IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.26, NO.1,

JANUARY 2020 173

Toward Localized Topological Data Structures:
Querying the Forest for the Tree

Pavol Klacansky, Attila Gyulassy, Peer-Timo Bremer, and Valerio Pascucci

Fig. 1: Our localized merge forest data structure partitions the Foot data set, computes local merge trees, and connects them via a
bridge set. On the left, the entire superlevel set at threshold 84, where the dark lines highlight the cells in the bridge set connecting the
regions of the domain decomposition and the local trees of the forest. On the right, the Components query on the merge forest returns
the five largest connected components in the superlevel set, shown in unique colors. The query correctly resolves the connectivity and
eliminates the noise.

Abstract—Topological approaches to data analysis can answer complex questions about the number, connectivity, and scale of
intrinsic features in scalar data. However, the global nature of many topological structures makes their computation challenging at
scale, and thus often limits the size of data that can be processed. One key quality to achieving scalability and performance on modern
architectures is data locality, i.e., a process operates on data that resides in a nearby memory system, avoiding frequent jumps in data
access patterns. From this perspective, topological computations are particularly challenging because the implied data structures
represent features that can span the entire data set, often requiring a global traversal phase that limits their scalability. Traditionally,
expensive preprocessing is considered an acceptable trade-off as it accelerates all subsequent queries. Most published use cases,
however, explore only a fraction of all possible queries, most often those returning small, local features. In these cases, much of the
global information is not utilized, yet computing it dominates the overall response time. We address this challenge for merge trees,
one of the most commonly used topological structures. In particular, we propose an alternative representation, the merge forest, a
collection of local trees corresponding to regions in a domain decomposition. Local trees are connected by a bridge sef that allows
us to recover any necessary global information at query time. The resulting system couples (i) a preprocessing that scales linearly
in practice with (i) fast runtime queries that provide the same functionality as traditional queries of a global merge tree. We test the
scalability of our approach on a shared-memory parallel computer and demonstrate how data structure locality enables the analysis
of large data with an order of magnitude performance improvement over the status quo. Furthermore, a merge forest reduces the
memory overhead compared to a global merge tree and enables the processing of data sets that are an order of magnitude larger than

possible with previous algorithms.
Index Terms—Merge tree, parallel computation, topology

1 INTRODUCTION

Direct analysis of contemporary scientific data sets remains challenging
due to the complexity and high resolution of the data. The extraction,
effective analysis, and visualization of complex features require ad-
vanced techniques and algorithms. Complex features of interest include
ignition kernels in combustion [29], organs in CT scans [11], or galax-
ies in cosmology [37]. However, these features are not well defined, the

* Pavol Klacansky, Attila Gyulassy, and Valerio Pascucci are with the
Scientific Computing and Imaging Institute, University of Utah. E-mail:
{klacansky, jediati,pascucci’} @sci.utah. edu.

* Peer-Timo Bremer is with Lawrence Livermore National Laboratory. E-mail:
bremer5@linl. gov.

Manuscript received 31 Mar. 2019; accepted 1 Aug. 2019.

Date of publication 16 Aug. 2019; date of current version 20 Oct. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2019.2934257

data may contain noise, and a range of parameters needs to be explored.
In this context, topological techniques provide a rigorous mathematical
framework to define and extract features across all thresholds, allowing
interactive exploration. Furthermore, topological features can be ranked
and simplified by persistence [17] or similar metrics, which enables a
multiscale analysis as well as noise removal.

Traditionally, topological analysis has been divided into two stages:
a preprocessing stage to compute topological structures, such as the
merge tree or the Morse-Smale complex, and an analysis stage, where
we use a topological structure to answer queries. Since we do not
know which specific queries might be required, we compute a global
structure that will accelerate all possible queries. However, not all
queries may be necessary for the analysis, and computation of the
global information that can accelerate all queries limits the parallelism.
Furthermore, constructing and storing the fully resolved global topo-
logical structure has a large memory overhead. As a result, the analysis
of larger data sets has typically required distributed computation on a
supercomputer combined with a partial representation that stores spar-

1077-2626 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
HPICEf R St b PNRSFElipDE T EY

Authorized licensed use limited tGePRERIREHERE OFUR

T nse 6 M IgIMIECNRERPIFEE Xplore. Restrictions apply.

174

sified global information on each processor [30,31]. In this paper, we
focus on merge trees that accelerate the extraction of locally extremal
features. Merge trees have a wide range of applications [29,45], and
their construction has been studied extensively. Parallel algorithms for
shared-memory multicore processors [1,21,22,28,33,39], distributed
memory computers [25,26,30-32], and accelerators [12,36] have been
developed. Despite the substantial efforts of the research community,
the best shared-memory algorithms on 16 cores still lose more than
409% of their parallel efficiency [22].

‘We overcome the scalability challenge by using a different split
between precomputation and queries. In contrast to building a global
merge tree, we decompose the domain, construct a merge forest of
local trees connected by a local reduced bridge set, and compute the
necessary global information at query time. The key insight is that, in
practice, we rarely query the entire parameter range, and even during an
automatic parameter sweep or an interactive exploration, we typically
perform only a limited number of queries. Therefore, a fast and entirely
local preprocessing coupled with efficient queries will significantly
outperform existing solutions. The merge forest is a local structure,
and thus its computation scales linearly with the available core counts
and the number of regions in the domain decomposition. Although
the queries are, in principle, more expensive than those in the merge
tree, the merge forest reduces the first time to query by an order of
magnitude. Furthermore, our queries are fast enough for an interactive
data analysis. Finally, the local representation takes advantage of a
smaller index space, which not only halves the memory footprint of the
data structure for large data sets, but also improves the locality of the
data within each region. A surprising result is that in some cases the
nonlocal queries are faster than their equivalent query run on the global
merge tree.

In summary, we introduce a new data structure called the merge
forest that provides analysis capabilities equivalent to those of a global
merge tree at a fraction of its computational cost and that can be con-
structed for significantly larger data sets than previously reported. We
make the following contributions:

* A localized data structure, the merge forest, to represent topologi-
cal features traditionally represented with a merge tree;

* A definition of elementary and derived topological queries inde-
pendent of their underlying topological data structure, which is
meant to open opportunities for research into new, nontraditional
data structures with equivalent functionalities;

= A set of efficient query algorithms for feature extraction that can
be used on a merge forest; and

= An extensive empirical evaluation of the merge forest construction
algorithm on structured grids, executed serially and in shared-
memory parallel, and a study of the impact of the merge forest
representation on the execution time of topological queries.

2 RELATED WORK

The construction of a merge tree (and related contour tree) has been
studied extensively. We review the construction and representation of a
merge tree and its applications to scientific data analysis.

Representation and construction. A merge tree captures the evo-
lution of superlevel or sublevel sets, and thus it can be used to extract
level-set-based features. The merge tree algorithm originates as a
subroutine in a contour tree algorithm [10], a generalization and sim-
plification of a 3D sweep algorithm [40]. The merge tree subroutine
operates in two stages: first, it sorts the data, and second, it performs a
sweep from high- to low-function values while recording maxima and
merge saddles by tracking connected components of a superlevel set
with a disjoint-set data structure [19]. A merge tree consists of a set of
nodes that have pointers to their children and parent nodes. Since the
algorithm visits all vertices, it can build an augmented merge tree, and
thus enable data segmentation.

Alternatively, an unaugmented merge tree can be computed by iden-
tifying critical points locally, then sorting the points, and finally travers-
ing the mesh upward to connect the points with monotone paths [13].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.26, NO.1,

JANUARY 2020

Sorting of critical points offers an advantage over the sweep algorithm
due to the output sensitivity with respect to the topological complexity
of the data. However, if the query extracts a segmentation - the set
of vertices corresponding to a subtree - a mesh traversal is required
because the unaugmented tree does not store all vertices. A recent
result shows that only critical points along the leaf-root paths need to
be sorted [35].

Both the sweep and monotone paths algorithms require the whole
data set loaded in memory. Streaming algorithms construct a merge
tree by processing a list of vertices and edges in any order and thus
need less memory. If an added edge changes the connectivity, the
corresponding subtrees are merged [8], resulting in quadratic complex-
ity. Recently, a streaming algorithm based on a new representation
of triplets [39], a form of branch decomposition [34], has provided a
merge tree construction with linear complexity in practice. Triplets
show that changing an underlying representation can result in a signif-
icant performance improvement. Additionally, the merge tree can be
built using an I/O-efficient union-find algorithm [2].

