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High-throughput feature extraction for measuring attributes of
deforming open-cell foams

Steve Petruzza, Attila Gyulassy, Samuel Leventhal, John J. Baglino, Michael Czabaj, Ashley D. Spear, Valerio Pascucci
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Fig. 1: Tracking of ligaments and junctions in an aluminum open-cell foam during incremental compressive loading from 0.0 to 2.0 mm.
Red boxes highlight the changes in connectivity that we detect when ligaments fracture. The yellow boxes highlight part of the material
drifting outside the field of view of during CT scans. Colors are mapped to the ids of ligaments and junctions.

Abstract— Metallic open-cell foams are promising structural materials with applications in multifunctional systems such as biomedical
implants, energy absorbers in impact, noise mitigation, and batteries. There is a high demand for means to understand and correlate
the design space of material performance metrics to the material structure in terms of attributes such as density, ligament and node
properties, void sizes, and alignments. Currently, X-ray Computed Tomography (CT) scans of these materials are segmented either
manually or with skeletonization approaches that may not accurately model the variety of shapes present in nodes and ligaments,
especially irregularities that arise from manufacturing, image artifacts, or deterioration due to compression. In this paper, we present a
new workflow for analysis of open-cell foams that combines a new density measurement to identify nodal structures, and topological
approaches to identify ligament structures between them. Additionally, we provide automated measurement of foam properties.
We demonstrate stable extraction of features and time-tracking in an image sequence of a foam being compressed. Our approach
allows researchers to study larger and more complex foams than could previously be segmented only manually, and enables the
high-throughput analysis needed to predict future foam performance.

Index Terms—Topological analysis, foam, features extraction, feature tracking
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1 INTRODUCTION segmentation techniques struggle both to address the variety of struc
tures present in open-cell foams, and to provide robust segmentation as
the material is compressed to measure its performance characteristics.
Drawing correspondences between junctions and ligaments becomes
especially challenging as ligaments deform, self-contact, or fracture
during compressive loading. A new approach is needed to address these
challenges.

In this paper, we present a high-throughput, end-to-end workflow that
provides robust and reliable segmentation of foams into junctions and
ligaments. We introduce a new measure, the geodesic density function,
that, combined with topological approaches, is able to identify junctions
and ligaments consistently across time series images. We employ time
tracking to disambiguate and explain the provenance of structures in
the later time steps, when the foam has been compressed. Our system
involves and guides the user in the analysis of a foam through careful
use of visualization tools. Finally, we show that large-scale foams with
thousands of ligaments, which were previously deemed too complex
and costly to segment "by hand", can now be analyzed with only
minutes of user interaction. Our workflow increases the throughput for

Open-cell metallic foams and lattices are comprised of a network of
interconnected ligaments. It is postulated that attributes such as the
length of ligaments, connectedness of junctions, or distribution of pore
size contribute to the mechanical performance of a foam. However, the
relationships among these attributes and specific performance are not
well understood. As foams are gaining more interest due to the plethora
of manufacturing techniques, and simulation is increasingly able to
reproduce performance characteristics, a data-driven approach becomes
feasible to understand these relationships. However, high-throughput
analysis of metallic foams is needed to populate this high-dimensional
data space to analyze.

The state-of-the-art for analysis of metallic foams remains perform-
ing segmentation of features by hand, a time-consuming, laborious
process that does not scale to the quantity of data sets, data sizes,
and morphological complexities that need to be analyzed. Standard
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the analysis of open-cell foams, and marks the first step toward building
data-centric models of foam performance.

2 MOTIVATION

Open-cell metallic foams and lattices are a class of structural-material
systems that comprise a network of interconnected ligaments, result-
ing in a hierarchical structure [25]. These low-density, light-weight,
load-bearing structures have been used in various multifunctional ap-
plications [4, 5,23]. For example, they are able to serve concurrently
as electrodes for energy-storage devices [62], as hosts for newly gener-
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Fig. 2: Left: an as-manufactured investment-cast aluminum foam. Right:
chamber of Varian BIR 150/130 X-ray CT imaging system with mechani-
cal load frame in place and mechanical load frame (Images reproduced
with permission from Matheson et al. [37]).
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Fig. 3: The standard model of ligaments and junctions (a) is challenged
by configurations that arise from defects (b,c), or from the effects of
compression (d).

