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Abstract— Deception plays a crucial role in adversarial or
strategic interactions for self-defense and survival. This paper
introduces a general framework and solution to address the
deception of adversaries with bounded rationality. Such a prob-
lem is commonly encountered in many applications especially
involving human adversaries. Leveraging the cognitive bias of
humans in reward evaluation under stochastic outcomes, we
introduce a framework to optimally assign resources of a limited
quantity to optimally defend against human adversaries. Then
we formulate the resource allocation problem as a signomial
program to minimize the defender’s cost in an environment
modeled as a Markov decision process. We use police patrol
hour assignment as an illustrative example and provide detailed
simulation results based on real-world data.

I. INTRODUCTION

Deception refers to a deliberate attempt to mislead or
confuse adversaries so that they may take strategies that
are in the defender’s favor [1]. Deception can limit the
effectiveness of an adversary’s attack, waste adversary’s
resources, and prevent the leakage of critical information
[2]. It is a widely observed behavior in nature for self-
defense and survival and also plays a crucial role in many
aspects of human society, such as economics [3], warfare
[4], cybersecurity [2], to name a few.

Many existing approaches for deception rely on a rational
adversary with sufficient memory and computation power
to find its optimal policy [5], [1]. However, deceiving an
adversary with only bounded rationality [6], i.e., one whose
decisions may follow certain rules that deviate from the
optimal action [7], has not been adequately studied so far.

In this paper, we focus on deceiving adversaries with
bounded rationality. Different from obfuscating sensitive
system information to the adversary [8], [9], [10], [11],
by deception, we mean that the defender optimally assigns
limited resources, such that the expected cost from defender’s
perspective (or equivalently, the reward for the adversary)
is minimized, even though the adversary is expecting more
based on his cognitively biased view of rewards.

To deceive an adversary with a bounded rationality (i.e.,
human), it is essential to understand human’s cognitive char-
acteristics and what affects his decisions (particularly with
stochastic outcomes). Works in behavior psychology, e.g.,
[12], suggested that human decision-making follows intuition
and bounded rationality. Empirical evidence has shown that
humans tend to evaluate gains and losses differently in
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decision-making [13]. Risk-sensitive measures, such as those
in the so-called prospect theory [14], capture such biases and
are widely used in psychology and economics to characterize
human preferences. Furthermore, humans often tend to make
sub-optimal decisions which is generally believed to be
the result of intuitive decisions or preferences that happen
automatically and quickly without much reflection [15], [12].
Human decisions are also subject to stochasticity due to
the limited computational capacity and inherent noise [16].
Consequently, human decisions are often cognitively biased
(have a different reward mechanism), probabilistic (have a
stochastic action selection policy) and memoryless (only
depends on the current state). These are the very charac-
teristics of human decision-making we expect to account for
in reward-based deception.

This paper investigates how one can deceive a human
adversary by resource allocation to minimize his expected
rewards. We model the environment as a Markov decision
process (MDP) to capture the choices available to a human
decision-maker and their probabilistic outcomes. We con-
sider opportunistic adversaries, i.e., those usually do not have
significant planning and only act based on immediate rewards
[17]. We describe the human adversary’s policy to select
different actions following the prospect theory and bounded
rationality [6]. We model both the adversary’s perceived
reward and defender’s cost as functions of the resources
available at each state of the MDP.

We then formulate the optimal resource allocation problem
as a signomial program (SP) to minimize the defender’s cost.
SPs are a special form of nonlinear programming problems,
and they are generally nonconvex. SPs generalize geometric
programs (GP), which can be transformed into convex op-
timization problems and then can be solved efficiently [18].
In this paper, we approximate the proposed SP to a GP. We
demonstrate the approach with a problem on the assignment
of police patrol hour against opportunistic criminals [17].

Decision-making considering bounded rationality was
studied in a number of recent work, see e.g., [19], [20], [21].
The problem we study is closely related to the Stackelberg
security game (SSG), which consists of an attacker and a de-
fender. In SSG, the defender acts first with limited resources
and then the attacker plays in response [22]. Repeated SSG
was considered in wildlife security [23] and fisheries [24]
where the defender and the adversary can have repeated
interaction. However, neither of these papers considered how
a human perceives probabilistic outcomes, which was taken
into account in [25] and [26]. However, [25] only studied
one-shot games and [26] did not consider the adversaries
may move from place to place.



