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Abstract—Uncertainty quantification based on generalized
polynomial chaos has been used in many applications. It has
also achieved great success in variation-aware design automa-
tion. However, almost all existing techniques assume that the
parameters are mutually independent or Gaussian correlated,
which is rarely true in real applications. For instance, in chip
manufacturing, many process variations are actually correlated.
Recently, some techniques have been developed to handle non-
Gaussian correlated random parameters, but they are time-
consuming for high-dimensional problems. We present a new
framework to solve uncertainty quantification problems with
many non-Gaussian correlated uncertainties. Firstly, we propose
a set of smooth basis functions to well capture the impact
of non-Gaussian correlated process variations. We develop a
tensor approach to compute these basis functions in a high-
dimension setting. Secondly, we investigate the theoretical aspect
and practical implementation of a sparse solver to compute the
coefficients of all basis functions. We provide some theoretical
analysis for the exact recovery condition and error bound of
this sparse solver in the context of uncertainty quantification.
We present three adaptive sampling approaches to improve
the performance of the sparse solver. Finally, we validate our
methods by synthetic and practical electronic/photonic ICs with
19 to 57 non-Gaussian correlated variation parameters. Our
approach outperforms Monte Carlo by thousands of times in
terms of efficiency. It can also accurately predict the output
density functions with multiple peaks caused by non-Gaussian
correlations, which are hard to capture by existing methods.

Index Terms—High dimensionality, uncertainty quantification,
electronic and photonic IC, non-Gaussian correlation, process
variations, tensor, sparse solver, adaptive sampling.

I. INTRODUCTION

NCERTAINTIES are unavoidable in almost all engineer-
ing fields. In semiconductor chip design, a major source
of uncertainty is the fabrication process variations. For in-
stance, in deeply scaled electronic integrated circuits (ICs) [2]
and MEMS [3], process variations have become a major
concern in emerging design technologies such as integrated
photonics [4]. One of the traditional uncertainty quantification
methods is Monte Carlo [5], which is easy to implement but
has a low convergence rate. In recent years, various stochastic
spectral methods (e.g., stochastic Galerkin [6], stochastic test-
ing [7] and stochastic collocation [8]) have been developed and
have achieved orders-of-magnitude speedup compared with
Monte Carlo in vast applications, including (but not limited
to) the modeling and simulation of VLSI interconnects [9]-
[14], nonlinear ICs [7], [15]-[20], MEMS [3], [21], photonic
circuits [22]-[24], and computer architecture [25].
The key idea of stochastic spectral method is to represent
the stochastic solution as the linear combination of basis
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functions. It can obtain highly accurate solutions at a low
computational cost when the parameter dimensionality is not
high (e.g., less than 20). Despite their great success, stochastic
spectral methods are limited by a long-standing challenge:
the generalized polynomial chaos basis functions assume that
all random parameters are mutually independent [26]. This
assumption fails in many realistic cases. For instance, a lot
of device-level geometric or electrical parameters are highly
correlated because they are influenced by the same fabrication
steps; Many circuit-level performance parameters used in
system-level analysis depend on each other due to the network
coupling and feedback.

Data-processing techniques such as principal or independent
component analysis [27], [28] can handle Gaussian correla-
tions, but they cause huge errors in general non-Gaussian cor-
related cases. Soize and Ghanem [29] proposed to modify the
basis functions to a non-smooth chaos formulation, which was
applied to the uncertainty analysis of silicon photonics [22]. It
was found that the method in [29] does not converge well, and
designers cannot easily extract mean value and variance from
the solution. Recently, we proposed a novel approach to handle
non-Gaussian correlated process variations in [30], [31]. We
constructed the basis functions via a Gram-Schmidt formula,
and then built the surrogate model via an optimization-based
stochastic collocation approach. Our basis functions inherit
three important properties of the independent counterparts:
smoothness, orthonormality, and the capability of providing
closed-form mean value and variance of a stochastic solution.
In [31], some theoretical results about the numerical error
and complexity were provided, and thousands of times of
speedup than Monte Carlo were achieved in electronic and
photonic ICs with a few non-Gaussian correlated random
parameters. A later paper [32] presented a similar method to
solve the same kind of problems. However, how to handle
high-dimensional non-Gaussian correlated uncertain parame-
ters remains an open question, despite significant progress in
high-dimensional uncertainty quantification with independent
random parameters [21], [33]-[40].

Contributions. This paper presents a framework to quantify
the uncertainties of electronic and photonic ICs with high-
dimensional and non-Gaussian correlated process variations.
Our approach has two excellent features: it efficiently com-
putes high-dimensional basis functions that well capture the
impact of non-Gaussian correlated uncertainties; it can also
automatically choose informative parameter samples to reduce
the numerical simulation cost in a high-dimension setting. The
specific contributions of this paper include:

o We derive a class of basis functions for non-Gaussian cor-
related random parameters. Our method is based on the
Cholesky factorization and can overcome the theoretical
limitations of [29]. For high-dimensional problems that
cannot be handled by [30], [31], we construct the basis
functions via a functional tensor train method when the
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Fig. 1. (a): A two-variable basis function by [29]; (b): a basis function
obtained by our proposed method.

random parameters are equipped with a Gaussian mixture
density function. We also present a theoretical analysis
about the expressive power of our basis functions;

o In order to apply our method to high-dimensional prob-
lems, we investigate the theoretical aspect and imple-
mentation of sparse solver with ¢y-minimization. Our
contributions are twofold. Firstly, we provide the theo-
retical justification for this £y-minimization and an error
bound for the resulting surrogate model in the context of
uncertainty quantification. Secondly, we improve its per-
formance by adaptive sampling. Instead of using random
simulation samples (as done in [33]), we select the most
informative samples via a rank-revealing QR factorization
and adaptive optimal sampling criteria including the D-
optimal, R-optimal, and E-optimal.

