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Shared-Memory Parallel Computation of Morse-Smale Complexes
with Improved Accuracy
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Fig. 1. A new approach computes Morse-Smale complexes in parallel with accurate geometry by combining numerical and discrete
approaches. Traditional reconstructions based on steepest descent unnaturally align with the grid orientation. This example shows
a scalar field formed by sum of eight Gaussians whose centers are arranged in a cube rotated with respect to the underlying grid.
The arcs and surfaces of the complex should always be perpendicular to isosurfaces - a property much better preserved by our new
approach. Better geometric reconstructions allow for better quantitative analyses, whether the feature based approach is used to
measure distances, surface areas, or volumes, or if the features are used as a scaffolding for further analysis, such as conditional
sampling.

Abstract— Topological techniques have proven to be a powerful tool in the analysis and visualization of large-scale scientific data. In
particular, the Morse-Smale complex and its various components provide a rich framework for robust feature definition and computation.
Consequently, there now exist a number of approaches to compute Morse-Smale complexes for large-scale data in parallel. However,
existing techniques are based on discrete concepts which produce the correct topological structure but are known to introduce grid
artifacts in the resulting geometry. Here, we present a new approach that combines parallel streamline computation with combinatorial
methods to construct a high-quality discrete Morse-Smale complex. In addition to being invariant to the orientation of the underlying grid,
this algorithm allows users to selectively build a subset of features using high-quality geometry. In particular, a user may specifically
select which ascending/descending manifolds are reconstructed with improved accuracy, focusing computational effort where it matters
for subsequent analysis. This approach computes Morse-Smale complexes for larger data than previously feasible with significant
speedups. We demonstrate and validate our approach using several examples from a variety of different scientific domains, and
evaluate the performance of our method.

Index Terms—Morse complex, Parallel Computation, Topology, Accurate Geometry

1 INTRODUCTION

The continuous growth in available computing resources and exper-
imental capabilities has resulted in an unprecedented increase in the
resolution of scientific data. However, this has come at the cost of
having to analyze and visualize ever larger data sets. Not only does
this create computational challenges, but interpreting the results also
becomes increasingly difficult. In particular, as the analysis step be-
comes more costly and the outputs larger, exploring different parameter
settings or different feature definitions becomes more challenging. In
this context, topological techniques are particularly attractive, as they
provide a language to robustly describe a wide range of phenomena in a
flexible manner. More specifically, topological representations provide
an intermediate structure that scientists can interactively query and
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explore to understand the impact of parameter changes or to develop
new hypotheses.
Morse-Smale (MS) complexes are particularly useful in this setting,

as they capture a wide range of features based on the gradient flow of a
scalar function, including ridge- and valley-like structures, separating
surfaces, basins, and “mountains”. They have been used in a wide
variety of scientific domains including computing burning regions in
combustion experiments [6], counting bubbles in mixing fluids [25],
analyzing the core structure of porous materials [17] or understanding
lithium diffusion pathways [19]. Most existing approaches to compute
MS complexes rely on discrete Morse theory [16, 32] which discretizes
the gradient flow to the elements of a mesh. In particular, all existing
parallel algorithms are based on discrete concepts [21, 34]. While these
algorithms are guaranteed to produce the correct topological structure,
they produce feature geometries that are unnaturally aligned with the
mesh, and can misrepresent the true orientation of the features. This
bias can skew subsequent analysis, highlighting the need for algorithms
that result in an accurate geometric embedding. Unfortunately, the only
approach to produce accurate geometry for all ascending/descending
manifolds of volumetric domains [15] relies on a serial flood fill opera-
tion which severely limits the size of data that can be analyzed.
In this paper, we present a new approach for computing MS com-

plexes with improved accuracy for volumetric scalar-valued data on
shared-memory multi-core systems. It first builds a combinatorial
representation based on discrete Morse theory. Subsequently, it then it-
eratively modifies the discrete gradient to align with numerically traced
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Fig. 2. The geometric artifacts of steepest descent construction (left)
adds error to bond length calculations between lithium and oxygen atoms,
which can lead to erroneous omission of bonds from a reconstructed
molecular graph. The conforming algorithm [18] improves the 2- and
3-manifolds (middle), but not the 1-manifolds, leading to similar issues.
The approach proposed in this paper (right) improves the accuracy of
the geometric reconstruction, leading to more stable analysis.

features, while remaining in the confines of a combinatorially consistent
structure. This allows a user, for the first time, to select which features
defined using the MS complex they wish to extract with geometric
accuracy, and the algorithm performs the necessary computation. Not
only is the approach the fastest to date for constructing high-quality
discretizations, but it also selectively applies the computational effort
to only the structures needed for a particular use case. We evaluate our
results using various feature-driven tasks with datasets taken from a
variety of scientific domains. We report a 70x speedup with respect
to previous approaches using data up to 10x larger than previously
reported.
A Motivating Example:The geometric embedding of reconstructed
topological features can play a significant role in subsequent analysis.
This paper focuses on a new method for improving the accuracy of
the geometric embedding ofallascending/descending manifolds of
the MS complex. In particular, we extend the previous approach [18]
to include accurate 1-manifolds and to improve the identification of
2- and 3-manifolds. These structures play a significant role in many
application domains, for example in quantum chemistry. According
to the quantum theory of atoms in molecules [2], the ascending 1-
manifolds that connect 2-saddles with maxima form the bond paths
between atoms. Bond paths can curve, indicating strain on a system, and
the length of the paths can be used to determine whether or not a bond
exists. Figure 2 shows an example of lithium in an electrolyte, where
the bond path length calculation of the lithium-ethylene carbonate bond
is overestimated by 11% by steepest descent approaches. This error can
lead a scientist to erroneously omit a bond from the molecular graph of
a system. This use case is further evaluated in Section 5.3.

2 RELATEDWORK

Topology-base techniques have recently been gaining traction as a stan-
dard for analysis and visualization of scientific data. While topological
descriptions of features have existed since the 1800s [8, 27], recent ad-
vances describing their robust computation have accelerated adoption.
The ability to define a feature robustly within a topological framework
has enabled sophisticated analyses. For instance, Laney et al. [25] use
Morse complexes on triangulated isosurfaces to identify and measure
the formation of bubbles in Rayleigh-Taylor instabilities. Gyulassy et
al. [17] used the 1-skeleton of the MS complex to identify the core
structure of porous media and quantify loss of porosity. Bremer et
al. [6] identified burning regions in turbulent combustion as cells of the
Morse complex of temperature restricted to an isosurface of mixture
fraction. Kasten et al. [22] used Morse cells of acceleration magnitude
to segment vortical structures. Sousbie [35] computed the filamentary
structure of the density value of cosmology simulations using the 1-
skeleton of the MS complex, and characterized voids and surfaces using
the ascending 2- and 3-manifolds.
With the recent release of analysis tools based on Morse theory,

such as the generally applicable Topology Toolkit (TTK) [36], and
TopoMS [4] for the quantum theory of atoms in molecules [1–3], the
examples of wide-scale adoption are expected to increase substantially.
However, neither of these general tools is well suited for large data
which is becoming increasingly common.
To address this challenge new parallel algorithms for topological

analysis have been developed. In the distributed setting, Landge et
al. [24] describe an approach to compute merge treesin-situ, Moro-

zov and Weber [29] describe an approach to perform analysis with a
distributed contour tree. Shared memory approaches have also been
introduced, with Carr et al. [7] using a pointer-jumping technique to
parallelize contour tree computation, and Gueunet et al. [14] using rage-
space partitioning to find parallelism in the computation of a contour
tree.

The first practical algorithm to compute Morse complexes of two
dimensional, piecewise linear functions was introduced by Edelsbrun-
ner [11], notable in that it provided the first adaptation of the contin-
uous theory to practical sampled functions. While piecewise linear
approaches [5] proved useful for the analysis of two-dimensional data,
adaptation of this theory to volumetric data [10] proved prohibitively
complicated.

A key innovation enabling computation of Morse complexes for
volumetric data has been the introduction of discrete Morse theory
by Forman [13]. Rather than directly computing consistent gradient
features, this allowed the burden to shift to computation of a much
simpler discretized version of the gradient field. Several approaches
compute a discrete gradient field in a greedy manner: they assign an
arrow locally in the direction of steepest descent. The approaches intro-
duced by Lewiner [26], Gyulassy et al. [16], Reininghaus et al. [31, 32]
all perform this assignment in serial algorithms. Gyulassy et al. [21]
introduced a distributed parallel version of this algorithm, however this
approach produced artifacts on block boundaries. Faster, embarrass-
ingly parallel approaches were introduced by Robins et al. [33] and
Shivashankar et al. [34]. However each of these techniques employs
a kernel which locally picks discrete gradient arrows in the direction
of steepest descent. Gyulassy et al. [15] showed that such local op-
timization produces an artificial bias in features extracted from the
discrete gradient, and simply rotating the underlying grid with respect
to the function caused large-scale changes not only in the geometric
embedding of features, but also the connectivity of the MS complex.

Improved accuracy:Matching a computed MS complex to an underly-
ing interpolating function has been a sought after by many approaches:
Bremer et al. [5] produced exact complexes for two-dimensional trian-
gulated linear interpolants by splitting triangles to keep 1-manifolds
separated; and Norgard and Bremer [30] computed exact complexes
for two-dimensional bilinear interpolants. Chattopahdhyay et al. [9]
furthermore demonstrated that for continuous planar functions the ex-
act MS complex can be computed. Nevertheless, the complexities
introduced by a third dimension have prevented extensions of these
approaches to volumetric data.

Instead, discrete Morse theoretic approaches remain the only practi-
cal option for general computation of consistent topological structures
for sampled volumetric data. In this setting, the particular choices
of discrete gradient arrows completely determines both the topology
and geometry of computed features. Gyulassy et al. [15] showed that
by carefully integrating the probabilities of the eventual origin and
destinations of discrete gradient paths given a randomized gradient
arrow selection, choices could be made to avoid crossing manifold
boundaries, and thus recover an “accurate” MS complex with respect to
an underlying continuous gradient field. However, the key algorithmic
element making this approach tractable relied on solving a recurrence
relation, a fundamentally serial approach that cannot be scaled to large
data, both due to long computation times and the memory requirements
of storing the recurrence relation.

Our proposed approach adopts the conforming discrete gradient al-
gorithm presented by Gyulassy et al. [18]. In this work, the authors
presented a technique that allowed gradient arrow assignment to be
guided by a user-supplied labeling, while maintaining topological con-
sistency. Through naive numeric integration, they obtained origination
and termination maps for integral lines, using those maps to reconstruct
accurate manifolds. Critically, however, this approach did not produce
accurate embeddings of ascending/descending 1-manifolds for volumet-
ric data, as the algorithm reverted to steepest descent constrained to the
boundaries between 3-manifolds. Furthermore, the authors observed
challenges in obtaining high-quality origination/termination maps from
straightforward numeric integration. In this paper we present both an
approach to improve and accelerate the integration for accurate 2- and
3-manifolds as well as a new approach to improve the accuracy of
1-manifolds.
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3 BACKGROUND

We briefly review key concepts from Morse theory, and draw parallels
in discrete Morse theory to motivate our approach. This section restates
some definitions from recent works on computing MS complexes [4,
15, 18].