Parallel algorithms. The parallel merge tree algorithm [33] works
by subdividing the domain into regions and combining the merge trees
of these regions from the bottom up. The final tree is assembled on
a single core, limiting scalability. Moreover, the algorithm computes
an unaugmented tree that is not suitable for data segmentation tasks.
The domain subdivision approach has been combined with parallel
monotone path tracing [28], resulting in a hybrid algorithm [1]. The
hybrid algorithm computes an unaugmented merge tree by first building
local trees with the parallel monotone path algorithm and then stitching
the trees into a global merge tree. The computation per local region
scales linearly, but the stitching step exhibits at best a factor of three
speed-up and limits the overall scalability of the algorithm.

Instead of subdividing the domain, the function range can be parti-
tioned and an augmented merge tree computed for each cell of the par-
tition. These cells are then stitched to form the global merge tree [20].
However, partitioning the range does not mesh well with the visualiza-
tion tools that usually load data in regions [24]. Moreover, the range
partitioning is susceptible to load imbalance, because the number of
boundary simplices can vary greatly.

The limitations of rigid subdivision and the extra work introduced
at boundaries have inspired a more flexible task-based algorithm for
computing an augmented merge tree [21,22]. The algorithm creates a
task for each arc, starting at maxima, and grows these arcs in parallel
until reaching a saddle. The last task that reaches a saddle restarts
arc growth. When a single task remains active, the unprocessed arcs,
trunk, are sorted and processed in parallel. The parallel efficiency
reported is 58% on 16 cores, which is the fastest shared-memory parallel
approach to date. We use the task-based algorithm as a baseline in
our comparisons. Additionally, the flexible streaming algorithm to
compute the triplet representation has been parallelized using atomic
variables [39]. However, the scaling trails off from two or more cores.

The presence of accelerators motivated a data-parallel merge tree
algorithm [12]. The algorithm builds a merge tree by iteratively execut-
ing two steps, a monotone path construction and peak pruning, until no
peak remains. As an optimization, a new graph can be constructed after
the first iteration, which includes only candidate saddles and maxima,
leading to improved performance. However, the algorithm then builds
an unaugmented merge tree, and a postprocessing step is required to
augment the tree. The algorithm executes either on a GPU or a CPU.
The reported results are limited to 2D data sets, and the parallel effi-
ciency is 33% on 32 cores. This data-parallel algorithm also has been
combined with the domain and range subdivision approaches [36].

Distributed algorithms. Data sets, and the associated merge trees,
can get larger than available memory on a single computer. The dis-
tributed merge trees [30,31] present a local-global representation that
distributes a merge tree over multiple computers and minimizes the
network communication required during queries. Consequently, these
queries can be efficiently executed in situ and in parallel. The dis-
tributed representation consists of two interconnected data structures
stored on each computer, a local merge tree and a sparsified global
tree with respect to the local tree. In some cases, the features span

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

KLACANSKY ET AL.: TOWARD LOCALIZED TOPOLOGICAL DATA STRUCTURES: QUERYING THE FOREST FOR THE TREE

only a limited amount of space, and it is wasteful to compute the spar-
sified global tree because these features can be extracted by growing
regions of fixed size and computing the topology only to the extent of
the region [26]. By limiting the global computation to a predefined
extent, the scaling of the algorithm has been improved. This algorithm
has been further extended to CW complexes [25]. We take inspiration
from these approaches with the key difference of constructing only
local structures and recovering the necessary global information during
query. We focus on shared-memory parallel architectures.

A massive parallel communication (e.g., MapReduce) algorithm [32]
computes a merge tree in 2D by first constructing contour trees for the
domain partitions on multiple computers, and then using these trees on
a single computer as an input graph for a serial merge tree construction
with the sweep algorithm.

Applications of a merge tree (and contour tree). The first appli-
cation of a contour tree accelerated the relief extraction from terrain
maps in a radar simulator [6]. The relief is reconstructed by interpo-
lating between nested contours, which are extracted by traversing a
contour tree. Several decades later, a contour tree-based search data
structure was used to answer path queries with respect to the contours
of a terrain [15].

In volumetric data, seed sets [43] were used to accelerate the extrac-
tion of an isosurface. Furthermore, a flexible isosurface interface [11]
or volume rendering interface [44] enabled interactive exploration of
scalar fields by using a contour tree as part of a user interface. By
selecting arcs of the contour tree, a user can display contours or sub-
volumes without the occlusion issues present in traditional isosurface
and volume rendering, where two nested objects at the same threshold
obscure one another.

The increasing complexity and resolution of the data sets poses a
challenge for visualization techniques, because the number of features
can be too large to inspect visually. A merge tree can be used to analyze
features across all thresholds and simplification levels [17], and extract
statistics such as feature count or their size to guide the analysis and
visualization process [8, 30]. For example, a merge tree was used to
extract and track features, such as extinction regions in combustion
simulation [47] or pressure perturbations in weather data [46]. Both
use cases rely on the Components query to extract, count, and visualize
features at different thresholds. Moreover, the user interface utilizes
the MergeTree query to display an unaugmented merge tree. Another
example of merge tree application is extraction and tracking of ignition
kernels [29]. First, high values are identified with the Maxima query,
and the regions around them are extracted while the Relevance query
values are below a specified relevance threshold. Finally, each of these
regions is adjusted if the maximum obtained with ComponentMax
query is below a threshold.

3 BACKGROUND

‘We review the necessary concepts used throughout the paper. As a refer-
ence, we use the book Computational Topology - An Introduction [16].

Let K be a simplicial complex with values at vertices. The function
g is a piecewise-linear extension of g(v;) to the simplicial complex
K. The function g is generic if all vertices have different values, i.e.,
g(vi) = g(vj) & vi = vj. Simulation of simplicity [18] is used to
symbolically perturb the input vertex values to ensure that g is generic.

A simplex ¢ € K is formed by the convex combination of its vertices,
and its faces are simplices derived from proper subsets. The star St(v)
of a vertex v is the set of all simplices that have v as a face. The upper
star St (v) is a subset of the star St(v) containing values above g(v)
and the vertex v, ie., Stt(v)={o € St(v) |uc 6= g(u) > g(v)}. The
link of a vertex v, Lk(v) is the outer boundary of the star, i.e., its closure
minus the star itself, Lk(v) = St(v) — St(v).

Given a complex K, vertices v; and v; are connected if there is a path
between them in K. The connected components of K are the subcom-
plexes that partition K, such that K = [JCy, where v;,v; € G <= Vv;
is connected to v; in Cy. Each component is the maximal subcomplex
induced by its vertex set. The number of connected components is de-
noted #CC = ||{C}, ...,Cp }|| = m. Because the function g is generic, we
can order the vertices of K from highest to lowest {v{,v2,...,v,}, such

175

thati < j <= g(vi) > g(v;). Moreover, since upper stars partition the
complex K, an upper star filtration can be defined,

=Koy CKyC---CKn=K (1)

where g(v;) > g(viy1) and K;; 1 = K;U St (v 1). The superlevel com-
plex of a scalar value h is S, = Kj, such that g(v;) > h and v; is the
infimum.

A vertex can be classified by its neighborhood as regular or critical.
A regular vertex has one connected component in the upper link and
one in the lower link. Critical vertices are those that remain. A vertex is
called a maximum if its upper link is empty, i.e., Lk (v) = 0, indicating
that all adjacent vertices have a lower function value. In the upper
star filtration, a maximum vertex v;, introduces a new connected
component in K;; with respect to the connected components of K,
and #CC(K;,) =#CC(K;) + 1. A vertex v;, is a merge saddle if K;,
has fewer connected components than K, i.e., #CC(K;) < #CC(K;).
A vertex is a minimum if its lower link is empty, i.e., Lk~ (v) = 0, and
is the global minimum if no other vertex has a lower value.

Let X be a topological space and f : X — R be a scalar function.
The merge tree is the quotient space T = X / ~, where the equivalence
relation ~ is defined by a,b € X,a~b < f(a)= f(b),and a is
connected to b in the superlevel set S¢(,). In other words, T glues
together all points on the boundaries of connected components of a
superlevel set, and the neighborhood of each glued point in T is induced
from the neighborhood in X.

For a function g defined on simplicial complex K, the merge tree
T captures changes in the connected components of the superlevel
complexes of the upper star filtration. Each arc of the tree tracks the
growth of a single connected component. The nodes of T correspond to
vertices that are a maximum, a merge saddle, or the global minimum.

