
Tensor Methods for Generating
Compact Uncertainty Quantification and Deep

Learning Models
(Invited Special Session Paper)

Chunfeng Cui∗†, Cole Hawkins∗‡, and Zheng Zhang†
†Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106

‡Department of Mathematics, University of California, Santa Barbara, CA 93106

Abstract—Tensor methods have become a promising tool to
solve high-dimensional problems in the big data era. By exploiting
possible low-rank tensor factorization, many high-dimensional
model-based or data-driven problems can be solved to facil-
itate decision making or machine learning. In this paper, we
summarize the recent applications of tensor computation in ob-
taining compact models for uncertainty quantification and deep
learning. In uncertainty analysis where obtaining data samples is
expensive, we show how tensor methods can significantly reduce
the simulation or measurement cost. To enable the deployment
of deep learning on resource-constrained hardware platforms,
tensor methods can be used to significantly compress an over-
parameterized neural network model or directly train a small-
size model from scratch via optimization or statistical techniques.
Recent Bayesian tensorized neural networks can automatically
determine their tensor ranks in the training process.

I. INTRODUCTION

As an efficient tool to overcome the curse of dimensionality,

tensor decomposition methods date back to 1927 [1] and have

been employed in many application fields such as computer

vision [2], signal processing [3], [4], graph matching [5], bio-

informatics [6], etc. Different from its matrix counterpart (i.e.,

singular value decomposition), tensor decompositions have

different formats, such as the CP decomposition [1], Tucker

decomposition [7], tensor-train decomposition [8], tensor net-

work factorization [9], [10], t-SVD decomposition [11], and so

forth. Some papers have provided excellent surveys of tensor

computation and its applications [4], [12].

This paper will provide a high-level survey of tensor com-

putation in the following two application fields: uncertainty-

aware design automation and deep learning. These two seem-

ingly irrelevant topics both require compact computational

models to facilitate their subsequent statistical estimation,

performance prediction and hardware implementation, despite

their fundamentally different challenges:

• An EDA framework involves many modeling, simulation,

and optimization modules. These modules often require

some model-based simulation or hardware measurement

data to decide the next step, but obtaining each piece of data

is expensive. This challenge becomes more significant as

∗Equally contributed authors. This work was partly supported by NSF
CAREER Award No. 1846476, NSF-CCF Awards No. 1763699 and No.
1817037, and an UCSB start-up grant.

process variations increase: one needs more data to capture

an uncertain performance space. Therefore, it is desirable

to extract high-quality “compact” models to facilitate a

decision making process with a “small” available data set.

• In deep learning, “big” training data sets are often easy

to obtain, and large-size neural networks can be trained

on powerful platforms (e.g., in the cloud or on local

high-performance servers). However, deploying them on

resource-constrained hardware platforms (e.g., embedded

systems and IoT devices) becomes a big challenge. As a

result, there is a strong motivation to develop compact neural

network models that can be deployed with low memory and

computational cost.

For both applications, tensor methods can be used to develop

compact models with low computational and memory cost.

II. TENSOR DECOMPOSITION AND COMPLETION

We first give a high-level tutorial about two important tensor

problems: tensor decomposition and tensor completion. The

first is often used to generate a compact low-rank representa-

tion when a (big) complete data set is given. The second is

often employed when a (small) portion of the data is available.

Fig. 1 shows a tensor and several popular tensor decom-

position techniques. A tensor A ∈ R
I1×I2×...×Id is a d-

dimensional data array with d ≥ 3. It reduces to a matrix when

d = 2 and a vector when d = 1. The high dimensionality of

a tensor often brings in higher expressive power and higher

compression capability. Three mainstream tensor decompo-

sition methods are widely used for data analysis, scientific

computing, and machine learning:

• The CP decomposition [1] method decomposes a tensor

into the summation of R rank-one terms:

A ≈
R∑

r=1

x(1)
r ◦x(2)

r ◦. . .◦x(d)
r ⇔ ai1i2···id ≈

R∑

r=1

d∏

k=1

x(k)
r (ik).