3.1 Morse Functions and the MS Complex

We present some common definitions from Morse theory, and refer the
reader to introductory books for more detail [28]. A scalar function
f:M→Rdefined over a compactd-manifoldMis aMorsefunction
if all itscritical points(points where the gradient vanishes,∇f=0)
are non-degenerate and have distinct values. A critical point is non-
degenerate if its Hessian is non-singular. For Morse functions, the
neighborhood of a critical pointptakes on a quadratic form, and can be
written asfp=±x

2
1±x

2
2···±x

2
d, where the number of minus signs in

this equation defines theindexof criticality. For instance, for volumetric
functions, minima are index-0, 1-saddles are index-1, 2-saddles are
index-2, and maxima are index-3.
An integral line infis a path inMwhose tangent vector agrees with

the gradient offat each point along the path. The integral line passing
through a pointpis the solution to

∂

∂t
L(t)=∇f(L(t)),∀t∈R (1)

with initial valueL(0)=p. The limit points ast→±∞are critical
points off, with the limit at−∞called theorigin, and∞thedestination
of the integral line. More intuitively, an integral line is a streamline
in the gradient vector field, whose endpoints are critical points off.
Ascendinganddescendingmanifolds are obtained as clusters of integral
lines having common origin, and destination, respectively.
The descending manifolds offform a cell complex that partitions

M; this partition is traditionally called theMorsecomplex. Similarly,
the ascending manifolds also partitionMin a cell complex. A Morse
functionfis aMorse-Smale functionif ascending and descending
manifolds of its critical points only intersect transversally. An index-i
critical point has ani-dimensional descending manifold and a(d−i)-
dimensional ascending manifold. For instance, for volumetric domains,
a maximum (index-3 critical point) has descending 3-manifold, and as-
cending 0-manifold, a 2-saddle (index-2) has a descending 2-manifold
and ascending 1-manifold, etc.

3.2 Discrete Morse Theory

Discrete Morse theory provides a parallel formulation of Morse theory
in the context of meshes. Rather than approximate continuous func-
tions with interpolation over elements, discrete Morse theory describes
criticality, integral lines, and ascending/descending manifolds directly
in terms of a discrete gradient vector field and a discrete flow oper-
ator. We present only concepts relevant to this work, and refer the
reader to Forman’s introductory work for more detail [13]. A mesh
representationKof ad-dimensional domainMis formed by cells from
dimension 0 (vertices) tod(d-cells). For regular complexes, such as
triangulations and regular grids, ani-cellαhasfacesthat are cells with
lower dimension on its boundary, andco-faces, cells for whichαis on
their boundary. For instance, for volumetric regular grid, a hexahedron
(3-cell), has 26 faces formed by 6 quads (2-cells), 12 edges (1-cells),
and 8 vertices (0-cells). Faces and co-faces that differ in dimension by
one are calledfacets, andco-facets, respectively.

Adiscrete vectoris formed by a pair a cellsα(i),β(i+1)whereα
is a facet ofβ. By convention, the lower-dimensional cell in a discrete
vector forms thetailof anarrow, and the higher-dimensional cell forms
thehead.Adiscrete vector fieldVis a set of discrete vectors where
each cell ofKappears in at most one vector. Cells not appearing in
any gradient vector arecritical cellswith index of criticality equal to
the dimension of the cell. The combinatorial analogue to integration
in a continuous vector field (equation(1)) is given by a discrete flow
operatorΦthat moves between cells ofKusing discrete vectors and
the facet relation between cells. Formally, for ani-cellα,

Φ(α)=∂i−1v(α), (2)

where we usev(β)to denote mapping the tail of a discrete vector to
its head, i.e.,v(α)=βifα,β∈V, and/0otherwise, and∂i−1maps
a cell to its facets. Repeatedly applying the flow operator “advects” a
cell in the discrete vector field. AV -pathis a sequence of cells

α
(i)
0,β

(i+1)
0 ,α

(i)
1,β

(i+1)
1 ,α

(i)
2,...,β

(i+1)
r ,α

(i)
r+1

such that for eachj= 0,..., r,α
(i)
j,β

(i+1)
j is a gradient arrow, and

α
(i)
j+1∈Φ(α

(i)
j), i.e., advecting fromα

(i)
j using the discrete flow opera-

torΦyieldsα
(i)
j+1. A discrete vector field is thediscrete gradient field

of a discrete Morse function if the flow operatorΦdoes not produce
anyV-paths containing loops. Just as with integral lines,V-paths origi-
nate/terminate at critical cells, and the ascending/descending manifolds
of thediscrete Morse-Smalecomplex are formed by cells inV-paths
originating and terminating at critical cells.
The main advantage to using discrete gradient vector fields, is that

once the discrete vectors are computed, finding critical points and the
ascending/descending manifolds of the MS complex becomes sim-
ple, applying combinatorial search algorithms. For instance, Shiv-
ashankar [34] described a simple breadth-first-search from each critical
cell to construct the 1-skeleton as well as the ascending/descending
manifolds of the complex. Furthermore, the discrete gradient field
naturally handles degeneracies that may occur in scalar data, such as
flat regions, guaranteeing a consistent topological structure.

3.3 Conforming Discrete Gradient

Gyulassy et al. [18] have presented an algorithm to compute a discrete
gradient vector field for sampled scalar data that also conforms to a
user-supplied labeling. In particular, it ensured that no discrete gradient
arrows are created that pair cells with different labels. The algorithm
is embarrassingly parallel with respect to vertices, and higher dimen-
sional cells are processed along with their highest vertex. The authors
presented a straightforward scheme to compute origination/termination
maps for each vertex/hexahedron of a regular grid, and label cells occur-
ring on the boundaries between 3-manifold regions. In this paper, we
greatly improve both the stability and speed of this approach, reducing
the amount of work that is needed to compute the labels. Furthermore,
we extend the approach with a new way of labeling cells belonging to
numerically integrated 1-manifolds, enabling the conforming discrete
gradient algorithm to produce discrete MS complexes with accurate
manifolds of every dimension.

3.4 Simplification and Persistence

A Morse-Smale function can be simplified by canceling a pair of critical
points connected by exactly one gradient path, corresponding to a local
smoothing of the function [12]. The cancellation operation can be
realized in a discrete gradient field by reversing the unique V-path
between the pair of critical cells [13]. Alternatively, cancellations
can be performed on the combinatorial structure of the Morse-Smale
complex by removing a pair of nodes and reconnecting of the nodes
and arcs around them. In both instances, repeated application of the
cancellation operation can be used to remove small features, such
as occurring from either low-amplitude noise in the data or artifacts
introduced when discretizing a continuous function onto a grid. The
persistenceof a pair of canceled critical points is the absolute difference
in function value between them.

4 MS COMPLEXES WITHIMPROVEDACCURACY

Adopting a discretized approach makes combinatorial algorithms possi-
ble. Regular grids remain a standard means of representing phenomena,
as the implicit neighborhood encoded by the array index of an element
allows more memory for high-resolution data values, rather than spatial
data structures. However, when a grid is used to discretize the gradient
flow operator, in the style of Forman’s discrete Morse theory, there are
limitations to the resolution of features that can be extracted. While
integral lines may become arbitrarily close and then separate in contin-
uous functions, in the discrete setting, once V-paths merge, they remain
united for the rest of the path. Given this fundamental limitation the
challenge is then to find the “best” discrete gradient field for a given
mesh to approximate a continuous gradient field. A simple answer
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Fig. 2. The geometric artifacts of steepest descent construction (left)
adds error to bond length calculations between lithium and oxygen atoms,
which can lead to erroneous omission of bonds from a reconstructed
molecular graph. The conforming algorithm [18] improves the 2- and
3-manifolds (middle), but not the 1-manifolds, leading to similar issues.
The approach proposed in this paper (right) improves the accuracy of
the geometric reconstruction, leading to more stable analysis.

features, while remaining in the confines of a combinatorially consistent
structure. This allows a user, for the first time, to select which features
defined using the MS complex they wish to extract with geometric
accuracy, and the algorithm performs the necessary computation. Not
only is the approach the fastest to date for constructing high-quality
discretizations, but it also selectively applies the computational effort
to only the structures needed for a particular use case. We evaluate our
results using various feature-driven tasks with datasets taken from a
variety of scientific domains. We report a 70x speedup with respect
to previous approaches using data up to 10x larger than previously
reported.
A Motivating Example:The geometric embedding of reconstructed
topological features can play a significant role in subsequent analysis.
This paper focuses on a new method for improving the accuracy of
the geometric embedding ofallascending/descending manifolds of
the MS complex. In particular, we extend the previous approach [18]
to include accurate 1-manifolds and to improve the identification of
2- and 3-manifolds. These structures play a significant role in many
application domains, for example in quantum chemistry. According
to the quantum theory of atoms in molecules [2], the ascending 1-
manifolds that connect 2-saddles with maxima form the bond paths
between atoms. Bond paths can curve, indicating strain on a system, and
the length of the paths can be used to determine whether or not a bond
exists. Figure 2 shows an example of lithium in an electrolyte, where
the bond path length calculation of the lithium-ethylene carbonate bond
is overestimated by 11% by steepest descent approaches. This error can
lead a scientist to erroneously omit a bond from the molecular graph of
a system. This use case is further evaluated in Section 5.3.

2 RELATEDWORK

Topology-base techniques have recently been gaining traction as a stan-
dard for analysis and visualization of scientific data. While topological
descriptions of features have existed since the 1800s [8, 27], recent ad-
vances describing their robust computation have accelerated adoption.
The ability to define a feature robustly within a topological framework
has enabled sophisticated analyses. For instance, Laney et al. [25] use
Morse complexes on triangulated isosurfaces to identify and measure
the formation of bubbles in Rayleigh-Taylor instabilities. Gyulassy et
al. [17] used the 1-skeleton of the MS complex to identify the core
structure of porous media and quantify loss of porosity. Bremer et
al. [6] identified burning regions in turbulent combustion as cells of the
Morse complex of temperature restricted to an isosurface of mixture
fraction. Kasten et al. [22] used Morse cells of acceleration magnitude
to segment vortical structures. Sousbie [35] computed the filamentary
structure of the density value of cosmology simulations using the 1-
skeleton of the MS complex, and characterized voids and surfaces using
the ascending 2- and 3-manifolds.
With the recent release of analysis tools based on Morse theory,

such as the generally applicable Topology Toolkit (TTK) [36], and
TopoMS [4] for the quantum theory of atoms in molecules [1–3], the
examples of wide-scale adoption are expected to increase substantially.
However, neither of these general tools is well suited for large data
which is becoming increasingly common.
To address this challenge new parallel algorithms for topological

analysis have been developed. In the distributed setting, Landge et
al. [24] describe an approach to compute merge treesin-situ, Moro-

zov and Weber [29] describe an approach to perform analysis with a
distributed contour tree. Shared memory approaches have also been
introduced, with Carr et al. [7] using a pointer-jumping technique to
parallelize contour tree computation, and Gueunet et al. [14] using rage-
space partitioning to find parallelism in the computation of a contour
tree.

The first practical algorithm to compute Morse complexes of two
dimensional, piecewise linear functions was introduced by Edelsbrun-
ner [11], notable in that it provided the first adaptation of the contin-
uous theory to practical sampled functions. While piecewise linear
approaches [5] proved useful for the analysis of two-dimensional data,
adaptation of this theory to volumetric data [10] proved prohibitively
complicated.

A key innovation enabling computation of Morse complexes for
volumetric data has been the introduction of discrete Morse theory
by Forman [13]. Rather than directly computing consistent gradient
features, this allowed the burden to shift to computation of a much
simpler discretized version of the gradient field. Several approaches
compute a discrete gradient field in a greedy manner: they assign an
arrow locally in the direction of steepest descent. The approaches intro-
duced by Lewiner [26], Gyulassy et al. [16], Reininghaus et al. [31, 32]
all perform this assignment in serial algorithms. Gyulassy et al. [21]
introduced a distributed parallel version of this algorithm, however this
approach produced artifacts on block boundaries. Faster, embarrass-
ingly parallel approaches were introduced by Robins et al. [33] and
Shivashankar et al. [34]. However each of these techniques employs
a kernel which locally picks discrete gradient arrows in the direction
of steepest descent. Gyulassy et al. [15] showed that such local op-
timization produces an artificial bias in features extracted from the
discrete gradient, and simply rotating the underlying grid with respect
to the function caused large-scale changes not only in the geometric
embedding of features, but also the connectivity of the MS complex.

Improved accuracy:Matching a computed MS complex to an underly-
ing interpolating function has been a sought after by many approaches:
Bremer et al. [5] produced exact complexes for two-dimensional trian-
gulated linear interpolants by splitting triangles to keep 1-manifolds
separated; and Norgard and Bremer [30] computed exact complexes
for two-dimensional bilinear interpolants. Chattopahdhyay et al. [9]
furthermore demonstrated that for continuous planar functions the ex-
act MS complex can be computed. Nevertheless, the complexities
introduced by a third dimension have prevented extensions of these
approaches to volumetric data.

