IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020 547

Prediction of Multidimensional Spatial Variation
Data via Bayesian Tensor Completion

Jiali Luan and Zheng Zhang

Abstract—This paper presents a multidimensional computational
method to predict the spatial variation data inside and across multiple
dies of a wafer. This technique is based on tensor computation. A tensor
is a high-dimensional generalization of a matrix or a vector. By exploiting
the hidden low-rank property of a high-dimensional data array, the large
amount of unknown variation testing data may be predicted from a few
random measurement samples. The tensor rank, which decides the com-
plexity of a tensor representation, is decided by an available variational
Bayesian approach. Our approach is validated by a practical chip test-
ing data set, and it can be easily generalized to characterize the process
variations of multiple wafers. Our approach is more efficient than the
previous virtual probe techniques in terms of memory and computational
cost when handling high-dimensional chip testing data.

Index Terms—Bayesian statistics, data analytics, process varia-
tion, tensor, tensor completion, variation modeling.

I. INTRODUCTION

Today’s nano-scale semiconductor manufacturing is subject to
significant process variations (e.g., uncertain geometric and mate-
rial parameters caused by imperfect lithography, chemical-mechanical
polishing, and other steps) [1]. These process variations can propa-
gate to circuit and system levels, and cause remarkable performance
uncertainties and yield degradation. Therefore, extensive numeri-
cal modeling, simulation, and optimization techniques have been
developed in the past decades to predict and control performance
uncertainties of analog, digital, and mixed-signal design [2]-[13].
These numerical tools typically require a given detailed statistical
model (e.g., a probability density function or a set of statistical
moments) of the process variations. The statistical models of pro-
cess variations are typically obtained by measuring and analyzing
the performance data of a huge number of testing chips. The testing
data can also be used for post-silicon yield analysis and performance
tuning [14].

It is nontrivial to design and measure testing chips. First, one needs
to carefully design and fabricate specialized circuits (e.g., ADC or
ring oscillators) to measure or monitor the variation of certain param-
eters (e.g., Vin) [15]-[17]. For instance, a micro-processor may have
hundreds of ring oscillators to monitor parametric variations, lead-
ing to large chip area overhead [18]. Second, one usually needs to
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measure many testing circuits on each die in order to extract statistical
distributions or to characterize intradie/interdie spatial correlations.
Testing these circuits can consume a large amount of time. Finally,
hardware measurement may also permanently damage the chips due
to mechanical stress [19].

Instead of measuring all circuits, virtual testing techniques aim to
reduce the cost by measuring only a small number of samples. A rep-
resentative example is the “Virtual Probe” technique [20], [21] and its
variants [22], [23], which employ compressed sensing [24] to estimate
all performance data from a few measurement samples. In order to
estimate all data on a die with an ny x np array of circuits, these
techniques approximate the variation data by the linear combina-
tion of nyny basis functions [e.g., 2-D discrete cosine transformation
(DCT) bases] of spatial axes x and y. When the approximation is
very sparse (which is generally true in practice), the nny coefficients
can be estimated even if only N < njny measurement samples are
available. These techniques have proved to be more efficient than
traditional approaches, such as Kriging prediction [25] and k-LSE
estimation [26]. Compressed sensing is effective for processing 2-D
data, but it has some shortcomings: 1) it is inefficient to exploit
the structure of multidimensional data and 2) it involves large-scale
optimization to compute all DCT coefficients. More detailed analysis
will be given in Sections III-C and V.

This paper presents an alternative tensor approach to reduce the
cost of modeling variations across multiple dies or wafers. Tensor
computation [27] can reveal more information that cannot be captured
by matrix- or vector-based computations (e.g., compressed sensing).
By stacking all 2-D chip data as a multidimensional data array, we
estimate them simultaneously with a small number of random sam-
ples. The full unknown multidimensional data set is characterized by
several low-rank tensor factors, and the unknown tensor factors are
adaptively computed by employing the recently developed variational
Bayesian approach [28] with an automatic rank determination pro-
cess. We demonstrate the effectiveness of our approach by a realistic
data set with 717080 data samples describing the contact resistivity
of 20 dies, which is beyond the computational capability of Virtual
Probe [20]-[23].

II. BASICS OF TENSOR

We first describe a few key definitions related to tensor, which are
necessary to understand this paper. We refer the readers to [27] for
a detailed introduction of tensor and [29] for tensor computation in
electronic design automation.