Here ◦ denotes the outer product and x
(k)
r ∈ R

Ii , and

ai1i2···id denotes the scalar element in A indexed by

(i1, i2, · · · , id). The total storage complexity is reduced

to
∑d

i=1 IiR. When the approximation is replaced with

equality, the minimal integer of R is called the tensor rank.

978-1-7281-2350-9/19/$31.00 ©2019 IEEE

Fig. 1. Several popular tensor compositions.

• The Tucker decomposition [7] compresses a tensor into

a smaller core tensor G and d orthogonal factor matrices

{Uk ∈ R
Ik×Rk}dk=1:

ai1...id =

R1,...,Rd∑

r1,...,rd=1

gr1...rdU1(i1, r1) . . .Ud(id, rd). (1)

The Tucker rank is bounded by Ri ≤ Ii for all i = 1, . . . , d.

The storage complexity is reduced to
∑d

i=1 IiRi+Πd
i=1Ri.

• The tensor-train decomposition [8] writes a tensor as a

series of three-dimensional factor tensors, i.e.,

ai1...id = G1(:, i1, :)G2(:, i2, :) . . .Gd(:, id, :). (2)

Here Gk ∈ R
Rk−1×Ik×Rk , R0 = Rd = 1, and Gk(:, ik, :)

is a MATLAB-like expression for the ik-th lateral slice of

Gk. For a given tensor-train rank R = (R0, R1, . . . , Rd),
the storage complexity is reduced to

∑d
k=1 IkRk−1Rk.

Tensor Completion. Given only partial elements of a ten-

sor, the tensor completion or tensor recovery problem solves

min
X∈M

‖PΩ(A−X)‖2F , (3)

where M denotes the set of low rank tensors in a proper

format (e.g., CP, Tucker or tensor-train format), the projection

PΩ(A) keeps the element ai1i2···id for all (i1, . . . , id) ∈ Ω and

sets other elements to zero. The Frobenius norm is defined as

‖A‖2F =
∑

i1,...,id

a2i1...id . The cost function and regularization

may be modified dependent on practical applications.

III. TENSORS FOR UNCERTAINTY/VARIABILITY ANALYSIS

A. Data-Expensive EDA Problems

EDA problems are often model-driven and data-expensive:

the design problems are well described by a detailed math-

ematical model (e.g., Maxwell equation for interconnect or

RF device modeling, modified nodal analysis for circuit sim-

ulation), and one often needs to solve such an expensive

mathematical model repeatedly or iteratively to get enough

data (e.g., gradient information) to decide the next step (e.g., to

optimize a circuit design parameter). The involved numerical

computation makes the data acquisition expensive. To accel-

erate the whole data-expensive EDA flow, one can choose to:

• Speed up the acquisition of each data sample. Repre-

sentative matrix/vector-based techniques include fast PDE

solvers [13]–[15], fast circuit simulators [16], [17] and

model order reduction techniques [18]–[20]. These solvers

are often deterministic.

• Reduce the number of data acquisitions. This is especially

important for nano-scale design that is highly influenced

by process variations. In this case, one needs a huge

amount of data samples to characterize the uncertain circuit

performance. Representative techniques include fast Monte

Carlo [21] and recent stochastic spectral methods [22]–[24].

Tensor techniques can be employed to achieve both

goals. Representative tensor techniques for the first goal in-

clude [25]–[27]. In this paper, we focus on tensor techniques

for uncertainty and variability analysis as summarized in

Table I, and we elaborate their key ideas below.

B. Tensor Methods for Uncertainty Propagation

Uncertainty quantification techniques aim to predict and

control the probability density function (PDF) of the system

output y(ξ) under some random parameters ξ ∈ R
d describing

process variations. The stochastic spectral methods based on

generalized polynomial chaos method [28] have significantly

outperformed Monte Carlo in many application domains.