4 QUERIES ON A MERGE TREE

Topology-based analysis seeks to understand the relationships between
points of the domain and structural features, and topological data struc-
tures are merely intermediaries that distill properties of a function and
accelerate answering queries. We capture the information available
from a merge tree with elementary and derived queries, irrespective of
the underlying data structures.

4.1

Three fundamental queries are: 1) find all maxima in a domain; 2)
given a point in the domain, determine to which feature it belongs; and
3) find the spatial extent of a topological feature. Independent of a data
structure, these three queries can then be used as building blocks for
constructing other queries. The first query returns a list of all maxima.
The second query returns the identifier of the highest maximum of a
connected component of a superlevel complex, when given a vertex
and threshold. With the third query, a connected component given a
vertex and a threshold, also referred to as a segment, can be obtained.

Elementary Queries

411

The simplest topological query is understanding where new connected
components are created.

Maxima Query

Definition 1. We call Maxima(K,g) a function that returns a set of
vertices that are maxima in the simplicial complex K.

4.1.2 Component Maximum Query

The maximum of a connected component in a superlevel complex
query can be used to test if two vertices are connected in the superlevel
complex, useful for feature tracking [47]. We choose the component
maximum query as a running example throughout the paper due to its
simplicity and because the other queries build on it.

Definition 2. We call the vertex v[. the global maximum of a connected
component C if g(vi:) > g(v) for any vertex v # v in C.

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

176

Definition 3. Given a function g defined on a simplicial complex K,
avertex v € K, and threshold h, we call ComponentMax(K ,g,v,h) the
function that returns the v, where C is the connected component of a
superlevel complex Sy, such that v € C. If g(v) < h, the function returns
botrom L.

4.1.3 Connected Component Query

Another common query extracts a connected component in a superlevel
complex given a vertex and a threshold. For example, we can extract
the segmentation corresponding to the subtree given a saddle.

Definition 4. Ler v; be the lowest vertex such that g(v;) > h. We define
Component(K ,g,v,h) as a function that returns the vertices of the
connected component containing v from the subcomplex K; associated
with v;, where i is the index in the upper star filtration (Equation 1).

4.2 Derived Queries

The elementary queries can be used as subroutines to build more so-
phisticated queries. We define a collection of derived queries that are
commonly used in a topological data analysis, such as extracting all
connected components of a superlevel complex.

421 Connected Components Query

Extraction of connected components, also called segmentation, is one
of the applications of a merge tree data structure. For example, the
connected components query can be used to perform a parameter sweep
and count the number of components, their size, or surface area, to
determine the appropriate threshold for the analysis [8]. Moreover, the
segmentation can be visualized as part of an interactive tool where a user
can explore different thresholds in the context of feature tracking [45].

Definition 5. We call Components(K, g, h) a function that, for a super-
level complex Sy, returns a set of connected components.

Note that the number of components of the superlevel complex
Sy, is equal to the number of connected components of K; in the filtra-
tion (Equation 1), where i is the index of the lowest valued vertex higher
than h. Every pair of vertices v;,v; € (}, in the same connected com-
ponent C; € Components(K, g, h), has the same component maximum,
ComponentMax(K ,g,h,v;) = ComponentMax(K ,g,h,v;).

4.2.2 Relevance Query

In many applications, features exist as locally extremal regions relative
to their surroundings, and different thresholds are needed for each
connected component. For example, an indicator function has different
values for vortices of different speeds, and a localized threshold is
needed to extract vortices across scales [7]. The relevance metric [29]
can be used to locally extract features by a threshold relative to the
local maximum of a connected component.

Definition 6. Given a vertex v and a function g on a simplicial complex
K, the relevance query Relevance(K ,g,v) is defined as a function that

evaluates %(:;%, where v* = ComponentMax(K ,g,v,g(v)).

4.2.3 Merge Tree Query

In some cases, a global unaugmented merge tree is visualized, either as
part of an interface to control the visualization [11,44], or embedded
in the data as a direct visualization of feature relationships [34,42]. In
our case, we use the merge tree query to experimentally validate the
forest implementation by comparing the merge tree query output with
existing implementations.

Definition 7. Given a simplicial complex K and a generic function
g, we call MergeTree(K, g) a function that outputs an unaugmented
merge tree T.

Once an unaugmented merge tree with N nodes is available, a branch
decomposition can be computed in O(NlogN) [34], which allows
adding a persistence simplification threshold to all queries.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER. GRAPHICS, WVOL. 26, NO.1, JANUARY 2020
] ®
(®) ¢
~ .2 ~
&
3)
7
4

(a) Two regions and bridge edges. (b) Local trees for the two regions.
Fig. 2: On the left are two local regions (red) with a scalar field (solid
edges) connected by the bridge set (dashed edges), with three maxima
(7, 9, and 8) and two saddles (6 and 4). On the right are the local trees
of the two regions (filled circles are locally regular vertices) and their
local copy of reduced bridge-set edges necessary for traversal between
the local trees. Note that the boundary restricted maxima [30] are not
sufficient due to the lack of a region overlap. For example, the saddle at
the vertex with value 6 is not present as a node in either of the two trees
(it is either a bridge-set edge end vertex or a regular vertex).

5 FOREST REPRESENTATION

‘We introduce an intermediate representation called the merge forest that
is local with respect to a domain partition, yet allows fast computation
of the queries. The domain is partitioned, and each region builds and
maintains local data structures that are traversed during queries.

Domain decomposition. Consider a simplicial complex K with
a set of vertices V = {vy,...,w}. LetV; C V; the region associated
with V;, denoted M;, is the maximal subcomplex of K containing only
vertices in V;. We partition V into m subsets Vi,...,Vy, such that the
associated regions My,..., M, are simply connected. This partition
can be obtained, for example, by a recursive bisection on the vertex
coordinates. The global bridge set is the set of cells not included in
any region, i.e., B=K — J/~; M;. Note that the intersection of any two
regions is empty, M; N M; = 0, and the intersection of a region with the
global bridge set is also empty, M; N B = 0. The local bridge set B; with
respect to a region M; is the intersection of the global bridge set with all
cells incident on M;. Formally, the local bridge set B; = [, cp, St(v) NB.
The intersection of local bridge sets of two adjacent regions contains
the cells of K that have vertices in both regions, and we use B;; to
denote B; "B i

Forest data structure. The forest data structure is a collection of
local data structures associated with each region of a domain decom-
position (Fig. 2). A region M; has associated three components: 1) an
augmented merge tree T;, 2) a map from vertices to arcs of T;, and 3) a
subset of the edges from the local bridge set B;. The local merge tree
T;, the merge tree of region M;, is represented as a set of arcs. Each
arc has pointers to children arcs and a pointer to a parent arc, allowing
navigating the tree in both directions, toward the leaves and toward the
root. Additionally, an arc has a pointer to a sorted list of vertices that
project to it, called the arc segmentation. The first vertex in the list is
a maximum or saddle in the local tree. The second component of the
forest data structure is a map from each vertex in M; to the arc in T;
that contains it. The third component is a subset of the edges of the
local bridge set B; that allows navigation between regions. This subset,
called the reduced bridge set RB;, locally minimizes the number of
edges that must be stored to recover global information when querying
the forest. We consider only edges, because the function is piecewise
linear, and thus connectivity changes only at vertices [3].

Definition 8. A reduced bridge set RB is defined as a set RB C B, such

that, for all indices i in the reduced filtration of K' = RBUM, U---U
My, (Equation 1), the number of connected components of K; and the
corresponding K] is the same:

#CC(K;) = #CC(K])

Note that the number of components is sufficient to show the com-
ponent equivalence because the vertex set of K and K’ is the same, and

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

KLACANSKY ET AL.: TOWARD LOCALIZED TOPOLOGICAL DATA STRUCTURES: QUERYING THE FOREST FOR THE TREE

removing edges from a bridge set B can only split components, thereby
increasing the number of components.

6 FoOREST CONSTRUCTION

‘We construct a local tree and find its reduced bridge-set edges inde-
pendently for each region. Both stages, local tree computation and
reduced bridge set construction, build on the sweep algorithm [10].
The sweep algorithm processes vertices in decreasing order, building
the filtration of superlevel complexes (Equation 1) one upper star at
a time. The individual connected components are maintained during
the sweep with a union-find algorithm operating on a disjoint-set data
structure [19] that allows logarithmic set membership query [41] (only
the path compression is used) as well as joining of sets.

6.1 Local Merge Tree Construction

For each region M;, a local tree is computed using the sweep algorithm.
During the sweep, a vertex to arc map is created. After the local tree is
built, the vertex to arc map is used to construct an arc segmentation. The
arc segmentation enables output-sensitive computation of connected
components of a superlevel complex.