Compared with our conference paper [1], this extended journal
manuscript presents the following additional results:

o We prove that our basis functions are complete in the
polynomial subspace, and that our expression is able to
approximate any square-integrable function;

« We show the theoretical conditions to obtain an accurate
sparse stochastic approximation and the error bounds of
the resulting sparse stochastic surrogate model;

o We proposed two additional approaches, i.e., R-optimal
and E-optimal, to select informative samples;

« We add more examples to verify the theoretical properties
and performance of our proposed approach.

II. PRELIMINARY
A. Generalized Polynomial Chaos

Let & = [&,...,6) € R? be d random parameters
describing the process variations. Assume that £ has a joint
probability density function p(€), and let y(&€) € R be an un-
certain performance metric (e.g., the bandwidth or frequency
of a circuit). Suppose y(£€) is smooth and has a bounded
variance. Stochastic spectral method approximates y(&) via
a truncated generalized polynomial chaos expansion [26]:

p

D calalf). @)

|a|=0

y(§) ~

Here, co is the coefficient and U, (§) is an orthonormal
polynomial satisfying

B @V @)= { ' i O

The operator E denotes expectation; & = [y, ..., qq] € N9 is
a vector with «; being the highest polynomial order in terms
of &;. The total polynomial order || = |ai| + ... + |ag| is

bounded by p, and thus there are n = (p + d)!/(p!d!) basis
functions in total.

The generalized polynomial chaos theory [26] assumes that
all random parameters are mutually independent. In other
words, if pg(£x) denotes the marginal density of &, the

d

joint density is p(&) = [ pr(&k). Under this assumption,
k=1

a multivariate basis function has a product form:

d
Vo (&) = ] dran (&)- 3)
k=1

Here ¢ o, (€k) is a univariate degree-v;, orthonormal polyno-
mial of parameter £, and it is calculated based on pg(&x)
via the three-term recurrence relation [41]. The unknown
coefficients ¢, can be computed via various solvers such as
stochastic Galerkin [6], stochastic testing [7], and stochastic
collocation [8]. Once c, are computed, the mean value,
variance and density function of y(&€) can be easily obtained.

However, if the domain is not exactly a tensor product or
the parameters are not independent, the above theory cannot
be applied directly. This is now an active research topic in
both theoretical and application domains.

B. Existing Solutions for Correlated Cases

For general non-Gaussian correlated parameters, the refer-
ence [29] suggested the following basis functions:

d % d
Vo) = [T or)/p€) ) T] bk @
k=1 k=1

However, the above basis functions have two limitations as
shown by the numerical results in [22]:

o The basis functions are highly non-smooth and numeri-
cally unstable due to the first term on the right-hand side
of (4). This is demonstrated in Fig. 1 (a).

o The basis functions do not allow an explicit expression
for the expectation and variance of y(&). This is because
the basis function indexed by @ = 0 is not a constant.

Recently, we proposed to build a new set of basis functions

via a Gram-Schmidt approach [30], [31]. We also suggested to
compute the coefficients via a stochastic collocation approach
to = E[Va(€)y(€)] ~ 3, Val€)y(€)wr. A quadra-
ture rule based on an optimization model was developed to
compute the quadrature points &, and weights wy, and the
number of quadrature points was determined automatically.
Our recent technique [30], [31] is highly accurate and efficient
for low-dimensional problems, but it suffers from the curse of
dimensionality: a huge number of simulation samples will be
required if the number of random parameters is large.

C. Background: Tensor Train Decomposition

A tensor A € R™1*Xn2X"d ig 3 d-way data array, which
is a high-dimensional generalization of a vector and a matrix.
A tensor has nins...ny elements, leading to a prohibitive
computation and storage cost. Fortunately, this challenge may
be addressed by tensor decomposition [42]. Among various
tensor decomposition approaches, tensor train decomposi-
tion [43] is highly suitable for factorizing high-dimensional
tensors. Specifically, given a d-way tensor .A, the tensor-train
decomposition admits a decomposition as

Qipig-ig — Al(il)AQ(iQ) e Ad(id),Vik = ]., 2, e ,nk7(5)
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where Ay (i) is an rx_1 X rg matrix, and rg = rg = 1.

Given two d-way tensors A, B and their corresponding ten-
sor train decomposition factors, the tensor train decomposition
of their Hadamard (element-wise) product C = A o B has a
closed form

Cr(ix) = Ax(ir) ® By (ix). (6)

Here ® denotes a matrix Kronecker product.

III. BASIS FUNCTIONS WITH NON-GAUSSIAN
CORRELATED UNCERTAINTIES

Assume that the elements of & are non-Gaussian correlated.
A broad class of non-Gaussian correlated parameters can
be described by fitting a Gaussian mixture model based on
device/circuit testing data. In this general setting, the basis
functions in (3) cannot be employed. Therefore, we will derive
a set of multivariate polynomial basis functions, which can
be obtained if a multivariate moment computation framework
is available. We also show the theoretical completeness and
expressive power of our basis functions.

A. Multivariate Basis Functions

Several orthogonal polynomials exist for specific density
functions [44]. In general, one may construct multivariate
orthogonal polynomials via the three-term recurrence in [45]
or [46]. However, their theories either are hard to implement or
can only guarantee weak orthogonality [45], [46]. Inspired by
[47], we present a simple yet efficient method for computing
a set of multivariate orthonormal polynomial basis functions.