The key idea is to approximate y(ξ) as a truncated linear

combination of some specialized orthogonal basis functions

{Ψα(ξ)} of ξ. The weight of each basis can be computed

by various numerical techniques such as stochastic collo-

cation [29], stochastic Galerkin [30] and stochastic testing

[22]. When the parameters are non-Gaussian correlated, one

can also employ the modified basis functions and stochastic

collocation methods proposed in [31]–[34].

Curse of Dimensionality. Stochastic spectral methods suf-

fer from an extremely high computational cost as the number

of random parameters increase. For instance, in sampling-

based techniques, the number of simulation samples may

increase exponentially as d increases. Some tensor solvers

have been developed to address this fundamental challenge:

• Tensor-Based Stochastic Collocation [35], [36]. The

stochastic collocation method uses a projection method to

compute the weight of each basis. Standard techniques

discretize each random parameter into m points, leading

to md simulation samples in total. Instead of simulating

all samples, the technique in [36] only simulates a small

number of random samples and estimate the big unknown

simulation data set by a tensor completion subject to two

constraints: (1) the recovered tensor is low-rank; (2) the

TABLE I
APPLICATION OF TENSORS IN UNCERTAINTY PROPAGATION AND VARIABILITY MODELING

Reference Problem Key Idea
[35], [36], [38], [39] high-dim stochastic collocation tensor completion to estimate unknown simulation data

[37] hierarchical uncertainty quantification tensor-train decomposition for high-dim integration
[33] uncertainty analysis with non-Gaussian correlated uncertainty functional tensor train to compute basis functions
[40] spatial variation pattern prediction statistical tensor completion to predict variation pattern

resulting generalized polynomial chaos expansion is sparse.

This technique has been successfully applied to electronic

IC, photonics and MEMS with up to 57 random parameters.

• Tensor-Based Hierarchical Uncertainty Analysis [37]. Hi-

erarchical techniques can be used to analyze the uncertainty

of a complex system consisting of multiple interconnected

components or subsystems. The key idea is to simulate

each subsystem by a fast stochastic spectral method, then

use their outputs as new random inputs for the system-

level configuration. A major computational bottleneck is

the high-dimensional integration required to recompute the

basis function at the system level. In [37] a tensor train

decomposition is used to reduce the repetitive functional

evaluation cost from an exponential cost to a linear one.

This technique has enabled efficient uncertainty analysis of a

MEMS/IC co-design with 184 process variation parameters.

• Tensor Method to Handle Non-Gaussian Correlated
Uncertainties [33]. A fundamental challenge of uncer-

tainty propagation is how to handle non-Gaussian correlated

process variations. Recently a set of basis functions and

stochastic collocation methods were developed by [31], [32]

to achieve high accuracy and efficiency. It is expensive to

compute the basis functions in a high-dimensional case.

When the non-Gaussian correlated random parameters are

described by a Gaussian mixture density function, the basis

functions were efficiently calculated by a functional tensor

train method [33], [34]. The key idea is as follows: the

integration of a d-variable polynomial over each correlated

Gaussian density can be written as the product of moments

for each random variable.

C. Tensor Methods in Variability Prediction

Statistical simulation of a circuit or device requires a

given detailed statistical description (e.g., a probability density

function) of the process variations. These statistical models are

normally obtained by measuring the performance data of a

huge number of testing chips. However, measuring the testing

chips costs time and money, and may also cause mechanical

damage. Existing techniques such as the virtual probe [41] use

the compressed sensing technique to predict the 2-D spatial

variation pattern based on limited data.

In our recent paper [40], we proposed to simultaneously

predict the variation patterns of multiple dies. If each die has

N1×N2 devices to test, we can stack N3 dies together to form

a tensor. Then, we employed the Bayesian tensor completion

technique in [42] to predict the spatial variation pattern with

only a small number of testing samples. This technique can au-

tomatically determine the tensor rank, achieving around 0.5%

relative errors with only 10% testing samples with significant

memory and computational cost reduction compared with the

virtual probe technique [41].