Definition 1: A tensor is a high-dimensional generalization of a
matrix. A matrix X € R™*™ jg a second-order tensor, and its
element indexed by (i1, i3) can be denoted as x;,;,. For a general
dth-order tensor X € R™ > X" jts element indexed by (i1, ..., ig)
can be denoted as xj;...i,.

Fig. 1 shows a matrix and a third-order tensor, respectively. In this
paper, we denote scalars by lowercase letters (e.g., x), vectors (tensors
of order one) by boldface lowercase letters (e.g., X), matrices (tensors
of order two) by boldface capital letters (e.g., X), and higher-order
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Fig. 1. (a) 2-D data array (e.g., one slice of MRI data) is a matrix. (b) 3-D
data array (e.g., multiple slices of images) is a third-order tensor.

Fig. 2. Tensor completion for chip data testing. Each die is a n| x nj slice
(i.e., a matrix) of a tensor. The small green squares represent a small number
of available measurement results.

tensors (order three or higher) by boldface calligraphic letters (e.g.,
X)), respectively.

Definition 2: Given any two tensors X and Y of the same size,
their inner product is defined as

(X, ¥) = Z XipeeigYip-ig- D

itig

Definition 3: Given n tensors {X (m)} of the same size, their
generalized inner product is defined as

n
(x(l),...,x(")>= D I ©)

i1-igm=1

Since tensors are a generalization of matrices and vectors, the
above definitions of (generalized) inner product apply to matrices
and vectors as well.

Definition 4: The Frobenius norm of a tensor X is further defined
as | Xllp = (X, X).

Definition 5: A tensor X € R™M**Md jg rank-1 if it can be
written as the outer product of d vectors

X=ujo---ouy & xj...ip =u(iy) - -uglig) 3)

where w (i) denotes the irth element of vector uy € R,

III. TENSOR-BASED CHIP TESTING

Different from the previous virtual probe techniques [20]-[23]
that employ compressive sensing, this section formulates the virtual
testing as a tensor completion problem.

A. Problem Formulation

We consider the variations of n3 dies on a wafer, and assume
that each die has n| x np circuits (e.g., ring oscillators) which can
capture spatial correlations. Instead of measuring all nynyn3 testing
circuits, we aim to estimate their performance by measuring only N
circuits, with N <« nynpn3. In order to achieve this goal, we first
stack all dies as a 3-D data array. As shown in Fig. 2, the whole
data set of die i1 is a matrix Xil. We can see X'! as irth slice
of a tensor X € R™M*™*"3_ Now the virtual testing problem can
be formulated as tensor completion. Assume that N measurement

results x;,,4; are given, (i, iz, i3) € €2, and 2 denotes the indices
of measured samples. Then, we have the following problem:

Given x;,j,i5 for (i1, ip,i3) € @, find X. “4)

This formulation can be easily extended to handle multiple wafers:
one can add another index i4 to indicate a specific wafer, and the
whole data set X is a fourth-order tensor.

B. Low-Rank Tensor Completion

The problem in (4) has an infinite number of solutions, since we
do not have any information about the un-given samples. Therefore,
some constraints should be added. For instance, a £| regularization is
used in Virtual Probe [20], [21] because heuristic experience shows
that a 2-D DCT transform of the data on each die has very sparse
coefficients.

In this paper, we estimate the unknown variation data based on
a different heuristic: we find that X in the chip testing problem
usually has a low-rank property in the high-dimensional space.
Intuitively, this is because two reasons. First, there exist strong spa-
tial correlations. Second, the fabrication data samples depend on the
same fabrication process, and some fabrication process have much
stronger influence in causing process variations. Similar to matrices,
a low-rank tensor can be written as the sum of some rank-1 tensors

X:le’io-~-ou];1. (®)]
j=1

This factorization is called the CANDECOMP/PARAFAC (CP) fac-
torization, which is one of several popular factorization formats [27].
Having a few samples of &X', we attempt to compute the factors
in (5) and to determine the rank ». Many tensor completion methods
were introduced, but most approaches tend to have an inaccurate
tensor rank and latent factors estimation, and eventually lead to
the problem of over-fitting or weak predictive performance. In this
paper, we choose to employ the variational Bayesian CP factorization
model [28] to solve our problem. We will introduce the key ideas of
variational Bayesian CP factorization in Section IV.