Let £ = £&57 ... £]" be a monomial indexed by o and
the corresponding moment be

E[e*] = / €% p(€)de. @)

We resort all monomials bounded by order p in the graded
lexicographic order, and denote them as

b(&) = [b1(£),...,ba(€)]" € R™ (8)

Here, n = (d+p). Further, we denote the multivariate moment

matrix as M € R™"*" where
M = E [b()b7 (€)] , with mi; = E[bi(£)b;(€)]. ()

Here, M is also the Gram matrix of b(£). Because the
monomials b(€) are linearly independent, it hold that M is
positive definite according to [48]. For instance, if d = 2 and
p = 1, the monomials and the multivariate moment matrix are

1 E[&]  E[&]
b(¢) =[1,&,&]" and M = | E[61]  E[§f]  E[61&)]
E[¢&] El6é)  E[€F]

We intend to construct n multivariate orthonormal poly-
nomials ¥, (&) with their total degrees || bounded by p.
The monomials b(€) already contain n different polynomials,
even though they are not orthogonal. The key idea of our
method is to orthogonalize b(€) via a linear projection. This is
fulfilled in three steps. Firstly, we compute all elements in the
multivariate moment matrix M. This step involves computing
the moments up to order 2p because b(&) is up to order p.
Secondly, we decompose M via the Cholesky factorization
M = LL7, where L is a lower-triangular matrix. The process
is stable when the diagonal elements E[b?(¢)] are strictly
positive. If M is close to singular, the Cholesky process maybe
unstable. In such situations, we add a small permutation term

by M = M + ¢I. Thirdly, we define the orthogonal basis
functions as

T(§) =L 'b(g). (10)
Here the n-by-1 functional vector W (&) stores all basis func-
tions {U,,(£)} in the graded lexicographic order. This factor-
ization approach can reduce the high-dimensional functional
inner-product and moment computations in [30], [31].

Properties of the Basis Functions. Our proposed basis
functions have the following excellent properties:

1) The basis functions are smooth (c.f. Fig. 1 (b)). In fact,
the basis function ¥, (£) is a multivariate polynomial. It
differs from the standard generalized polynomial chaos
[26] in the sense that our basis functions are not the
products of univariate polynomials.

2) All basis functions are orthonormal to each other:

E[®&)e"(¢)]=L"'ML " =L

This property is important for the sparse approximation

and for extracting the statistical information of y(§).
3) Since Yo(£) = 1 is a constant, the expectation and

variance of y(£) has a closed-form formula in (11).

p

Z caE [\I’a(g)} = Co,

|a|=0

varly(€)] =E [y*(§)] ~E*[y(§)] ~ > 4. (1)
loe|=1

E[y(§)] ~

B. Theoretical Analysis

Now we consider the expressive power of our basis func-
tions. This can be described via completeness: a family of
basis functions is complete in a space if any function in this
space can be uniquely expressed as a linear combination of
these basis functions. Denote &, as the space including all
polynomials bounded by order p. We have the following result.

Lemma 1 (Completeness): The basis functions defined via
(10) are complete in the space S,,.

Proof: See Appendix A. [ ]

Denote L2(€, p(€)) = {y(€) : Ee[y?(€)] < oo} as the space
of square-integrable functions. In the following lemma, we
show that our basis function can approximate any function in
L?(¢&, p(&)) when the polynomial order p is large enough.

Lemma 2 (Expressive power): Assume that £ is defined on
a compact bounded domain or there exists a constant @ > 0
such that E[exp (a|§;|)] < oo for i =1,...,d, then

(i) the multivariate polynomials are dense in L?(&, p(€));

(i) for any y(¢) € L*(&,p(€)), there exists an order-
p approximation y,(§) = Z\pa\:o ca¥a(€), such that
E[(y(&) — yp(£))?] = 0 as p — oo.

Proof: The detailed proof is given in Appendix B. [ ]

IV. HIGHER-ORDER MOMENT COMPUTATION

We further calculate the 2p-order moments in order to build
the basis functions in a high-dimensional setting.
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A. Gaussian Mixture Model

An excellent choice for the data-driven modeling of p(&) is
the Gaussian mixture model:

p(€) = > wiN(€lpi, i), withw; >0, Y w; = 1. (12)
=1

i=1

N (€|p;, X;) denotes the multivariate Gaussian density func-
tion with mean p; € R? and a positive definite covariance
matrix X; € R?*9 Fig. 2 has shown the difference of
a Gaussian mixture model (e.g., » > 1) with independent
Gaussian (e.g., 7 = 1 and ¥ is diagonal) and correlated
Gaussian distributions (e.g., » = 1 and X is not diagonal).
The corresponding moment is

Mo = ZwiQCx,ia with doi = /SQN(Sml,Ez)dS
=1

Existing methods for calculating the higher-order moments for
normal distributions rely on the characteristic function [49],
[50]. The main bottleneck of these methods is enumerating an
integers matrix. In this paper, we propose a functional tensor
train approach to compute the higher-order moments.

For simplicity, we ignore the subscript index ¢ in p;, 3;
and ¢o,;. Denote A as the lower triangular matrix from the
Cholesky decomposition of ¥ = AA?T. Then n from & =
An + p satisfies n ~ N (n]0,I). Consequently, g, can be
calculated via

o = / XN (€, )de

exp(—n'n)
= [ (An+ p)*—————dn. (13)
/ (An+p) 20 n
The difficulty in computing (13) lies in (An + @)%, which is
not the product of univariate functions of each 7;.

B. Functional Tensor Train Formula

Fortunately, ¢, can be computed exactly with an efficient
functional tensor-train method. Specifically, we are seeking
for Gg € R "0 and a set of univariate functional matrices
G;(n;) € R"-1%"i for § = 1,---d with 4 = 1, such that

Joint density functions for (a): independent Gaussian, (b): correlated Gaussian, (c): correlated non-Gaussian (e.g., a Gaussian mixture distribution).