IV. COMPACT DEEP LEARNING MODELS

Different from model-driven and data-expensive EDA prob-

lems, deep learning is suitable for data-driven and data-cheap

applications such as computer vision and speech recognition.

With the huge amount of available data (e.g., obtained from the

social networks and many edge devices) and today’s powerful

computing platforms, deep learning has achieved success in a

wide range of practical applications. However, deploying large

neural networks requires huge computational and memory

resource, limiting their applications on resource-constrained

devices (i.e. smartphones, mobile robotics). Therefore, it is

highly desirable to build compact neural network models that

can be deployed with low hardware cost.

Many techniques can help generating more compact deep

learning models. Most existing techniques are applied to

individual weights, convolution filters or neurons, for instance:

• Pruning [43]: the key idea is to generate a sparse deep

neural network by removing some redundant neurons that

are not sensitive to the prediction performance.

• Quantization [44]: considering that model parameters are

actually represented with binary bits in hardware, one may

reduce the number of bits with little loss of accuracy.

• Knowledge Distillation [45]: the key idea is to shift the

information from a deep and wide (teacher) neural network

to a shallow one (i.e., a student network).

• Low-rank Compression [46]: one can also compress the

weight matrix or convolution filters by low-rank matrix or

tensor decomposition.

This section will survey the recent low-rank tensor tech-

niques for generating compact deep neural network models.

These techniques can be classified into two broad families:

• Tensorized Inference: these techniques employ a “train-

then-compress” flow. Firstly a large deep neural network is

trained (possibly with a GPU cluster), then tensor decom-

position is applied to compress this pre-trained model to

enable its deployment on a hardware platform with limited

resources (e.g., on a smart phone).

• Tensorized Training: these techniques skip the expensive

training on a high-performance platform, and they aim to

directly train a compact tensorized neural network from

scratch and in an end-to-end manner.

A common challenge of the above technique is to determine

the tensor rank. Exactly determining a tensor rank in general

Automatic rank

Fixed rank

TrainingInference

CP

Tucker

Tensor Train [56]

CP

Tucker [49]–[51]

Tensor Train [49]

CP [55]

Tucker [53], [55], [57]

Tensor Train [52], [54], [55]

CP [48]

Tucker

Tensor Train

Fig. 2. Summarize existing tensorized deep neural networks.

is NP-hard [47]. Therefore, in practice one often leverages

numerical optimization or statistical techniques to obtain a

reasonable rank estimation. Dependent on the capability of

automatic rank determination, existing tensorized neural net-

work methods can be further classified into four groups as

shown in Fig. 2. We will elaborate their key ideas below.

A. Tensorized Inference with a Fixed Rank

Lebedev et al. [48] firstly applied CP tensor factorization

to compress large-scale neural networks with fully connected

layers. Because it is hard to automatically determine the exact

CP tensor rank, this method keeps the tensor rank fixed in

advance and employs an alternating least square method to

compress folded weight matrices.

B. Tensorized Inference with Automatic Rank Determination

Compared with CP factorization, Tucker and tensor-train

decompositions allow one to adjust the ranks based on ac-

curacy requirement, and they have been employed in [49],

[50] to compress both fully connected layers and convolution

layers. A hardware prototype was even demonstrated for

mobile applications in [50]. Recently, an iterative compression

technique was further developed to improve the compression

ratio and model accuracy [51].

C. Tensorized Training with a Fixed Rank

In order to avoid the expensive pre-training in the uncom-

pressed format, the work in [52] and [53] directly trained fully

connected and convolution layers in low-rank tensor-train and

Tucker format with the tensor ranks fixed in advance. This

idea has also been applied to recurrent neural networks [54],

[55].

In the following, we would like to summarize the stor-

age and computational complexity (e.g. flops) by applying

CP decomposition, Tucker decomposition, and tensor-train

decomposition for both the convolution layers and the fully

connected layers:

• Tensorized Convolution Layers. Consider a convolutional

weight K ∈ R
l×l×C×S , where l is the filter size, and C, S

are the number of input and output channels respectively.

