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Abstract— Machine teaching can be viewed as optimal con-
trol for learning. Given a learner’s model, machine teaching
aims to determine the optimal training data to steer the learner
towards a target hypothesis. In this paper, we are interested
in providing assurances for machine teaching algorithms us-
ing control theory. In particular, we study a well-established
learner’s model in the machine teaching literature that is
captured by the local preference over a version space. We
interpret the problem of teaching a preference-based learner
as solving a partially observable Markov decision process
(POMDP). We then show that the POMDP formulation can
be cast as a special hybrid system, i.e., a discrete-time switched
system. Subsequently, we use barrier certificates to verify set-
theoric properties of this special hybrid system. We show how
the computation of the barrier certificate can be decomposed
and numerically implemented as the solution to a sum-of-
squares (SOS) program. For illustration, we show how the
proposed framework based on control theory can be used to
verify the teaching performance of two well-known machine
teaching methods.

I. INTRODUCTION

From an optimal control perspective, a learning system

(e.g., a machine learning algorithm, or a human learner)

defines a dynamical system where the state (i.e., learner’s

hypothesis) is driven by training data [1]. In this respect,

machine teaching, i.e., the algorithmic framework of design-

ing an optimal training set for learning a target hypothesis,

can be viewed as optimal control for learning [2]. In a typical

setting of machine teaching, the target hypothesis is given to

the algorithm, and the goal of the teacher (machine) is to

generate a minimal sequence of training examples such that

the target hypothesis can be learned by a learner (human or

another machine) from a finite set of hypotheses.

One popular learner’s model studied in the machine teach-

ing literature is the version space learner. In such settings, the

learner maintains a subset of hypotheses that are consistent

with the examples received from a teacher, and outputs a

hypothesis from this subset. Based on different assumptions

on the learner’s behavior, multiple variants of the version

space learner model has been studied in algorithmic machine

teaching, leading to different notions of teaching complexity:

For instance, (i) the “worst-case” model [3] assumes that the

learner’s behavior is completely unpredictable, and (ii) the

“preference-based” model [4] assumes that she has a global
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preference over the hypotheses. These models are typically

studied under the batch setting, where the teacher constructs

a set of examples and provides them to the learner at once.

Recently, [5] considered the state-dependent preference-

based model, which generalizes the preference-based model

of [4] to the adaptive setting. The state-dependent preference-

based model assumes that the learner’s choice of next hy-

pothesis depends on some local preferences defined by the

learner’s state (i.e., the current hypothesis). In the sequential

machine teaching setting, the teacher, after showing each

example, obtains feedback about the hypothesis that the

learner is currently entertaining; such feedback is further

utilized to guide the selection of future teaching examples.

In this paper, we use notions from hybrid systems analysis

framework to study the state-dependent preference-based

machine teaching model with the aim of verifying whether a

given machine teaching method has assured teaching perfor-

mance. We first show that state-dependent preference-based

machine teaching model can be represented by a POMDP.

Once this POMDP is formulated, we show that the evolution

of the beliefs over the states of this POMDP can be described

by a discrete-time switched system (also see [6], [7]). We

use barrier certificates to verify whether the beliefs of this

POMDP belong to some subset of the reachable belief space,

which, in turn, corresponds to the probability of teaching of

a hypothesis. From a computational standpoint, we show that

these barrier certificates can be decomposed and constructed

using SOS programming. We demonstrate the efficacy of

our proposed methodology by comparing and analyzing two

machine teaching methods.

The rest of this paper is organized as follows. We describe

the state-dependent teaching model in the next section. In

Section III, we propose a POMDP representation for machine

teaching. In Section IV, we briefly discuss a hybrid system

that describe the evolution of this POMDP. In Section V,

we formulate a set of conditions based on barrier certificates

for verifying the teaching performance and show how the

calculations can be decomposed. In Section VI, we propose

a computational approach using SOS programming to find

the barrier certificates. We elucidate the proposed method

with an example in Section VII and conclude the paper in

Section VIII.