1) Derivation of (14) with |a| = 1: The j-th element in
& = An + p satisfies

& =am+ajen+...+ajng+p;,Vi=1,...,d. (16)

Here aj;, denotes the (7, k)-th element of A.
Theorem 1 (Theorem 2, [51]): Any function satisfies

f(l‘o,--

can be written as a functional tensor train as in Eq. (17), which
equals to the product of some univariate matrices and vectors.

S xq) = wolxo) + ...+ walzg),

Applying Theorem 1 to (16), we can derive a functional
tensor train decomposition for ¢;:

& = (1 1)( ajim 1 )( aja—1na-1 1 ) (ajdnd)

(18)
Then the expectation is

E[ﬁj]:(ujl)((l) ?)(é ?)(é):w- (19)

The obtained functional tensor trains (18) can be reused to
compute higher-order moments.

2) Recurrence Formula for 1 < |a| < 2p: For each o with
1 < |a| < 2p, there exist & and ag with ||, |ae| < p, such
that

E* =€ €% where a = o + ao.

According to (6), the tensor-train representation of £ can be
obtained as the Kronecker product of the tensor trains of £**
and £%2. Suppose that £€*' = Eo(u)E1(n1)---Eg4(ng) and
£ =Fo(pw)Fi(m) -~ Fa(na), then

€% = Go(n)G1(m) - -- Ga(na), with Gi(n:;) = Ei(n:) @ Fi(1,).
(20)

Here G;(n;) € R2™2*! for all i = 1,...,d — 1. Because
n;’s are mutually independent, finally we have

E[€%] = Go(p)E[G1(m)] - - - E[Ga(na)]-

In other words, the moments can be easily computed via small-
size matrix-vector products.
The basis construction framework is summarized in Alg. 1
Remark. If the parameters have a block-wise correlation

1)

(A1 + p)® = GoG1(71)Ga(12) . . . Ga(na). (14) structure, we can divide § = [&y, ..., &4 into several disjoint
groups & PRERE ,&,, in the following way: the random param-
Afterwards, we can obtain g, via eters inside each group are correlated, while the parameters
among different groups are mutually independent. Under this

do = GoE[G1(m)]E[G2(n2)] ... E[Ga(na)].  (15) assumption, the basis functions can be constructed by

The detailed derivations of G, (7);) are as follow.

\Pa(f) = \Ijal(égl) oo \Ijar (‘fg,,)~
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f($0,$1,...,xd) = ( wo(l‘o) 1 ) ( w1(1x1)

0 1 0
1 >( wur(tay) 1 (17)

) (ke )

Algorithm 1: A Functional Tensor-Train Method for Com-
puting Basis Functions of Gaussian Mixture Distributions

Input: The mean value, covariance, and weight for
Gaussian mixtures {g;, 3;, w; }i_;, and order p.
fori=1,...,7 do
Compute the Cholesky factor A via 3; = AAT;
Calculate the functional tensor trains for the
first-order and higher-order monomials via (18) and
(20), respectively;
Obtain the moments via (19) and (21).
Assemble the multivariate moment matrix M in (9);
Compute the basis functions via (10).
Output: The multivariate basis functions ¥, (£).

If there are multiple parameters inside a group, we can
construct the basis function ¥, ) by the proposed formula
(10). Otherwise, the univariate ortlglogonal basis functions can
be calculated via the three-term recurrence relation [41].

V. A SPARSE SOLVER: WHY AND HOW DOES IT WORK?
After constructing the basis functions {\I/a(f)}f’alzo, we

need to compute the weights (or coefficients) {cq }. For the
independent case, many high-dimensional solvers have been
developed, such as compressed sensing [33], [34], analysis of
variance [21], [35], model order reduction [36], hierarchical
methods [21], [37], [38], and tensor computation [38]-[40].
For the non-Gaussian correlated case discussed in this paper,
we employ a sparse solver to obtain the coefficients.

For convenience, we resort all basis functions and their
weights { U, (&), ca}|a|:0 into {¥;(£), ¢;}7_,. Given m pairs
of parameter samples and simulation values {&,,y(&;,)} .,
our task is to find the coefficient ¢ such that

®c =y, with &p; = V;(§,.), v = y(&p),

where & € R™*" stores the values of n basis functions at
m samples and y € R™ stores the m simulation values. In
practice, computing each sample y(&,,) requires calling a time-
consuming device- or circuit-level simulator. Therefore, it is
desired to use as few simulation samples as possible.

We consider the compressed sensing technique [33], [34]
with m < n. We seek for the sparsest solution by solving the
£y-minimization problem

(22)

s.t. (23)

min ||c||o

Pc=y.
cER™ €=y

Here ||c|lo denotes the number of nonzero elements. The
compressed sensing technique is subject to some assumptions.
Firstly, the solution ¢ should be sparse in nature, which is
generally true in high-dimensional uncertainty quantiﬁcation
Secondly, the matrix —‘I' should satisfy the restricted isom-

etry property (RIP) [52] there exists 0 < kg < 1 such that

(1= k)l < 7||<I)C||2 (L+r)lelz @9
holds for any ||c|lo < s. Here, || - |2 is the Euclidean norm.
Intuitively, this requires that all columns of ® are nearly

orthogonal to each other.

Compressed sensing techniques have been extensively stud-
ied in signal processing. Now we investigate its theoretical
condition and accuracy guarantees in our specific setting:
high-dimensional uncertainty quantification with non-Gaussian
correlated process variations.

A. Conditions to Achieve RIP
In general, it is NP-hard to check whether ® satisfies the

RIP condition [53]. When the number of samples m is large
enough, our matrix ® satisfies ~®7® ~ 1, i.e.,

f§j U;(&,) ~EW

Here §;; is the delta function. Hence the RIP condition (24)
will be satisfied with a high probability. The following theorem
provides a rigorous guarantee.