II. PRELIMINARIES
A. Monomials, Posynomials, and Signomials.

Let V = {x1,...,2,} be a finite set of strictly positive
real-valued variables. A monomial over V is an expression
of the form f = c¢- ' ---x%", where ¢ € RT is a positive

coefficient, and a; € R are exponents for 1 < ¢ < n. A
posynomial over V is a sum of one or more monomials:

K
g:ch~x?1k~~-fo"’“ ) (D
k=1
If ¢ is allowed to be a negative real number for any 1 <
k < K, then the expression (1) is a signomial.

This definition of monomials differs from the standard al-
gebraic definition where exponents are positive integers with
no restriction on the coefficient sign. A sum of monomials
is then called a polynomial.

B. Nonlinear programs.

A general nonlinear program (NLP) over a set of real-
valued variables V' is

minimize f 2)
subject to
g <1, i1=1,...,m, 3)
h;=1, j=1,...,p, @)

where f, g;, and h; are arbitrary functions over V, and m
and p are the number of inequality and equality constraints
of the program respectively.

C. Signomial programs and geometric programs.

A special class of NLPs known as signomial programs
(SP) is of the form (2)—(4) where f, g; and h; are signomials
over V. A geometric program (GP) is an SP of the form (2)—
(4) where f,g; are posynomial functions and h; are mono-
mial functions over V. GPs can be transformed into convex
programs [18, §2.5] and then can be solved efficiently using
interior-point methods [27]. SPs are non-convex programs
in general, and therefore there is no efficient algorithm to
compute global optimal solutions for SPs. However, we
can efficiently obtain local optimal solutions for SPs in our
setting, as shown in the following sections.

D. Markov Decision Processes.

In this paper, the adversary with bounded rationality moves
in an environment modeled as a Markov decision process
(MDP) [28]. An MDP is a tuple M = (S,v, A, T, U) which
includes a finite set S of states, an initial state distribution
v:S — [0,1], a finite set A of actions, a transition function
T:SxAxS — [0,1] where T(s,a,s’) denotes the
probability of transiting from s to s’ with action a, and the
utility function U : S — R™T that assigns resources with a
quantity U(s) to state s.

At each state s, an adversary has a set of actions available
to choose. The nondeterminism of the action selection has
to be resolved by a policy m. A (memoryless) policy 7 :

S x A — [0,1] of an MDP M is a function that maps
every state action pair (s,a) where s € S and a € A with
probability (s, a).

By definition, the policy 7 specifies the probability for the
action a to be taken at the current state s. A bounded rational
adversary is often limited in memory and computation power.
Therefore we only consider memoryless policies.

In an MDP, a finite state-action path is w = sgapsias...,
where s; € S,a; € Aand T(s;,a;,si+1) > 0. Given a policy
, the probability of such path Py (w) is

Pr(w) = v(so) H?T(Si, ai)T(8;, a5, 8i41)- 5)

III. REWARD-BASED DECEPTION

We assume that an adversary with bounded rationality
moves around in an environment modeled as an MDP M =
(S,v, A, T,U). When the adversary is at a state s € S, from
the defender’s point of view, the immediate reward for the
adversary (or equivalently, the cost for the defender) is

R(s) = g(U(s)) € R,

which is a function of allocated resource U (s). However, due
to the bounded rationality and cognitive biases, the perceived
immediate reward Rp(s) at state s by the adversary is a
different function of U(s), and is given by

Ry(s) = f(U(s)) € RT,

where f is another function over U. For a given policy T,
expected rewards (;(s) at each state s and time ¢ with a
finite time horizon H can be evaluated as

Qu(s) = R(s) + Y Y w(s,a)T(s,a,8)Qura(s),  (6)

where ¢ = 0..,H — 1, Qu(s) = R(s). Therefore, Q;
represents the expect accumulated cost of the defender,
or equivalently, expected rewards for the human adversary
obtained from the policy .

The defender’s objective is to optimally assign the re-
sources to each state to minimize his cost (equivalently, the
adversary’s reward) (), where

Q=" v(s)Qo(s), (7)

by designing the utility function U, where the resources are
of limited quantity, i.e., Y U(s) = D. Also imagine that
there are set of sensitive states S, C S that the adversaries
should be kept away from. Denote the set of paths that reach
Ss in H steps as () such that for each w € (2 where w =
8000, -, SN, we require N < H,s; ¢ Sg,i < N and sy €
Ss. In particular, given a policy , the probability to reach
S, in H steps denoted as P({=HS,) can be calculated as

P(O=HS8) =" Pr(w). ®)
weN

Problem I: Given an MDP M = (S,v, A, T,U), time
horizon H, and adversary policy 7, design reward function



U with a limited total budget ) U(s) = D, such that Q) as
defined in (7) can be minimized and

P(G=1S,) < A. )

Remark 1: Problem 1 studies how to optimally assign

the reward to trick the adversary into thinking that his

policy could obtain more rewards but in fact, the actual

expected reward is minimized with a low probability of
visiting sensitive states S.