Notation: R and N denote the sets of real numbers and

non-negative integers {0, 1, 2, . . .}, respectively. N≥l, with

l ∈ N, denotes {l, l + 1, l + 2, . . .}. R[x] accounts for the

set of polynomial functions with real coefficients in z ∈ R
n,

p : Rn → R and Σ ⊂ R is the subset of polynomials with

an SOS decomposition; i.e., p ∈ Σ[x] if and only if there are

pi ∈ R[x], i ∈ {1, . . . , k} such that p = p2i + · · ·+ p2k.
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II. THE STATE-DEPENDENT TEACHING MODEL

We now state the adaptive machine teaching protocol, and

describe the state-dependent learner’s model of [5].
1) The Teaching Domain: Let X denote a ground set of

unlabeled examples, and the set Y denotes the possible labels

that could be assigned to elements of X . We denote by H a

finite class of hypotheses, each element h ∈ H is a function

h : X → Y . In our model, X , H, and Y are known to

both the teacher and the learner. There is a target hypothesis

h∗ ∈ H that is known to the teacher, but not the learner. Let

Z ⊆ X × Y be the ground set of labeled examples. Each

element z = (xz, y
∗
z) ∈ Z represents a labeled example,

where the label is given by the target hypothesis h∗, i.e.,

y∗z = h∗(xz). Here, we define the notion of version space

needed to formalize our model of the learner. Given a set

of labeled examples Z ⊆ Z , the version space induced by

Z is the subset of hypotheses H(Z) ∈ H that are consistent

with labels of all the examples, i.e., H(Z) := {h : h ∈
H and ∀(x, y) ∈ Z, h(x) = y}.

2) State-dependent Preference-based Model: The prefer-

ence function encodes the learner’s preferences of transi-

tioning to a hypothesis. Consider that the learner’s current

hypothesis is h, and there are two hypotheses h′, h′′ that

they could possibly pick as the next hypothesis. We define

the preference function as σ : H×H → R+. Given current

hypothesis h and any two hypothesis h′, h′′, we say that

h′ is preferred to h′′ from h, iff σ(h′;h) < σ(h′′;h). If

σ(h′;h) = σ(h′′;h), then the learner could pick either one

of these two.

The learner starts with an initial hypothesis h0 ∈ H before

receiving any labeled examples from the teacher. Then, the

interaction between the teacher and the learner proceeds

in discrete time steps (trials). At any trial t, let us denote

the labeled examples received by the learner up to (but not

including) time step t via a set Zt, the learner’s version space

as Ht = H(Zt), and the current hypothesis as ht. At trial t,

we model the learning dynamics as follows:

1) the learner receives a new labeled example, and

2) the learner updates the version space Ht+1, and picks

the next hypothesis based on the current hypothesis ht,

version space Ht+1, and the preference function σ:

ht+1 ∈ {h ∈ Ht+1 : σ(h;ht) = min
h′∈Ht+1

σ(h′;ht)}. (1)

3) The Teaching Protocol and Objective: The teacher’s

goal is to steer the learner towards the target hypothesis h∗

by providing a sequence of labeled examples. At trial t, we

consider the following teaching protocol:

1) the teacher selects an unlabeled example xt ∈ X and

presents it to the learner;

2) the learner makes a guess of the label, i.e. yt := ht(xt).
3) the teacher receives feedback from the learner1 and

provides the true label h∗(xt);

1We consider two variants of the learner feedback: (a) the teacher
indirectly observes the learner’s hypothesis ht via label yt; (b) the teacher
directly observes the learner’s current hypothesis ht. Our analysis in the
subsequent sections applies to both scenarios. For discussion simplicity we
focus on the more general setting (a) in Section III-VI.

4) the learner transitions from the current ht to the next

hypothesis ht+1 as per the model described in the

previous subsection.

5) Teaching finishes if the learner’s updated hypothesis

ht+1 = h∗.

The goal of teaching algorithms is to achieve this goal in the

minimal number of time steps.

The state-dependent teaching model is also found to be

consistent with simple human learning models in cognitive

science, including the “win-stay lose-shift” model [8], [9]

(e.g., when σ(h′;h) = 0 if h = h′ and 1 otherwise,

the learner prefers to stay at the same hypothesis if it is

consistent with the observed data).

III. POMDP MODEL FOR MACHINE TEACHING

Given the state-dependent teaching model as described in

Section II, we can represent machine teaching as a sequential

decision making under uncertainty scenario. To this end, we

propose a POMDP representation for the learner based on

the state-dependent teaching model. The POMDP model can

be described as follows.

Definition 1 (Learning POMDP): The learning POMDP

PL is a tuple (H, p0,Z, T,Y, O)

• the hypotheses set H is a finite set of hidden states;

• p0 is the probability of having an initial hypothesis h0 ∈
H;

• the set of labelled examples Z constitute the finite set

of actions;

• T describes the transitions from one hypothesis (state)

to another characterized by the preference functions as

given by (1);

• Y denotes the set of observations made by the teacher.

• O(yt | ht, zt) is determined by the current hypothesis

function.