Instead, discrete Morse theoretic approaches remain the only practi-
cal option for general computation of consistent topological structures
for sampled volumetric data. In this setting, the particular choices
of discrete gradient arrows completely determines both the topology
and geometry of computed features. Gyulassy et al. [15] showed that
by carefully integrating the probabilities of the eventual origin and
destinations of discrete gradient paths given a randomized gradient
arrow selection, choices could be made to avoid crossing manifold
boundaries, and thus recover an “accurate” MS complex with respect to
an underlying continuous gradient field. However, the key algorithmic
element making this approach tractable relied on solving a recurrence
relation, a fundamentally serial approach that cannot be scaled to large
data, both due to long computation times and the memory requirements
of storing the recurrence relation.

Our proposed approach adopts the conforming discrete gradient al-
gorithm presented by Gyulassy et al. [18]. In this work, the authors
presented a technique that allowed gradient arrow assignment to be
guided by a user-supplied labeling, while maintaining topological con-
sistency. Through naive numeric integration, they obtained origination
and termination maps for integral lines, using those maps to reconstruct
accurate manifolds. Critically, however, this approach did not produce
accurate embeddings of ascending/descending 1-manifolds for volumet-
ric data, as the algorithm reverted to steepest descent constrained to the
boundaries between 3-manifolds. Furthermore, the authors observed
challenges in obtaining high-quality origination/termination maps from
straightforward numeric integration. In this paper we present both an
approach to improve and accelerate the integration for accurate 2- and
3-manifolds as well as a new approach to improve the accuracy of
1-manifolds.
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3 BACKGROUND

We briefly review key concepts from Morse theory, and draw parallels
in discrete Morse theory to motivate our approach. This section restates
some definitions from recent works on computing MS complexes [4,
15, 18].

3.1 Morse Functions and the MS Complex

We present some common definitions from Morse theory, and refer the
reader to introductory books for more detail [28]. A scalar function
f:M→Rdefined over a compactd-manifoldMis aMorsefunction
if all itscritical points(points where the gradient vanishes,∇f=0)
are non-degenerate and have distinct values. A critical point is non-
degenerate if its Hessian is non-singular. For Morse functions, the
neighborhood of a critical pointptakes on a quadratic form, and can be
written asfp=±x

2
1±x

2
2···±x

2
d, where the number of minus signs in

this equation defines theindexof criticality. For instance, for volumetric
functions, minima are index-0, 1-saddles are index-1, 2-saddles are
index-2, and maxima are index-3.
An integral line infis a path inMwhose tangent vector agrees with

the gradient offat each point along the path. The integral line passing
through a pointpis the solution to

∂

∂t
L(t)=∇f(L(t)),∀t∈R (1)

with initial valueL(0)=p. The limit points ast→±∞are critical
points off, with the limit at−∞called theorigin, and∞thedestination
of the integral line. More intuitively, an integral line is a streamline
in the gradient vector field, whose endpoints are critical points off.
Ascendinganddescendingmanifolds are obtained as clusters of integral
lines having common origin, and destination, respectively.
The descending manifolds offform a cell complex that partitions

M; this partition is traditionally called theMorsecomplex. Similarly,
the ascending manifolds also partitionMin a cell complex. A Morse
functionfis aMorse-Smale functionif ascending and descending
manifolds of its critical points only intersect transversally. An index-i
critical point has ani-dimensional descending manifold and a(d−i)-
dimensional ascending manifold. For instance, for volumetric domains,
a maximum (index-3 critical point) has descending 3-manifold, and as-
cending 0-manifold, a 2-saddle (index-2) has a descending 2-manifold
and ascending 1-manifold, etc.

3.2 Discrete Morse Theory

Discrete Morse theory provides a parallel formulation of Morse theory
in the context of meshes. Rather than approximate continuous func-
tions with interpolation over elements, discrete Morse theory describes
criticality, integral lines, and ascending/descending manifolds directly
in terms of a discrete gradient vector field and a discrete flow oper-
ator. We present only concepts relevant to this work, and refer the
reader to Forman’s introductory work for more detail [13]. A mesh
representationKof ad-dimensional domainMis formed by cells from
dimension 0 (vertices) tod(d-cells). For regular complexes, such as
triangulations and regular grids, ani-cellαhasfacesthat are cells with
lower dimension on its boundary, andco-faces, cells for whichαis on
their boundary. For instance, for volumetric regular grid, a hexahedron
(3-cell), has 26 faces formed by 6 quads (2-cells), 12 edges (1-cells),
and 8 vertices (0-cells). Faces and co-faces that differ in dimension by
one are calledfacets, andco-facets, respectively.

Adiscrete vectoris formed by a pair a cellsα(i),β(i+1)whereα
is a facet ofβ. By convention, the lower-dimensional cell in a discrete
vector forms thetailof anarrow, and the higher-dimensional cell forms
thehead.Adiscrete vector fieldVis a set of discrete vectors where
each cell ofKappears in at most one vector. Cells not appearing in
any gradient vector arecritical cellswith index of criticality equal to
the dimension of the cell. The combinatorial analogue to integration
in a continuous vector field (equation(1)) is given by a discrete flow
operatorΦthat moves between cells ofKusing discrete vectors and
the facet relation between cells. Formally, for ani-cellα,

Φ(α)=∂i−1v(α), (2)

where we usev(β)to denote mapping the tail of a discrete vector to
its head, i.e.,v(α)=βifα,β∈V, and/0otherwise, and∂i−1maps
a cell to its facets. Repeatedly applying the flow operator “advects” a
cell in the discrete vector field. AV -pathis a sequence of cells

α
(i)
0,β

(i+1)
0 ,α

(i)
1,β

(i+1)
1 ,α

(i)
2,...,β

(i+1)
r ,α

(i)
r+1

such that for eachj= 0,..., r,α
(i)
j,β

(i+1)
j is a gradient arrow, and

α
(i)
j+1∈Φ(α

(i)
j), i.e., advecting fromα

(i)
j using the discrete flow opera-

torΦyieldsα
(i)
j+1. A discrete vector field is thediscrete gradient field

of a discrete Morse function if the flow operatorΦdoes not produce
anyV-paths containing loops. Just as with integral lines,V-paths origi-
nate/terminate at critical cells, and the ascending/descending manifolds
of thediscrete Morse-Smalecomplex are formed by cells inV-paths
originating and terminating at critical cells.
The main advantage to using discrete gradient vector fields, is that

once the discrete vectors are computed, finding critical points and the
ascending/descending manifolds of the MS complex becomes sim-
ple, applying combinatorial search algorithms. For instance, Shiv-
ashankar [34] described a simple breadth-first-search from each critical
cell to construct the 1-skeleton as well as the ascending/descending
manifolds of the complex. Furthermore, the discrete gradient field
naturally handles degeneracies that may occur in scalar data, such as
flat regions, guaranteeing a consistent topological structure.

3.3 Conforming Discrete Gradient

Gyulassy et al. [18] have presented an algorithm to compute a discrete
gradient vector field for sampled scalar data that also conforms to a
user-supplied labeling. In particular, it ensured that no discrete gradient
arrows are created that pair cells with different labels. The algorithm
is embarrassingly parallel with respect to vertices, and higher dimen-
sional cells are processed along with their highest vertex. The authors
presented a straightforward scheme to compute origination/termination
maps for each vertex/hexahedron of a regular grid, and label cells occur-
ring on the boundaries between 3-manifold regions. In this paper, we
greatly improve both the stability and speed of this approach, reducing
the amount of work that is needed to compute the labels. Furthermore,
we extend the approach with a new way of labeling cells belonging to
numerically integrated 1-manifolds, enabling the conforming discrete
gradient algorithm to produce discrete MS complexes with accurate
manifolds of every dimension.

3.4 Simplification and Persistence

A Morse-Smale function can be simplified by canceling a pair of critical
points connected by exactly one gradient path, corresponding to a local
smoothing of the function [12]. The cancellation operation can be
realized in a discrete gradient field by reversing the unique V-path
between the pair of critical cells [13]. Alternatively, cancellations
can be performed on the combinatorial structure of the Morse-Smale
complex by removing a pair of nodes and reconnecting of the nodes
and arcs around them. In both instances, repeated application of the
cancellation operation can be used to remove small features, such
as occurring from either low-amplitude noise in the data or artifacts
introduced when discretizing a continuous function onto a grid. The
persistenceof a pair of canceled critical points is the absolute difference
in function value between them.

4 MS COMPLEXES WITHIMPROVEDACCURACY

Adopting a discretized approach makes combinatorial algorithms possi-
ble. Regular grids remain a standard means of representing phenomena,
as the implicit neighborhood encoded by the array index of an element
allows more memory for high-resolution data values, rather than spatial
data structures. However, when a grid is used to discretize the gradient
flow operator, in the style of Forman’s discrete Morse theory, there are
limitations to the resolution of features that can be extracted. While
integral lines may become arbitrarily close and then separate in contin-
uous functions, in the discrete setting, once V-paths merge, they remain
united for the rest of the path. Given this fundamental limitation the
challenge is then to find the “best” discrete gradient field for a given
mesh to approximate a continuous gradient field. A simple answer
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would be choosing discrete gradient arrows that minimizeglobally
the distance between the V-path originating from each cell and the
continuous integral line passing through its centroid. However, not only
is this global solution difficult to compute it is likely not optimal for
any particular feature definition. Instead, focusing effort only on those
integral lines that matter to a specific feature class better utilizes the
finite resolution and representational capability of a discrete gradient,
with lower chance of discretization artifacts occurring. In practice, most
analysis tasks using the MS complex only require specific manifolds
at some persistence simplification threshold, alleviating the need to
reconstruct the finest topological features with accurate geometry.
Challenges of consistent numeric integration:For sampled data it is
well known that obtaining a “continuous” representation that is both
valid and self-consistent is extremely difficult. Even seemingly simple
tasks, such as identifying the location of critical points, become difficult.
For instance, discontinuities in the numeric derivatives, floating point
error, and degenerate (flat) regions in data can cause errors in the loca-
tion and index of critical points found. Indeed, in general, numerically
based methods seldom are able to identify critical points in a manner
consistent with the Poincare-Hopf theorem, i.e. thereMorse sumfails to
match the Euler characteristic of the domain. In addition, numerically
computed integral lines have been observed to cross or merge. For
example, naive integration near unstable critical points caused crossing
integral lines, resulting in interleaved origin/destination regions and
corrupted boundary maps in [18]. While simulation codes and some
analysis systems, such as Diderot [23], utilize higher order stencils and
therefore have continuous first and second derivatives it is almost im-
possible to guarantee that critical points and integral lines are computed
consistent with the theoretical requirements of a Morse function.
Overview of approach:Our new approach combines several distinct
stages depending on what features are constructed with improved accu-
racy. All use cases first construct a steepest descent discrete gradient
field using Robin’s algorithm [33]. If any accurate manifolds are re-
quired, each cell ofKis given a uniform label. If a user requires
accurate 2- or 3- manifolds, volumetric regions are identified through
numeric integration, recording whether or not each cell is on the bound-
ary of regions in the labeling. If accurate 1-manifolds are required,
numeric streamlines are computed from each 1- and 2-saddle, and digi-
tized, recording in the labeling which cells are traversed by the numeric
lines. Finally, the conforming gradient algorithm [18] is supplied with
the label map, and the neighborhoods of cells with changed labels are
re-processed.