Assuming the neighborhood size is constant, each local tree can be
built in O(rlogr), where r denotes the number of vertices in a region.
There are 7 regions; thus, the overall complexity to build all local trees
is O(nlogr). In contrast, the global tree requires O(nlogn) steps.

6.2 Local Reduced Bridge Set Construction

In addition to a local tree, each region M; stores a local reduced bridge
set RB; = |JRB;;j, where M; is a neighbor of M;, to allow for an ef-
ficient traversal to the neighboring local trees. For each neighboring
region M, the local reduced bridge set is computed by the function
REDUCEDBRIDGESET(B;;, vertices in the closure of B;;, B_u)

The reduced bridge-set algorithm (Alg. 1), similarly to the merge
tree algorithm, performs a sweep through the sorted vertices while
maintaining connected components with a disjoint-set data structure.
However, instead of iterating over all vertices in an upper link, the edges
outside the bridge set are processed first (lines 6-8) to minimize the size
of the reduced bridge set. All components in the upper link are then
merged, and the edges that have end vertices in different components
are recorded (lines 9-12). These edges are added to the reduced bridge
set, because they are necessary to maintain the connectivity between
regions. We note that the disjoint-set data structure used in the reduced
bridge-set algorithm is independent of the disjoint sets used during the
local merge tree construction.

In total, there are ¥ regions, each containing r vertices. A region

has 6 faces of size %_2, 12 edges of size /r, and 8 corners of size 1.
The faces dominate the number of processed elements. Each region
does 0(\71"_2 log V2) work, and thus the time complexity of building
all local reduced bridge sets is O(2v/r2log V/r?).

Algorithm 1 A reduced bridge-set algorithm. The arguments determine
if the algorithm computes a minimum reduced bridge set or a local
reduced bridge set.

1: function REDUCEDBRIDGESET(bridge set B, vertex set V)

2s V' + sORTBYDECREASINGVALUE(V)

3z RB+ 0

4; for i+ 1to|V'| do

5: CREATECOMPONENT(V;) > 1. add vertex
6: for each v; in Lk™ (v;) do > 2. connect inside region
: if (vi,v;) ¢ B then

8: MERGE(COMPONENT(V;), COMPONENT(V;))

9: for each v; in Lkt (v;) do > 3. connect between regions
10: if COMPONENT(v;) # COMPONENT(v;) then

11: MERGE(COMPONENT(V;), COMPONENT(V;))

12: RB + RBU (v;,vj)

13: return RB

7 ANALYSIS OF REDUCED BRIDGE SET CONSTRUCTION

The goal is to prove that the forest data structure computed with the
local trees and local reduced bridge sets admits the same superlevel-
complex components as the global mesh K. First, we prove that the
complex created by the local regions and the global reduced bridge set
RB produce the same components as K. Finally, we show that the union
of the local reduced bridge sets produced by the REDUCEDBRIDGESET
function (Alg. 1) is a superset of the global reduced bridge set, and
hence is guaranteed to have the same superlevel-complex components
for all thresholds.

Lemma 1 (Reduced bridge set algorithm). Let RB be the set returned
by the function REDUCEDBRIDGESET(B, V), given the global bridge
set B and all vertices of K, V. Then RB is a reduced bridge set.

Proof. We prove that RB is a reduced bridge set, i.e., the invariant
#CC(K;) =#CC(K]) holds at the end of each outer loop iteration (lines
4-12), by induction on the filtration index.

Base case: i =0, Ko =K}, =0, RB=0, and #CC(Ko) = #CC(K}) =0.

Induction step: By induction, the precondition holds #CC(K;_;) =
#CC(K]_,). The first step (line 5) adds the vertex v; and the
number of components increases by one, #CC(K;_; Uv;) =
#CC(K]_, Uv;) =#CC(K;_1) + 1. In the second step, the first
inner loop (lines 6-8) adds the edges outside B, E,,;. Since the
complexes differ only in the bridge set, i.e., K\B=K'\B, it
follows #CC(K;_y Uvi UEy,) = #CC(K]_; Uv;iUEy,,). In the
third step, the second inner loop (lines 9-12) adds the edges
inside a bridge set B that change the number of connected compo-
nents, Ej, because COMPONENT(v;) # COMPONENT(v;) implies
v; and v; are not connected. Therefore, #CC(K;_1 USt*(v;)) =
#CC(K]_, Uv;UEy, UEj,). Thus the postcondition #CC(K;) =
#CC(K]) holds.

O

Definition 9. A minimum reduced bridge set RB* is such that no re-
duced bridge set RB*' with |RB*'| < |RB*| exists.

Lemma 2 (Minimum reduced bridge set construction). The reduced
bridge set RB constructed by REDUCEDBRIDGESET(B, V) is a mini-
mum reduced bridge set.

Proof. By the definition of a reduced bridge set, RBNK; CRBNK; C
--- C RBNK, = RB. Suppose a set of simplices Y exists, such that
|RB| > |¥|. Assume for some filtration index i, [RBNK;| = [Y NKj|, and
|[RBNKjii| > |¥ NKj;1|- The function REDUCEDBRIDGESET adds
only edges that change the number of connected components (lines
10-12); thus Y is not a reduced bridge set.

The algorithm for constructing a reduced bridge set (Alg. 1) has the
property that if run on any subset of B and the vertices in its closure,
it will return a superset of a minimum reduced bridge set restricted to
that subset. We use this property to build a local reduced bridge set that
allows us to answer global queries.

Lemma 3 (Reduced bridge set for domain subset). Let B’ be the
subset of B, arbitrary set Y C K, and RB' the set constructed by
REDUCEDBRIDGESET(B/, vertex set of B'UY). Then the set RB' is a
superset of RBNB'.

Proof. The sweep in REDUCEDBRIDGESET(B, V') implicitly defines
an edge sequence E, and its subsequence E* corresponds to the edges
in a minimum reduced bridge set RB. Similarly, the sweep in RE-
DUCEDBRIDGESET(B', vertex set of B’ UY) implicitly defines an edge
sequence E’, and its subsequence E™* corresponds to the edges in the
set RB'. We need to show that E* N B’ C E™, that is, the set RB' con-
tains all edges from RB restricted to the set B’, and potentially some
extra edges. Suppose there exists an edge e € E* N B', and thus it
connects two components C, and C,. Assume e ¢ E™. Then another
edge €' € E™ before e in the edge sequence must connect C, and Cj,.
Then, however, the edge e would not be in E* N B’ given the component
test (line 10). |

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

(a) ComponentMax(v=6h=6)=8 (b) ComponentMax(v=6h=4)=9

Fig. 3: The ComponentMax query for a vertex v with function value 6
and two thresholds, 6 and 4. The forest consists of two local trees (red)
connected by a local reduced bridge set. The algorithm starts by finding
an arc that contains the vertex v using the vertex to arc map, and then it
traverses the whole subforest above a given threshold and performs a
reduction on the visited leaves. On the left, the threshold is 6, and thus
the query returns the vertex 8 (maximum of the leaves 7 and 8). On the
right, the threshold is 4, and the query returns the vertex 9 (maximum of
leaves 7, 8, and 9), because the saddle 4 is in the connected component.

8 QUERYING FOREST

‘We now use the forest to accelerate the elementary queries (Sect. 4.1)
and derived queries (Sect. 4.2).

8.1 Maxima Query

The query returns all maxima in a data set. It is implemented by
iterating over all leaves in each local tree, and returning only the leaves
that do not have incident a bridge-set edge with a higher end vertex.

8.2 Component Maximum Query

The ComponentMax query returns the global maximum of a connected
component in a superlevel complex that contains a given vertex (Fig. 3).
Instead of traversing a mesh to find the maximum, a global merge
tree (Alg. 2) can be traversed because its leaves represent maxima,
and arcs connect at saddle vertices where the connectivity changes.
However, in the forest representation, we have a collection of local
merge trees connected by reduced bridge-set edges. Thus, compared to
global tree traversal, we need to traverse between regions (Alg. 3) and
keep track of already visited arcs.

The coMPONENTMAX function (Alg. 2) returns the correct maxi-
mum of a component, because the forest has the same components as
the underlying complex K. Effectively, COMPONENTMAX performs a
depth-first search in the graph defined by the portions of the forest data
structure above the given threshold.

