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Abstract— Deception plays a crucial role in adversarial or
strategic interactions for self-defense and survival. This paper
introduces a general framework and solution to address the
deception of adversaries with bounded rationality. Such a prob-
lem is commonly encountered in many applications especially
involving human adversaries. Leveraging the cognitive bias of
humans in reward evaluation under stochastic outcomes, we
introduce a framework to optimally assign resources of a limited
quantity to optimally defend against human adversaries. Then
we formulate the resource allocation problem as a signomial
program to minimize the defender’s cost in an environment
modeled as a Markov decision process. We use police patrol
hour assignment as an illustrative example and provide detailed
simulation results based on real-world data.

I. INTRODUCTION

Deception refers to a deliberate attempt to mislead or

confuse adversaries so that they may take strategies that

are in the defender’s favor [1]. Deception can limit the

effectiveness of an adversary’s attack, waste adversary’s

resources, and prevent the leakage of critical information

[2]. It is a widely observed behavior in nature for self-

defense and survival and also plays a crucial role in many

aspects of human society, such as economics [3], warfare

[4], cybersecurity [2], to name a few.

Many existing approaches for deception rely on a rational

adversary with sufficient memory and computation power

to find its optimal policy [5], [1]. However, deceiving an

adversary with only bounded rationality [6], i.e., one whose

decisions may follow certain rules that deviate from the

optimal action [7], has not been adequately studied so far.

In this paper, we focus on deceiving adversaries with

bounded rationality. Different from obfuscating sensitive

system information to the adversary [8], [9], [10], [11],

by deception, we mean that the defender optimally assigns

limited resources, such that the expected cost from defender’s

perspective (or equivalently, the reward for the adversary)

is minimized, even though the adversary is expecting more

based on his cognitively biased view of rewards.

To deceive an adversary with a bounded rationality (i.e.,

human), it is essential to understand human’s cognitive char-

acteristics and what affects his decisions (particularly with

stochastic outcomes). Works in behavior psychology, e.g.,

[12], suggested that human decision-making follows intuition

and bounded rationality. Empirical evidence has shown that

humans tend to evaluate gains and losses differently in
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decision-making [13]. Risk-sensitive measures, such as those

in the so-called prospect theory [14], capture such biases and

are widely used in psychology and economics to characterize

human preferences. Furthermore, humans often tend to make

sub-optimal decisions which is generally believed to be

the result of intuitive decisions or preferences that happen

automatically and quickly without much reflection [15], [12].

Human decisions are also subject to stochasticity due to

the limited computational capacity and inherent noise [16].

Consequently, human decisions are often cognitively biased

(have a different reward mechanism), probabilistic (have a

stochastic action selection policy) and memoryless (only

depends on the current state). These are the very charac-

teristics of human decision-making we expect to account for

in reward-based deception.

This paper investigates how one can deceive a human

adversary by resource allocation to minimize his expected

rewards. We model the environment as a Markov decision

process (MDP) to capture the choices available to a human

decision-maker and their probabilistic outcomes. We con-

sider opportunistic adversaries, i.e., those usually do not have

significant planning and only act based on immediate rewards

[17]. We describe the human adversary’s policy to select

different actions following the prospect theory and bounded

rationality [6]. We model both the adversary’s perceived

reward and defender’s cost as functions of the resources

available at each state of the MDP.

We then formulate the optimal resource allocation problem

as a signomial program (SP) to minimize the defender’s cost.

SPs are a special form of nonlinear programming problems,

and they are generally nonconvex. SPs generalize geometric

programs (GP), which can be transformed into convex op-

timization problems and then can be solved efficiently [18].

In this paper, we approximate the proposed SP to a GP. We

demonstrate the approach with a problem on the assignment

of police patrol hour against opportunistic criminals [17].

Decision-making considering bounded rationality was

studied in a number of recent work, see e.g., [19], [20], [21].