Theorem 2 ( Conditions for RIP): Denote the random vari-
able X;) = U;(&,)¥,(&,). Assume that ij is sub-Gaussian
[54] with variance proxy o for any ¢, j, k, i.e.,

(€W, =0i. (25

. 2 )\2
Elexp(\(X}7 — ;)] < exp(T-), VAER,  (26)
and the random samples {£, }7* ; are generated independently.
Then the RIP condition (24) holds with a probability at least
1 — 7 provided that

5202
m > 2log (2/n) —

S

27)

Proof: See Appendix C. [ ]

B. Error Bounds in Uncertainty Quantification

Under the RIP condition, we are able to approximate the
solution with good accuracy. Now we provide the error bounds
for ¢ and for the stochastic solution y(&). In our implemen-
tation, we solve the following constrained optimization

¢’ =argmin||[®c —yl|l2 st [[cllo <s. (28)
C

The above problem can be solved by any ¢y-minimization

solver, such as COSAMP [55], difference-of-convex [56], and

penalty decomposition [57]. The error bound is presented in

the following theorem.

Theorem 3 (Coefficient error): Supposey = ®c+e, where
e is some random noise and c is the exact solution. Let ¢, be a
sparse vector that remains the s largest-magnitude components
of ¢ and keeps all other components to be zero, and € =
|| ®c* —y||2 is the residue in (28). If & satisfies the (2s, kas)-
RIP condition, then any solution c* of (28) satisfies

lc—c*ll2 < aolles —clls + aillell2 + aze.

Here, oy = 1 + 717'7:?1?;2153? and ap = 7m(1in23) are
constants.
Proof: See Appendix D. [ ]

Theorem 3 shows that numerical error of computing c
consists of three parts. The first part exists because the exact
solution may not be exactly s-sparse. The second part is caused
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Algorithm 2: An Adaptive Sparse Solver

Input: Input a set of candidate samples Q° and basis
functions {W;(§)}7_;.
Choose an initial sample set  C Q° via the
rank-revealing QR factorization, with m = || < n.
Call the simulator to calculate y(&) for all £ € Q.
for Iteration t =1,2,... do
Solve the ¢y minimization problem (28) to obtain c.
Chose the next optimal sample point £, via the
D-optimal, R-optimal, or E-optimal criteria.
Call the simulator to calculate y(&,, ;).
Let m <~ m + 1.
if the stopping criterion is satisfied then
| Stop
Output: The coefficient ¢ and the surrogate model

y(s) = Zfa\:o ca\I}a(é)-

by the numerical errors in device/circuit simulation. The third

part is caused by the numerical error in an optimization solver.
Now we consider the error of approximating y(&). For any

square-integrable y(&), denote its £5 norm as

[y(&)ll2 = / Ee[y*(&)]-

Further, let y, (&) be the projection of y(£) to the space S,.
In other words, y,(§) = Zf’al:o caVa(€) is the pth-order
approximation that we are seeking for. The approximation
error is shown as follows.

(29)

Theorem 4 (Approximation error): For any square inte-
grable function y (&), the approximation error is bounded by

ly(&) =y (Oll2 < lle = e[l + ly(€) — yp(&)]l2,  (30)
where y* (&) = fa\:o ¢t U (&) is our constructed surrogate
function, and c* = [--- , ¢, - -] is the solution of (28).

Proof: The detailed proof is shown in Appendix E. H

For the bound shown in (30), the first term is caused by the

numerical error in computing c¢; The second term arises from

the distance from y(&) to the pth-order polynomial space S,
which will be sufficiently small if p is large enough.

VI. ADAPTIVE SAMPLE SELECTION

The system equation (22) is normally set up by using some
random samples [33]. In practice, some samples are informa-
tive, yet others are not. Therefore, we present some adaptive
sampling methods to improve the performance of the sparse
solver. Our method uses a rank-revealing QR decomposition to
pick initial samples, then it selects subsequent samples using
a D-optimal, R-optimal, or E-optimal criterion. The whole
framework is summarized in Alg. 2.

A. Initial Sample Selection

We first select a small number of initial samples from a pool
of mg random candidate samples Q°. By evaluating the basis
functions at all candidate samples, we form a matrix PO ¢
R™oX™ whose j-th rows stores the values of n basis functions
at the j-th candidate sample. Here, we use the determinant to
measure the importance. Specifically, suppose that the rank of
PO is greater than m, we want to separate the rows of ® into
two parts via a maximization problem

T
) P=[®; @]

max det(®X®,), where (®° (31)

We achieve this via a rank-revealing QR factorization [58]:

Rii Ry

NTp _ —
(2")'P =QR, WhereR_{ 0 Ry

] . (32)
Here P is a permutation matrix, Q is an orthogonal matrix, and
Ry € R™*™ is an upper triangular matrix. We compute the
permutation matrix P such that the absolute values of diagonal
elements in R are in a descending order. In other words, the
first m columns of P indicate the most informative m rows of
®°. We keep these rows and the associated parameter samples
Q. The above initial samples have generated a matrix ® €
R™>" then we further add new informative samples based
on a D-optimal, R-optimal, or E-optimal criterion.

B. D-optimal Adaptive Sampling

Our first method is motivated by [59], [60] but differs in
the numerical implementation: the method in [59] defined the
candidate sample set as quadrature nodes, which are unavail-
able for non-Gaussian correlated case; the method in [60]
used rank-revealing QR at each iteration, whereas our method
selects new samples via an optimization method.