Algorithm 2 The algorithm for computing query ComponentMax that
returns the highest vertex reachable from a given vertex in a superlevel
complex.

function COMPONENTMA X(function g, forest F, vertex v, threshold
h, visited set V §5)
if g(v) <horv e VS then
return |
VS« VSu{v}
arcy + VERTEXTOARC(F, v)
max +— arc,.maxVertex
for each arcp in ARCNEIGHBORS(g, F, arcy, h) do
V' « arc,.maxVertex
result,VS + COMPONENTMAX(g, F,V', h, VS)
if result #£ 1 and g(result) > g(max) then
max + result
return max, VS

Optimizations. The ComponentMax query on a forest needs to keep
track of visited vertices (or arcs) compared to the global tree, where
a predecessor is sufficient. The bookkeeping adds to the cost of the
traversal. This cost is minimized by traversing the local tree first and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.26, NO.1,

JANUARY 2020

Algorithm 3 A function that returns all neighboring arcs of an arc. The
set may include arc’s children, parent, and all arcs reachable through
the arc’s bridge-set edges.

function ARCNEIGHBORS(function g, forest F', arc arc,, threshold
h)
neighbors + arc,.childrenU {arc,.parent }
for each edge in arc,.bridgeSet do
if g(edge.localVertex) > h then
arcy + VERTEXTOARC(F, edge.neighborVertex)
neighbors + neighbors U {arc,}

return neighbors

adding only the arcs with reduced bridge-set edges to the visited set.
An additional benefit of the optimization is increased cache locality
due to local traversal. Altogether, we observe more than a factor of two
speed-up over the nonoptimized implementation.

8.3 Connected Component Query

‘We implement the Component query by modifying the COMPONENT-
Max function (Alg. 2) to collect the arc’s vertices during the forest
traversal. For arcs that intersect the threshold, only vertices above the
threshold are collected. Compared to the ComponentMax query, the
forest traversal cost is, in practice, many times smaller than the cost
associated with copying the vertices to the output array.

8.4 Relevance Query

Instead of traversing the complex K to compute the Relevance query, we
use the forest-accelerated function COMPONENTMAX. This function is
called with the queried vertex and its function value, and the returned
maximum is used in the relevance metric equation (Def. 6).

8.5 Merge Tree Query

One of the main bottlenecks in constructing the augmented tree is the
need to maintain a list of vertices per arc to support the extraction
of connected components. Fortunately, such an augmented tree is not
necessary, because we have the Component query on the forest, and thus
we compute the unaugmented global tree that contains only critical
vertices. For example, extracting a superlevel-complex component
corresponding to a subtree in the global merge tree is performed by the
Component query using a merge saddle and its function value.

‘We query the forest for the tree using the sweep algorithm [10] on
the forest graph. First, all local arcs and reduced bridge-set edges are
collected into an array. The local bridge-set edges that have a lower end
vertex in other region are ignored, because the other region will add
that edge. Additionally, the higher of the two end vertices is pointed
directly to the corresponding arc’s highest vertex, reducing the number
of edges in the array by about 10% and leading to a 10-20% speed-up.
Then, the array is sorted and a sweep is performed to identify global
arcs.

9 RESULTS

‘We evaluate the forest construction time and its scaling on a multicore
computer and test the performance impact of the forest representation
on queries. Both the construction and queries depend on a chosen
region size, and we focus our attention on the region size first. Then,
we evaluate the parallel scaling of the construction and conclude with a
comparison of queries on a forest with those on a global tree.
Topological data structures, including a merge tree, are output sensi-
tive, i.e., the construction and query time is impacted not only by the
data size, but also by its topological complexity. Therefore, we use a
wide variety of data sets (Table 1), such as imaged scans (Foot, Verte-
bra, Neurons) and simulations (Magnetic [23], HCCI [4], TJ [5], Mi-
randa [14], DNS [27]). Some data sets have mostly local features (TJ),
but some have long, thin features that span a large portion of the data
set (Vertebra). We choose these data sets to test the overhead im-
posed by the region decomposition, during both precomputation and
the queries. For the data sets HCCI, TJ, and Neurons, a subset with a

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

KLACANSKY ET AL.: TOWARD LOCALIZED TOPOLOGICAL DATA STRUCTURES: QUERYING THE FOREST FOR THE TREE 179
16 bits 32 bits 64 bits | — R 2
E. — N i I
104 ; 10 £ -‘E’l
— - _ 3 3 w0
i 2 [R —— z
el — = 5T 37— e
s———-== | |o= e e
i e S 2
10t — T j: Bl 8
— Miranda i
%H'““'H———____ - — Newrars - \\/_ _ 2 ____ - g s
1 2 68 138 256" 512° 10242008 1@ 38 6P 125 256° 5120 10262088 160 37 6 1387 2367 512° 10247 20480 160 3P 6P 18 2@ 52 14
region size region size region size region size

Fig. 4: The region size affects the performance of the serial forest construction. Due to better locality and a smaller log factor from the sort, we can
build the forest faster than the global tree. Moreover, we use a smaller index data type to reduce the memory needed to store the forest, i.e., the two
jumps, from 32? to 643 and from 10243 to 20487, are caused by switching to a larger index type. We do not split arcs in local trees with bridge-set end
vertices, and thus the cost of the domain decomposition is mainly reflected in the total size (number of edges) of the local reduced bridge sets.

Table 1: A list of data sets used for the evaluation. The selected data
sets have a wide range of sizes and topological complexity.

Data set Resolution Size (GB) Arc count
Foot 256x256x256 0.01 380,654
Vertebra 512x512x512 0.25 1,419,062
Magnetic 512x512x512 0.5 13,661,086
HCCI 512x512x512 0.5 16,342
TI 512x1024x512 1 9,619,909
Miranda 1024x1024x1024 4 1,162,520
Neurons 2048x2048x2048 16 910,677,279
DNS 10240x7680x1536 900 138,601,501

resolution that is a multiple of the region resolution is extracted. Data
sets are represented as structured grids and are implicitly triangulated.

In the comparison with the global augmented tree construction, we
use FTC [22] and TTK [42]. We show that forfeiting the goal of
computing the global tree results in an order of magnitude speed-up
in precomputation with a small impact on queries. All algorithms
use the same six-subdivision neighborhood and build a forest or a
superlevel-complex merge tree (the split tree setting in FTC and TTK).

All tests are run on a machine with four Intel Xeon CPU E7-8890 v3
@ 2.5 GHz (18 cores each) and 3 TB RAM (1.6 GT/s) running CentOS
Linux 7.5. The compiler used is GCC 7.3.1 with optimizations enabled
(-03), and FTC and TTK 0.9.7 are compiled with additional libraries
Boost 1.69.0 and VTK 8.2.0. All reported precomputation times are
a mean of 3 runs with a coefficient of variation (standard deviation
divided by mean) less than 15% for forest and 30% for FTC and TTK.
Some of the runs with FTC did not complete successfully, and thus can
have a mean of less than three runs. The queries are run serially.

9.1 Forest Construction

The forest algorithm computes, for each region in a domain partition, a
local tree and a local reduced bridge set. The region size determines
the size of a partition, and we focus on exploring its impact on the
serial construction time. From the complexity analysis (Sect. 6), we
know that local trees take O(nlogr) and local reduced bridge sets take
O(%\%E log V/72) time, and thus both depend directly on the region
size. Moreover, data locality can play a role in the forest construction
performance, especially for larger data sets that do not fit into a cache,
because modern processors rely on several layers of a cache hierarchy
to minimize the latency of memory accesses.

‘We vary the region size (Fig. 4) and also the necessary index type.

For example, a region size 323 can use 16-bit integers as indices, but a
size 643 to 1024> requires 32 bits, and with size 2048>, 64-bit indices
are required. The use of 32-bit indices halves the memory overhead of
the vertex to arc map and arc segmentation compared to 64-bit indices,
which allows us to analyze the DNS data set.

The spectrum of region sizes has two extremes, a region with a
single vertex and a region with all vertices. For practical reasons, we

start with the region size 16°. As we sweep the region size range, we
observe the serial construction reaching a minimum around size 643
and 1283. The computation of the global tree (the region size is the
same as the data size) is slower than that of the forest, due to both
algorithmic complexity of sorting and worse data locality. The locality
of the global sort is improved by duplicating the data set and combining
each vertex with its value to avoid an indirection to read the scalar value
from the data set. However, duplication may not always be possible
due to limited memory capacity. Since the region size is much smaller
than the data size, the optimization has negligible memory overhead.

9.2 Parallel Forest Construction and Comparison with Par-
allel Merge Tree Construction

The serial algorithm iterates over all regions and processes them inde-
pendently, and the natural next step is to execute the iteration in parallel.
In parallel tests, we use a region size 64° because it minimizes the
time per region for most of the data sets (Fig. 4) and still provides a
sufficient amount of work for 72 cores. An exception is the Foot data
set with only 64 regions. Moreover, the larger number of small regions
reduces the load imbalance.

