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Abstract—Uncertainty quantification techniques have been
widely used to model devices, circuits, and systems with fab-
rication process variations. However, most existing techniques
assume that all random parameters are mutually independent
or Gaussian correlated, which is rarely true in practice. How
to handle non-Gaussian correlated random parameters is a
fundamental and long-standing challenge. In this paper, we
review existing techniques and point out their limitations. Then,
we summarize our recent work to address the theoretical and
computational challenges caused by non-Gaussian correlations.

I. INTRODUCTION

Variation-aware modeling, simulation, and optimization is a
challenging task in nano-scale electronic and photonic circuit
design. In commercial design automation tools, Monte Carlo
is widely used due to its ease of implementation. However,
Monte Carlo requires a huge number of simulation samples to
achieve high accuracy. In the past decade, various stochastic
spectral methods, such as stochastic collocation [1], stochastic
Galerkin [2], and stochastic testing [3] have been applied or
developed successfully in the design automation community,
demonstrating orders-of-magnitude speedup over Monte Carlo
in many design cases with a small or medium number of
process variation parameters. Advanced numerical algorithms
have also been developed for problems with many uncertain
parameters [4] and with design hierarchy [5].

However, almost all existing stochastic spectral methods
can only handle independent parameters. This is a very
strong assumption. For instance, the device-level geometric
and electrical parameters are often correlated due to the same
fabrications step, and the parameters in system-level analysis
depend on each other due to the coupling and feedback
phenomena. Recent results [6] have shown that uncertainty
correlation cannot be ignored in integrated photonics due to
its high frequency and small wavelength.

This paper first reviews stochastic spectral methods and their
variants to address non-Gaussian correlations. Then, we will
summarize our recent uncertainty quantification techniques
that can deal with non-Gaussian correlated uncertainties with
significantly higher accuracy and computational efficiency.

II. PREVIOUS WORK

Without loss of generality, an uncertainty quantification tool
uses € = [¢1,...,&] € R? to denote d random parameters
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with a joint distribution p(&), and y(€) € R to denote the
quantity of interest (eg., the frequency of a chip). When y(&)
is a smooth function of & and has a bounded variance, one
may build a surrogate model

Y€)= Y ca¥alb), (1)

lex|=0

where {U (&)} is a set of orthogonal and normalized polyno-
mial basis function, and c,, is its corresponding coefficient that
can be computed via numerical techniques [1]-[3]. Assume
that the total polynomial order || = a7 + ... + oy is upper
bounded by p. Then the total number of basis function is
N, = ("}%). The basis functions can be defined adaptively
based on the joint distribution p(§).

Independent Cases. When the random parameters are
Gaussian distributed, Hermite polynomials [7] can be used
(possibly after a de-correlation process for Gaussian correlated
uncertainties). When the parameters are non-Gaussian but
independent, generalized polynomial chaos (gPC) [8] can be
employed. The generalized polynomial chaos uses a three-term
recurrence (TTR) relation [9] to generate some orthogonal
basis functions {1 o, (§x)} for each random parameter &
with a marginal density function py (), then tensorizes them
as a multivariate basis function:

Vo (§) = 1,0, (§1)02,0,(82) - - - Vi 00 (§a)- (2)

Non-Gaussian Correlated Cases. It becomes a rather chal-
lenging task when the random parameters are non-Gaussian
correlated, and limited work has been reported to address this
challenge. In 2004, Soize [10] proposed to construct the basis
function by modifying the generalized polynomial chaos:

_ Y100 (8) -+ Yoy (8a)
p(§)

The resulting basis functions are orthogonal with respect to
the joint density function p(£), but they are not polynomials
any more. This method has been employed by Weng [11] to
quantify the impact of Gaussian-mixture process variations in
silicon photonic devices. Although it turns out to be faster
than Monte Carlo, the speedup is not as significant as expected
because the basis functions are not smooth enough. Actually,
the basis functions in (3) can be numerically unstable. In 2010,

Ve () p1(&1) .. pa(€a). (3
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Fig. 1. Orthogonal basis functions for different kinds of uncertainties.
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the three-term recurrence relation [9] was extended to multi-
dimensional correlated cases (mTTR) [12], but the resulting
polynomial basis functions are only weakly orthogonal.

Fig. 1 has summarized some representative techniques for
handling various uncertainties. Recently, we have developed
some new techniques to handle non-Gaussian correlations with
significantly higher accuracy and numerical efficiency.