Assume that our sparse solver has computed c based on
the available samples, then we fix the indices of the nonzero
elements in ¢ and update the samples and solutions sequen-
tially. We denote the locations of nonzero coefficients as C =
{#1,...,1i5} with m > s, and denote ®; € R™** as the sub-
matrix of ® generated by extracting the columns associated
with C. The next most informative sample &, associated with
the row vector x(£,) = [W;, (&) -+, ¥;. (&) € RS can
be decided via solving the following problem:

det(®T®, + x(&,)"x(€,)),

max

33
£,€00\Q (33)

where Q°\(2 includes the sample points in ° but not in . It is
unnecessary to compute the above determinant for every sam-
ple. The matrix determinant lemma [61] shows det(®; @, +
x(€,)Tx(€))) = det(T ) (1 + x(€&) (@7 ®,)"x(&,)7).
Therefore, (33) can be solved via

x(€,) (@ @) "x(€,)". (34)

max
€,€00\0

In our experiments, we obtain the optimal solution of (34) by
comparing the objective values for all sample points in Q°\ €.
After getting the new sample, we update the matrix ®, :=

®,
x(&)
ormula [62], and recompute the s nonzero elements of c by

c; = (®7T®,) Ty, 35)

, update (®T®,)~! via the Sherman-Morrison

Inspired by [63], we stop the iteration if c; is close to its
previous step or if the maximal iteration number is reached.

C. R-optimal Adaptive Sampling
The RIP condition (24) is equivalent to

1 1
(]- - Hs) S Amin(*ézq)s) S )\max(*q)zés) S (1 + Hs)~
m m
(36)
Here ®, contains arbitrary s columns of ®. The constraint in
(36) is equivalent to || L ®T®, —TI||; < k. Therefore, we can
select the next sample by minimizing ||-L®7®, — I||;. We
refer this method as R-optimal because it optimizes the RIP
condition.
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Fig. 3. Numerical error for the synthetic experiment. (a) Errors in the computed coefficients of our basis functions; (b) Testing errors of approximating y(&).

Suppose that the locations of nonzero coefficients are fixed
as C = {i1,...,is}. The next sample &, associated with the
row vector x(&;) = [¥;, (&), ;. (&,)] is found via the
following optimization problem

(37

1
— (®T®, T —I
m+1( 1o+ x(&)" x(&)) )

min
£,€00\Q
In our implementation, we solve (37) by comparing the
objective function values of all available sample points.

D. E-optimal Adaptive Sampling

Both D-optimal and R-optimal methods solve an optimiza-
tion problem and have to explore the entire sample sets. In
contrast, we can exploit local information to pick the next
sample. Inspired by the exploitation in Bayesian optimization,
we propose to find the next sample in a neighbourhood where
the approximation error is large. Specifically, we group the
existing samples into k clusters U1, ..., U*, and compute the
average approximation error as

res(U*) = mean(®’c —y*), (38)
where ®¢ € RI“'IX" contains the |U/°| rows of & that are
associated with all samples in U". Afterwards, we choose
the next sample nearest to the ¢-th cluster center, where i
is the index of cluster with the maximal residue, i.e., i =
arg max res(U*). This approach is called E-optimal because it
exploits the samples in a neighbourhood.

VII. NUMERICAL RESULTS

We test our algorithms by a synthetic example and three
real-world benchmarks, including a photonic band-pass filter,
a 7-stage CMOS ring oscillator, and an array waveguide
grating (AWG) with 41 waveguides. For each example, we
adaptively select a small number of samples from a pool of
1000 candidate samples, and we use 9000 different samples
for accuracy validation. We employ COSAMP [55] to solve
(28), and stop it when the residue in the objective function
satisfies ||®c — y||2 < e. We define the relative error as:

e = [[®c—yll2/[ly]l2: (39)

We refer €, as a training error if the samples are those used
in our sparse solver, and as a testing (or prediction) error
if an entirely new set of samples are used. The stopping
criterion for Alg. 2 is either the maximal number of samples
is attained or the training error is small enough. We refer
our methods as “D-optimal”, “E-optimal”, “R-optimal”, and
“hybrid” (combinations of all three methods), dependent on

different sample selection criterion. We compare our methods
with “rand” approach that chooses all samples by Monte Carlo.
For the “rand” approach, we run the experiment 10 times using
10 sets of different samples, and report the mean values and
variances of €,.. The CPU time of obtaining each simulation
sample highly depends on the specific design problem and
on the hardware platform. In most cases, the simulation
cost dominates the total cost of uncertainty quantification.
Therefore, we compare the costs of different methods mainly
based on their total numbers of simulation samples.

A. A Synthetic Example

We firstly use a synthetic example to verify our theoretical
results in Section V. This example contains d = 8 non-
Gaussian correlated random parameters £ and we approximate
the stochastic solution y(&) by our basis functions with a total
order bounded by p = 3. The sparse coefficient c is given a
priori, and the output y(£) has a closed-form as

y(§) = 2(§)c+e, (40)

where e is a random simulation noise satisfying ||e[|2 = 1075.

In order to verify Theorems 3 and 4, we generate m =
200 random samples and approximate the sparse coefficients
via an fp-minimization (28). We stop the algorithm when
|®c —y|l2 < e. Fig. 3 (a) shows that when the numerical
error € is too large, the error will always be dominated by
€. Otherwise, when ¢ is small enough, the prescribed sparsity
s will dominate the error. This is consistent with Theorem 3.
Fig. 3 (b) confirms Theorem 4: when y(&) and the polynomial
order p are fixed (hence ||y(§) — yp(&)||2 is fixed), the overall
error is entirely dependent on the coefficient error.