The problem we study is closely related to the Stackelberg

security game (SSG), which consists of an attacker and a de-

fender. In SSG, the defender acts first with limited resources

and then the attacker plays in response [22]. Repeated SSG

was considered in wildlife security [23] and fisheries [24]

where the defender and the adversary can have repeated

interaction. However, neither of these papers considered how

a human perceives probabilistic outcomes, which was taken

into account in [25] and [26]. However, [25] only studied

one-shot games and [26] did not consider the adversaries

may move from place to place.



II. PRELIMINARIES

A. Monomials, Posynomials, and Signomials.

Let V = {x1, . . . , xn} be a finite set of strictly positive

real-valued variables. A monomial over V is an expression

of the form f = c · xa1

1 · · ·xan
n , where c ∈ R

+ is a positive

coefficient, and ai ∈ R are exponents for 1 ≤ i ≤ n. A

posynomial over V is a sum of one or more monomials:

g =

K
∑

k=1

ck · xa1k

1 · · ·xank
n . (1)

If ck is allowed to be a negative real number for any 1 ≤
k ≤ K, then the expression (1) is a signomial.

This definition of monomials differs from the standard al-

gebraic definition where exponents are positive integers with

no restriction on the coefficient sign. A sum of monomials

is then called a polynomial.

B. Nonlinear programs.

A general nonlinear program (NLP) over a set of real-

valued variables V is

minimize f (2)

subject to

gi ≤ 1, i = 1, . . . ,m, (3)

hj = 1, j = 1, . . . , p, (4)

where f , gi, and hj are arbitrary functions over V , and m
and p are the number of inequality and equality constraints

of the program respectively.

C. Signomial programs and geometric programs.

A special class of NLPs known as signomial programs

(SP) is of the form (2)–(4) where f , gi and hj are signomials

over V . A geometric program (GP) is an SP of the form (2)–

(4) where f, gi are posynomial functions and hj are mono-

mial functions over V . GPs can be transformed into convex

programs [18, §2.5] and then can be solved efficiently using

interior-point methods [27]. SPs are non-convex programs

in general, and therefore there is no efficient algorithm to

compute global optimal solutions for SPs. However, we

can efficiently obtain local optimal solutions for SPs in our

setting, as shown in the following sections.

D. Markov Decision Processes.

In this paper, the adversary with bounded rationality moves

in an environment modeled as a Markov decision process

(MDP) [28]. An MDP is a tuple M = (S, ν,A, T, U) which

includes a finite set S of states, an initial state distribution

ν : S → [0, 1], a finite set A of actions, a transition function

T : S × A × S → [0, 1] where T (s, a, s′) denotes the

probability of transiting from s to s′ with action a, and the

utility function U : S → R
+ that assigns resources with a

quantity U(s) to state s.

At each state s, an adversary has a set of actions available

to choose. The nondeterminism of the action selection has

to be resolved by a policy π. A (memoryless) policy π :

S × A → [0, 1] of an MDP M is a function that maps

every state action pair (s, a) where s ∈ S and a ∈ A with

probability π(s, a).
By definition, the policy π specifies the probability for the

action a to be taken at the current state s. A bounded rational

adversary is often limited in memory and computation power.

Therefore we only consider memoryless policies.

In an MDP, a finite state-action path is ω = s0a0s1a1...,
where si ∈ S, ai ∈ A and T (si, ai, si+1) > 0. Given a policy

π, the probability of such path Pπ(ω) is

Pπ(ω) = ν(s0)
∏

i

π(si, ai)T (si, ai, si+1). (5)

III. REWARD-BASED DECEPTION

We assume that an adversary with bounded rationality

moves around in an environment modeled as an MDP M =
(S, ν,A, T, U). When the adversary is at a state s ∈ S, from

the defender’s point of view, the immediate reward for the

adversary (or equivalently, the cost for the defender) is

R(s) = g(U(s)) ∈ R
+,

which is a function of allocated resource U(s). However, due

to the bounded rationality and cognitive biases, the perceived

immediate reward Rh(s) at state s by the adversary is a

different function of U(s), and is given by

Rh(s) = f(U(s)) ∈ R
+,

where f is another function over U . For a given policy π,

expected rewards Qt(s) at each state s and time t with a

finite time horizon H can be evaluated as

Qt(s) = R(s) +
∑

a

∑

s′

π(s, a)T (s, a, s′)Qt+1(s
′), (6)

where t = 0..., H − 1, QH(s) = R(s). Therefore, Qt

represents the expect accumulated cost of the defender,

or equivalently, expected rewards for the human adversary

obtained from the policy π.