III. SUMMARY OF RECENT ADVANCEMENTS
A. New Basis Functions

The first question one needs to answer is: how can we
choose a “good” set of orthogonal basis functions? It is known
that we can approximate a smooth function by a set of d-
dimensional monomials b(§). Therefore, we can orthogonalize
b(€) to get a set of orthogonal multivariate polynomial basis
functions. A Cholesky decomposition approach was presented
in [13]. The key is to construct a matrix L satisfying

LML? =1, 4)

where M = E[b(¢)b(€)7] and I is the identity matrix.
Here, E is the expectation operator. Consequently, L~1b(¢)
is the desired orthogonal basis functions. This idea was also
implemented by a functional Gram-Schmidt method in [14].
The basis functions in [13], [14] have the similar nice property
as the generalized polynomial chaos does: they are smooth,
orthogonal, and converge fast for smooth y(&). Furthermore,
they allow one to obtain the expectation and variance of y(&)
in a closed form.

B. A New Stochastic Collocation Method

The second question is: how can we calculate the coeffi-
cients {cn}. Because the basis functions are orthogonal and
normalized, it is a natural idea to extend the classical stochastic
collocation [1] to non-Gaussian correlated cases. The key
challenge is to choose a set of quadrature samples and weights
{&,wi} to perform a numerical projection:

M
Ca = Ely(€)Va(§)] = D _y(&)Val&)wr. )
k=1

It is preferred to make the total number of quadrature points,
M, as small as possible. While efficient techniques exist
for independent cases [15], choosing numerical quadrature
samples for non-Gaussian correlated cases is a hard problem.
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Fig. 2. (a) Schematic of AWG with 9 waveguide arrays; (b) The nominal
transmission rate from input to output Port 1. The black curve shows the result
without any uncertainties, and the grey lines show the effects caused by the
fabrication uncertainties of radius R1, R2 and waveguide lengths L1, ..., Lg.
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Fig. 3. Simulation results for AWG [16]. (a) mean value of the transmission
rate; (b) standard deviation of the transmission rate obtained by our proposed
method and Monte Carlo (MC).

Recently, an efficient optimization-based quadrature tech-
nique was proposed in [14], [16]. If y(£)¥y (&) can be
approximated by basis functions bounded by order 2p, we
instead seek for {&,}2L, and {wj}}., by minimizing the
integration error of all basis functions up to oder 2p:

2

M
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With a good initial guess and an iterative clustering technique
in [16], high-quality quadrature samples and wights can be
computed, and M can be automatically determined.

The above technique has been tested by some synthetic
and practical benchmarks in [16], demonstrating 700X to
6000x speedup than Monte Carlo. The speedup factor is
much higher than that in [11]. For the arrayed waveguide
grating (AWG) [17] shown in Fig. 2, the predicted uncertain
transmission rates via a 2nd-order stochastic model is almost
the same with that from Monte Carlo using 10° simulation
samples, as shown in Fig. 3.

C. Theoretical Results
Error Bound. It is shown in [16] that the approximation

error in (1) is upper bounded as

1y(€) = 5(&)ll2 < C16 + Cae, (7

under some weak assumptions. Here ¢ is the distance from
y(&) to the p-th order polynomial subspace, € is 1 norm of the
objective function in (6) at the computed quadrature samples
and weights, C7,Cy > 0 are some constants. This theoretical
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Fig. 4. Convergence rate for the synthetic example [16]. Here ¢ is the
numerical error of optimization defined in (6). This figure demonstrates the
error estimated in (1): the stochastic collocation algorithm shows a nearly
exponential convergence rate as p increases and before € dominates the error.

result implies that a nearly exponential convergence rate can
be obtained if y(&) is smooth enough and when e does not
dominate the error. This has been observed on a synthetic
example in [16], as shown in Fig. 4.

Number of Quadrature Samples. The lower and upper
bounds for the number of quadrature points was also estimated
in [16]. Assume that M pairs of quadrature samples and
weights are obtained from (6) to ensure an 2p-th-order inte-
gration accuracy, then there exists at least one M € [N, Nop|.

D. Adaptive Compressive Sensing for High-dimensional Case

Our techniques in [14], [16] work very well for low-
dimensional problems, but they become less efficient as the
number of random parameters increases. In order to address
the scalability issue, a high-dimensional solver was further
proposed in [13], [18] by employing the following techniques:
e A tensor-train technique to build high-dimensional basis

functions for Gaussian-mixture uncertainties;

o An ¢y minimization solver to compute the sparsest coeffi-
cients in the surrogate model,;
« An adaptive sampling technique based on a rank-revealing

QR initialization, and D-optimal, R-optimal, and E-optimal

criterion to reduce the number of simulation samples.

E. A Toolbox for Non-Gaussian Correlated Parameters

Recently we released a Matlab toolbox for stochastic col-
location with non-Gaussian correlated uncertainties. The code
is posted online '. The main blocks are illustrated in Fig. 5.
Given the joint distribution p(&), the basis functions {¥ (&)}
are first built based on Section III-A. Then the coefficients are
computed via the stochastic collocation (SC) approach in Sec-
tion III-B or the optimization (Opt) approach in Section III-D.

Other techniques such as stochastic Galerkin (SG) and
stochastic testing (ST) can also be developed for non-Gaussian
correlated cases. The toolbox will be updated in the future.
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