This kernel requires l2CS parameters in total. The tensor-

train format reduces the number of parameters from l2CS
to O(R2(2l + C + S)). The rank-R CP-decomposition

can represent the weight with O(R(2l + C + S)) storage.

The Tucker-2 decomposition [57] only compresses the in-

put channel and output channel dimension, and requires

O(R(Rl2+C+S)) storage. We also note that in practice it is

common to reshape the tensor K into a higher-order tensor

[as shown in Fig. 3 (a)]. Specifically, one can factorize

C =

d∏

k=1

ck and S =
d∏

k=1

sk

and reformulate K as a (2d + 2)-dimensional tensor K ∈
R

l×l×c1...×cd×s1...×sd . Such folding can often result in a

higher compression ratio.

• Tensorized Fully Connected Layers. The weight in the

fully connected layer is a 2D-matrix, and direct application

of the tensor method reduces to a matrix singular value

decomposition. Given a weight matrix W ∈ R
M×N one can

factorize M =
∏d

k=1 Mk, N =
∏d

k=1 Nk and represent W
with a high-dimensional tensor W ∈ R

m1×n1×...×md×nd

[as shown in Fig. 3 (b)]. Then by the tensor factorization,

the number of parameters can reduce from M × N to

O(r(md+nd)), and O(dr2mn) for a CP format and tensor-

train format, respectively.

We summarize both the storage and computational com-

plexity of different tensor compression methods in Table II.

For the convolutional layer, we only counts the computational

costs of a l × l × C block.

D. Tensorized Training with Automatic Rank Determination

It is a challenging task to automatically determine the tensor

rank in a training process due to the following reasons:

• Different from the matrix case, there is not a proper surro-

gate model for the rank of a high-order tensor. As a result,

it is non-trivial to regularize the loss function of a neural

network with a low-rank penalty term.

• Existing tensor decomposition methods work on a given

full tensor. However, the tensors in end-to-end training are

embedded within a deep neural network in a highly nonlin-

ear manner. This also makes existing tensor completion or

recovery frameworks fail to work.

In order to address this fundamental challenge and to enable

efficient end-to-end training, we leveraged the variational

inference and proposed the first Bayesian tensorized neural

network [56] to automatically determine the tensor rank as part

of the training process. We use the notation D = {(xi,yi)}Ni=1

to represent the training data. Our goal is to learn the low-

rank tensor parameters by estimating the following posterior

density:

p(θ|D) ∝ p(D|θ)p(θ) (4)

where θ include the unknown tensor-train factors and some

hyper-parameters, and p(θ) is a prior density to enforce

TABLE II
SPEEDUP OF STORAGE AND COMPUTATIONAL COMPLEXITY OF TENSOR METHODS FOR THE CONVOLUTIONAL (CONV) LAYER AND THE FULLY

CONNECTED (FC) LAYER. ‘-’ DENOTES INAPPLICABLE: TUCKER DECOMPOSITION IS NOT APPLICABLE TO HIGH-ORDER TENSORS DUE TO THE CURSE OF

DIMENSIONALITY; FC WEIGHT IS A 2D MATRIX.

Original Tensor decomposition High-order tensor decomposition
Storage FLOPS Storage FLOPS Storage FLOPS

CP O(R(2l + C + S)) O(R(Cl2 + S)) O(r(2l + cd+ sd)) O(r(Cl2 + S))
Conv O(CSl2) O(CSl2) Tucker O(R(Rl2 + C + S)) O(R(Cl2 +Rl2 + S)) - -

TT O(R2(2l + C + S)) O(R2(2Cl2 + C + S)) O(r2(2l+ dc+ ds)) O(r2(2Cl2 + dC + dS))
CP O(R(C + S)) O(R(C + S)) O(dmr + dnr) O(Mr +Nr)

FC O(MN) O(MN) Tucker - - - -
TT - - O(r2dmn) O(r2mdmax(M,N))

Fig. 3. (a) The convolutional kernel can be regarded as a 3D tensor in C × S × l2 or a 4D tensor in C × S × l × l. We can also reformulate it into a
(2d+ 2)-dimensional tensor. (b) The weight matrix in the fully connected layer is a 2D matrix, which can be reformulated into a 2d-dimensional tensor.

low-rank property. The following key techniques enabled the

efficient training and automatic rank determination:

• The prior density p(θ) is designed by considering the

coupling of adjacent tensor-train cores, such that their ranks

can be controlled simultaneously.