C. Comparison With Virtual Probe

The tensor completion approach can be considered as a more flex-
ible generalization of the virtual probe [22]. In order to demonstrate
this, we consider the problem of approximating a d-variable func-
tion f(t1,...,t5), where t; € [0,T;] is a continuous variable for
i=1,2,...,d

We discretize [0, 7;] into n; — 1 segments of length A; =
T;/(n; — 1), then the (i, ip, ..., iz)th element of X can be regarded
as the discretized value of f(t, ..., #z)

S tg = (ig — DAg). (6)

Consequently, the low-rank tensor factorization is equivalent to
approximating f by some separable functions

Xipig =f (11 = (i — DAY, ..

fltr, ooty = >y )iy (02) - i (1) )

J=1

and the vector u;( in (5) includes ny discretized function values of
uj{(tk) on the grid points {f;y = (it — 1)Ag}. In a low-rank tensor
factorization, we adaptively find some unknown univariate functions
u;C(tk) to approximate f(f1,...,77). Once some “good” univariate
functions are found, a small number of product terms can be used to
approximate f (and X accordingly) with good accuracy.
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Fig. 3.
virtual probe with 10% samples.

The virtual probe technique [20] is equivalent to approximating
f(ty,...,t7) by some given and fixed basis functions

ny nd
frscota) = Y D iyt ()AF(02) - il (1),

i1=1 ig=1
Here, {ﬁZ‘ ()} are some predefined basis functions, and {c;,...;,} are
the unknown weights. In [20], the basis functions are specifically
chosen as some Fourier basis functions. This choice of basis func-
tions normally leads to a sparse representation; however, it is not
guaranteed optimal. For instance, the Fourier basis function is not
a good choice to approximate a nonsmooth function f(tq, ..., 7).
Nonsmooth behaviors actually frequently appear in spatial varia-
tion modeling due to the random systematic variations [30]. In fact,
f(ty,...,tg) is rarely smooth with respect to f; when dimension k
is not an actual spatial dimension (e.g., when k is the additional
dimension after stacking multiple 2-D dies as a 3-D array).

Our tensor-completion chip testing approach is more flexible and
often more efficient than the virtual probe technique because of the
following reasons. )

1) In tensor completion, the univariate function u?{(tk) in (7) is
chosen adaptively and is not limited to smooth functions (e.g.,
cosine functions as in [20]). Therefore, tensor completion is
able to use “better” univariate functions and thus fewer product
terms to approximate f (1, ..., f7). For instance, we consider a
random low-rank 3-D data array of size 30 x 30 x 15. We use
tensor completion to recover the whole 3-D data set with 10%
entries, and use virtual probe to recover the data slice by slice.
Fig. 3 shows the result of the first slice. The Virtual Probe has
a huge error (and a relative error of 106%) for this data set due
to the nonsmoothness. In contrast, tensor completion recovers
the nonsmooth data perfectly with a relative error 2.23 x 1079,

2) The virtual probe technique forms an under-determined equa-
tion with N = ]_[f:1 n; columns to compute the unknown
weights {c;, ...c,}. As d increases, the size of this linear equation
grows exponentially. Consequently, importing this huge-size
equation is beyond the capability of a computer’s physical
memory, let alone performing numerical computation. Our ten-
sor completion approach is a natural solution for large d, and
it does not suffer from the curse of dimensionality.

IV. BAYESIAN CP FACTORIZATION

We employ the variational Bayesian approach [28] to solve our
problem, due to its automatic rank determination and low computa-
tional cost. The key ideas are summarized below.

Let Y = X + ¢ be a noisy tensor, and the true latent tensor X is
generated by a CP model

-
X:Zu’loH'o dzTCp(Ul,...,Ud). ®)
j=1

(a) One slice of the original tensor. (b) One slice of the result from tensor completion with 10% samples. (c) One slice of the result obtained by

The noise term ¢ is an independent identically distributed Gaussian
distribution, & ~ l_[ily~--sid'/\/(0’t_l)' Here, we have used uﬂc to
denote the factor vector of dimensionality k in the jth outer prod-
uct; we use the matrix Uy = [u,lc, .. "“lrcl e R%X" to denote all
factor vectors associated with the kth dimension.

A. Probabilistic Model

Suppose 2 denotes the indices of some observed entries in Y, the
observed tensor Yq is defined as

N yigig i G,
Yo = {O otherwise.