4.1 Numeric Integration for Volumetric Decomposition

Recall that each ascending/descending 3-manifold of the MS complex
is composed of a critical point combined with all the integral lines that
originate/terminate at that point. The approach initially seems straight-
forward: for each vertex of the mesh, trace an integral line numerically
in the positive and negative gradient direction, and label vertices with
the identifier of the maximum/minimum where that gradient line orig-
inates/terminates. To avoid the problems mentioned in numerically
finding these critical points, we instead create large targets - regions
where, upon entry, an integral line can be safely clamped to the com-
binatorial critical point. Specifically, thecertain regionof a minimum
consists of the vertices whereany possiblemonotonically decreasing
V-path originates at the minimum. Our approach first computes these
certain regions for each minimum and maximum of the steepest de-
scent gradient field to use as targets for numeric integration. This has
the dual benefit of increasing the agreement between the numeric and
combinatorial approaches and also to accelerate the numeric integration
through early termination. Indeed, we extend these regions as much
as possible, even performing persistence cancellations to merge, and
thus grow, the regions associated with low-persistence extrema. Next,
numeric integration is performed from each unlabeled vertex. Finally,
the resulting labeling is processed to remove discrepancies between
the numeric classification and the constraints of discrete gradient flow
being restricted to the cells of mesh. The output of this overall approach
is a label for each cell of the mesh whether it is interior to a 3-manifold
region, or on a boundary. Figure 3 illustrates the steps in this process.
Find Persistent Extrema:A discrete gradient vector field is computed
using Robins’ steepest descent approach [33]. The critical cells are ex-
tracted from this discrete gradient. Note that the ascending/descending
3-manifold associated with two extrema that merge during persis-

(a) (b) (c)

(d) (e) (f)

Fig. 3. We demonstrate creating a boundary label between descending
3-manifolds with the electron density of lithium in electrolyte scalar field,
volume rendered in (a). All maxima are found and their certain regions
computed, with their interface displayed as brown surfaces in (b). These
act as targets for numeric integration; any integral line entering such a
region can only end up at the combinatorial maximum that generates
the surface. For all vertices that have not been labeled as part of a
certain region, an integral line is traced in the gradient direction, until the
streamline crosses into a certain region. In (c) we color each streamline
according to its destination. Each vertex gets the label of its destination
region (d). However, as streamlines can pass between voxels, these
regions are not necessarily connected, as seen in the red circles. A
connected component sweep is performed using a Union-Find algorithm
to remove these regions (e). Finally, the cells on the boundaries of the
regions are marked in a label map (f).

Hcci Temperature slice

Origin map no simplification Origin map 0.01% persistence

Certain regions no simplification Certain regions 0.01% persistence

Fig. 4. We illustrate the effect of using pre-simplification of extremum
graphs during the construction of certain regions. Black regions in the
top images indicate verticesnotpart of certain regions. When extrema
are merged, a larger portion of the domain can be identified as having all
ascending/descending paths unambiguously terminating at an extremum.
For a Homogeneous charge compression ignition (HCCI) simulation,
the certain regions before (top middle) and after (top right) even a very
small threshold simplification occupy vastly different extents, which are
then mirrored in the origin maps that are computed through numeric
integration (bottom). For extracting a ridge-like flame surface, the coarser
topological scale is not only adequate, but potentially has fewer artifacts
where the mesh resolutions was unable to accommodate the high density
of varying integral line terminations.

tence simplification is simply the union of the individual ascend-
ing/descending 3-manifolds. By finding which ascending/descending
3-manifolds will end up merged, we will be able to identify larger
regions for later combinatorial termination of integral lines. Therefore,
given the critical points from the discrete gradient, extremum graphs

are computed. The nodes of an extremum graph are formed by the
extrema, and an arc exists between two nodes, if the 1-skeleton of the
MS complex connects the extrema through a saddle. The smaller of the
differences between the saddle and the two extrema are used as the cost
of canceling the arc. The extremum graph is simplified up to a user
provided threshold by successively merging the pair of nodes having
the lowest cost arc, representing a cancellation of one extremum with a
saddle. Our approach correctly identifies saddle-extremum persistence
pairs, and furthermore conveys the information of which extrema are
merged during simplification. The merging of nodes in the extremum
graph is implemented with a straightforward Union-Find data struc-
ture, with lazy update to the arcs. Although serial, since this step only
operates on critical points, it contributes a negligible time to the total
running time. Figure 4 illustrates the benefits of performing this merg-
ing - the targets for early termination of numeric integration cover a
significantly larger portion of the domain.
Certain regions:We define the certain region around a persistent
minimum to be the set of vertices where all monotonically decreasing
paths composed of vertices and edges terminate at the minimum, or
at a minimum that was merged into the persistent minimum in the
extremum graph. Each persistent minimum can be expanded to a
certain region independently and in parallel through a simple priority-
queue based region growing approach outlined in algorithm 1. Each
vertex in a certain region is labeled as part of that minimum’s ascending
3-manifold.

Algorithm 1CertainRegion(V)

PriorityQueuepq={}
R={}
ForvinV:pq.enqueue(v)
While(notpq.empty())
u=pq.topandpop()
if(all verticesw∈LowerNeighbors(u) are inR)
pq.enqueue(UpperNeighbors(u))
R.insert(u)

returnR

The algorithm takes the set of minimaVthat have been merged into
a single persistent minimum, and labels the associated region. Certain
regions for maxima are identified identically, when considering−fon
the dual graph ofK.
Numeric Integration: To identify which vertex should belong to
which ascending 3-manifold, for every vertex not already labeled in
a certain region, we numerically trace a streamline starting from the
vertex location in the negative gradient direction. In our approach, we
solve equation(1)using an adaptive stepsize Euler integrator, with
trilinearly interpolated gradient vectors, computed using central differ-
encing at the vertices. After every integration step, the point is checked
to determine if it has entered a certain region. If it has, the streamline
is stopped, and the original is point marked with the label of the certain
region. The same process is performed for descending 3-manifold,
integrating streamlines in the positive direction from the centers of
hexahedra.
While this process can be done in an embarrassingly parallel man-

ner, it is still computationally expensive. We accelerate the integration
by labeling every vertex a streamline passes near as part of its des-
tination’s certain region. This path compression greatly reduces the
amount of integration that needs to be done, however introduces incor-
rectly labeled vertices near boundaries. To solve this problem, a new
streamline is computed from every vertex on the boundary of regions
that does not terminate until it hits one of the original certain regions.
As labels change in this process, the new boundary vertices are also
re-integrated. In practice, using path-compression and re-integration
more than doubled the speed of the labeling compared to not using path
compression.
Topological cleaning:While it has been shown that a valid discrete
gradient and Morse complex can be computed for any label restric-
tion [18], in practice, producing a labeling that minimizes the number of
spurious regions reduces the downstream work. In the case of numeric
integration, an integral line may pass between vertices of another label
to terminate at a region that is not reachable via a vertex-edge path,
making the set of vertices belonging to a single region disconnected.

These spurious regions will generate extra critical points, but typically
with zero persistence, only existing in the discrete gradient due to the
label itself. Rather than expending the work to produce boundaries for
these regions, we perform a Union-Find to detect these regions and
re-label them with the label of the neighbor they would simplify to in
later simplification. Figure 3 (d,e) illustrates the result of this process.
Boundary labeling: The ultimate goal of the numeric integration is
to discover which cells ofKbelong to boundaries between ascending
3-manifolds. A cell is labeled as interior if all its vertices share the
same integrated origin label, and marked as boundary otherwise. For
descending 3-manifold maps, a cell is considered interior if all coface
hexahedra have the same destination label, and boundary otherwise.
We use a label of 0 to indicate interior cells, 1 to indicated bound-
ary between ascending 3-manifolds, 2 to indicate boundary between
descending 3-manifolds, and 3 to indicate both.

4.2 Accurate 1-Manifolds

Given the steepest descent discrete gradient, we wish to ensure that the
V-paths connecting 1-saddles to minima, and 2-saddles to maxima not
exhibit serious artifacts due to compounding the local error induced
by making steepest-descent decisions. Instead, given a continuous
integral line, connecting a saddle to extremum, we wish to modify the
discrete gradient such that the V-path deviates as little from the line as
possible. At best, this must be an approximate solution, since there is no
guarantee that the mesh has sufficient resolution to represent all saddle-
extremum V-paths optimally. Furthermore, the discrepancy between
interpolated values and interpolated gradients makes it possible for a
numerically integrated path to be non-monotone. Finally, numerically
computed integral lines can exhibit properties, such as crossing, that
are undesirable. Given these challenges, our approach is pragmatic:
compute approximate integral lines starting in the vicinity of where
the continuous line would be expected, integrate until an extremum is
reached, or the numeric integrator times out, fix the V-paths as best as
possible, and at least ensure combinatorial validity.
Starting integral lines: In the continuous case, the location of a
saddle point determines the starting point, and the eigenvectors of
the Hessian determine the direction an integral line takes to reach an
extremum. For a discrete 1-saddle, a gross approximation is to begin
integration downwards starting from the two vertices adjacent to the
edge. Figure 5 (c)(top) illustrates a case where this is not sufficient:
integrating down from both vertices adjacent to the critical edge results
in streamlines ending at the same minimum. This is due to the fact that
the steepest descent construction only guarantees that a critical point
of the right index appears in the lower star during a filtration - not that
the geometric location within the lower star is optimal. Therefore, we
start an integral line, not only from the immediately adjacent vertices,
but also along vertices one step from the critical edge along V-paths
terminating at that edge. The ascending integral lines from 2-saddles are
computed in a similar manner, from the centers of hexahedra adjacent,
and V-path connected to the critical quadrilateral.
Ending integral lines: We terminate an integral line when it enters
the vicinity of a critical cell. For descending 1-saddle to minimum
lines, if the numeric integration enters within a one-half grid cell from
a combinatorially identified minimum, the integration terminates. As-
cending 2-saddle maximum lines terminate when they enter a critical
hexahedron. However, in practice, numeric integrators often stall, for
instance in flat-bottomed valleys with steep sides, or in flat regions of
the data. A maximum iteration limit is used to forcibly terminate nu-
meric integration of streamlines that have stalled. Figure 5(a) shows the
numeric streamlines that are computed for the 8-Gaussians example.
Discretizing numeric lines: An integral line computed through nu-
meric integration consists of a sequence discrete point locations con-
nected by straight line segments. To translate this back to the com-
binatorial discrete gradient setting, we employ a similar strategy to
the boundary map used with 3-manifolds: we label each cell of the
mesh that the line passes near as being part of an ascending/descending
1-manifold. More specifically, each segment of an ascending integral
line is checked, labeling all hexahedra and quadrilaterals they pass
through as part of an ascending 1-manifold. Descending lines are han-
dled similarly, marking each vertex and edge if the corresponding hexes
and quads in the dual mesh are crossed. The effect is to rasterize each
streamline onto cells of the mesh. Figure 5(b) illustrates the set of cells
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would be choosing discrete gradient arrows that minimizeglobally
the distance between the V-path originating from each cell and the
continuous integral line passing through its centroid. However, not only
is this global solution difficult to compute it is likely not optimal for
any particular feature definition. Instead, focusing effort only on those
integral lines that matter to a specific feature class better utilizes the
finite resolution and representational capability of a discrete gradient,
with lower chance of discretization artifacts occurring. In practice, most
analysis tasks using the MS complex only require specific manifolds
at some persistence simplification threshold, alleviating the need to
reconstruct the finest topological features with accurate geometry.
Challenges of consistent numeric integration:For sampled data it is
well known that obtaining a “continuous” representation that is both
valid and self-consistent is extremely difficult. Even seemingly simple
tasks, such as identifying the location of critical points, become difficult.
For instance, discontinuities in the numeric derivatives, floating point
error, and degenerate (flat) regions in data can cause errors in the loca-
tion and index of critical points found. Indeed, in general, numerically
based methods seldom are able to identify critical points in a manner
consistent with the Poincare-Hopf theorem, i.e. thereMorse sumfails to
match the Euler characteristic of the domain. In addition, numerically
computed integral lines have been observed to cross or merge. For
example, naive integration near unstable critical points caused crossing
integral lines, resulting in interleaved origin/destination regions and
corrupted boundary maps in [18]. While simulation codes and some
analysis systems, such as Diderot [23], utilize higher order stencils and
therefore have continuous first and second derivatives it is almost im-
possible to guarantee that critical points and integral lines are computed
consistent with the theoretical requirements of a Morse function.
Overview of approach:Our new approach combines several distinct
stages depending on what features are constructed with improved accu-
racy. All use cases first construct a steepest descent discrete gradient
field using Robin’s algorithm [33]. If any accurate manifolds are re-
quired, each cell ofKis given a uniform label. If a user requires
accurate 2- or 3- manifolds, volumetric regions are identified through
numeric integration, recording whether or not each cell is on the bound-
ary of regions in the labeling. If accurate 1-manifolds are required,
numeric streamlines are computed from each 1- and 2-saddle, and digi-
tized, recording in the labeling which cells are traversed by the numeric
lines. Finally, the conforming gradient algorithm [18] is supplied with
the label map, and the neighborhoods of cells with changed labels are
re-processed.