The defender’s objective is to optimally assign the re-

sources to each state to minimize his cost (equivalently, the

adversary’s reward) Q, where

Q =
∑

ν(s)Q0(s), (7)

by designing the utility function U , where the resources are

of limited quantity, i.e.,
∑

s U(s) = D. Also imagine that

there are set of sensitive states Ss ⊂ S that the adversaries

should be kept away from. Denote the set of paths that reach

Ss in H steps as Ω such that for each ω ∈ Ω where ω =
s0a0, ..., sN , we require N ≤ H, si /∈ Ss, i < N and sN ∈
Ss. In particular, given a policy π, the probability to reach

Ss in H steps denoted as P (♦≤HSs) can be calculated as

P (♦≤HSs) =
∑

ω∈Ω

Pπ(ω). (8)

Problem 1: Given an MDP M = (S, ν,A, T, U), time

horizon H , and adversary policy π, design reward function



U with a limited total budget
∑

s U(s) = D, such that Q as

defined in (7) can be minimized and

P (♦≤HSs) ≤ λ. (9)

Remark 1: Problem 1 studies how to optimally assign

the reward to trick the adversary into thinking that his

policy could obtain more rewards but in fact, the actual

expected reward is minimized with a low probability of

visiting sensitive states Ss.

A. Human Adversaries with Cognitive Biases

To solve Problem 1, it is essential to model adversary’s

policy π. In this paper, we take human as an opportunistic

adversary, meaning that he does not have a specific attack

goal nor plans strategically, but is flexible about his move-

ment plan and seek opportunities for attacks [29]. Those

attacks may incur rewards to the human adversary and

consequently certain costs for the defender. The process

of human decision-making typically follows several steps

[30]. First, a human recognizes his current situation or state.

Second, he will evaluate each available action based on the

potential immediate reward it can bring. Third, he will select

an action following some rules. Then he will receive a reward

and observe a new state. In this section, we will introduce

the modeling framework for the second and third step.

For a human with bounded rationality, the value of a

reward from an action is a function of the possible outcomes

and their associated probabilities. The prospect theory [14]

is a frequently used modeling framework to characterize the

reward perceived by a human. Prospect theory claims that

humans tend to over-estimate the low probabilities and un-

derestimate the high probabilities in a nonlinear fashion. For

example, between winning 100 dollar with 1

100
probability

and nothing else, or 1 dollar with probability 1, humans

tend to prefer the former, even though both have the same

expectation.

Given X as the discrete random variable that has a finite

set of outcomes O, a general form of prospect theory utility

V (X) (i.e. the reward anticipated by a human) is

V (X) =
∑

x∈O

v(x)w(p(x)), (10)

where v(x) ∈ R denotes the reward perceived by a human

from the outcome x. The probability p(x) to get the outcome

x is weighted by a nonlinear function w that captures

the human tendency to over-estimate low probabilities and

under-estimate high probabilities.

The expected immediate reward ra(s) from an action a at

state s is

ra(s) =
∑

s′

R(s′)T (s, a, s′). (11)

However, according to prospect theory, from a human’s

perspective, the perceived expected immediate reward rha(s)
is different. Let Xs,a be the random variable for the outcome

Os,a of executing action a at state s. We have Os,a =
{x′

s|T (s, a, s
′) > 0} where xs′ denotes the event that the

state transits from s to s′ with an action a. The distribution

s0s1

s2 s3

s4U(s1) = 5

U(s2) = 2 U(s3) = 2.5

U(s4) = 2.5
a, 0.1

a, 0.9

b, 0.5

b, 0.5

Fig. 1. A simple example for sub-optimality with human cognitive biases.