• We employed a Stein variational gradient descent [58]

method to approximate the posterior density p(θ|D). This

method combines the flexibility of Markov-Chain Monte

Carlo and the efficiency of optimization techniques, which is

beyond the capability of the mean-field inference framework

in the Bayesian tensor completion framework [42].

This method has trained a two-layer fully connected neural

network, a 6-layer CNN and a 110-layer residual neural

network, leading to 7.4× to 137× compression ratios.

V. CONCLUSIONS

In this paper, we have revisited several compact models

generated by the tensor decomposition/completion approach.

For the data-expansive problems arising from EDA, we have

summarized several tensor methods in uncertainty quantifica-

tion and spatial prediction. Tensor techniques have success-

fully solved many high-dimensional uncertainty quantification

problems with both independent and non-Gaussian random

parameters. They have also significantly reduced the chip

testing cost in spatial variation pattern prediction.

In the context of deep learning, tensor decomposition proves

to be an efficient technique to obtain compact learning models.

They have achieved significant compression in both inference

and training. Our recent Bayesian tensorized neural network

allows automatic tensor rank determination in the end-to-end

training process.

REFERENCES

[1] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[2] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 1, pp. 208–220, 2012.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan, “Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis,” IEEE Signal
Processing Magazine, vol. 32, no. 2, pp. 145–163, 2015.

[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[5] C. Cui, Q. Li, L. Qi, and H. Yan, “A quadratic penalty method for
hypergraph matching,” Journal of Global Optimization, vol. 70, no. 1,
pp. 237–259, 2018.

[6] T. J. Durham, M. W. Libbrecht, J. J. Howbert, J. Bilmes, and W. S.
Noble, “Predictd parallel epigenomics data imputation with cloud-based
tensor decomposition,” Nature communications, vol. 9, no. 1, p. 1402,
2018.

[7] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[8] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[9] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic
et al., “Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions,” Foundations and
Trends R© in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.

[10] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama,
D. P. Mandic et al., “Tensor networks for dimensionality reduction and
large-scale optimization: Part 2 applications and future perspectives,”
Foundations and Trends R© in Machine Learning, vol. 9, no. 6, pp. 431–
673, 2017.

[11] Z. Zhang and S. Aeron, “Exact tensor completion using t-svd,” IEEE
Transactions on Signal Processing, vol. 65, no. 6, pp. 1511–1526, 2016.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[13] M. Kamon, M. J. Tsuk, and J. K. White, “Fasthenry: A multipole-
accelerated 3-d inductance extraction program,” IEEE Transactions on
Microwave theory and techniques, vol. 42, no. 9, pp. 1750–1758, 1994.

[14] K. Nabors and J. White, “Fastcap: A multipole accelerated 3-d capaci-
tance extraction program,” IEEE Trans. CAD of Integrated Circuits and
Systems, vol. 10, no. 11, pp. 1447–1459, 1991.

[15] J. R. Phillips and J. K. White, “A precorrected-fft method for elec-
trostatic analysis of complicated 3-d structures,” IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 16, no. 10, pp. 1059–1072, 1997.

[16] K. S. Kundert, J. K. White, and A. L. Sangiovanni-Vincentelli, Steady-
state methods for simulating analog and microwave circuits, 2013,
vol. 94.

[17] P. Li et al., “Parallel circuit simulation: A historical perspective and
recent developments,” Foundations and Trends R© in Electronic Design
Automation, vol. 5, no. 4, pp. 211–318, 2012.