A. Human Adversaries with Cognitive Biases

To solve Problem 1, it is essential to model adversary’s
policy 7. In this paper, we take human as an opportunistic
adversary, meaning that he does not have a specific attack
goal nor plans strategically, but is flexible about his move-
ment plan and seek opportunities for attacks [29]. Those
attacks may incur rewards to the human adversary and
consequently certain costs for the defender. The process
of human decision-making typically follows several steps
[30]. First, a human recognizes his current situation or state.
Second, he will evaluate each available action based on the
potential immediate reward it can bring. Third, he will select
an action following some rules. Then he will receive a reward
and observe a new state. In this section, we will introduce
the modeling framework for the second and third step.

For a human with bounded rationality, the value of a
reward from an action is a function of the possible outcomes
and their associated probabilities. The prospect theory [14]
is a frequently used modeling framework to characterize the
reward perceived by a human. Prospect theory claims that
humans tend to over-estimate the low probabilities and un-
derestimate the high probabilities in a nonlinear fashion. For
example, between winning 100 dollar with 1—(1)0 probability
and nothing else, or 1 dollar with probability 1, humans
tend to prefer the former, even though both have the same
expectation.

Given X as the discrete random variable that has a finite
set of outcomes O, a general form of prospect theory utility
V(X) (i.e. the reward anticipated by a human) is

V(X) = v(@)w(p(x)),

z€O

(10)

where v(z) € R denotes the reward perceived by a human
from the outcome x. The probability p(z) to get the outcome
z is weighted by a nonlinear function w that captures
the human tendency to over-estimate low probabilities and
under-estimate high probabilities.

The expected immediate reward r,(s) from an action a at

state s is
ro(s) = ZR(S')T(s,a,s’). (11)

However, according to prospect theory, from a human’s
perspective, the perceived expected immediate reward r(s)
is different. Let X , be the random variable for the outcome
Os, of executing action a at state s. We have O;, =
{z}|T(s,a,s") > 0} where z, denotes the event that the
state transits from s to s’ with an action a. The distribution
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A simple example for sub-optimality with human cognitive biases.

of X, is defined as p(zy) = T(s,a,s),Vzy € Og,.
The human perceived reward v(zy) for the outcome x4
depends on U(s) received from reaching the state s’, which
is denoted by v(zs) = Rp(s’) = f(U(s)). As a result,
from (10), r(s) is denoted by

Z U(.%‘S/)’lU(p(.’ES/))

T, €054

rh(s) =

12)
= Z f(U(s’))w(T(s, a, S/))
An empirical form of w is the following [14], where
Y
w(p) = L >0 (13)

(p7+ (1 —=p))~

Example 1: Given an MDP in Figure 1, where S =
{s0,.-.,84}, A = {a,b}. We assume that R(s) = U(s),
Ry (5) = U(s)%®8, v = 0.6 in (13). It can be found from (11)
and (12) that r,(sg) = 2.3,7"(s9) = 2.0678,74(s0) = 2.5
and 7/'(sg) = 1.8617. Since r(s9) > rf(so), suppose a
human is at sp, from human’s perspective, he will prefer
action a. However, 7,(so) < 74(sg) which indicates that
action a actually has more expected immediate rewards.

Remark 2: In this example, the rewards are already given,
and it can be seen that the human could make a sub-optimal
decision. It illustrates how cognitive bias can deviate human
behavior from optimal.

After evaluating the outcome of each candidate action a
by 7”(s), a human then needs to select an action. Human’s
policy 7 to choose an action can be described as a random
process that biases toward the actions with high % (s), such
that
ra(s)

Za’ rl}IL/ (S) .

Such a probabilistic behavior has been observed in humans
for urban criminal activities [31]. Intuitively, it implies that
human selects the action a at each state s with the probability
proportional to the perceived immediate reward r(s).
Now we are ready to redefine Problem 1 as follows.
Problem 2: Solve Problem 1 for 7 defined as in (14).

m(s,a) = (14)

IV. SIGNOMIAL PROGRAMMING FORMULATION

Given an MDP M, time horizon H, human reward func-
tion and policy as defined in (12) and (14), the solution
of Problem 1 can be computed by solving the following
signomial program. The g and f are assumed to be monomial
functions of U for our solution method.