of Xs,a is defined as p(xs′) = T (s, a, s′), ∀xs′ ∈ Os,a.
The human perceived reward v(xs′) for the outcome xs′

depends on U(s′) received from reaching the state s′, which

is denoted by v(xs′) = Rh(s
′) = f(U(s′)). As a result,

from (10), rha(s) is denoted by

rha(s) =
∑

xs′∈Os,a

v(xs′)w(p(xs′))

=
∑

s′

f(U(s′))w(T (s, a, s′)).
(12)

An empirical form of w is the following [14], where

w(p) =
pγ

(pγ + (1− p)γ)
1

γ

, γ > 0. (13)

Example 1: Given an MDP in Figure 1, where S =
{s0, . . . , s4}, A = {a, b}. We assume that R(s) = U(s),
Rh(s) = U(s)0.88, γ = 0.6 in (13). It can be found from (11)

and (12) that ra(s0) = 2.3, rha(s0) = 2.0678, rb(s0) = 2.5
and rhb (s0) = 1.8617. Since rha(s0) > rhb (s0), suppose a

human is at s0, from human’s perspective, he will prefer

action a. However, ra(s0) < rb(s0) which indicates that

action a actually has more expected immediate rewards.

Remark 2: In this example, the rewards are already given,

and it can be seen that the human could make a sub-optimal

decision. It illustrates how cognitive bias can deviate human

behavior from optimal.

After evaluating the outcome of each candidate action a
by rha(s), a human then needs to select an action. Human’s

policy π to choose an action can be described as a random

process that biases toward the actions with high rha(s), such

that

π(s, a) =
rha(s)

∑

a′ rha′(s)
. (14)

Such a probabilistic behavior has been observed in humans

for urban criminal activities [31]. Intuitively, it implies that

human selects the action a at each state s with the probability

proportional to the perceived immediate reward rha(s).

Now we are ready to redefine Problem 1 as follows.

Problem 2: Solve Problem 1 for π defined as in (14).

IV. SIGNOMIAL PROGRAMMING FORMULATION

Given an MDP M, time horizon H , human reward func-

tion and policy as defined in (12) and (14), the solution

of Problem 1 can be computed by solving the following

signomial program. The g and f are assumed to be monomial

functions of U for our solution method.



minimize Q =
∑

ν(s)Q0(s) (15)

subject to

∀s ∈ S, t ∈ {0, . . . , H − 1},

Qt(s) ≥ R(s) +
∑

a∈A

∑

s′∈S

π(s, a)T (s, a, s′)Qt+1(s
′)

(16)

∀s ∈ S, t ∈ {0, . . . , H − 1},

Pt(s) ≥
∑

a∈A

∑

s′∈S

π(s, a)T (s, a, s′)Pt+1(s
′) (17)

∀t ∈ {0, . . . , H}, ∀s ∈ Ss, Pt(s) = 1 (18)

∀t ∈ {0, . . . , H},
∑

s∈S

ν(s)Pt(s) ≤ λ (19)

∀s ∈ S, a ∈ A,

π(s, a)
∑

a′∈A

∑

s′∈S

f(U(s′))w(T (s, a′, s′))

=
∑

s′∈S

f(U(s′))w(T (s, a, s′)) (20)

∀s ∈ S, R(s) = g(U(s)) (21)
∑

s∈S

U(s) = D, (22)

where variables R(s) are for rewards in each state s, U(s)
are for utilities in each state s, π(s, a) are for the probability

of taking action a in state s are for each state and action,

Qt(s) are for the expected reward of the state s and time

step t, and Pt(s) are for the probability of reaching the set

of target states Ss in each state s and time step t.

The objective in (15) minimizes the accumulated expected

reward from the initial state distribution ν(s) over a time

horizon H . In (16), we compute Qt(s) by adding the

immediate reward in state s and the expected reward of the

successor states according to the policy variables π(s, a) for

each action a. The probability of reaching each successor

state s′ depends on the policy variables π(s, a) in each state

s and action a. Similar to the constraint in (16), the variables

Pt(s) are assigned to the probability of reaching the set of

target states Ss from state s and time step t in (17).