Here, the observation model O(yt | ht, zt) defines how the

version space gets updated. When referring to the “version

space” learners, we are implicitly considering the “noise-

free” setting, i.e., all consistent hypotheses are uniformly

distributed, or equivalently, O(yt | ht, zt) is binary. More-

over, according to (1), the transition function T (h, zt−1, h
′)

defines a uniform distribution: the learner only goes to the

hypotheses h′ that are the most preferred; hence, T induces

a uniform distribution over the most preferred hypothesis

according to the preference function σ.

The learner starts with an initial hypothesis h0 and over

a sequence of trials, in which an example zt ∈ Z is

shown and the learner receives a corresponding observation

yt ∈ Y , develops a belief in the new hypothesis h. Then, the

hypothesis belief evolves according to

bt(h
′) =

O(yt | h
′, zt−1)

∑

h∈H T (h, zt−1, h
′)bt−1(h)

∑

h′∈H O(yt | h′, zt−1)
∑

h∈H T (h, zt−1, h′)bt−1(h)
, (2)

The objective of a teaching policy is then to assure that

the learner learns the target hypothesis h∗ ∈ H in t∗ number

of trials. That is,

bt∗(h
∗) ≥ λ, (3)
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where we refer to 0 < λ ≤ 1 as the teaching performance. In

addition, given a teaching policy, we are often interested in

finding the minimum number of trials such that the learner

learns a target hypothesis, i.e.,

min t∗ subject to bt∗(h
∗) ≥ λ. (4)

Ideally, given a pre-specified number of trials t∗, a teach-

ing algorithm is perfect, if λ = 1, i.e., the probability of

learning the target hypothesis after t∗ number of examples

is one. However, achieving a perfect teaching algorithm in

t∗ number of trials may not be realistic. In practice, it is

desirable that we teach the target hypothesis with teaching

performance λ ≥ 0.75.

IV. BELIEF EVOLUTION AS A HYBRID SYSTEM

Checking whether (3) holds by solving the learning

POMDP directly is a PSPACE-hard problem [10]. In this sec-

tion, we show that the learning POMDP can be represented

as a special hybrid system [11], specifically, a discrete-time

switched system [12], [13], [14].

The belief update equation (2) can be characterized as

a discrete-time switched system, where the actions a ∈ A

define the switching modes. Formally, the hypothesis belief

dynamics (2) can be described as

bt = fz (bt−1, yt) , (5)

where b denote the belief vector belonging to the belief unit

simplex B and b0 = p0. In (5), z ∈ Z denote the examples

that can be interpreted as the indices for the switching modes,

y ∈ Y are the observations representing inputs, and t ∈ N≥1

denote the discrete time instances. The (rational) vector fields

{fz}z∈Z with fz : [0, 1]|Z| ×Y → [0, 1]|Z| are described as

the vectors with rows

fh′

z (b, y) =
O(y | h′, z)

∑

h∈H T (h, z, h′)bt−1(h)
∑

h′∈H O(y | h′, z)
∑

h∈H T (h, z, h′)bt−1(h)
,

where fh′

z denotes the h′th row of fz .

We consider two classes of problems in learning POMDP

verification:

1. Arbitrary-Policy Verification: This case corresponds to

analyzing (5) under arbitrary switching with switching

modes determined by the examples z ∈ Z .

2. Fixed-Policy Verification: This corresponds to analyz-

ing (5) under state-dependent switching. In fact, a

teaching policy π : B → Z (a mapping from the

hypothesis beliefs into examples) determines regions in

the belief space where each mode (example) is active.

Both cases of switched systems with arbitrary switching

and state-dependent switching are well-known in the systems

and controls literature (see [15], [16] and references therein).

V. VERIFYING TEACHING PERFORMANCE USING

BARRIER CERTIFICATES

In the following, we describe a method based on barrier

certificates to verify the teaching performance as given

by (3). We then focus on the two cases of arbitrary policy

verification and fixed-policy verification. We further show

that in both cases, the calculation of the barrier certificates

can be decomposed.

In order to check the teaching performance, we consider

following teaching-failure set

Bf = {b ∈ B | bt∗(h
∗) < λ}, (6)

which is the complement of (3).

We have the following result.

Theorem 1: Given the learning

POMDP (H, p0,Z, T,Y, O), a target hypothesis h∗ ∈ H,

and a teaching performance λ, and a pre-set number of

trials t∗, if there exists a function B : N × B → R called

the barrier certificate such that

B(t∗, bt∗) > 0, ∀bt∗ ∈ Bf , (7)

with Bf as described in (6),

B(0, b0) < 0, for b0 = p0, (8)

and

B (t, fz(bt−1, y))−B(t− 1, bt−1) ≤ 0,

∀t ∈ {1, 2, . . . , t∗}, ∀z ∈ Z, ∀y ∈ Y, ∀b ∈ B, (9)

then there the teaching performance λ is satisfied, i.e.,

inequality (3) holds.