The parallel tests are run in two configurations by setting the
OpenMP environment variables

* close with OMP_PROC_BIND=close and OMP_PLACES=cores

spread with OMP_PROC_BIND=spread and OMP_PLACES=cores

Ideal scalin 724
/ i

//"— lﬁ:

TR Ideal scal;g,

speed-up

1 2 4 5 15
number of cores

(a) Scaling with close configuration. (b} Scaling with spread configuration.
Fig. 5: On the left, scaling with the close configuration (a single socket
left of the stippled vertical line). FTC and TTK do not scale over multiple
sockets, whereas the forest scales linearly. The exception is the Foot
data set that has only 64 regions, which limits its scalability and increases
load imbalance. On the right, scaling with the spread configuration shows
that the forest benefits from more cache available across sockets and is
more robust to the system configuration.

The close runs start with 1 core, and then 2, 4, 8, 16, and 18 cores,
all on the same socket (a workstation-like configuration). Then one
socket is added at a time (19 and 36, 54, and 72 cores) to explore the
nonuniform memory access effects on scaling. However, the processor
cache is underutilized with the close configuration, and thus we also

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

180

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.26, NO.1,

JANUARY 2020

Table 2: Construction times (in seconds) of a merge tree with FTC and TTK and a forest (region size 64°). We run these scaling tests in the close
configuration (environment variables OMP_PROC BIND=close and OMP_PLACES=cores) to force the 18 core runs to reside on a single socket, because
FTC and TTK are designed for a workstation. The forest is an order of magnitude faster than FTC and TTK and scales to 72 cores. The missing
results did not run successfully with FTC and TTK, and the DNS data set took excessive time for the forest on a single core.

FTC (sec) TTK (sec) Forest (sec)
Data set lcore 18cores 72cores 1core 18cores 72cores 1core 18 cores 72 cores
Foot 7.8 33 8.0 9.8 3.5 9.6 3.6 0.3 0.2
Vertebra 69.2 253 421 103.1 28.0 55:5 40.1 2.6 0.8
Magnetic 197.1 67.2 204.2 235.4 81.0 356.1 54.5 36 1.2
HCCI 60.3 27.4 26.1 96.3 30.3 28.5 37.0 25 0.8
T 234.2 86.6 223.2 299.5 104.5 307.4 89.4 5.8 1.7
Miranda 764.2 3984 416.0 1204.2 4428 4573 340.8 21.4 5.6
Neurons - - - - - - 20973 133.5 44.2
DNS - - - - - - - 2667.4 750.1
run the tests in a spread mode, which maximizes the available cache by — — e B . =
evenly distributing the work across sockets (1, 4, 8, 16,32, 64,and 72 & B forest B
cores). We compare the scalability of the forest construction with the ‘; i) T ‘;200
shared-memory augmented merge tree construction algorithms, FTC = ‘s 3

and TTK. All reported times exclude the I/O and measure the time from
the start of the precomputation until we are able to run the first query.
‘We were unable to process the Neurons and DNS data sets with FTC or
TTK. The DNS data set is run only in the close configuration at 18 and
72 cores due to excessive runtime.

We start with the close runs (Table 2) and observe forest construc-
tion times under 10 seconds for most of the data sets on 18 cores (a
workstation scenario). Furthermore, if all 72 cores are employed, only
the DNS data set cannot be preprocessed under a minute. Moreover, the
linear scaling of the forest construction exhibits a mean 87% parallel
efficiency on 8 cores, 82% on 18 cores, and 65% on 72 cores. The
decrease in parallel efficiency on 72 cores can be attributed to greater
load imbalance on the small data set (Foot) and increased resource con-
tention. Furthermore, the spread configuration increases the parallel
efficiency to 92% on 8 cores because it maximizes the cache utiliza-
tion (Fig. 5). In contrast to the forest parallel efficiency, FTC achieves
a mean 27% parallel efficiency on 8 cores and 14% on 18 cores, and
the scaling trails off on more cores. Similarly, TTK has a mean parallel
efficiency of 34% on 8 cores and 17% on 18 cores.

The memory overhead of a construction algorithm and data structure
limits the size of data sets that can be processed. Due to the localized
organization of the forest, the overhead during construction is negligible
compared to the global approach (Table 3). Moreover, 32-bit indices
are used to halve the size of the data structures needed to support the
data segmentation. The low computation overhead and smaller data
structure combined allow us to analyze the large DNS data set.

Overall, the linear scaling and reduced memory footprint allow us to
process up to 10 times larger data than previously reported.

Table 3: Memory usage (in GB) of FTC and TTK and the forest, measured
as the peak resident set with the ime utility. The forest construction uses
an order of magnitude less memory compared to the construction of the
global augmented tree, enabling the analysis of larger data sets. The
reported memory usage is on 18 cores with the coefficient of variation
less than 30% between different core counts.

Data set FTC (GB) TTK(GB) Forest (GB)
Foot 2.8 2.5 0.2
Vertebra 20.6 18.0 1.5
Magnetic 39.7 38.0 27
HCCI 17.9 15.0 1.6
TJ 51.6 47.0 39
Miranda 143.4 122.0 12.4
Neurons - - 161.3
DNS - - 1835.7

LI}

=

=2

[0 T

I 0.0 0.2 04
time (sac)

time (sec) time (sec)

(a) HCCI data set. (b) Vertebra data set. (c) Magnetic data set.

Fig. 6: Distributions of execution times for 1000 ComponentMax queries
on the forest with region size 64* and the global tree. The query vertices
are selected randomly and use thresholds equal to the function value at
a given vertex. Generally, we observe that the forest-query histograms
are scaled to the right compared to the global-tree-query histograms, as
expected. The queries on the far right require traversal of a large portion
of the forest, because the superlevel complex includes almost the entire
data set. Furthermore, this difference indicates that for queries traversing
small components, the running time is effectively the same between forest
and tree. However, responding to queries that require traversing virtually
the entire data set may incur a measurable overhead. Fortunately, this
tends to happen only for query vertices in the noise/background of the
data that are, therefore, not interesting for many applications where the
range of features is known a priori. We conclude that the proposed
change in data structure is a good choice in most practical situations.

9.3 Component Maximum Query

‘We now demonstrate that queries on a forest perform comparably
to those on a global tree, and any slowdown is acceptable for the
interactive data analysis that is typical for a visualization environment.
The main difference between the global merge tree and a forest is that
the forest contains the bridge-set edges, and these edges increase the
cost of the traversal during a query. Because the region size is an input
parameter, we can develop different trade-offs by shifting more cost to
the precomputation by increasing the region size, which reduces the
cost of traversing the bridge set at runtime. Note that the global merge
tree is a special case of a forest with a single region. Therefore, we
compare the forest to the query on the global tree (no bridge-set edges
needed) and explore the impact of region size on the query time.

‘We evaluate the query performance by randomly sampling 1000
vertices in the domain and by running the query with a threshold set to
the function value of a given vertex. We run the query on a forest and
global tree, and for each run we compute the distribution by splitting the
elapsed time range into 16 bins and counting the number of queries that
fall into each bin. From the experiments, we observe the performance of
the forest representation is comparable to that of the global tree (Fig. 6),
with a surprising result for the Magnetic and TJ data sets, where the
forest outperforms the tree despite the extra overhead imposed by the
local reduced bridge set. These data sets have an order of magnitude
more arcs than other similarly sized data sets, and thus the better locality
of the traversal outweighs the extra overhead imposed by the merge

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

KLACANSKY ET AL.: TOWARD LOCALIZED TOPOLOGICAL DATA STRUCTURES: QUERYING THE FOREST FOR THE TREE 181

e
=1
=

=
=

number of queries
number of queries

D 0.0 0.2 0.4
time (sec)

(b) Region size 128°. (c) Region size 256°.

(a) Region size 64°.

Fig. 7: The ComponentMax query on the Miranda data set with varying
region size on the global tree and forest. We clamped the histogram (a)
after 0.5 second. As the region size increases, the overhead decreases,
and the absolute time difference is negligible and well within interactive
time. We expect most practical queries to be in the left to the middle of
the histogram (the ones on the right traverse the whole forest).

forest. The absolute time differences at region size 643 are less than
100 milliseconds and are unlikely to impact an interactive data analysis.