The probability of reaching Ss in each horizon from the

states in Ss is one as in (18). The constraint in (19) assures

that the probability of reaching any state s ∈ Ss from the

initial state distribution ν(s) is less than λ. The constraint

in (20) computes the policy with the model in (14). We

give the relationship between rewards and utilities in (21).

Finally, (22) gives the total budget for utilities.

The constraint in (16) and (17) are convex constraints,

because the functions in the right hand sides are posynomial

functions, and the functions in the left hand sides are

monomial functions. The constraints in (18) and (19) are

affine constraints, therefore they are convex. The constraints

in (20) and (22) are equality constraints with posynomials.

Therefore they belong to the class of signomial constraints,

and they are not convex. In the literature, there are various

methods to deal with the nonconvex constraints to obtain a

locally optimal solution [32], [18], [33].

V. COMPUTATIONAL APPROACH FOR THE SIGNOMIAL

PROGRAM

In this section, we discuss how to compute a locally

optimal solution efficiently for Problem 1 by solving the

signomial program in (15)–(22). We propose a sequential

convex programming method to compute a local optimum

of the signomial program following [18, §9.1] by solving a

sequence of GPs. We obtain each GP by replacing signomial

constraints in equality constraints of the SGP signomial

program with monomial approximations.

Given a posynomial f , a set of variables {x1, . . . , xn},

and an initial point x̂, a monomial approximation [18] f̂ for

f around x̂ is that for any i such that 1 ≤ i ≤ n, we have

f̂ = f [x̂]
n
∏

i=1

(

xi

x̂(xi)

)ai

, where ai =
x̂(xi)

f [x̂]

∂f

∂xi

[x̂].

Intuitively, a monomial approximation of a posynomial f
around an initial point x̂ corresponds to an affine approxima-

tion of the posynomial f . Such an approximation is provided

by the first order Taylor approximation of f [18, §9.1].

For a given instantiation of the utility and policy variables

U(s) and π(s, a), we approximate the SP in (15)–(22) to

obtain a GP as follows. We first normalize the utility values

to ensure that they sum up to D. Then, using those utility

values, we compute the policy according to constraint in (20).

After the policy computation, we compute a monomial

approximation of each posynomial term in the constraints

(20) and (22) around the previous instantiation of the utility

and policy variables. After the approximation, we solve the

approximate GP. We repeat this procedure until convergence.

One key problem with this approach is that, we require

an initial feasible point to the signomial problem in (15)–

(22), which may be hard to find because of the reachability

constraint in (19). Therefore, we introduce a new variable

τ and we replace the reachability constraint in (19) by the

following constraints:

∀t ∈ {0, . . . , H},
∑

s∈S

ν(s)Pt(s) ≤ λ · τ (23)

τ ≥ 1. (24)

By replacing the reachability constraint, we ensure that any

initial utility function and policy is feasible to the signomial

program in (15)–(24). To enforce the feasability of the

constraint in (19), we change the objective in (15) as

minimize Q+ δ · τ (25)

where δ is a positive penalty parameter that determines

the violation rate for the soft constraint in (23). In our

formulation, we increase δ after each iteration to satisfy

the reachability constraint. We stop the iterations when the

change in the value of Q is less than a small positive constant

ε. Intuitively, ε defines the required improvement on the

objective value for each iteration; once there is not enough

improvement, the process terminates.





logarithmic scale. Therefore, its color is yellow in Figure

3 as indicated by the color bar. Together with Figure 2,

it can be observed that sensitive places and places with a

higher number of crimes get assigned more patrol hours.

Consequently, the rewards at those states are fairly low to

discourage the criminal from visiting it. The cost at each

location is proportional to the crime rate and inversely

proportional to the police patrol hours. The patrol hours

assigned to each place intends to minimize the expected

cost incurred by the human adversary. The patrol hours are

allocated in such a way that human adversary expects to

receive more rewards due to cognitive biases but in fact the

rewards (the cost to the police) are minimized. In this sense,

the human adversary with bounded rationality is “deceived”.