,ig) € 2

We further denote uy ;, = [Uy (i, )T e R”%1, ie., the transpose of
the jth row of matrix Uy. Combining the noise distribution and the
CP model, we get the observation model that is factorized over the
observed tensor entries

p(YaltUu_,.7) =

(i1, 0q) €Q
-1
X N(yil...,'d|(ll1’,'] e, ud,id>’ T )

The selection of a latent tensor rank, r, has been a challenging
task. Previous probabilistic models rely on a predetermined tuning
parameter chosen either by cross-validations or maximum likeli-
hood. However, the Bayesian CP factorization method [28] is able
to automatically determine the tensor rank as part of the Bayesian
inference process. This approach uses a set of hyper-parameters
(A =[A1,22, ..., Ar]) to control the rank. Each A; controls the mag-
nitude of the jth column of each Uy. Further, a sparsity-inducing prior
distribution is placed over all the latent factors, given by

1k
P = [] N (we 0. A7"). vk e [1,4) )
ir=1
where A = diag(A) is the precision matrix. Note that the larger A;,
the smaller elements in the jth column of Uy. The hyper-priors over A
and t are Gamma distributions, factorized over each dimensionality
of the latent tensor X', given by

p) = [ [ Ga(xjleo (). do(i))
j=1
p(t) = Ga(tlag. bo)

(10)

an

where ag, by (scalars) and ¢, dg (vectors) are selected heuristically.
Together, the overall probabilistic model can be expressed as the
following joint distribution:

d

P, Ur..... Ug k1) = p(YallUiy . o) [T Uk op@p o).
k=1
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Fig. 4. Relative errors of tensor completion with various sampling ratios.

B. Variational Bayesian Solver

We need to compute the posterior distribution of all latent variables,
including CP factors {Uj}, rank-controlling hyper-parameters A,
and noise precision 7. In order to achieve this goal, the vari-
ational Bayesian method [28] seeks for a distribution function
q(Uy, ..., Ug, A, 7) by minimizing the KL divergence of the two
distribution p and g. By assuming that the posterior distributions of
Uy , A, and 7 are independent, one can use expectation—-maximization
steps to obtain the optimal solution in the following form:

N
axkUp) = [ | N(ug i, Vii). Yk ell,dl

(12)
ir=1

a0 = [[GalxjleG, d() (13)
j=1

qr(7) = Ga(t|a, b) (14)

where the computed c(i) and d(j) determines the posterior mean of A;
and thus the magnitude (3,f the jth column of all CP factors {Uk}zzl.

The predicted tensor Y is calculated based on the posterior mean
of the obtained latent factors

Y=o o, (15)
j=1

where fi;{ is the posterior mean of vector u§C The relative error of the
predicted data can be measured as

relative error = ”jiv - y|\F/||y||p. (16)

V. NUMERICAL RESULTS

In order to verify our tensor completion-based chip variation data
prediction method, we have implemented the algorithm in MATLAB
on a Windows Desktop Workstation with 8-GB RAM and a 3.4-GHz
CPU. We test our codes by a data set describing the variability of
contact plug resistance in a 90-nm CMOS process [15]. The data
set has the measurement results of multiple dies, and each die has
256 x 144 = 35854 testing circuits. We stack the data of 20 dies
as a third-order tensor, which has 717080 data samples in total. In
the numerical experiments, we assume that only a small number of
samples (which are randomly picked with a uniform distribution) are
given, and we aim to accurately estimate the whole 3-D data set
based on the given measurement samples.

Original, die 4 Original, die 8
0.945 20 . 086
40 ’
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094 60
80 084
0935 100 083
120 "
082
(e 093 140
50 100 150 200 250 50 100 150 200 250

Predicted, die 4 Predicted, die 8

50 100 150 200 250 50 100 150 200 250

Fig. 5. Top: exact spatial variation patterns of die 4 and die 8. Bottom:
predicted variation patterns by our approach with a 15% sampling rate.