minimize Q =Y v(s)Qo(s) (15)

subject to
Vse S,te€{0,...,H—1},

Quls) 2 R(s) + 3 3 (s, a)T(s,a,8) Qs ()

acAs’eS
(16)
Vse S,tef{0,...,H—1},
Pi(s) > )Y w(s,a)T(s,a,5 )Py (s') (17)
acAs’'eS
vte{0,...,H},Vs€ S, Pi(s)=1 (18)
vt e {0,..., H}, Zu(s)Pt(s) <\ (19)
sES
Vse S,a€ A,
n(s,a) Y > FUE)w(T(s,a',s))
a’€As’e€S
= Z FU(N)w(T(s,a,s")) (20)
s'eS
¥se S, R(s)=g(U(s)) 1)
> U(s) =D, (22)

seS

where variables R(s) are for rewards in each state s, U(s)
are for utilities in each state s, m(s, a) are for the probability
of taking action a in state s are for each state and action,
Q:(s) are for the expected reward of the state s and time
step ¢, and P;(s) are for the probability of reaching the set
of target states S in each state s and time step t.

The objective in (15) minimizes the accumulated expected
reward from the initial state distribution v(s) over a time
horizon H. In (16), we compute Q:(s) by adding the
immediate reward in state s and the expected reward of the
successor states according to the policy variables (s, a) for
each action a. The probability of reaching each successor
state s’ depends on the policy variables (s, a) in each state
s and action a. Similar to the constraint in (16), the variables
P,(s) are assigned to the probability of reaching the set of
target states S from state s and time step ¢ in (17).

The probability of reaching S in each horizon from the
states in S, is one as in (18). The constraint in (19) assures
that the probability of reaching any state s € Ss from the
initial state distribution v(s) is less than A. The constraint
in (20) computes the policy with the model in (14). We
give the relationship between rewards and utilities in (21).
Finally, (22) gives the total budget for utilities.

The constraint in (16) and (17) are convex constraints,
because the functions in the right hand sides are posynomial
functions, and the functions in the left hand sides are
monomial functions. The constraints in (18) and (19) are
affine constraints, therefore they are convex. The constraints
in (20) and (22) are equality constraints with posynomials.
Therefore they belong to the class of signomial constraints,
and they are not convex. In the literature, there are various

methods to deal with the nonconvex constraints to obtain a
locally optimal solution [32], [18], [33].

V. COMPUTATIONAL APPROACH FOR THE SIGNOMIAL
PROGRAM

In this section, we discuss how to compute a locally
optimal solution efficiently for Problem 1 by solving the
signomial program in (15)—(22). We propose a sequential
convex programming method to compute a local optimum
of the signomial program following [18, §9.1] by solving a
sequence of GPs. We obtain each GP by replacing signomial
constraints in equality constraints of the SGP signomial
program with monomial approximations.

Given a posynomial f, a set of variables {x1,...,2,},
and an initial point Z, a monomial approximation [18] f for
f around Z is that for any 4 such that 1 < ¢ < n, we have

i=1

Intuitively, a monomial approximation of a posynomial f
around an initial point & corresponds to an affine approxima-
tion of the posynomial f. Such an approximation is provided
by the first order Taylor approximation of f [18, §9.1].

For a given instantiation of the utility and policy variables
U(s) and m(s,a), we approximate the SP in (15)—(22) to
obtain a GP as follows. We first normalize the utility values
to ensure that they sum up to D. Then, using those utility
values, we compute the policy according to constraint in (20).
After the policy computation, we compute a monomial
approximation of each posynomial term in the constraints
(20) and (22) around the previous instantiation of the utility
and policy variables. After the approximation, we solve the
approximate GP. We repeat this procedure until convergence.

One key problem with this approach is that, we require
an initial feasible point to the signomial problem in (15)-
(22), which may be hard to find because of the reachability
constraint in (19). Therefore, we introduce a new variable
7 and we replace the reachability constraint in (19) by the
following constraints:

vte{0,...,H}, Y v(s)Ps) < AT
sES

(23)

> 1. 4)

By replacing the reachability constraint, we ensure that any
initial utility function and policy is feasible to the signomial
program in (15)-(24). To enforce the feasability of the
constraint in (19), we change the objective in (15) as

Q+o-7

where § is a positive penalty parameter that determines
the violation rate for the soft constraint in (23). In our
formulation, we increase & after each iteration to satisfy
the reachability constraint. We stop the iterations when the
change in the value of () is less than a small positive constant
€. Intuitively, € defines the required improvement on the
objective value for each iteration; once there is not enough
improvement, the process terminates.