4.1 Numeric Integration for Volumetric Decomposition

Recall that each ascending/descending 3-manifold of the MS complex
is composed of a critical point combined with all the integral lines that
originate/terminate at that point. The approach initially seems straight-
forward: for each vertex of the mesh, trace an integral line numerically
in the positive and negative gradient direction, and label vertices with
the identifier of the maximum/minimum where that gradient line orig-
inates/terminates. To avoid the problems mentioned in numerically
finding these critical points, we instead create large targets - regions
where, upon entry, an integral line can be safely clamped to the com-
binatorial critical point. Specifically, thecertain regionof a minimum
consists of the vertices whereany possiblemonotonically decreasing
V-path originates at the minimum. Our approach first computes these
certain regions for each minimum and maximum of the steepest de-
scent gradient field to use as targets for numeric integration. This has
the dual benefit of increasing the agreement between the numeric and
combinatorial approaches and also to accelerate the numeric integration
through early termination. Indeed, we extend these regions as much
as possible, even performing persistence cancellations to merge, and
thus grow, the regions associated with low-persistence extrema. Next,
numeric integration is performed from each unlabeled vertex. Finally,
the resulting labeling is processed to remove discrepancies between
the numeric classification and the constraints of discrete gradient flow
being restricted to the cells of mesh. The output of this overall approach
is a label for each cell of the mesh whether it is interior to a 3-manifold
region, or on a boundary. Figure 3 illustrates the steps in this process.
Find Persistent Extrema:A discrete gradient vector field is computed
using Robins’ steepest descent approach [33]. The critical cells are ex-
tracted from this discrete gradient. Note that the ascending/descending
3-manifold associated with two extrema that merge during persis-

(a) (b) (c)

(d) (e) (f)

Fig. 3. We demonstrate creating a boundary label between descending
3-manifolds with the electron density of lithium in electrolyte scalar field,
volume rendered in (a). All maxima are found and their certain regions
computed, with their interface displayed as brown surfaces in (b). These
act as targets for numeric integration; any integral line entering such a
region can only end up at the combinatorial maximum that generates
the surface. For all vertices that have not been labeled as part of a
certain region, an integral line is traced in the gradient direction, until the
streamline crosses into a certain region. In (c) we color each streamline
according to its destination. Each vertex gets the label of its destination
region (d). However, as streamlines can pass between voxels, these
regions are not necessarily connected, as seen in the red circles. A
connected component sweep is performed using a Union-Find algorithm
to remove these regions (e). Finally, the cells on the boundaries of the
regions are marked in a label map (f).

Hcci Temperature slice

Origin map no simplification Origin map 0.01% persistence

Certain regions no simplification Certain regions 0.01% persistence

Fig. 4. We illustrate the effect of using pre-simplification of extremum
graphs during the construction of certain regions. Black regions in the
top images indicate verticesnotpart of certain regions. When extrema
are merged, a larger portion of the domain can be identified as having all
ascending/descending paths unambiguously terminating at an extremum.
For a Homogeneous charge compression ignition (HCCI) simulation,
the certain regions before (top middle) and after (top right) even a very
small threshold simplification occupy vastly different extents, which are
then mirrored in the origin maps that are computed through numeric
integration (bottom). For extracting a ridge-like flame surface, the coarser
topological scale is not only adequate, but potentially has fewer artifacts
where the mesh resolutions was unable to accommodate the high density
of varying integral line terminations.

tence simplification is simply the union of the individual ascend-
ing/descending 3-manifolds. By finding which ascending/descending
3-manifolds will end up merged, we will be able to identify larger
regions for later combinatorial termination of integral lines. Therefore,
given the critical points from the discrete gradient, extremum graphs

are computed. The nodes of an extremum graph are formed by the
extrema, and an arc exists between two nodes, if the 1-skeleton of the
MS complex connects the extrema through a saddle. The smaller of the
differences between the saddle and the two extrema are used as the cost
of canceling the arc. The extremum graph is simplified up to a user
provided threshold by successively merging the pair of nodes having
the lowest cost arc, representing a cancellation of one extremum with a
saddle. Our approach correctly identifies saddle-extremum persistence
pairs, and furthermore conveys the information of which extrema are
merged during simplification. The merging of nodes in the extremum
graph is implemented with a straightforward Union-Find data struc-
ture, with lazy update to the arcs. Although serial, since this step only
operates on critical points, it contributes a negligible time to the total
running time. Figure 4 illustrates the benefits of performing this merg-
ing - the targets for early termination of numeric integration cover a
significantly larger portion of the domain.
Certain regions:We define the certain region around a persistent
minimum to be the set of vertices where all monotonically decreasing
paths composed of vertices and edges terminate at the minimum, or
at a minimum that was merged into the persistent minimum in the
extremum graph. Each persistent minimum can be expanded to a
certain region independently and in parallel through a simple priority-
queue based region growing approach outlined in algorithm 1. Each
vertex in a certain region is labeled as part of that minimum’s ascending
3-manifold.

Algorithm 1CertainRegion(V)

PriorityQueuepq={}
R={}
ForvinV:pq.enqueue(v)
While(notpq.empty())
u=pq.topandpop()
if(all verticesw∈LowerNeighbors(u) are inR)
pq.enqueue(UpperNeighbors(u))
R.insert(u)

returnR

The algorithm takes the set of minimaVthat have been merged into
a single persistent minimum, and labels the associated region. Certain
regions for maxima are identified identically, when considering−fon
the dual graph ofK.
Numeric Integration: To identify which vertex should belong to
which ascending 3-manifold, for every vertex not already labeled in
a certain region, we numerically trace a streamline starting from the
vertex location in the negative gradient direction. In our approach, we
solve equation(1)using an adaptive stepsize Euler integrator, with
trilinearly interpolated gradient vectors, computed using central differ-
encing at the vertices. After every integration step, the point is checked
to determine if it has entered a certain region. If it has, the streamline
is stopped, and the original is point marked with the label of the certain
region. The same process is performed for descending 3-manifold,
integrating streamlines in the positive direction from the centers of
hexahedra.
While this process can be done in an embarrassingly parallel man-

ner, it is still computationally expensive. We accelerate the integration
by labeling every vertex a streamline passes near as part of its des-
tination’s certain region. This path compression greatly reduces the
amount of integration that needs to be done, however introduces incor-
rectly labeled vertices near boundaries. To solve this problem, a new
streamline is computed from every vertex on the boundary of regions
that does not terminate until it hits one of the original certain regions.
As labels change in this process, the new boundary vertices are also
re-integrated. In practice, using path-compression and re-integration
more than doubled the speed of the labeling compared to not using path
compression.
Topological cleaning:While it has been shown that a valid discrete
gradient and Morse complex can be computed for any label restric-
tion [18], in practice, producing a labeling that minimizes the number of
spurious regions reduces the downstream work. In the case of numeric
integration, an integral line may pass between vertices of another label
to terminate at a region that is not reachable via a vertex-edge path,
making the set of vertices belonging to a single region disconnected.

These spurious regions will generate extra critical points, but typically
with zero persistence, only existing in the discrete gradient due to the
label itself. Rather than expending the work to produce boundaries for
these regions, we perform a Union-Find to detect these regions and
re-label them with the label of the neighbor they would simplify to in
later simplification. Figure 3 (d,e) illustrates the result of this process.
Boundary labeling: The ultimate goal of the numeric integration is
to discover which cells ofKbelong to boundaries between ascending
3-manifolds. A cell is labeled as interior if all its vertices share the
same integrated origin label, and marked as boundary otherwise. For
descending 3-manifold maps, a cell is considered interior if all coface
hexahedra have the same destination label, and boundary otherwise.
We use a label of 0 to indicate interior cells, 1 to indicated bound-
ary between ascending 3-manifolds, 2 to indicate boundary between
descending 3-manifolds, and 3 to indicate both.

4.2 Accurate 1-Manifolds

Given the steepest descent discrete gradient, we wish to ensure that the
V-paths connecting 1-saddles to minima, and 2-saddles to maxima not
exhibit serious artifacts due to compounding the local error induced
by making steepest-descent decisions. Instead, given a continuous
integral line, connecting a saddle to extremum, we wish to modify the
discrete gradient such that the V-path deviates as little from the line as
possible. At best, this must be an approximate solution, since there is no
guarantee that the mesh has sufficient resolution to represent all saddle-
extremum V-paths optimally. Furthermore, the discrepancy between
interpolated values and interpolated gradients makes it possible for a
numerically integrated path to be non-monotone. Finally, numerically
computed integral lines can exhibit properties, such as crossing, that
are undesirable. Given these challenges, our approach is pragmatic:
compute approximate integral lines starting in the vicinity of where
the continuous line would be expected, integrate until an extremum is
reached, or the numeric integrator times out, fix the V-paths as best as
possible, and at least ensure combinatorial validity.
Starting integral lines: In the continuous case, the location of a
saddle point determines the starting point, and the eigenvectors of
the Hessian determine the direction an integral line takes to reach an
extremum. For a discrete 1-saddle, a gross approximation is to begin
integration downwards starting from the two vertices adjacent to the
edge. Figure 5 (c)(top) illustrates a case where this is not sufficient:
integrating down from both vertices adjacent to the critical edge results
in streamlines ending at the same minimum. This is due to the fact that
the steepest descent construction only guarantees that a critical point
of the right index appears in the lower star during a filtration - not that
the geometric location within the lower star is optimal. Therefore, we
start an integral line, not only from the immediately adjacent vertices,
but also along vertices one step from the critical edge along V-paths
terminating at that edge. The ascending integral lines from 2-saddles are
computed in a similar manner, from the centers of hexahedra adjacent,
and V-path connected to the critical quadrilateral.
Ending integral lines: We terminate an integral line when it enters
the vicinity of a critical cell. For descending 1-saddle to minimum
lines, if the numeric integration enters within a one-half grid cell from
a combinatorially identified minimum, the integration terminates. As-
cending 2-saddle maximum lines terminate when they enter a critical
hexahedron. However, in practice, numeric integrators often stall, for
instance in flat-bottomed valleys with steep sides, or in flat regions of
the data. A maximum iteration limit is used to forcibly terminate nu-
meric integration of streamlines that have stalled. Figure 5(a) shows the
numeric streamlines that are computed for the 8-Gaussians example.
Discretizing numeric lines: An integral line computed through nu-
meric integration consists of a sequence discrete point locations con-
nected by straight line segments. To translate this back to the com-
binatorial discrete gradient setting, we employ a similar strategy to
the boundary map used with 3-manifolds: we label each cell of the
mesh that the line passes near as being part of an ascending/descending
1-manifold. More specifically, each segment of an ascending integral
line is checked, labeling all hexahedra and quadrilaterals they pass
through as part of an ascending 1-manifold. Descending lines are han-
dled similarly, marking each vertex and edge if the corresponding hexes
and quads in the dual mesh are crossed. The effect is to rasterize each
streamline onto cells of the mesh. Figure 5(b) illustrates the set of cells

Authorized licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:11:53 UTC from IEEE Xplore.  Restrictions apply. 