[18] M. Rewienski and J. White, “A trajectory piecewise-linear approach
to model order reduction and fast simulation of nonlinear circuits and
micromachined devices,” IEEE Transactions on computer-aided design
of integrated circuits and systems, vol. 22, no. 2, pp. 155–170, 2003.

[19] L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, and J. White, “A
multiparameter moment-matching model-reduction approach for gen-
erating geometrically parameterized interconnect performance models,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 23, no. 5, pp. 678–693, 2004.

[20] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: passive reduced-
order interconnect macromodeling algorithm,” in Proc. Intl. Conf.
Computer-aided design, 1997, pp. 58–65.

[21] A. Singhee, S. Singhal, and R. A. Rutenbar, “Practical, fast monte
carlo statistical static timing analysis: why and how,” in Proc. Int. Conf.
Computer-Aided Design, 2008, pp. 190–195.

[22] Z. Zhang, T. A. El-Moselhy, I. A. M. Elfadel, and L. Daniel, “Stochastic
testing method for transistor-level uncertainty quantification based on
generalized polynomial chaos,” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 32, no. 10, pp. 1533–1545, Oct. 2013.

[23] Z. Zhang, X. Yang, G. Marucci, P. Maffezzoni, I. M. Elfadel, G. Karni-
adakis, and L. Daniel, “Stochastic testing simulator for integrated circuits
and MEMS: Hierarchical and sparse techniques,” in Proc. IEEE Custom
Integrated Circuits Conf. San Jose, CA, Sept. 2014, pp. 1–8.

[24] P. Manfredi, D. V. Ginste, D. D. Zutter, and F. Canavero, “Stochastic
modeling of nonlinear circuits via SPICE-compatible spectral equiva-
lents,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 61, no. 7, pp.
2057–2065, July 2014.

[25] H. Liu, L. Daniel, and N. Wong, “Model reduction and simulation
of nonlinear circuits via tensor decomposition,” IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 34, no. 7, pp. 1059–1069, 2015.

[26] H. Liu, X. Y. Xiong, K. Batselier, L. Jiang, L. Daniel, and N. Wong,
“STAVES: Speedy tensor-aided volterra-based electronic simulator,” in
Proc. ICCAD, 2015, pp. 583–588.

[27] Z. Chen, S. Zheng, and V. I. Okhmatovski, “Tensor train accelerated
solution of volume integral equation for 2-d scattering problems and
magneto-quasi-static characterization of multiconductor transmission
lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 67,
no. 6, pp. 2181–2196, 2019.

[28] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos
for stochastic differential equations,” SIAM J. Sci. Comp., vol. 24, no. 2,
pp. 619–644, Feb 2002.

[29] D. Xiu and J. S. Hesthaven, “High-order collocation methods for
differential equations with random inputs,” SIAM Journal on Scientific
Computing, vol. 27, no. 3, pp. 1118–1139, 2005.

[30] R. Ghanem and P. Spanos, Stochastic finite elements: a spectral ap-
proach. Springer-Verlag, 1991.

[31] C. Cui, M. Gershman, and Z. Zhang, “Stochastic collocation with non-
Gaussian correlated parameters via a new quadrature rule,” in Proc.
IEEE Conf. EPEPS. San Jose, CA, Oct. 2018, pp. 57–59.

[32] C. Cui and Z. Zhang, “Stochastic collocation with non-Gaussian cor-
related process variations: Theory, algorithms and applications,” IEEE
Trans. Components, Packag. and Manufacturing Tech., vol. 9, no. 7, pp.
1362 – 1375, July 2019.

[33] ——, “Uncertainty quantification of electronic and photonic ICs
with non-Gaussian correlated process variations,” in Proc. Intl. Conf.
Computer-Aided Design. San Diego, CA, Nov. 2018, pp. 1–8.

[34] ——, “High-dimensional uncertainty quantification of electronic and
photonic IC with non-Gaussian correlated process variations,” IEEE
Trans. CAD of Integrated Circuits and Systems, 2019.