Proof: The proof is carried out by contradiction.

Assume at trial t∗, the teaching performance is not satisfied.

Thus, there is a solution to the hypothesis belief update

equation (5) with b0 = p0 such that bt∗(h
∗) < λ. From

inequality (9), we have

B(t, bt) ≤ B(t− 1, bt−1)

for all t ∈ {1, 2, . . . , t∗} and all examples z ∈ Z . Hence,

B(t, bt) ≤ B(0, b0) for all t ∈ {1, 2, . . . , t∗}. Furthermore,

inequality (8) implies that

B(0, b0) < 0

for b0 = p0. Since the choice of t∗ can be arbitrary, this is a

contradiction because it implies that B(t∗, bt∗) ≤ B(0, b0) <
0. Therefore, there exist no solution of (5) such that b0 = p0
and bt∗ ∈ Bf for any sequence of examples z ∈ Z . Hence,

the teaching performance is satisfied.

In practice, we may have a large number of examples.

Then, finding a barrier certificate that satisfies the conditions

of Theorem 1 becomes prohibitive to compute. In the next

result, we show how the calculation of the barrier certificate

can be decomposed into finding a set of barrier certificates

for each example and then taking the convex hull of them.

Theorem 2: Given the learning

POMDP (H, p0,Z, T,Y, O), a target hypothesis h∗ ∈ H, a

teaching performance λ, and a pre-set number of trials t∗,

if there exists a set of function Bz : N × B → R, z ∈ Z ,

such that

Bz(t
∗, bt∗) > 0, ∀bt∗ ∈ Bf , ∀z ∈ Z, (10)

with Bf as described in (6),

Bz(0, b0) < 0, for b0 = p0, ∀z ∈ Z, (11)
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and

−Rz (bt−1)
d

(

B

(

t,
Sz (bt−1, y)

Rz (bt−1, y)

)

−B(t− 1, bt−1)

∈ Σ[t, bt−1], ∀t ∈ {1, 2, . . . , t∗}, y ∈ Y, z ∈ Z, (20)

then there exists no solution of (5) such that b0 = p0 and

bt∗ ∈ Bf and, hence, the teaching performance is satisfied.

Proof: The proof was omitted due to lack of space here.

Please refer to the extended version [17].

Similarly, we can formulate SOS feasibility conditions for

checking the inequalities in Theorem 2.

Corollary 2: Given the learning

POMDP (H, p0,Z, T,Y, O), a target hypothesis h∗ ∈ H, a

teaching performance λ, and a pre-set number of trials t∗,

if there exist polynomial functions Bz ∈ R[t, b], z ∈ Z , of

degree d and pfz ∈ Σ[b], z ∈ Z , and constants s1z, s
2
z > 0,

z ∈ Z , such that

Bz (t
∗, bt∗) + pfz (bt∗) (bt∗(h

∗)− λ)

− s1z ∈ Σ [bt∗ ] , z ∈ Z, (21)

−Bz (0, p0)− s2z > 0, z ∈ Z, (22)

and

−Rz (bt−1)
d

(

Bx

(

t,
Sz (bt−1, y)

Rz (bt−1, y)

)

−Bx(t− 1, bt−1)

)

∈ Σ[t, bt−1], ∀t ∈ {1, 2, . . . , t∗},

y ∈ Y, z ∈ Z, (23)

then there exists no solution of (5) such that b0 = p0 and

bt∗ ∈ Bf and, hence, the teaching performance is satisfied.

We assume that a teaching policy in the form of (13) as-

signs examples to semi-algebraic partitions of the hypothesis

belief space B described as

Bi = {b ∈ B | gi(b) ≤ 0} , i ∈ {1, 2, . . . , N}. (24)

We then have the following SOS formulation for Theorem 3

using Positivstellensatz.