(25)

minimize



VI. NUMERICAL EXPERIMENT

Let us consider an urban security problem, where a
criminal plans his next move randomly based on his local
information on the nearby locations that are protected by
police patrols. Such a criminal is opportunistic, i.e, he is
not highly strategic by conducting careful surveillance and
rational planning before making moves. This kind of oppor-
tunistic adversaries is known to contribute to the majority of
the urban crimes [34]. For prevention and protection, each
location should be assigned a certain police patrol hours with
limited total number of patrol hours available.
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Fig. 2. The 35 intersections in San Francisco from Google map. The

shaded area is a circle with a 500 feet radius. The number beside each
location is the number of crimes in that area. Blue dots are sensitive areas.

Figure 2 shows 35 intersections in San Francisco, CA with
7 rows and 5 columns. We use an MDP M = (S, v, A, T,U)
to describe the network of intersection set S. The number
C(s) of crimes' that occurred in the first four weeks of
October, 2018 within 500 feet of each interaction s is shown
in Figure 2. The criminal can move left, right, up or down to
the immediate neighboring intersections, i.e., |A| = 4. Each
action will lead the human to the intended neighborhood
of the intersection with a high probability (> 0.95) and a
small probability to other neighboring intersections due to
unexpected change of movement plan.

The criminal has an equal probability of appearing at any
state, i.e., v(s) = == for any s € S. The utility U(s) denotes
the number of police patrol hours that should be allocated to
the vicinity of each intersection. The total number of police
patrol hours is D = Y U(s) = 400. If a location s is
assigned with U(s) patrol hours, its reward to the criminal
(equivalently, the cost to the defender) is R(s) = Ols)

.. ; U(s)”
Intuitively, it means that the reward to the human adversary,

IData from https://www.crimemapping.com/map/ca/sanfrancisco.
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Fig. 3. The assignment of utility U in logarithmic scale.

from the defender’s point of view, is proportional to the
crime rate indicated by C(s) and inversely proportional to the
police patrol hours. The reward from the human adversary’s
view is evaluated as f(U(s)) = R(s)"®®, which is a function
commonly used in the literature [13].

Initially, the criminal is at s with probability v(s), where
he tries to plan his move over the next H steps. The objective
is to assign the police patrol hours to each state, such that
the expected accumulated reward in H steps received by
the criminal is minimized. The sensitive states (blue dots
in Figure 2) S, = {3,14,33} should be visited with a
probability no larger than A\ = 0.3, i.e. P($SHS,) <0.3.

We formulate the problem as a signomial program. From
an initial uniform utility distribution, we instantiate the poli-
cies and reward functions. Then, from the initial values, we
linearize the signomial program in (15)—(25) to a geometric
program. We parse the geometric programs using the tool
GPkit [35], and solve them using the solver MOSEK [36].
We set € = 10~* for convergence tolerance. All experiments
were run on a 2.3 GHz machine with 16 GB RAM. The
procedure converged after 32 iterations for a problem with
horizon length 7" = 20 in 230.06 seconds. The expected
reward @ from the initial state distribution is 117.15, and
the reachability probability of the sensitive states from the
initial state distribution is 0.192 < .

The result is shown in Figure 3. Different colors at each
intersection show the number of patrol hours, i.e, the resource
U(s), assigned to each location s. In Figure 3, U(s) is
shown with a logarithmic scale for better illustration. As the
color bar at the bottom of the figure indicates, the closer the
color at each location is to the right side of this bar, the
higher patrol hours are assigned. For example, the state at
(3,1) (the third state from the first row), where C(s) = 48
gets assigned 106 patrol hours which is approximately 2 in



logarithmic scale. Therefore, its color is yellow in Figure
3 as indicated by the color bar. Together with Figure 2,
it can be observed that sensitive places and places with a
higher number of crimes get assigned more patrol hours.
Consequently, the rewards at those states are fairly low to
discourage the criminal from visiting it. The cost at each
location is proportional to the crime rate and inversely
proportional to the police patrol hours. The patrol hours
assigned to each place intends to minimize the expected
cost incurred by the human adversary. The patrol hours are
allocated in such a way that human adversary expects to
receive more rewards due to cognitive biases but in fact the
rewards (the cost to the police) are minimized. In this sense,
the human adversary with bounded rationality is “deceived”.

VII. CONCLUSION

This paper introduces a general framework for deceiving
adversaries with bounded rationality. Leveraging the cogni-
tive bias of the human from prospect theory, we formulate
the reward-based deception as a resource allocation problem
in Markov decision process environment and solve it as a sig-
nomial program. We use a police patrol hour assignment as
an illustrative example and show the validity of our proposed
solution approach. It opens doors for further research to
consider the scenarios where the defender can move around
and react to the human adversaries in real-time, and the
human adversaries are strategic rather than opportunistic.
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