(d) False Ligament
after Compression

ated bone and blood vessels in biomedical implants [50], or as impact
absorbers and noise insulators for advanced high-speed ground trans-
portation [5].

Open-cell metallic foams and lattices (generically referred to as cel-
lular metals) can be manufactured by a number of different routes, a
taxonomy of which is described in Refs. [55] and [32]. The conven-
tional method by which stochastic, open-cell foams are produced is
investment casting [55]. More recently, metal-based additive manufac-
turing has been used to produce lattice structures (e.g., [39, 59, 60]),
and tailoring the design of such structures remains an active area of
research.

Metal foams and lattices have been manufactured using many types
of alloys, including aluminum, titanium, copper, and steel. This work
focuses specifically on the design of open-cell aluminum foam, which
can serve as a proof-of-concept for other material systems. The com-
plex geometry and resulting mechanical performance of open-cell metal
foams and lattices present a high-dimensional design space. For stochas-
tic open-cell foams, manipulating parameters of the investment casting
process allows manufacturers to control the pore size (expressed by
manufacturers in units of “pores per inch”) and relative density (which
is governed by the shape and size of the ligament cross sections). For
additively manufactured lattices, the geometry (including lattice spac-
ing and topology) is controlled via the CAD model used to create the
part. Discovering the process-structure-property relationships for a
high-dimensional design space such as this requires generation of large
amounts of data and observations, meriting the implementation and use
of the high-throughput feature extraction tool described herein. In this
work, we design and deploy a workflow for analyzing grayscale images
of metallic foams that were generated from experimental and simulated
data.

For experimentally derived data, the images are collected as follows.
After manufacturing, each foam sample is mounted in a specialized in
situ load frame designed to enable three-dimensional imaging during
mechanical crushing. During the mechanical loading, X-ray Computed
Tomography (CT) data are collected incrementally [37] as shown in
Figure 2. Data collected from the experiment are then post-processed
to create a stack of grayscale images representing slices of the foam
volume taken at each time step during the mechanical test. Similar im-
age stacks can be generated from numerical simulations. For example,
finite-element models of foam volumes can be generated and virtually
crushed, and stacks of two-dimensional image slices can be extracted at
different time steps, analogously to those extracted from experiments.
The foam models can be synthetically generated [2,47,57] or created
directly from X-ray CT image data of an as-manufactured, uncrushed
foam [36].
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‘We postulate that the following features of the foam will impact, to
various degrees, the mechanical performance, including the onset and
progression of deformation and failure:

—ligaments: length; orientation; cross section area; perimeter; and shape.
—junctions: volume; surface area; aspect ratio.

—cells: size; aspect ratio.

—connectivity: of junctions and ligaments; and of pores.

However, it is unknown how these specific features interact to govern

the mechanical response and whether the features can be rank-ordered
by their importance on the performance of the foam. This knowledge
will be crucial to enable design optimization of the foams to meet
specific performance requirements. The first step in enabling a data-
driven design paradigm is collecting and analyzing large amounts of
data and relating these properties to measured material performance.
Prior state-of-the-art. The grayscale images acquired from CT scans
over the course of a compression sequence, in the past, have been used
to generate animations that show the progression of compression. These
animations are visually inspected to classify the behaviour of each
individual ligament at each step [37]. Ligaments have been classified
into one of four categories: those that have demonstrated brittle fracture
with little plastic deformation, those that have exhibited only plastic
collapse (such as buckling), those that have experienced a significant
amount of plastic deformation before eventually fracturing, and those
that have remained intact or mostly intact. This manual inspection and
classification process is very time consuming and certainly not scalable
to large volumes or time series. For instance, even a small example
(with 82 ligaments) took domain scientists several days to segment and
track only a dozen of ligaments. Hence, there is a need for solutions
that can accelerate the segmentation and tracking.
Challenges in segmenting CT foams. One could imagine that the
basic problem in creating an embedded graph structure to represent
an open-celled foam could be addressed with standard approaches in
image processing, such as medial axis transforms, skeletonization, or
even topological connectivity structures. However, the neat mental
model of “junction” and “ligament” collapses when faced with the
reality of time-series of images of a foam being compressed. First,
defects in real materials mean there is a continuum of morphologies
between something that can be called a ligament and something that
can be called a junction, as illustrated in Figure 3. For instance, when a
normal ligament becomes too short, the junctions merge to form larger
junctions; there is no clear demarcation between a thick ligament and
merged junctions. Also, entire faces of the open-cell foam can be filled
with material: what is an appropriate skeletal representation of such
a shape? A primary contribution of this work is a novel measure of
localized density to identify regions that act as junctions. Finally, as
the foam is compressed, ligaments break, and previously separated
structures now appear to have a ligament between them, precluding
techniques that ignore time history and provenance of structures. In
this work, we present a set of techniques that reliably and repeatably
define and compute a junction and ligament model, and we track those
structures throughout the time sequence.