Remark. Fig. 3 shows that a large s leads to smaller errors
when € is small enough. However, we cannot set the sparsity
s to be too large, because a larger s requires more samples
to achieve the RIP condition. Therefore, in the following

experiments, we set s as the largest integer below 7.

B. Photonic Band-pass Filter (19 Parameters)

Now we consider the photonic band-pass filter in Fig. 5.
This photonic IC has 9 micro-ring resonators, and it was
originally designed to have a 3-dB bandwidth of 20 GHz,
a 400-GHz free spectral range, and a 1.55-um operation
wavelength. A total of 19 random parameters are used to
describe the variations of the effective phase index (npefr)
of each ring, as well as the gap (g) between adjacent rings
and between the first/last ring and the bus waveguides. These
non-Gaussian correlated random parameters are described by
a Gaussian mixture with three components.
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Fig. 5. A band-pass filter with 9 micro-ring resonators.
TABLE I
ACCURACY COMPARISON ON THE PHOTONIC BAND-PASS FILTER. THE
UNDERSCORES INDICATE PRECISION.

method Proposed Monte Carlo
# samples 320 102 10% 108
mean (GHz) | 21.4773 | 21.5297 | 21. 4867 | 21.4782
std (GHz) 0.3884 0.4131 0.3767 0.3808

We approximate the 3-dB bandwidth fs;qp at the DROP
port using our basis functions with the total order bounded
by p = 3. It takes 350.59 seconds to generate the 1540 basis
functions. We verify D-optimal, R-optimal, E-optimal meth-
ods, and their combinations (denoted as “hybrid”). Fig. 4 (b)
clearly shows that all four adaptive sampling methods lead to
significantly lower testing (i.e., prediction) errors because they
choose more informative samples. Finally, we use 320 samples
to assemble a linear system and solve it by an ¢; minimization,
and obtain the sparse coefficients of our basis functions in
Fig. 4 (c). Although a third-order expansion involves more
than 1000 basis functions, only a few dozens are important.
Fig. 4 (d) shows the predicted probability density function of
the filter’s 3-dB bandwidth, and it matches the result from
Monte Carlo very well. More importantly, it is clear that
our algorithm can capture accurately the multiple peaks in
the output density function, and these peaks can be hardly
predicted using existing stochastic spectral methods.

In order to demonstrate the effectiveness of our stochastic

TABLE I
ACCURACY COMPARISON ON THE CMOS RING OSCILLATOR. THE
UNDERSCORES INDICATE PRECISION.

method Proposed Monte Carlo
# samples 300 102 107 10°
mean (MHz) | 90.5797 | 89.7795 | 90.4945 | 90.5253
std (MHz) 14.6068 | 14.4512 | 14.6975 | 14.7400

model, we compare the computed mean values and standard
variations of f3qp from our methods with that of Monte Carlo
in Table I. Our method provides a closed-form expression for
the mean value. Monte Carlo method converges very slowly
and requires 3125x more simulation samples to achieve the
similar level of accuracy (with 2 accurate fractional digits).

C. CMOS Ring Oscillator (57 Parameters)

We continue to consider the 7-stage CMOS ring oscillator
in Fig. 7. This circuit has 57 random parameters describing
the variations of threshold voltages, gate-oxide thickness,
and effective gate length/width. We use a three-component
Gaussian mixture model to describe the strong non-Gaussian
correlations of threshold voltages, gate oxide thickness, gate
lengths and widths.

We employ a 2nd-order expansion to model the oscillator
frequency. Generating the 1711 basis functions takes 1657
seconds. The simulation samples are obtained by calling a
periodic steady-state simulator repeatedly. The detailed results
are shown in Fig. 6. Our adaptive sparse solver produces a
sparse and highly accurate stochastic solution with better pre-
diction behaviors than the standard compressed sensing does.
The proposed basis functions can well capture the multiple
peaks of the output probability density function caused by the
strong non-Gaussian correlation.

Table II compares our method with Monte Carlo. Our
method takes about 3333 less samples than Monte Carlo to
achieve a precision of one fractional digit for the mean value.
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Fig. 7. Schematic of a CMOS ring oscillator.

D. Array Waveguide Grating (AWG, 43 Parameters)

Finally, we investigate an arrayed waveguide grating
(AWG) [64]. The AWG is essential for wavelength division
multiplexing in photonic systems. We use an AWG with 41
waveguide arrays and two-star couplers, as shown in Fig.
8 (a). In the nominal design, the radius of each star coupler
is R = Ry = 2985 mm, and the waveguide lengths
Lq,..., L4 range from 46 ym to 1.9 mm. We use a Gaussian
mixture distribution with two components to describe the
uncertainties in the waveguide lengths, and a Gamma distri-
bution to formulate the uncertainties in each star coupler. The
resulting transmission with uncertainties is shown in Fig. 8 (b).

We approximate the transmission rate of peak 1 at the output
1 by our proposed basis functions with a total order p = 2.
It takes 227.39 seconds to generate 990 basis functions. The
numerical results are presented in Fig. 9. Similar to the pre-
vious examples, our adaptive sparse solver produces a sparse
and highly accurate stochastic solution with better prediction
accuracy than using random samples. Table III compares our
method with Monte Carlo. Our method consumes about 1111 x
less sample points than Monte Carlo to get two exact fractional
digits for the mean value.