[35] Z. Zhang, T.-W. Weng, and L. Daniel, “A big-data approach to handle
process variations: Uncertainty quantification by tensor recovery,” in
IEEE Workshop on Signal and Power Integrity, 2016, pp. 1–4.

[36] ——, “Big-data tensor recovery for high-dimensional uncertainty quan-
tification of process variations,” IEEE Trans. Components, Packaging
and Manufacturing Technology, vol. 7, no. 5, pp. 687–697, 2017.

[37] Z. Zhang, I. Osledets, X. Yang, G. E. Karniadakis, and L. Daniel,
“Enabling high-dimensional hierarchical uncertainty quantification by
ANOVA and tensor-train decomposition,” IEEE Trans. CAD of Inte-
grated Circuits and Systems, vol. 34, no. 1, pp. 63 – 76, Jan 2015.

[38] K. Konakli and B. Sudret, “Global sensitivity analysis using low-rank
tensor approximations,” Reliability Engineering & System Safety, vol.
156, pp. 64–83, 2016.

[39] ——, “Reliability analysis of high-dimensional models using low-rank
tensor approximations,” Probabilistic Engineering Mechanics, vol. 46,
pp. 18–36, 2016.

[40] J. Luan and Z. Zhang, “Prediction of multi-dimensional spatial variation
data via bayesian tensor completion,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2019.

[41] W. Zhang, X. Li, F. Liu, E. Acar, R. A. Rutenbar, and R. D. Blanton,
“Virtual probe: a statistical framework for low-cost silicon characteriza-
tion of nanoscale integrated circuits,” IEEE Trans. CAD Integr. Circuits
Syst., vol. 30, no. 12, pp. 1814–1827, 2011.

[42] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian cp factorization of
incomplete tensors with automatic rank determination,” IEEE trans.
Pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1751–
1763, 2015.

[43] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Advances in neural information
processing systems, 1989, pp. 177–185.

[44] G. Hinton and D. Van Camp, “Keeping neural networks simple by
minimizing the description length of the weights,” in Proc. ACM Conf.
on Computational Learning Theory. Citeseer, 1993.

[45] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[46] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in NIPS, 2014, pp. 1269–1277.

[47] J. Håstad, “Tensor rank is np-complete,” Journal of Algorithms, vol. 11,
no. 4, pp. 644–654, 1990.

[48] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” in Int. Conf. Learning Representations, 2015.

[49] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, “Ultimate
tensorization: compressing convolutional and fc layers alike,” arXiv
preprint arXiv:1611.03214, 2016.

[50] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” arXiv preprint arXiv:1511.06530, 2015.

[51] J. Gusak, M. Kholyavchenko, E. Ponomarev, L. Markeeva, I. Oseledets,
and A. Cichocki, “One time is not enough: iterative tensor decomposition
for neural network compression,” arXiv preprint arXiv:1903.09973,
2019.

[52] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Advances in neural information processing systems,
2015, pp. 442–450.

[53] G. G. Calvi, A. Moniri, M. Mahfouz, Z. Yu, Q. Zhao, and D. P. Mandic,
“Tucker tensor layer in fully connected neural networks,” arXiv preprint
arXiv:1903.06133, 2019.

[54] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent neural
network with tensor train,” in Int. Joint Conf. Neural Networks, 2017,
pp. 4451–4458.

[55] ——, “Tensor decomposition for compressing recurrent neural network,”
in Int. Joint Conf. Neural Networks, 2018, pp. 1–8.

[56] C. Hawkins and Z. Zhang, “Bayesian tensorized neural networks with
automatic rank selection,” arXiv preprint arXiv:1905.10478, 2019.

[57] J. Kossaifi, A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar,
“Tensor contraction layers for parsimonious deep nets,” in Proc. Com-
puter Vision and Pattern Recognition Workshops, 2017, pp. 26–32.

[58] Q. Liu and D. Wang, “Stein variational gradient descent: A general pur-
pose bayesian inference algorithm,” in Advances in neural information
processing systems, 2016, pp. 2378–2386.