3 RELATED WORK

Skeletonization. For the purpose of analysis and visualization of vol-
umes, a simplified representative structure of shape is important. The
exemplary curve-skeleton of the larger object is often interpreted to be
a line simplification of the full volume, tracing the objects’s center [53].
Various approaches to achieve this simplified skeleton include topologi-
cal thinning [14], distance field based methods [11, 15], and potential
field based methods [19, 63]. Previous distance field approaches to
obtain a skeletonization have been based either on penalizing a Di-
jkstra Shortest Path toward the boundary of the object from a core
central line [11,43], outward flux of gradient vectors from the cen-
ter of the material [15], or computing the center line through level
sets [31]. The interpretability of what defines a representative skeleton
has led to numerous approaches of skeletonization as well as attempts
at a formal definition [12, 19, 20]. Often skeletonization algorithms
approach the problem by starting outside and working their way in,
i.e., computing the center line of the full object through erosion [33],
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thinning [7,8, 13,40,42], and dilation from the object boundary [34]. A
challenge when using these approaches to segment digital images is that
the threshold determining the object interface completely determines
the connectivity of the skeleton. There is no ability to estimate what
components have been omitted. Another limitation of these approaches
is that they do not relate the components of a skeleton to the void
space outside the manifold of interest, for instance in connecting which
portions of a skeleton surround a void or hole.

Of growing interest is the use of geodesics for constructing higher
dimensional space summaries as lower dimensional path connections
between points of interest or minimum spanning trees that convey
significant structures within the higher dimensional shape. Previous
approaches for determining these curvilinear structures have relied
on computing distances from origin points using the Fast Marching
Algorithm while minimizing an energy function or relevant measure
[46] or iteratively moving from origin points to sink points through
occlusion points of interest [18]. One such implementation used in
neurite tracing determines geodesics as those propagated from the
origin point that minimize a tubularity measure defined to be a spatial
path as well as a curvilinear ‘thickness’ given by intersecting closed
balls [6]. Performing image segmentation for holes, ends, and centers
through mathematical morphology of geodesics has been of growing
interest due to its success and intuitive physical meaning, allowing easy
extension of geodesic morphological transformation techniques from
two-dimensional image data into three-dimensional volumes or four-
dimensional time dependent spaces [38]. Although skeletonization can
be performed in geodesic space [9], our primary interest in it is a means
of measuring properties from inside a topological space, specifically,
the manifold pertaining to the metallic material.