1188  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

(a) (b) (c) (d)

Fig. 5. Accurate 1-manifold construction is shown for a smaller 8-Gaussian dataset. Numeric streamlines are computed starting from cells in V-paths
within 1 step from to saddles (a). These paths are rasterized, labeling the nearby cells of appropriate dimension (b). Inconsistencies between
numerically computed lines and the combinatorial critical points (c), or insufficient mesh resolution (d) will cause new critical cells to appear after a
conforming discrete gradient is computed.

marked by the numerically computed ascending and descending inte-
gral lines. During discretization, if a numeric path enters a previously
labeled region, it is truncated to ensure that once vertex-edge and quad-
hex V-paths merge, they will not split; no further information from
the numeric integral line can be used after it merges with an existing
path. This opportunistic labeling introduces an order-dependence that
is non-deterministic with parallel execution. The first 1-manifold to
write the label map is reconstructed optimally, while subsequent arcs
may shift 1/2 cell every time their discretized path joins another.
Local Cancellations: In certain cases, the numerically computed
integral line is discretized in a manner that the discrete path is no
longer monotonic. Figure 5(d) illustrates such a case, where the labeled
vertex-edge path can not follow the descending path, which results in
the subsequent conforming discrete gradient algorithm to mark those
cells as critical. We provide the option for a user to perform local
cancellations up to a threshold, where only adjacent critical cells having
the same label are considered. This local cancellation creates a discrete
gradient arrow that allows the continuation of the V-path along the
numerically integrated one.

4.3 Parallel Discrete Gradient Computation

So far, the parallel numeric integration resulted in labels on cells as to
whether they belong ascending/descending 1-manifolds or the bound-
aries of ascending/descending 3-manifolds. We use these labels as in
input to the conforming discrete gradient algorithm [18]. This algorithm
assigns discrete gradient arrows in parallel, guaranteeing that both head
and tail of each gradient arrow belong to the same label class. The effect
of this constraint is that no discrete gradient arrow crosses between the
ascending 3-manifolds, ensuring that their separating 2-manifolds, as
computed in the discrete gradient, live on the boundary of the regions
computed numerically. Furthermore, cells belonging to 1-manifolds
are labeled such that they can only pair amongst themselves, guiding
V-paths from saddles to extrema. Figure 5(c)(bottom) colors cells based
on which lower star they belong to: similar colors can be paired in dis-
crete gradient arrows. As the conforming gradient algorithm operates
independently on the lower stars of vertices, it is sufficient to detect
which vertices have cells in their lower star with non-zero label, and
recompute the discrete gradient only on those vertices.

5 RESULTS

We demonstrate the accuracy of our approach by comparing qualita-
tively and quantitatively to a known simple example. We illustrate the
flexibility of our approach by allowing selective computation of man-
ifolds with improved accuracy. Next, we demonstrate a practical use
case in molecular analysis where the accuracy our approach is needed
to reduce the error of a specific analysis task. Additional examples are
shown motivating the need for selective reconstruction with improved
accuracy. Finally, performance characteristics are reported.

5.1 Accurate Geometry of a Simple Example

We have chosen a simple example to validate our approach. The 8-
Gaussians dataset is constructed by summing eight Gaussian functions
centered at the eight corners of a cube with sigma equal to half the
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Fig. 6. The 8-Gaussians function (a) has an analytic MS complex (b) that
evenly divides the cube. When the function is sampled onto a grid rotated
with respect to the 8-Gaussians cube, the quality of reconstructed fea-
tures is impacted by the choice of algorithm. The yellow dotted line iden-
tifies the same 1-manifold in all sub-images. All ascending/descending
manifolds of the steepest descent discrete gradient construction [33] are
biased by the underlying grid, and thus are deformed (c). Computing
accurate 3-manifolds using the conforming algorithm [18] provides no
guarantees for the quality of 1-manifolds (d). Our approach produces the
reconstruction with accurate 1-, 2-, and 3-manifolds (e). The distance
between the (yellow dotted) exact 1-manifold and computed ones is
plotted (f), showing that our approach remains within a one-half grid cell
spacing from the analytic path. Plotting the function value vs. distance
along the path (g) further illustrates the quantitative reduction in error
when using our approach.

distance between corners. Figure 6 (a) shows a volume rendering of
the dataset, and (b) shows the analytic MS complex for this function
(omitting only arcs/nodes connecting to the domain boundary). This
dataset is chosen to make validation simple as its analytic solution is
known (to within a small epsilon): maxima should appear at the corners
of the cube, 2-saddles at the mid-point of the edges, 1-saddles at the
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Fig. 7. Each column shows the components of the MS complex computed from a discrete gradient with selected accuracy. The rows show the
geometric embedding of nodes and arcs (top), ascending 3-manifold boundaries (middle) and descending 3-manifold boundaries (bottom).

mid-point of quads, and a minimum in the exact center. Furthermore,
ascending 1-manifolds should be straight connectors between maxima,
descending 1-manifolds form straight lines from the center of the cube
out through the middle of each quad, the ascending 3-manifold of the
central minimum have the boundary in the shape of a cube, and the
descending 3-manifolds have planar boundaries exactly dividing the
cube into eight sub-cubes. The 8-Gaussians function is sampled onto a
uniform grid rotated first around the Z axis, then around the Y axis. An
isometric transformation of the cube corresponds to the same isometric
transformation of the analytic MS complex. Figure 6 (c) shows that
steepest descent gradient assignment biases 1-, 2-, and 3-manifolds
in the direction of the underlying grid, deforming the reconstructed
features. Figure 6 (d) illustrates the result of only computing accurate
2- and 3-manifolds, as done by Gyulassy et al. [18], where the high-
lighted 1-manifold displays the same artifact as the steepest descent
approach. Figure 6 (e) shows the result of our new approach, with each
reconstructed feature being at most one-half grid cell away from the
analytic solution. Figure 6 (f) plots the deviation of the 1-manifolds
compared to the exact solution. Note that under mesh refinement, the er-
ror associated with steepest descent does not decrease, in contrast with
our improved accuracy approach. The differences in the 1-manifold
reconstructions matter: figure 6 (g) shows that any analyses based on
the geometric embedding of the arc, such as function value vs. length,
will be impacted.

5.2 Flexibility of the Approach

We demonstrate the flexibility of our approach with the 8-Gaussians
example in figure 7, demonstrating a user’s ability to select which as-
cending/descending manifolds are constructed with improved accuracy.
Focusing computational effort on only those features required by an
analysis task accelerates the overall computation.
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Fig. 8. The 2-saddle-maximum arcs of the MS complex form possible
bond paths between atoms and molecules. The steepest descent paths
(blue, green) are displayed over the accurate ones (yellow, magenta). The
circled bond paths (left) are plotted (right) illustrating dramatic differences
in their intensity profiles along the paths.

5.3 A Practical Use Case: Lithium Bonding

We mirror the analysis performed on the 8-Gaussians example in sec-
tion 5.1 with the electron density field of a lithium in electrolyte simu-
lation. Introduced by Bader’s group, the quantum theory of atoms in
molecules (QTAIM) [2] casts molecular features in topological terms.
For example, an atomic basins corresponds to descending 3-manifolds
in the electron density field, interatomic surface correspond to descend-
ing 2-manifolds from 2-saddles, and bond path correspond to ascending
1-manifolds from 2-saddles. We refer the reader to Bhatia et al. [4]
for a more in-depth discussion. Bond paths, in particular are used in
classifying bonds, and the curvature of the path can indicate strain on
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(a) (b) (c) (d)

Fig. 5. Accurate 1-manifold construction is shown for a smaller 8-Gaussian dataset. Numeric streamlines are computed starting from cells in V-paths
within 1 step from to saddles (a). These paths are rasterized, labeling the nearby cells of appropriate dimension (b). Inconsistencies between
numerically computed lines and the combinatorial critical points (c), or insufficient mesh resolution (d) will cause new critical cells to appear after a
conforming discrete gradient is computed.

marked by the numerically computed ascending and descending inte-
gral lines. During discretization, if a numeric path enters a previously
labeled region, it is truncated to ensure that once vertex-edge and quad-
hex V-paths merge, they will not split; no further information from
the numeric integral line can be used after it merges with an existing
path. This opportunistic labeling introduces an order-dependence that
is non-deterministic with parallel execution. The first 1-manifold to
write the label map is reconstructed optimally, while subsequent arcs
may shift 1/2 cell every time their discretized path joins another.
Local Cancellations: In certain cases, the numerically computed
integral line is discretized in a manner that the discrete path is no
longer monotonic. Figure 5(d) illustrates such a case, where the labeled
vertex-edge path can not follow the descending path, which results in
the subsequent conforming discrete gradient algorithm to mark those
cells as critical. We provide the option for a user to perform local
cancellations up to a threshold, where only adjacent critical cells having
the same label are considered. This local cancellation creates a discrete
gradient arrow that allows the continuation of the V-path along the
numerically integrated one.

4.3 Parallel Discrete Gradient Computation

So far, the parallel numeric integration resulted in labels on cells as to
whether they belong ascending/descending 1-manifolds or the bound-
aries of ascending/descending 3-manifolds. We use these labels as in
input to the conforming discrete gradient algorithm [18]. This algorithm
assigns discrete gradient arrows in parallel, guaranteeing that both head
and tail of each gradient arrow belong to the same label class. The effect
of this constraint is that no discrete gradient arrow crosses between the
ascending 3-manifolds, ensuring that their separating 2-manifolds, as
computed in the discrete gradient, live on the boundary of the regions
computed numerically. Furthermore, cells belonging to 1-manifolds
are labeled such that they can only pair amongst themselves, guiding
V-paths from saddles to extrema. Figure 5(c)(bottom) colors cells based
on which lower star they belong to: similar colors can be paired in dis-
crete gradient arrows. As the conforming gradient algorithm operates
independently on the lower stars of vertices, it is sufficient to detect
which vertices have cells in their lower star with non-zero label, and
recompute the discrete gradient only on those vertices.

5 RESULTS

We demonstrate the accuracy of our approach by comparing qualita-
tively and quantitatively to a known simple example. We illustrate the
flexibility of our approach by allowing selective computation of man-
ifolds with improved accuracy. Next, we demonstrate a practical use
case in molecular analysis where the accuracy our approach is needed
to reduce the error of a specific analysis task. Additional examples are
shown motivating the need for selective reconstruction with improved
accuracy. Finally, performance characteristics are reported.

5.1 Accurate Geometry of a Simple Example

We have chosen a simple example to validate our approach. The 8-
Gaussians dataset is constructed by summing eight Gaussian functions
centered at the eight corners of a cube with sigma equal to half the
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Fig. 6. The 8-Gaussians function (a) has an analytic MS complex (b) that
evenly divides the cube. When the function is sampled onto a grid rotated
with respect to the 8-Gaussians cube, the quality of reconstructed fea-
tures is impacted by the choice of algorithm. The yellow dotted line iden-
tifies the same 1-manifold in all sub-images. All ascending/descending
manifolds of the steepest descent discrete gradient construction [33] are
biased by the underlying grid, and thus are deformed (c). Computing
accurate 3-manifolds using the conforming algorithm [18] provides no
guarantees for the quality of 1-manifolds (d). Our approach produces the
reconstruction with accurate 1-, 2-, and 3-manifolds (e). The distance
between the (yellow dotted) exact 1-manifold and computed ones is
plotted (f), showing that our approach remains within a one-half grid cell
spacing from the analytic path. Plotting the function value vs. distance
along the path (g) further illustrates the quantitative reduction in error
when using our approach.

distance between corners. Figure 6 (a) shows a volume rendering of
the dataset, and (b) shows the analytic MS complex for this function
(omitting only arcs/nodes connecting to the domain boundary). This
dataset is chosen to make validation simple as its analytic solution is
known (to within a small epsilon): maxima should appear at the corners
of the cube, 2-saddles at the mid-point of the edges, 1-saddles at the
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Fig. 7. Each column shows the components of the MS complex computed from a discrete gradient with selected accuracy. The rows show the
geometric embedding of nodes and arcs (top), ascending 3-manifold boundaries (middle) and descending 3-manifold boundaries (bottom).

mid-point of quads, and a minimum in the exact center. Furthermore,
ascending 1-manifolds should be straight connectors between maxima,
descending 1-manifolds form straight lines from the center of the cube
out through the middle of each quad, the ascending 3-manifold of the
central minimum have the boundary in the shape of a cube, and the
descending 3-manifolds have planar boundaries exactly dividing the
cube into eight sub-cubes. The 8-Gaussians function is sampled onto a
uniform grid rotated first around the Z axis, then around the Y axis. An
isometric transformation of the cube corresponds to the same isometric
transformation of the analytic MS complex. Figure 6 (c) shows that
steepest descent gradient assignment biases 1-, 2-, and 3-manifolds
in the direction of the underlying grid, deforming the reconstructed
features. Figure 6 (d) illustrates the result of only computing accurate
2- and 3-manifolds, as done by Gyulassy et al. [18], where the high-
lighted 1-manifold displays the same artifact as the steepest descent
approach. Figure 6 (e) shows the result of our new approach, with each
reconstructed feature being at most one-half grid cell away from the
analytic solution. Figure 6 (f) plots the deviation of the 1-manifolds
compared to the exact solution. Note that under mesh refinement, the er-
ror associated with steepest descent does not decrease, in contrast with
our improved accuracy approach. The differences in the 1-manifold
reconstructions matter: figure 6 (g) shows that any analyses based on
the geometric embedding of the arc, such as function value vs. length,
will be impacted.