TABLE I
CPU TIME FOR VIRTUAL PROBE AND OUR METHOD WITH 15% SAMPLES

Methods

Virtual Probe
Proposed Method

Slice-By-Slice | 3-D Array |

62,947 s (17.5 h) | Out of Memory |
325 s (5.5 min) | 67's |

A. Numerical Accuracy

In order to check the numerical accuracy of our approach on the
chip data set, we fix the maximum tensor rank as 15. Then, we
perform tensor completion repeatedly for different sampling ratios.
The sampling ratios are chosen as ten logarithmically spaced points
between 3% and 50%. For each experiment, we compute the rela-
tive error of the predicted results by ||55 —VIF/IYIF- As shown in
Fig. 4, our approach can predict the spatial variation data with a very
small sampling ratio: the relative error decreases to around 0.2% as
the sampling ratio is greater than 10%; the relative errors are below
1% for all ten experiments. As shown in [15], the chip variation data
typically has some certain patterns in the spatial domain. However,
these patterns are not easy to capture, since they depend on very
small variations across a die or a wafer. Our approach is capable of
predicting the spatial patterns of the multiple-die data set simulta-
neously. We show the results of tensor completion by using a 15%
sampling ratio and by fixing the maximum rank as 15. The top part
of Fig. 5 shows the exact variation patterns of two chips obtained by
measuring all testing circuits. The bottom of Fig. 5 shows the pre-
dicted variation pattern by tensor completion using only 15% random
measurement data.

B. Comparison With Virtual Probe

We further compare our approach with the virtual probe on this
realistic data set. Our data set has 144 x 256 x 20 entries. Suppose
we observe 15% of the data, the Virtual Probe approach then has
to solve a linear equation with 110592 rows and 737280 columns.
Computing such a large-scale matrix and importing it into the physi-
cal memory is far beyond the capability of our desktop computer.
In contrast, the Bayesian tensor completion takes only 1 min to
predict such a large-scale 3-D data array with an accuracy of 0.2%,
as shown in Table I. Since the Virtual Probe technique is unable
to directly process the high-volume 3-D data, we perform another
round of comparison by predicting the 3-D data array slice-by-slice.
Specifically, we use Virtual Probe and tensor completion to predict
the 20 individual slices of 144 x 256 matrices based on 15% given
samples. The Virtual Probe approach can work in this case, and it
generates one model for each individual slice. However, Virtual Probe
is extremely time-consuming: it takes 17.5 h to predict all slices as
shown in Table I. In contrast, our Bayesian tensor completion finishes
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TABLE 11
PREDICTED TENSOR RANKS UNDER DIFFERENT MAXIMUM RANKS

Maximum Rank  Predicted Rank  Relative Error

5 4 0.214%
10 8 0.206%
15 9 0.200%
20 14 0.198%
25 17 0.196%

the prediction in only 5.5 min and with the similar level of accu-
racy. This is because that Virtual Problem has to solve a large-scale
under-determined equation, whereas tensor completion only needs to
compute a small number of unknown low-rank factors.

Remarks: Our proposed approach employs the variational Bayesian
method [28] to estimate the tensor rank probabilistically. Once the
algorithm converges, we can compute the expected value of each 2;: a

large Aj indicates very small “2 forallk =1, ..., d, thus the jth outer
product in (8) will vanish, and a tensor rank deficiency is detected.
We should choose a maximum rank that is greater than the true rank;
otherwise, some tensor factors cannot be captured. However, if the
selected maximum rank is too large, extensive data will be required to
infer the latent variables, causing higher computational cost. Table II
has shown the predicted ranks with respect to different maximum
ranks when the sampling ratio is fixed as 15%. The predicted rank
remains below 20 with the relative errors around 0.2%; the relative
error decreases as the predicted rank increases to capture some small
variations. However, a large maximum rank may cause over-fitting,
and may overestimate the true rank.

VI. CONCLUSION

This paper has presented a tensor framework to predict the spa-
tial variation data of semiconductor fabrications. Our key idea is to
estimate the data of multiple dies simultaneously by performing ten-
sor completion in a higher-dimensional data space. The approach has
been implemented with a recently developed variational Bayesian
approach which automatically determines the tensor rank in a proba-
bilistic way. The numerical experiments on a contact plug resistivity
variation data set has shown excellent performance. High accuracy
(e.g., a 0.2% relative error) has been achieved with a small (e.g., 10%)
sampling ratio. The proposed approach has also correctly predicted
the spatial patterns of multiple dies simultaneously. Our proposed
approach have easily handled a huge 3-D data set in 1 min, whereas
the Virtual Probe technique failed to work due to its huge cost of
physical memory and computational resources.
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