Recently, approaches have begun to compute the curved skeleton

through topological summaries such as Reeb graphs and merge trees
based on persistence [16,54]. The most successful methods employ the
Morse-Smale complex, either directly on the function of interest, or on
the signed distance field from a material interface. This approach has
been used to construct the filamentary structure of the universe [51], rep-
resent bonds between atoms [10], trace lithium diffusion pathways [30],
and extract the core structure of a porous material [29]. An advantage
of topology-based techniques is they account for the impact of noise
through persistence simplification [22]. We use the 1-skeleton of the
Morse-Smale complex, as it enables reasoning about the stability of the
extraction and provides a means of relating junctions and ligaments to
the grains and open faces they surround.
Feature Tracking One central goal of our work is to track the skele-
tonized ligaments over the compression time series. Overlap between
features in subsequent time steps is central to many approaches, and
is used to categorize events such as continuation, creation, dissipation,
bifurcation, and amalgamation [48,49]. Such approaches rely on spa-
tial overlap, and they have been extended to topological tracking of
contours [3], for varying thresholds with Reeb graphs [21], space-time
isosurfaces [56], or building a space-time function to track features
defined on level sets [58]. However, compressed foams are imaged
relatively sparsely in time, such that feature overlap is not reliable;
with these techniques, moving junctions would instead be classified as
appearing and disappearing. Basic nearest points have been used to
track filamentary structures [29]; however, point correspondences were
not used to infer object correspondences.

By providing a robust and concise feature description, skeletoniza-
tion offers a new mean of feature tracking and matching. Through
a hierarchical view of the computed spanning tree object, compar-
ison becomes possible using isomorphic or nearly similar skeleton
trees [17,52]. This approach has also been employed in animation
through computation of the centerlines, manipulation, and reconstruc-
tion of the original object [24]. Comparing objects based on their shape
skeletons has also been used as a similarity measure for feature tracking
over time [41] and feature matching following deformation [35,61]

4 GENERALIZED GEODESIC DENSITY

Often, structures of interest in an image may be determined by mor-
phology rather than derived from image intensity. In the case of foams,
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ligaments and junctions may be locally indistinguishable in the image
intensity (since the metal appears with the same intensity pattern in the
images), and it is rather the local arrangement of material that defines a
structure. Instead, a practical approach is to compute a field, such as
the distance field, that encodes morphology, and then identify intensity
features in the derived field. In the case of uniform radius tubes coming
together at a junction, the intensity values of the distance field itself are
not sufficiently sensitive to identify morphological structures. Instead,
we introduce a new measure of localized density to be used to identify
junctions. We first present basic geodesic density, which estimates the
amount of material connected to and surrounding a point, and then im-
prove the sensitivity of this measure further by generalizing the speed
function used in geodesic distance.

4.1 Geodesic Density

Let M be a Riemannian sub-manifold of IR3. The geodesic distance
between points a,b € M is defined as

du(a,b) =inf{L(C)},

where b
L(C) = / dl,
a

i.e, the length L of the shortest path among the set of connected paths
C,p containing a and b. The geodesic ball of radius r around a point a

) Bu(a,r) ={bcM|| dy(a,b) <r},

that is, the set of points connected to a with paths of length r or less.

In our study of metallic foams, we utilized geodesics to characterize
properties of points in the material in the context of their neighborhood
connected through the material, rather than Euclidean distance. The
primary motivation for this is that as the foam is compressed, junc-
tions and ligaments that initially were separated may become abutting.
However, the geodesic distances between points in the material are less
affected by the deformation.

We introduce the geodesic density function p’ defined on a point in
a manifold a € M and a radius r,

p' =V (Bu(a,r))/V(Bgs(r))-

The geodesic density is simply the ratio of the volume V of a geodesic
ball centered at @ with radius r to the volume of a Euclidean ball with
the same radius in the embedding space IR®. The intuition is that
density, p = m/V, is the amount of mass per unit volume. In our
case, the submanifold M represents metallic material, and by using the
geodesic distance rather than Euclidean, the density corresponds to a
measure local to the points in ligaments and junctions. In other words,
adjacent, but structurally separated, ligaments and junctions are not
considered when determining the density of a point.

4.2 ldentifying ligaments/junctions with geodesic density

‘We model ligaments as cylindrical “tubes” and junctions as intersec-
tions of at least three cylindrical segments. Intuitively, the density p’ at
junctions is higher than along ligaments, as more material surrounds
points in junctions. Consider a Euclidean ball in IR with radius R tran-
sected by a tubular segment (subset of M) with radius r, as illustrated
in Figure 4. The volume of the tube with spherical caps is determined
by the two radii, r and R, as is the volume of an overall tube. We list
the equations relating various structures with respect to a ball of radius
R.