VII. CONCLUSION

This paper introduces a general framework for deceiving

adversaries with bounded rationality. Leveraging the cogni-

tive bias of the human from prospect theory, we formulate

the reward-based deception as a resource allocation problem

in Markov decision process environment and solve it as a sig-

nomial program. We use a police patrol hour assignment as

an illustrative example and show the validity of our proposed

solution approach. It opens doors for further research to

consider the scenarios where the defender can move around

and react to the human adversaries in real-time, and the

human adversaries are strategic rather than opportunistic.
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[5] K. Horák, Q. Zhu, and B. Bošanskỳ, “Manipulating adversary’s belief:
A dynamic game approach to deception by design for proactive
network security,” in International Conference on Decision and Game

Theory for Security. Springer, 2017, pp. 273–294.

[6] H. A. Simon, “Models of man; social and rational.” 1957.

[7] C. F. Camerer, Behavioral game theory: Experiments in strategic

interaction. Princeton University Press, 2011.

[8] P. Masters and S. Sardina, “Deceptive path-planning,” in Proceedings

of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press, 2017, pp. 4368–4375.

[9] B. Wu and H. Lin, “Privacy verification and enforcement via belief
abstraction,” IEEE Control Systems Letters, vol. 2, no. 4, pp. 815–820,
Oct 2018.

[10] B. Wu, Z. Liu, and H. Lin, “Parameter and insertion function co-
synthesis for opacity enhancement in parametric stochastic discrete
event systems,” in 2018 Annual American Control Conference (ACC).
IEEE, 2018, pp. 3032–3037.

[11] B. Wu, J. Dai, and H. Lin, “Synthesis of insertion functions to enforce
decentralized and joint opacity properties of discrete-event systems,”
in 2018 Annual American Control Conference (ACC). IEEE, 2018,
pp. 3026–3031.

[12] D. Kahneman, Thinking, Fast and Slow. Macmillan, 2011.

[13] A. Tversky and D. Kahneman, “Advances in prospect theory: Cumu-
lative representation of uncertainty,” Journal of Risk and uncertainty,
vol. 5, no. 4, pp. 297–323, 1992.

[14] D. Kahneman and A. Tversky, “Prospect theory: An analysis of
decision under risk,” in Handbook of the fundamentals of financial

decision making: Part I. World Scientific, 2013, pp. 99–127.

[15] E. Norling, “Folk psychology for human modelling: Extending the bdi
paradigm,” in Proceedings of the Third International Joint Conference

on Autonomous Agents and Multiagent Systems-Volume 1. IEEE
Computer Society, 2004, pp. 202–209.

[16] P. B. Reverdy, V. Srivastava, and N. E. Leonard, “Modeling human
decision making in generalized gaussian multiarmed bandits,” Pro-

ceedings of the IEEE, vol. 102, no. 4, pp. 544–571, 2014.
[17] C. Zhang, A. X. Jiang, M. B. Short, P. J. Brantingham, and

M. Tambe, “Defending against opportunistic criminals: New game-
theoretic frameworks and algorithms,” in International Conference on

Decision and Game Theory for Security. Springer, 2014, pp. 3–22.
[18] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on

geometric programming,” Optimization and Engineering, vol. 8, no. 1,
2007.

[19] A. R. Hota and S. Sundaram, “Interdependent security games on
networks under behavioral probability weighting,” IEEE Transactions

on Control of Network Systems, vol. 5, no. 1, pp. 262–273, 2018.
[20] L. Xiao, D. Xu, C. Xie, N. B. Mandayam, and H. V. Poor, “Cloud stor-

age defense against advanced persistent threats: A prospect theoretic
study,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 3, pp. 534–544, 2017.

[21] V. S. S. Nadendla, E. Akyol, C. Langbort, and T. Başar, “Strategic
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