‘We look closer at the impact of the region size on the Miranda data
set (Fig. 7), because it is the largest data set we use to test queries, and
the number of regions is higher than the number of cores even for larger
regions. For the region size 643, the ComponentMax queries are 2.1
times slower, but at the region size 256>, we get only a 1.3x slowdown.

9.4 Connected Component Query

The connected component query needs to collect vertices to construct a
segment, which serves as an opportunity to amortize the overhead of
the forest traversal. We test the query by extracting the components
of 1000 superlevel complexes evenly spaced in the range. The first
superlevel complex has a single component containing all vertices in
the domain.

‘We observe times to extract the components using the forest that are
similar to the times using the global tree (Fig. 8). The difference be-
tween the query times is, in most cases, on the order of 10 milliseconds,
which is acceptable for an interactive analysis. Furthermore, when
the topological complexity increases, the forest outperforms the global
tree due to better data locality. Similarly to the ComponentMax query,
increasing the region size narrows the gap between the forest and the
global tree, both the speed-ups and the slowdowns. For example, in the
largest tested data set (Miranda), the worst case slowdown is 2.8x at
the region size 643, 1.7x at 128>, and only 1.2x at 256°.

9.5 Merge Tree Query

The MergeTree query returns a global unaugmented merge tree. Com-
pared to the global approach where the tree is readily available, the
forest requires an additional computation. The query time increases
with the input graph size (Table 4) and on most of the data sets is below
10 seconds. However, for the Neurons data set, the query takes several
minutes, further corroborating our pursuit of localized data structures.

Table 4: The MergeTree query times for all data sets with the input graph
size in millions. An unaugmented merge tree can be constructed in a
few seconds for most of the data sets. However, the more topologically
complex data sets (Magnetic, Neurons) take an order of magnitude
longer than the forest preprocessing.

Region size 64° Region size 128°
Data set Graph size Time (sec) Graphsize Time (sec)
Foot 0.64 M 0.25 0.60 M 0.24
Vertebra 2.60M 1.10 23TM 1.04
Magnetic 23.19M 12.31 2175 M 10.47
HCCI 0.06 M 0.03 0.04M 0.02
TI 16.72M 8.52 1538 M 712
Miranda 295M 1.14 2.24M 0.91
Neurons 1502.76 M 879.42 143534 M 816.29
DNS 37423 M 546.53 273.88 M 446.89

time (sec)
2

e L

1] 10 E]]
threshold

10 o 2000
threshald

5
thresheld

(a) HCCI data set. (b) Vertebra data set. (c) Magnetic data set.
Fig. 8: Measuring the query time (log scale) as a function of threshold
for the Components query on the forest with region size 64° and the
global tree. In each case, a threshold of 0 extracts every data point. We
observe the queries execute in comparable time, and more topologically
complex data sets perform better with the forest.

10 LIMITATIONS

The forest construction requires an input parameter, the region size,
which may be challenging to choose appropriately a priori. Even though
our experiments suggest the region size 64° is a reasonable default for
the precomputation, the region size choice affects the performance of
the queries (Fig. 7). If we had a way of determining that a region
size is not appropriate given the number of expected queries to be
executed, we could quickly recompute the forest with a larger region
size. However, it is unclear what a good technique would be to judge if
such recomputation is beneficial.

Persistence simplification enables the reduction of noise by remov-
ing features with low persistence; however, the presented queries do not
support such a simplification directly. Currently, we need to compute
the unaugmented global tree with the MergeTree query first, forming
a bottleneck to the scalability of analysis. Moreover, the queries pre-
sented are executed serially, and thus underuse the resources available.
Additionally, 1000 queries may be insufficient to adequately sample
the ComponentMax query parameter space.

The forest representation is limited to a simplicial complex, because
we assume that critical points are vertices inside a region. For example,
a trilinear interpolant can cause critical points to be inside a face or a
cell [33], and thus potentially in a bridge set. The simplicial complex
requirement forces an implicit triangulation of a grid cell, potentially
changing its topology [9].

11 CONCLUSION

‘We present the merge forest, a localized data structure that processes
each region in the domain decomposition in parallel and with linear
scaling. We define a set of queries useful for data analysis and describe
algorithms that can execute them quickly using the forest. Through an
extensive evaluation, we confirm that these queries are only marginally
slower on the forest compared to the global tree, and in some cases, even
faster. The linear scaling and fast queries combined enable analysis of
an order of magnitude larger data sets than previously possible.

As future work, we would like to explore the applicability of lo-
calized data structures to different topological structures, such as the
Morse-Smale complex. Moreover, an extension of the merge forest to
distributed-memory computers would be interesting, and it remains an
open question if the queries can execute quickly despite the communi-
cation cost. Another possibility is to evaluate the forest construction
and queries on a wide variety of unstructured meshes. Especially in-
teresting would be a study of the impact of different mesh partitioning
schemes [38] and mesh layouts [48] on the forest performance.

ACKNOWLEDGMENTS

The authors wish to thank reviewers, Amy Gooch, Duong Hoang,
John Holmen, and Christine Pickett. The Neurons data set was pro-
vided by Alessandra Angelucci and Frederick Federer. This work was
supported in part by NSF:CGV Award: 1314896, NSF:IIP Award:
1602127, NSF:ACI Award:1649923, DOE/SciDAC DESC0007446,
PSAAP CCMSC DE-NA0002375, NSF:0AC Award: 1842042, and
Intel Graphics and Visualization Institutes of XeLLENCE program.

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

182

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.26, NO.1,

REFERENCES

(1

2

3

[4

[3

[6

[7

[8

[9

[10]

(1]

[12]

[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

A. Acharya and V. Natarajan. A parallel and memory efficient algorithm
for constructing the contour tree. In 2015 IEEE Pacific Visualization Sym-
posium (PacificVis), pp. 271-278, Apr. 2015. doi: 10.1109/PACIFICVIS.
2015.7156387

P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its
applications to terrain analysis. ACM Trans. Algorithms, 7(1):11:1-11:21,
Dec. 2010. doi: 10.1145/1868237.1868249

T. E. Banchoff. Critical points and curvature for embedded polyhedral
surfaces. The American Mathematical Monthly, T7(5):475-485, May 1970.
doi: 10.2307/2317380

G. Bansal, A. Mascarenhas, and J. H. Chen. Direct numerical simulations
of autoignition in stratified dimethyl-ether (DMEYair turbulent mixtures.
Combustion and Flame, 162(3):688-702, 2015. doi: 10.1016/j.combust-
flame. 2014.08.021

A. Bhagatwala, Z. Luo, H. Shen, J. A. Sutton, T. Lu, and J. H. Chen.
Numerical and experimental investigation of turbulent DME jet flames.
Proceedings of the Combustion Institute, 35(2):1157-1166, 2015. doi: 10.
1016/j.proci.2014.05.147

R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar simula-
tion. In Proceedings of the November 12-14, 1963, Fall Joint Computer
Conference, AFIPS "63 (Fall), pp. 445-458. ACM, New York, NY, USA,
1963. doi: 10.1145/1463822. 1463869

P-T. Bremer, A. Gruber, J. C. Bennett, A. Gyulassy, H. Kolla, J. H. Chen,
and R. W. Grout. Identifying turbulent structures through topological
segmentation. Commun. Appl. Math. Comput. Sci., 11(1):37-53, 2016.
doi: 10.2140/camcos.2016.11.37

P.-T. Bremer, G. H. Weber, J. Tierny, V. Pascucci, M. S. Day, and J. B.
Bell. Interactive exploration and analysis of large-scale simulations using
topology-based data segmentation. IEEE Transactions on Visualization
and Computer Graphics, 17(9):1307-1324, Sept. 2011. doi: 10.1109/
TVCG.2010.253

H. Carr, T. Méller, and J. Snoeyink. Artifacts caused by simplicial sub-
division. IEEE Transactions on Visualization and Computer Graphics,
12(2):231-242, Mar. 2006. doi: 10.1109/TVCG.2006.22

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-
sions. Computational Geometry, 24(2):75-94, 2003. Special Issue on the
Fourth CGC Workshop on Computational Geometry. doi: 10.1016/50925
-7721(02)00093-7

H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Simplify-
ing and displaying scalar topology using the contour tree. Comput. Geom.
Theory Appl., 43(1):42-58, Jan. 2010. doi: 10.1016/j.comgeo.2006.05.
009

H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak
pruning for scalable SMP contour tree computation. In 2016 IEEE 6th
Symposium on Large Data Analysis and Visualization (LDAV), pp. 75-84,
Oct. 2016. doi: 10.1109/LDAV.2016.7874312

Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-
sensitive construction of contour trees using monotone paths. Computa-
tional Geometry, 30(2):165-195, 2005. Special Issue on the 19th European
Workshop on Computational Geometry. doi: 10.1016/j.comgeo.2004.05.
002

A. W. Cook, W. Cabot, and P. L. Miller. The mixing transition in Rayleigh-
Taylor instability. Journal of Fluid Mechanics, 511:333-362, 2004. doi:
10.1017/50022112004009681

M. de Berg and M. van Kreveld. Trekking in the alps without freezing
or getting tired. Algorithmica, 18(3):306-323, July 1997. doi: 10.1007/
PL00009159

H. Edelsbrunner and J. L. Harer. Computational Topology: An Introduc-
tion, vol. 69. American Mathematical Society, 2010. doi: 10.1090/mbk/
069

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence
and simplification. Discrete & Computational Geometry, 28(4):511-533,
Nov. 2002. doi: 10.1007/s00454-002-2885-2

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Trans. Graph.,
9(1):66-104, Jan. 1990. doi: 10.1145/77635.77639

B. A. Galler and M. J. Fisher. An improved equivalence algorithm. Com-
mun. ACM, 7(5):301-303, May 1964. doi: 10.1145/364099.364331

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Contour forests: Fast
multi-threaded augmented contour trees. In 2016 IEEE 6th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 85-92, Oct. 2016. doi:

[21]

[22]

(23]

[24]

(23]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

JANUARY 2020

10.1109/LDAV.2016.7874333

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
merge trees with Fibonacci heaps. In 2017 IEEE 7th Symposium on Large
Data Analysis and Visualization (LDAV), pp. 615, Oct. 2017. doi: 10.
1109/LDAV.2017.8231846

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
contour trees with Fibonacci heaps. IEEE Transactions on Parallel and
Distributed Systems, 30(8):1889-1905, Aug. 2019. doi: 10.1109/TPDS.
2019.2898436

E. Guo, H. Li, W. Daughton, and Y.-H. Liu. Formation of hard power
laws in the energetic particle spectra resulting from relativistic magnetic
reconnection. Phys. Rev. Lett., 113:155005, Oct. 2014. doi: 10.1103/
PhysRevLett.113.155005

M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister. Sparse-
Leap: Efficient empty space skipping for large-scale volume rendering.
IEEE Transactions on Visualization and Computer Graphics, 24(1).974—
983, Jan. 2018. doi: 10.1109/TVCG.2017.2744238

A. G. Landge, P-T. Bremer, A. Gyulassy, and V. Pascucci. Notes on the
distributed computation of merge trees on CW-complexes. In Topological
Methods in Data Analysis and Visualization IV, pp. 333-348. Springer
International Publishing, Cham, 2017. doi: 10.1007/978-3-319-44684
420

A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen,
and P.-T. Bremer. In-situ feature extraction of large scale combustion sim-
ulations using segmented merge trees. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 14, pp. 1020-1031. IEEE Press, Piscataway, NJ, USA, 2014.
doi: 10.1109/SC.2014.88

M. Lee and R. D. Moser. Direct numerical simulation of turbulent channel
flow up to Re; == 5200. Journal of Fluid Mechanics, 774:395-415, July
2015. doi: 10.1017/jfm.2015.268

S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel
algorithm for computing and tracking level set topology. In 2012 19th
International Conference on High Performance Computing, pp. 1-10, Dec.
2012. doi: 10.1109/HiPC.2012.6507496

A. Mascarenhas, R. W. Grout, C. S. Yoo, and J. H. Chen. Tracking flame
base movement and interaction with ignition kernels using topological
methods. Journal of Physics: Conference Series, 180:012086, July 2009.
doi: 10.1088/1742-6596/180/1/012086

D. Morozov and G. H. Weber. Distributed merge trees. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP "13, pp. 93-102. ACM, New York, NY,
USA, 2013. doi: 10.1145/2442516.2442526

D. Morozov and G. H. Weber. Distributed contour trees. In Topological
Methods in Data Analysis and Visualization III, pp. 89-102. Springer,
2014. doi: 10.1007/978-3-319-04099-8_6

A. Nath, K. Fox, P. K. Agarwal, and K. Munagala. Massively parallel
algorithms for computing TIN DEMs and contour trees for large terrains.
In Proceedings of the 24th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPACIAL " 16, pp.
25:1-25:10. ACM, New York, NY, USA, 2016. doi: 10.1145/2996913.
2996952

V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology
of level sets. Algorithmica, 38(1):249-268, Jan. 2004. doi: 10.1007/
500453-003-1052-3

V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The TOPORRERY:
computation and presentation of multi-resolution topology, pp. 19-40.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi: 10.1007/
b106657 2

B. Raichel and C. Seshadhri. Avoiding the global sort: A faster contour
tree algorithm. Discrete & Computational Geometry, 58(4):946-985, Dec.
2017. doi: 10.1007/s00454-017-9901-z

P. Rosen, I. Tu, and L. A. Piegl. A hybrid solution to parallel calculation
of augmented join trees of scalar fields in any dimension. Computer-
Aided Design and Applications, 15(4):610-618, Jan. 2018. doi: 10.1080/
16864360.2017.1419648

N. Shivashankar, P. Pranav, V. Natarajan, R. van de Weygaert, E. G. P.
Bos, and S. Rieder. Felix: A topology based framework for visual ex-
ploration of cosmic filaments. IEEE Transactions on Visualization and
Computer Graphics, 22(6).1745-1759, June 2016. doi: 10.1109/TVCG.
2015.2452919

H. D. Simon. Partitioning of unstructured problems for parallel processing.
Computing Systems in Engineering, 2(2):135-148, 1991. Special Issue

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

KLACANSKY ET AL.: TOWARD LOCALIZED TOPOLOGICAL DATA STRUCTURES: QUERYING THE FOREST FOR THE TREE

on the Parallel Methods on Large-scale Structural Analysis and Physics
Applications. doi: 10.1016/0956-0521(91)90014-V

[39] D. Smirnov and D. Morozov. Triplet merge trees. In Workshop on

Topology-based Methods in Visualization (TopoInVis), Feb. 2017.

S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in

O(nlogn) steps. In Proceedings of the Fourteenth Annual Symposium on

Computational Geometry, SCG "98, pp. 68-75. ACM, New York, NY,

USA, 1998. doi: 10.1145/276884.276892

[41] R.E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algo-
rithms. Journal of the ACM, 31(2):245-281, Mar. 1984. doi: 10.1145/62.
2160

[42] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE Transactions on Visualization and Computer
Graphics, 24(1):832-842, Jan. 2018. doi: 10.1109TVCG.2017.2743938

[43] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore.
Contour trees and small seed sets for isosurface traversal. In Proceedings
of the Thirteenth Annual Symposium on Computational Geometry, SCG
'97, pp. 212-220. ACM, New York, NY, USA, 1997. doi: 10.1145/262839
.269238

[44] G.H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-
controlled volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 13(2):330-341, Mar. 2007. doi: 10.1109/TVCG.2007
A7

[45] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci.
Interactive exploration of large-scale time-varying data using dynamic
tracking graphs. In IEEE Symposium on Large Data Analysis and Visual-
ization (LDAV), pp. 9-17, Oct. 2012. doi: 10.1109/LDAV.2012.6378962

[46] W. Widanagamaachchi, A. Jacques, B. Wang, E. Crosman, P.-T. Bre-
mer, V. Pascucci, and J. Horel. Exploring the evolution of pressure-
perturbations to understand atmospheric phenomena. In 2017 IEEE Pacific
Visualization Symposium (PacificVis), pp. 101-110, Apr. 2017. doi: 10.
1109/PACIFICVIS.2017.8031584

[47] W. Widanagamaachchi, P. Klacansky, H. Kolla, A. Bhagatwala, J. Chen,
V. Pascucci, and P.-T. Bremer. Tracking features in embedded surfaces:
Understanding extinction in turbulent combustion. In 2015 IEEE 5th
Symposium on Large Data Analysis and Visualization (LDAV), pp. 9-16,
Oct. 2015. doi: 10.1109/LDAV .2015.7348066

[48] S.-E. Yoon and P. Lindstrom. Mesh layouts for block-based caches. IEEE
Transactions on Visualization and Computer Graphics, 12(5):1213-1220,
Sept. 2006. doi: 10.1109/TVCG.2006.162

[40

—_—

Authonzed licensed use limited to: The University of Utah. Downloaded on March 29,2020 at 16:18:50 UTC from IEEE Xplore. Restrictions apply.