We wish to use p’ to distinguish between a tube, intersecting tubes,
and disks. Given a distance field d from the boundary of M, in Figure 4,
the center of each has a value r in d (or & = r in the case of the
disk). These points are indistinguishable in the distance field, however,
they have different values in p’, as is shown in the plots in Figure 5.
The larger the radius R of the “search ball”, the greater the difference
between the values of the point in a tube, intersection, and disk. Figure 6
illustrates that the larger the search radius, the easier it is to define an
iso-value that is localized to a junction.
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4.3 Generalized Geodesic Density

As the material collapses on itself during compression, large merged
areas become difficult to separate, even with the geodesic density. By
modulating the local speed, it is possible to amplify variation in the
image intensity that could correspond to the hairline interface between
merged regions, improving the sensitivity of the geodesic distance. The
junctions in Figure 8 need this improved sensitivity to be separable. A
generalized geodesic distance simply takes into account varying speeds
along paths between a and b, and instead is defined as the time to
traverse the fastest path between them. Let s : M — IR be a function
that defines the speed at any point in the domain. Then the generalized
geodesic distance between points is defined as

diy(a,b,s) = f{L*(C,9)},

where

b
L*(C,s) = / I,
i.e, the time L* of the fastest path among the set of connected paths
C,p containing a and b given the speed function s. The generalized
geodesic ball of time-radius #, around a point a then becomes

Bis(a,tr,s) = {b € M| dis(a,b,s) <t,}.

We introduce the generalized geodesic density function p* defined
on a point in a manifold @ € M and a radius r with speed function s as,

p* = V(B}:;(a,rr,s))ﬂ/{ E{J(rr'- l))

that is, the ratio of the volume reachable from a in time ¢, given speed
function s, to the volume reachable in Euclidean space with constant
speed of 1.

Picking a speed function The generalized geodesic density p* is more
expressive, capable of adapting to the underlying intensity values in
the image. We use the speed function to slow down propagation to
avoid crossing cracks that appear as faintly diminished intensities in the
material, to avoid gathering material from the other side in the density
estimate. Therefore, our speed function is defined as s : M — [0,1],
where s(v) = 0 if v is a voxel that is unambiguously in the background,
and s(v) = 1 if vis a voxel that is unambiguously interior to the material.
‘We allow the user to set two thresholds on the image intensity, a low
threshold for background, and a high threshold for interior of material.
The speed function parameterizes (and clamps if necessary) all inten-
sity values to the range [0,1] with linear interpolation. Section 5.2.1
discusses more how a user selects the speed function.

5 A WORKFLOW FOR SEGMENTING METALLIC FOAMS

Input and Desired Result. In the metallic foam segmentation task, we
are given a time series of images Iy, ...,[,, and an estimated material
density value ppg,. The first desired result is, for each image [}, to iden-
tify each existing ligament and report its descriptive properties, such as
length, curvature, cross section parameters, and orientation. The second
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Fig. 5: The ratio of the volume of a junction to the volume of a tube
is plotted in red as a function of the ratio of the radius of the tube r to
the search radius R. The dotted line represents the portion where the
closed-form equation Vjunaion is not valid, and an approximation is used.
The ratio of the volume of a disk-like feature with thickness a to a tube
with radius a/2 is plotted in green as a function of a/R. The tube, junction,
and disk all have identical values in the distance function, but they can
be separated by the geodesic density function p’. As the search radius R
increases, the ratios r/R and a/R decrease, and the curves increase. For
instance, if R = 2r, then the intersection points at junctions are expected
to have 1.28x the value in p’ as points along the center of a ligament of
the same radius.

R=1.2r

T-junction

Fig. 6: A T-junction of tubes with radius r is rasterized onto a volumetric
grid. As the search radius R increases (indicated with a yellow sphere,
left to right), the contours of the geodesic density function p’ become
more localized in the vicinity of the junction. The colormap on each slice
is rescaled.

desired result is time-tracking each ligament, i.e., for each ligament ¢;
in image ;, to identify its representative £; in I;, ;. Furthermore, the
time tracking should detect when a ligament breaks, that is, when £; in
I; has no corresponding representative in I, ;.