TABLE III
ACCURACY COMPARISON ON THE AWG BY ADAPTIVE SAMPLING. THE
UNDERSCORES INDICATE PRECISION.

method Proposed Monte Carlo

# samples 90 10° 10°
mean 0.8739 0.8802 | 0.8792
std 0.0120 0.0134 [ 0.0135

VIII. CONCLUSION

This paper has presented a set of theoretical and numerical
results for high-dimensional uncertainty quantification with
non-Gaussian correlated process variations. We have proposed
a set of basis functions for non-Gaussian correlated cases, and
have provided a functional tensor-train method for their high-
dimensional implementation. Theoretical results on the expres-
sivity of our basis function are presented. In order to reduce the
computational time of analyzing process variations, we have
justified the theoretical foundations (i.e., theoretical conditions
and numerical errors) of compressed sensing in our problem
setting. We have also proposed several adaptive sampling
techniques to improve the performance of compressed sensing.
Our approach has been verified with a synthetic example
and three electronic and photonic ICs with up to 57 random
parameters. On these benchmarks, our method has achieved
high accuracy in predicting the multi-peak output probability
density functions and in estimating the output mean value.
Our method has consumed 1111 X to 3333 x less samples than
Monte Carlo to achieve a similar level of accuracy.

APPENDIX A
PROOF OF LEMMA 1

We show the completeness of our basis function in S, via
two steps. Firstly, it follows from the definition of polynomials
that the monomials (8) are complete basis functions for S,:
any y(€) € S, can be written as y(£) = ¢l b(&). Secondly,
our basis function is an equivalent linear transformation from
the monomials b(§). Consequently,

y(€) = cib(€) = cGLB(£) =" D).
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Numerical results of the AWG example. (a) Training error; (b) testing error on 10° new samples; (c) computed coefficients/weights of our basis

functions; (d) probability density function of transmission of peak one with our proposed method and Monte Carlo, respectively.

This shows that our proposed basis function is complete
(any function y(§) € S, can be expressed by a linear
transformation of our proposed basis function).

APPENDIX B
PROOF OF LEMMA 2

The statements (i) and (ii) hold if S, is dense in L2(&, p(&)).
According to Theorem 3 of [65], a sufficient condition would
be the following: there exists ¢ > 2 such that the 1-D
polynomials are dense in L%(&;, p;(&)),Vi = 1,...,d. Here
pi(&) is the marginal distribution of &;.

Consider the following two cases. (i), the marginal distri-
bution p;(;) is defined on a compact domain. Then the 1-D
polynomials are dense in L%(;, p;(&;)) under the Weierstrass
Approximation Theorem [66]. (ii), p;(§;) is defined on a
non-compact domain. In this case, the 1-D polynomials are
dense in L4(&;, p;i(&;)) under the condition that the random
variables are exponentially integrable [65]. Namely, there exits
a constant @ > 0 such that

Elexp(alé;))] / expl(alé,)pi(6)dé; < co Vi, (41)

In both two cases, the 1-D polynomials are dense in
L1(&;,pi(&)),Vi = 1,...,d, hence the multidimensional

polynomials are dense in L?(&, p(€)) [65].

Remark. Inequality (41) holds for many well-known distri-
butions, such as normal distribution, Gaussian mixture distri-
bution, and Gamma distribution.

APPENDIX C
PROOF OF THEOREM 2

A sufficient condition to achieve the (s, k,)-RIP condition
is if the following inequality holds

1
I—-@7®, — L[| p < ks 42)

for any ®, constructed by arbitrary s columns of ®. Equation
(42) can be derived if each element satisfies

1 i K
I Zk:Xz? — oyl < =

Here d;; = 1 if i = j, and d;; = 0 otherwise. It follows from
the concentration bounds of sub-Gaussian random variables
[54] that for any ¢ > O there is

(43)

1 s t 2
vy L. _ -
P m;:l:(xk —3ij) zm < 2exp( 2ma2)' (44)
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Substituting ¢ = m?~s and 2exp(—if) < 7 into the
above equation, we have that (43) holds w1th a probability

+2 K
> 1—nif 2exp( S 02) = 2exp(— 22—2) < 7 (e,
m > 2log (5) £e%).

ks
s

APPENDIX D
PROOF OF THEOREM 3

Denote vector ¢ as the exact unknown coefficients, vector
cs as the s-sparsity approximation of c, and vector c* as
the solution from our ¢y-minimization solver. The error of c*
satisfies

* *
e —c*|l2 <[le = csll2 + [les — |2
1

m(l — Kas)

<lle —csll2 + [@c; — @c™l2,

where

|®c, — B |lo <[[@e, — Belz + || Be — B3
<||®c, — Bell + |y — Bz + [le]l2
<||®c, — Bello + ¢ + ez

By Proposition 3.5 in [55], it holds that

©)ll2 <V + ras(lles

_ L7071 T Ra
B Vs

Combing the above equations together, we have

[®(cs — —cf2 +

L ew—el)
\/g s 1

les —clh

e —c*[l2
1.7071y/1 + Kas
SHC*CsnlﬁL ( )\/*

=aglles — el +ar(e+ He||2)7

1.7071v/1+ Ko, a
m(l bi)\[ s 1 —

les — el 4+ e+ ||e2)
(45)

where ag = 1 + ﬁ are constants.

APPENDIX E
PROOF OF THEOREM 4

Denote y(£) as the unknown quantity of interest, y,(&§) =
Z|pa\:O ca Vo (&) as the projection of y(&) onto the p-th order
polynomial space S,, and y*(&) = Zfa‘: *Wo(€) as the
model from our numerical framework, then we have

19(&) =y (E)ll2 < lly(€) —yp(&)ll2+yp(€) =y () [l2- (46)

The first term is the distance of y(£) to S, which can be very
small if p is large enough. The second term is due to the error
caused by a compressed sensing solver:

p(&) —y* (&)l = \/E[(yp(€) —y*(£)?]
=, | El( Z (ca —c5)Val(§))?] = Z (ca —c4)?
la|=0 |a|=0
=lle = ¢"[l2,

where the third equality is due to the orthonormal property of
our basis functions and the last equality is derived from the
definition of the ¢5-norm in the Euclidean space.
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