Corollary 3: Given the learning

POMDP (H, p0,Z, T,Y, O), a target hypothesis h∗ ∈ H,

a teaching performance λ, a teaching policy π : B → Z as

described in (13), a teaching performance λ, and a pre-set

number of trials t∗, if there exist polynomial functions

Bi ∈ R[t, b], i ∈ {1, 2, . . . , N}, of degree d, pl1i ∈ Σ[b],
i ∈ {1, 2, . . . , N}, pl2i ∈ Σ[b], i ∈ {1, 2, . . . , N}, pl3i ∈ Σ[b],
i ∈ {1, 2, . . . , N}, and p

f
i ∈ Σ[b], i ∈ {1, 2, . . . , N}, and

constants s1i , s
2
i > 0, i ∈ {1, 2, . . . , N}, such that

Bi (t
∗, bt∗) + p

f
i (bt∗) (bt∗(h

∗)− λ) + pl1i (bt∗)gi(bt∗)

− s1i ∈ Σ [bt∗ ] , i ∈ {1, 2, . . . , N}, (25)

−Bi (0, p0) + pl2i (p0)gi(p0)− s2i > 0, i ∈ {1, 2, . . . , N},
(26)

and

−Rz (bt−1)
d

(

Bi

(

t,
Sz (bt−1, y)

Rz (bt−1, y)

)

−Bi(t− 1, bt−1)

)

+ pl3i (bt−1)gi(bt−1) ∈ Σ[t, bt−1], ∀t ∈ {1, 2, . . . , t∗},

y ∈ Y, z ∈ Z, i ∈ {1, 2, . . . , N}, (27)

then there exists no solution of (5) such that b0 = p0 and

bt∗ ∈ Bf and, hence, the teaching performance is satisfied.

VII. EXAMPLE

In order to illustrate the proposed framework, we consider

a toy scenario, where the teacher aims to teach/steer a human

learner to reach a goal state in a physical environment. Each

hypothesis/node corresponds to some unexplored territory,

and there exists an example which flags the territory as

explored. The learner prefers local moves, and if all neigh-

boring territories are explored, the learner jumps to the next

closest one.

The physical environment is characterized by a 4 × 4
lattice corresponding to 16 hypotheses. The target hypothesis

is located at h∗ = (4, 4). The teacher has 16 choices of

locations on the lattice to show to the student as examples.

The student then receives two labels based on its answer

y ∈ {−1, 1}. The preference function σ(h′;h) is given

by the minimum distance between hypotheses described

by `1(h
′;h).

In this example, we compare two teaching algorithms in

the adaptive setting, where the teacher observes the learner’s

hypothesis at each iteration. The Myopic algorithm is a

greedy approach which, at each iteration, picks the teaching

example such that after observing the label, the worst-case

rank of the target hypothesis in the learner’s resulting version

space is the smallest. The Ada-L algorithm aims to teach the

learner some intermediate hypothesis at each iteration, i.e.,

it aims to direct the learner to transit to a hypothesis that

is “closer” to the target hypothesis. For more details of the

algorithms please refer to [5].

Each algorithm provides a set of policies for which we

seek to find the minimum number of trials such that the

following teaching performance is assured

bt∗(h
∗) ≥ λ.

To this end, we minimize the number of trials t∗ such that

(27)-(29) are satisfied. We start by a large number of trials

(16 in this case) and decrease it until no barrier certificate

can be found to verify the teaching performance. We fix

the degree of variables Bi, pl1i , pl2i , pl3i , and p
f
i ∈ Σ[b],

i ∈ {1, 2, . . . , N} in Corollary 3 to 2 and search for the

certificates. In order to check the SOS conditions formulated

in Section VI, we use diagonally-dominant-SOS (DSOS)

relaxations of the SOS programs implemented through the

SPOTless tool [23] (for more details see [24], [25]).

The results on finding the minimum number of trials t∗ for

which the teaching performance is satisfied were as follows.
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(a) Myopic

(b) Ada-L

Fig. 2: Teaching sequences generated by Myopic and Ada-L algorithms on a 4 × 4 lattice, with h0 = (1, 1), h∗ = (3, 4).
The learner’s initial hypothesis is marked by orange, and the target is marked by green. The dark gray square represents the

teaching example at the current time step, while light gray squares represent the previous teaching examples.

1) h0 = (1, 1) and h∗ = (3, 4): For the Myopic

algorithm, we could not find any certificate for λ = 0.8.

Changing the the teaching performance to λ = 0.55 yielded

certificates for only t∗ = 15. On the other hand, for the

Ada-L algorithm, we obtained t∗ = 9 assuring teaching

performance λ = 0.8 and t∗ = 10 assuring teaching

performance λ = 0.9.

The results can also be corroborated from simulations.

As can be see in Figure 2, the Myopic algorithm perform

poorly on simple teaching tasks as compared to the Ada-L

algorithm.

VIII. CONCLUSIONS

We presented a method based on barrier certificates to

assure the performance of machine teaching algorithms. Our

computational method was in terms of SOS programs, where

we used DSOS relaxations. It was shown in [26] that using

sparse SOS (SSOS) programs leads to more efficient and

less conservative results. Future work can explore the use of

more scalable SOS relaxations such as SSOS.
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