Strategy of Approach. Ligaments, on their own, are extremely chal-
lenging to to extract robustly in later time steps of a compression
sequence, because 1) ligaments can break, and 2) apparent ligaments
can form where the previously disconnected portions of the material
become adjacent. Compounding the challenge is that segmentation of
CT scans is sensitive to noise in the data. Our overall strategy is to
generate new features, junctions, extracted from a generalized geodesic
density field in a manner that is more robust, and then define ligaments
as portions of a topological skeleton connecting junctions. Junctions
are then tracked through time, allowing inference of ligament tracking
and detecting fracture points. Finally, as no new ligaments can form in
the material, skeletonization artifacts that form during the compression
sequence can be detected as newly connected junctions, and discarded.

5.1 Overview of Entire Workflow

The end-to-end workflow consists of four main stages: 1) creating
junctions, 2) creating proto-ligaments, 3) time tracking and resolving
ligaments, and 4) metrology. The first two stages of the workflow
involve hands-on exploration of the data to determine thresholds for
the feature extraction. Figure 7 provides an overview of the workflow,
with numbered steps referred to in the following text. The green blocks
in this diagram indicate user intervention to select parameter settings.
The first, and most labor-intensive, part of the overall workflow is
creating junctions. Once junctions have been identified, a skeleton
is created of the material using a distance field and the Morse-Smale
complex. The skeleton is combined with the junctions to create proto-
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Fig. 7: Workflow for extracting and tracking features from foam image data over time, with numbers ordering the steps. Red numbers indicate steps
where manual interaction is required and black indicates automated computation. The user first estimates (1-3) thresholds to correctly segment
the junctions using the geodesic density metric (4-5). The junctions segmented can guide the extraction of the Morse-Smale complex (MSC)
representation of the signed distance field of the input data (6) to generate a 1 — skeleton containing a superset of the ligaments (7). Finally, time
tracking of junctions and ligaments (9-11) reports foam attributes over time.

ligament, structures that might be ligaments, but that need further
verification. Next, time-tracking of the junctions is performed, and
the corresponding time-tracking of the ligaments is inferred. The
ligament tracking information allows classification and discarding of
proto-ligaments that have no precursor in the prior time step. Finally,
several metrics of interest are computed for each ligament over the time
series.

5.2 Workflow for Creating Junctions

Given the time series of images [ly,...,I;, our goal is to generate
geodesic density fields p*(Iy), ..., p*(In) that have the property that
junctions are identifiable as connected regions above a threshold h. For-
mally, the junctions are the super-level set components given a threshold
in the geodesic density field. Furthermore, ideally, for eachi,j€0,...,n
a 1-to-1 map can be created between connected components of p*(I;)
and p*(/;). As demonstrated in section 4, given an appropriate search
radius and speed function, junctions can be distinguished with a thresh-
old from ligaments in an idealized model. However, given the noise and
morphological variability in real-world data, the radius selection, speed
function specification, and threshold selection become a trial-and-error
approach that relies on visual validation.
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To generate a generalized geodesic density field that can reliably ex-
tract junctions as connected components given a threshold, a user first
examines the last and then the first image in a time series. We have
observed that in practice, the last time step represents the most complex
scenario, where most of the ligaments are collapsed, and the material
is compressed in a very limited portion of the initial volume. The last
image gives an overview of what level of merging geometry happens,
and how/if morphological structures are represented in the compressed
state. The last image is used to identify the material and background
values to be used to parameterize the speed function (from section 4.3),
or if an additional processing step must be undertaken. The first image
provides a pristine view of the ligaments, and is used both to select a
search radius, and also visually verify that the chosen super-level set
threshold creates a component at every junction.

Defining a speed function. During our thresholds selection, we want
to understand which values in the volume under examination represent
background and which instead represent material. The goal of using a
generalized geodesic density function, as opposed to a regular geodesic
density function, is to account for situations where a single threshold
is not sufficient to determine which voxels are material and which
are background. By controlling the speed, faint features separating
morphological structures can be amplified, or in extreme cases where
separate structures are not separated by image intensity, to fill holes by
working on a distance field instead.

