. Apply Theorem 9.2 to the n-tuple 

(
Bk 0
0 Ck

)
with k = 1, . . . , n and x =(

0 1
1 0

)
. See Corollary 7.5 for details. �

We apply our results to the particular case that N is an algebra of freely independent 
semi-circular elements.

Corollary 9.4. Let si, i ∈ N be freely independent semi-circular random variables and let 
fi : R → C be C4-functions. Put Fl =

∑l
i=1 si ⊗ fi and assume that Fl satisfies (8.2). 

We have for every l that,

‖
l∑

i=1
si ⊗ fi(B) −

l∑
i=1

si ⊗ fi(C)‖p ≤ cn
p2

p − 1‖B − C‖p.

Proof. This follows from Theorem 9.3 with n = 1 and B = B and A = a a single operator 
and further f = Fl. �
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