5.2 Flexibility of the Approach

We demonstrate the flexibility of our approach with the 8-Gaussians
example in figure 7, demonstrating a user’s ability to select which as-
cending/descending manifolds are constructed with improved accuracy.
Focusing computational effort on only those features required by an
analysis task accelerates the overall computation.
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Fig. 8. The 2-saddle-maximum arcs of the MS complex form possible
bond paths between atoms and molecules. The steepest descent paths
(blue, green) are displayed over the accurate ones (yellow, magenta). The
circled bond paths (left) are plotted (right) illustrating dramatic differences
in their intensity profiles along the paths.

5.3 A Practical Use Case: Lithium Bonding

We mirror the analysis performed on the 8-Gaussians example in sec-
tion 5.1 with the electron density field of a lithium in electrolyte simu-
lation. Introduced by Bader’s group, the quantum theory of atoms in
molecules (QTAIM) [2] casts molecular features in topological terms.
For example, an atomic basins corresponds to descending 3-manifolds
in the electron density field, interatomic surface correspond to descend-
ing 2-manifolds from 2-saddles, and bond path correspond to ascending
1-manifolds from 2-saddles. We refer the reader to Bhatia et al. [4]
for a more in-depth discussion. Bond paths, in particular are used in
classifying bonds, and the curvature of the path can indicate strain on
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a system. A common approach to determine whether two atoms are
bonded is to compare the bond path length to known bonding radii
for different types of atoms. The charge associated with the atom is
computed as the integral of density over atomic basins. We extract the
2-saddle-maximum arcs between lithium and its surrounding ethylene
carbonate molecules from the computed MS complexes, and overlay
the reconstructions computed using steepest descent and our accurate
1-manifolds in figure 8 (a). Note that this displays the same pattern
of artifacts as the 8-Gaussians example. Plotting the electron density
as a function of distance along the path, one can observe an order-
of-magnitude difference between the measured density for the same
distance value, in figure 8 (b), e.g. at distance=1.2. Furthermore, the
total distance computed using steepest descent is overestimated by 11%.
In this simulation, ethylene carbonate molecules form and break bonds
with the lithium over time: foranylength threshold applied by domain
scientists to characterize the existence of the bond, the steepest descent
approach will consistently underestimate thedurationa bond is in exis-
tence, and the misclassification illustrated in figure 2 is guaranteed to
occur.

5.4 Examples with Improved Accuracy

Several examples are included with varying accuracy requirements for
features. The datasets and reconstructed features are shown in figure 9.
Lithium:For the lithium data from section 5.3, we use accurate de-
scending 3-manifolds and accurate ascending 1-manifolds. Correct
identification of atomic basins is needed in order to compute the charge
associated with each atom. The purely steepest-descent approach iden-
tifies an atomic basin with clearly non-physical spatial extents, and is
corrected by our approach.
Foam:The study of foams in material science has been driven by a
need for lighter and stronger materials. Quantifying the size and shape
distributions of pores can lead to insight guiding foam construction

parameters. This dataset consists of a CT scan of a foam converted
to a signed distance field from the interface between material and air.
The pores are the non-material portions of the ascending 2-manifolds
separating internal voids. Furthermore, the core structure is given by
ascending 1-manifolds. For this data, we compute accurate ascending
1- and 3-manifolds. The quality of the reconstructed surfaces clearly
impacts any measurements regarding size, shape, and orientation. Note
the high running time for our accurate reconstruction of this dataset; a
large void surrounding the foam causes a load imbalance when comput-
ing certain regions, with one thread taking the vast majority of work,
and each numerically integrated streamline crosses tens, or hundreds of
voxels before termination. Furthermore, numeric integration in distance
fields is particularly slow, as lines stall on flat, steep-sided ridge- and
valley-like structures.
HCCI:In combustion science, understanding the properties of a re-
action localized to a flame front can reveal the impacts of turbulence
on combustion efficiency. In this homogeneous charge compression
ignition simulation, we compute the flame surface as ascending 2-
manifolds. These surfaces are used to sample other fields, for instance
scalar dissipation rate and heat release. Even slight deviations in the
location of the surface can cause significant differences in the sampling,
as these other fields tend to be aligned with the flame front as well.
Neuron:Automating the extraction of axons and dendrites remains a
goal of neuroscience, as the quantity of data is a major challenge in
building a connectome of the brain. The 2-saddle-maximum arcs of
the MS complex have potential to help this process, as they encode all
ridge-like structures. This dataset of selected neurons in Macaque, im-
aged with a 2-photon microscope, is first processed to reduce noise and
smooth the signal before MS complex computation. While the differ-
ences between the steepest descent reconstruction and accurate ascend-
ing 1-manifolds is subtle, improving the accuracy of the 1-manifolds
only doubles the run time with respect to steepest descent. Furthermore,

Neighborhood of lithium in electrolyte Pore size/shape in metal foam Flame surfaces in HCCI Neurons in Macaque

steepest steepest steepest steepest

accurate descending 3-manifolds accurate ascending 1- and accurate ascending accurate ascending
and ascending 1-manifolds and 3-manifolds 3-manifolds 1-manifolds

Excerpts from the full scale data are used for visualization of the resulting features.

steepest accurate accurate
dimensions # vertices (144 threads-fsm) serial conv [15] (144 threads-fsm) mem(Gb) speedup

lithium 280x280x280 21,952,000 1.2s 571s 17.8s 0.9 30x
hcci 560x560x560 175,616,000 9.5s 9,851s 128s 7.38 77x

neuron 1024x1024x1024 1,073,741,824 56s – 114s 40.4 ∞
foam 1055x1024x1024 1,106,247,680 63s – 5,452s 45.5 ∞

Fig. 9. The datasets used in our evaluation vary by size, topological complexity, and the class of feature for accurate reconstruction. The table reports
the steepest descent [33] time, the time taken by the serial convergent algorithm, the time to compute the improved accurate discrete gradient, and
the speedup over the serial convergent algorithm, where available.
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Fig. 10. Scaling for each component of the accurate workflow for the
lithium on a 4-core laptop (left), and HCCI on an analysis server (right).
Each plot shows, from bottom to top, the order and duration of each stage
of the computation. Note that to illustrate the full timing characteristics,
the lithium computation includes all improved accuracy components: both
ascending and descending 1- and 3- manifolds. The HCCI computation
includes only accurate ascending 1- and 3- manifolds.

any improvement in the reconstruction could have meaningful impacts
in being able to trace lines automatically. For example, an algorithm de-
ciding which lines to include in an axon may use geometric continuity
as a criterion, which can be thrown off due to steepest-descent artifacts.

5.5 Performance Results

The parallel performance of our approach is evaluated on a commodity
laptop and an analysis server.
Laptop:an off-the-shelf laptop with an Intel Core i7-3630QM proces-
sor with 4 cores running at 2.4 GHz, and 16 GB DRAM.
Fsm:is a 72-core (4-socket x 18 core) Intel Xeon E7-8890 v3 (Haswell-
EX) running at 2.4 GHz, with 3 TB DRAM in a Brickland-EX NUMA
server platform.
Figure 9 shows the run times for the improved feature computation

for our selected examples. All reported run times in this section exclude
the I/O to read the data and write the final discrete gradient vector
field. Figure 10 shows the execution time for each component of our
algorithm as the number of threads increases for two selected use
cases. “Steepest discrete” computes the initial steepest descent discrete
gradient using Robins’ algorithm [33]. “Numeric gradient” reports the
time compute and cache central difference gradients for each vertex of
the mesh. “Simplified certain regions” records the time needed to create
the simplified extremum graph and grow the certain regions to terminate
integral lines. “Integrate asc/dsc 3-manifold” records the time taken to
first compute numeric integral lines with path compression and then to
re-integrate the boundaries. Although theoretically an embarrassingly
parallel operation, this stage did not scale well and came to dominate
run times at high core counts. Given the path compression, checking for
terminal regions, and low-cost kernel to advect a line inside a voxel, it
is likely that this operation is memory-bound, or suffers from enforcing
cache-coherence. “Topological cleaning” refers to removing isolated
connected components from the terminal map that are below resolution
of the representative capacity of the discrete gradient field. “Edge map”
refers to labeling each cell of the mesh based on whether it belongs to
the boundary of the numerically computed termination maps. “Integrate
asc/dsc 1-man” reports the time takes to gather saddles and integrate
and digitize streamlines. Finally “conforming gradient” refers to the
time needed to re-visit and re-compute the discrete gradient of vertices
having cells in their lower star whose label is non-zero, i.e., having been
identified as part of an accurate manifold. Figure 11 compares the run-
times for discrete gradient computation of the Topology ToolKit [36]
to our implementation of steepest descent [33] and improved accuracy.
Note that TTK results are similar in quality to steepest descent, e.g. the
left column of figure 7.
The performance of our approach highly depends on both the topo-

logical complexity of the data as well as the features to be accurately
extracted. We found that greatest obstacles for performance were long
integral paths (slow integration), large flat regions (imbalanced cer-
tain region expansion), and steep-sided flat ridges and valleys (stalled
integration). Given that critical points tend to be sparse in a dataset,

single thread 8-Gauassians at 1503

run time mem(Mb)
TTK [36] 18.2s 695
Steepest 13.4s 71
Accurate 39.0s 155

Fig. 11. Comparison of single thread execution of of steepest descent
and improved accuracy with TTK v0.9.6 [36] for the 8-Gaussians example.
The features extracted by TTK (left) share similar biases as other steepest
descent techniques. The run times are comparable, with differences due
to cubical vs. triangulated meshes and choice of steepest descent
algorithm. The large memory footprint of TTK is due to explicit storage
of discrete gradient pairs, which could be improved in the future.

ascending and descending 1-manifolds can be computed with low over-
head with respect to a purely steepest approach.
Experimental parameters:Numeric integration was implemented
with an adaptive Euler advector, with maximum error tolerance set to
0.01 grid units. We found that further reducing the error threshold did
not yield appreciable differences in feature quality. Furthermore, a
hard limit of 10,000 iterations was set to force termination of numeric
integration, only rarely reached in practice in degenerate regions. For
constructing accurate 3-manifolds, the pre-simplification threshold
was set to 0.01% of maximum persistence for each dataset, reducing
numeric integration time by up to 3.5x (for HCCI), while maintaining
sufficient resolution of feature for all subsequent analysis.
Memory tradeoffs:Memory size was the most significant factor lim-
iting which data could be computed on the laptop. For each vertex of
the input mesh a high-water mark of 41 bytes are used: scalar value
(4 bytes), cached numeric gradient (12 bytes), cached lower stars (8
bytes), discrete gradient (8 bytes), origin/termination map (4 bytes),
boundary map (8 bytes), and internal markers (1 byte). Removing
the cached numeric gradient saves 12 bytes/vertex, however invokes a
2-4x performance penalty for the numeric integration stages. For the
lithium dataset, this corresponded to a 2.07x increase in run time for
the end-to-end algorithm. Similarly, not storing lower stars in cache
saves 8 bytes/vertex, invoking a 2.8x performance penalty for discrete
gradient assignment stages. For the lithium data, this corresponded to a
1.4x increase in run time.

6 CONCLUSIONS/FUTUREWORK

We have introduced a new scalable approach for computing discrete
gradient fields with accurate geometry on shared memory multi-core
systems. It has enabled faster computation of MS complexes for larger
data. Memory consumption and bandwidth has been a limiting factor
in SMP implementation, and will ultimately necessitate distributed
computation to solve the largest datasets. In this setting, we expect
that our shared-memory approach can become the component of such
a distributed computation that handles the on-node parallelism. A
limitation of the approach is that it uses a 3-manifold labeling to extract
accurate 2-manifolds; in the cases of strangulations, where a saddle is
doubly connected to the same extremum, the 2-manifold of that saddle
cannot be reconstructed accurately. We will investigate integrating
this approach with tools for general exploration of MS complexes,
such as TTK [36]. Finally, we will investigate alternative methods for
performing the numeric integration to achieve better scalability.
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a system. A common approach to determine whether two atoms are
bonded is to compare the bond path length to known bonding radii
for different types of atoms. The charge associated with the atom is
computed as the integral of density over atomic basins. We extract the
2-saddle-maximum arcs between lithium and its surrounding ethylene
carbonate molecules from the computed MS complexes, and overlay
the reconstructions computed using steepest descent and our accurate
1-manifolds in figure 8 (a). Note that this displays the same pattern
of artifacts as the 8-Gaussians example. Plotting the electron density
as a function of distance along the path, one can observe an order-
of-magnitude difference between the measured density for the same
distance value, in figure 8 (b), e.g. at distance=1.2. Furthermore, the
total distance computed using steepest descent is overestimated by 11%.
In this simulation, ethylene carbonate molecules form and break bonds
with the lithium over time: foranylength threshold applied by domain
scientists to characterize the existence of the bond, the steepest descent
approach will consistently underestimate thedurationa bond is in exis-
tence, and the misclassification illustrated in figure 2 is guaranteed to
occur.

5.4 Examples with Improved Accuracy

Several examples are included with varying accuracy requirements for
features. The datasets and reconstructed features are shown in figure 9.
Lithium:For the lithium data from section 5.3, we use accurate de-
scending 3-manifolds and accurate ascending 1-manifolds. Correct
identification of atomic basins is needed in order to compute the charge
associated with each atom. The purely steepest-descent approach iden-
tifies an atomic basin with clearly non-physical spatial extents, and is
corrected by our approach.
Foam:The study of foams in material science has been driven by a
need for lighter and stronger materials. Quantifying the size and shape
distributions of pores can lead to insight guiding foam construction

parameters. This dataset consists of a CT scan of a foam converted
to a signed distance field from the interface between material and air.
The pores are the non-material portions of the ascending 2-manifolds
separating internal voids. Furthermore, the core structure is given by
ascending 1-manifolds. For this data, we compute accurate ascending
1- and 3-manifolds. The quality of the reconstructed surfaces clearly
impacts any measurements regarding size, shape, and orientation. Note
the high running time for our accurate reconstruction of this dataset; a
large void surrounding the foam causes a load imbalance when comput-
ing certain regions, with one thread taking the vast majority of work,
and each numerically integrated streamline crosses tens, or hundreds of
voxels before termination. Furthermore, numeric integration in distance
fields is particularly slow, as lines stall on flat, steep-sided ridge- and
valley-like structures.
HCCI:In combustion science, understanding the properties of a re-
action localized to a flame front can reveal the impacts of turbulence
on combustion efficiency. In this homogeneous charge compression
ignition simulation, we compute the flame surface as ascending 2-
manifolds. These surfaces are used to sample other fields, for instance
scalar dissipation rate and heat release. Even slight deviations in the
location of the surface can cause significant differences in the sampling,
as these other fields tend to be aligned with the flame front as well.
Neuron:Automating the extraction of axons and dendrites remains a
goal of neuroscience, as the quantity of data is a major challenge in
building a connectome of the brain. The 2-saddle-maximum arcs of
the MS complex have potential to help this process, as they encode all
ridge-like structures. This dataset of selected neurons in Macaque, im-
aged with a 2-photon microscope, is first processed to reduce noise and
smooth the signal before MS complex computation. While the differ-
ences between the steepest descent reconstruction and accurate ascend-
ing 1-manifolds is subtle, improving the accuracy of the 1-manifolds
only doubles the run time with respect to steepest descent. Furthermore,

Neighborhood of lithium in electrolyte Pore size/shape in metal foam Flame surfaces in HCCI Neurons in Macaque

steepest steepest steepest steepest

accurate descending 3-manifolds accurate ascending 1- and accurate ascending accurate ascending
and ascending 1-manifolds and 3-manifolds 3-manifolds 1-manifolds

Excerpts from the full scale data are used for visualization of the resulting features.

steepest accurate accurate
dimensions # vertices (144 threads-fsm) serial conv [15] (144 threads-fsm) mem(Gb) speedup

lithium 280x280x280 21,952,000 1.2s 571s 17.8s 0.9 30x
hcci 560x560x560 175,616,000 9.5s 9,851s 128s 7.38 77x

neuron 1024x1024x1024 1,073,741,824 56s – 114s 40.4 ∞
foam 1055x1024x1024 1,106,247,680 63s – 5,452s 45.5 ∞

Fig. 9. The datasets used in our evaluation vary by size, topological complexity, and the class of feature for accurate reconstruction. The table reports
the steepest descent [33] time, the time taken by the serial convergent algorithm, the time to compute the improved accurate discrete gradient, and
the speedup over the serial convergent algorithm, where available.
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Fig. 10. Scaling for each component of the accurate workflow for the
lithium on a 4-core laptop (left), and HCCI on an analysis server (right).
Each plot shows, from bottom to top, the order and duration of each stage
of the computation. Note that to illustrate the full timing characteristics,
the lithium computation includes all improved accuracy components: both
ascending and descending 1- and 3- manifolds. The HCCI computation
includes only accurate ascending 1- and 3- manifolds.

any improvement in the reconstruction could have meaningful impacts
in being able to trace lines automatically. For example, an algorithm de-
ciding which lines to include in an axon may use geometric continuity
as a criterion, which can be thrown off due to steepest-descent artifacts.

5.5 Performance Results

The parallel performance of our approach is evaluated on a commodity
laptop and an analysis server.
Laptop:an off-the-shelf laptop with an Intel Core i7-3630QM proces-
sor with 4 cores running at 2.4 GHz, and 16 GB DRAM.
Fsm:is a 72-core (4-socket x 18 core) Intel Xeon E7-8890 v3 (Haswell-
EX) running at 2.4 GHz, with 3 TB DRAM in a Brickland-EX NUMA
server platform.
Figure 9 shows the run times for the improved feature computation

for our selected examples. All reported run times in this section exclude
the I/O to read the data and write the final discrete gradient vector
field. Figure 10 shows the execution time for each component of our
algorithm as the number of threads increases for two selected use
cases. “Steepest discrete” computes the initial steepest descent discrete
gradient using Robins’ algorithm [33]. “Numeric gradient” reports the
time compute and cache central difference gradients for each vertex of
the mesh. “Simplified certain regions” records the time needed to create
the simplified extremum graph and grow the certain regions to terminate
integral lines. “Integrate asc/dsc 3-manifold” records the time taken to
first compute numeric integral lines with path compression and then to
re-integrate the boundaries. Although theoretically an embarrassingly
parallel operation, this stage did not scale well and came to dominate
run times at high core counts. Given the path compression, checking for
terminal regions, and low-cost kernel to advect a line inside a voxel, it
is likely that this operation is memory-bound, or suffers from enforcing
cache-coherence. “Topological cleaning” refers to removing isolated
connected components from the terminal map that are below resolution
of the representative capacity of the discrete gradient field. “Edge map”
refers to labeling each cell of the mesh based on whether it belongs to
the boundary of the numerically computed termination maps. “Integrate
asc/dsc 1-man” reports the time takes to gather saddles and integrate
and digitize streamlines. Finally “conforming gradient” refers to the
time needed to re-visit and re-compute the discrete gradient of vertices
having cells in their lower star whose label is non-zero, i.e., having been
identified as part of an accurate manifold. Figure 11 compares the run-
times for discrete gradient computation of the Topology ToolKit [36]
to our implementation of steepest descent [33] and improved accuracy.
Note that TTK results are similar in quality to steepest descent, e.g. the
left column of figure 7.
The performance of our approach highly depends on both the topo-

logical complexity of the data as well as the features to be accurately
extracted. We found that greatest obstacles for performance were long
integral paths (slow integration), large flat regions (imbalanced cer-
tain region expansion), and steep-sided flat ridges and valleys (stalled
integration). Given that critical points tend to be sparse in a dataset,

single thread 8-Gauassians at 1503

run time mem(Mb)
TTK [36] 18.2s 695
Steepest 13.4s 71
Accurate 39.0s 155

Fig. 11. Comparison of single thread execution of of steepest descent
and improved accuracy with TTK v0.9.6 [36] for the 8-Gaussians example.
The features extracted by TTK (left) share similar biases as other steepest
descent techniques. The run times are comparable, with differences due
to cubical vs. triangulated meshes and choice of steepest descent
algorithm. The large memory footprint of TTK is due to explicit storage
of discrete gradient pairs, which could be improved in the future.

ascending and descending 1-manifolds can be computed with low over-
head with respect to a purely steepest approach.
Experimental parameters:Numeric integration was implemented
with an adaptive Euler advector, with maximum error tolerance set to
0.01 grid units. We found that further reducing the error threshold did
not yield appreciable differences in feature quality. Furthermore, a
hard limit of 10,000 iterations was set to force termination of numeric
integration, only rarely reached in practice in degenerate regions. For
constructing accurate 3-manifolds, the pre-simplification threshold
was set to 0.01% of maximum persistence for each dataset, reducing
numeric integration time by up to 3.5x (for HCCI), while maintaining
sufficient resolution of feature for all subsequent analysis.
Memory tradeoffs:Memory size was the most significant factor lim-
iting which data could be computed on the laptop. For each vertex of
the input mesh a high-water mark of 41 bytes are used: scalar value
(4 bytes), cached numeric gradient (12 bytes), cached lower stars (8
bytes), discrete gradient (8 bytes), origin/termination map (4 bytes),
boundary map (8 bytes), and internal markers (1 byte). Removing
the cached numeric gradient saves 12 bytes/vertex, however invokes a
2-4x performance penalty for the numeric integration stages. For the
lithium dataset, this corresponded to a 2.07x increase in run time for
the end-to-end algorithm. Similarly, not storing lower stars in cache
saves 8 bytes/vertex, invoking a 2.8x performance penalty for discrete
gradient assignment stages. For the lithium data, this corresponded to a
1.4x increase in run time.

6 CONCLUSIONS/FUTUREWORK

We have introduced a new scalable approach for computing discrete
gradient fields with accurate geometry on shared memory multi-core
systems. It has enabled faster computation of MS complexes for larger
data. Memory consumption and bandwidth has been a limiting factor
in SMP implementation, and will ultimately necessitate distributed
computation to solve the largest datasets. In this setting, we expect
that our shared-memory approach can become the component of such
a distributed computation that handles the on-node parallelism. A
limitation of the approach is that it uses a 3-manifold labeling to extract
accurate 2-manifolds; in the cases of strangulations, where a saddle is
doubly connected to the same extremum, the 2-manifold of that saddle
cannot be reconstructed accurately. We will investigate integrating
this approach with tools for general exploration of MS complexes,
such as TTK [36]. Finally, we will investigate alternative methods for
performing the numeric integration to achieve better scalability.
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