Generating generalized geodesic density
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Fig. 8: When structures touch in the last time step, a user determines
if they are separable by a simple intensity thresholding. In the CT scan
on the left, the structures are separable, and the blue represents user-
selected background, and the green represents user-selected material.
The CT scan on the right is not able to separate merged structures, and
therefore a 3d distance field is computed from the material interface, and
a user selects background/material in this image.

The input images are loaded in either ImagelJ [44] or Paraview [1],
depending on a user’s preference. A user navigates via slices to iden-
tify locations where the foam is pressed on itself. Certain CT scans
have the sensitivity to represent hairline gaps beween the structures, in
which case the user picks a threshold (Figure 7, step 1) that represents
“definite background” and another threshold that completely separates
ambiguous regions (Figure 7, step 2) and can be interpreted as “definite
material”. In other CT examples, and examples arising from voxelizing
finite element simulations, there is often no intensity value that sepa-
rates merged structures. In this case, we compute a distance field to the
material interface threshold (see section 5.3), and select thresholds on
the distance field, such that the morphological structures are separated,
while retaining as much of the material as possible as interior. The
thresholds selected for the last time step are reused for the entire image
sequence.

Picking a Search Radius R. The relative ratios between the density
value measured along tubes and at intersections increase with R, up to
a limit of 2:3. Therefore, as R increases, the selectivity of a threshold
of p* increases as well; it is easier to pick a value of p* that includes a
super-level-set component at each junction, while omitting unwanted
points along ligaments. Two factors provide an upper limit to how large
R should be relative to r. First, the influence of a junction (or other thick
material body) will extend at least R from the ends of a ligament. With R
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Fig. 9: Selection of junction threshold. The goal is to find a threshold
that both separates compressing junctions at the last timestep and does
not remove any existing junction at the first time step. On the left, the
threshold is too low, over connecting junctions, and on the right the
threshold is too high, removing junctions.

too large, ligaments can erroneously count the material of the junctions
at either end, making junctions harder to separate from ligaments. For
the materials in this study, however, ligament lengths were much larger
than the spacing between junctions, meaning that this concern did not
impact the selection of R. The second limiting factor for the maximum
size of R is performance. For each voxel inside the material, %ER3
potential voxels must be visited during the computation of the geodesic
density function. Although evaluating p* is embarrassingly parallel,
large R values still prove prohibitively costly. In practice, we have
found that a ratio of % = 0.6 consistently produced density fields from
which it was simple to extract junctions using a threshold. For the
materials studied, this corresponded to a search radius R < 30 voxels.
To select the search radius (Figure 7, step 3), a user loads the first
time step, and similar to selecting the speed function thresholds, nav-
igates through slices of the data. Using the visualization system’s
measuring tools, the user estimates the radius r of the largest tube to be
considered a ligament. The value of R is recommended to be 1.6r.
Selecting Junction Threshold. The generalized geodesic density func-
tion p* is computed (Figure 7, step 4) given the user-selected param-
eters for the first and last time steps and written as raw files. A user
loads these two files in Paraview as well as the two original images,
and then uses the contour filter to investigate the density threshold to
select in the context of a semitransparent material interface surface
(Figure 7, step 5). Starting with the last time step, the lowest threshold
value is picked that produces separated connected components for each
junction. This same threshold is applied to the first time step where
with the less cluttered configuration, a user is better able to visually
verify that each junction has been extracted. Figure O illustrates this
process. Checking that the number of connected components is the
same for the first and last time steps is a strong indicator of stability of
the junction extraction, however, not strictly necessary. For instance, in
certain datasets from simulated foams, material is moved out of the field
of view of the simulation domain, leading to fewer junctions in later
time steps. Whereas in the vast majority of cases users reported that the
original density function p* produced a satisfactory set of junctions,
in rare cases the thresholds used to procude p* needed to be adjusted.
For instance, in the case where no threshold exists that separates the
morphological structures in the last time step, both the background
threshold and the material threshold must be increased, and the density
field regenerated. In the case that junctions are overly connected in the
first time step, the radius R needs to increase and a new p* must be
computed. No case was encountered where R was too large.
Process Entire Time Series. We reuse the four thresholds identified
(R, background, material, and junction) and process the entire time
series. If the background/material threshold selection required it, a
distance field is computed for each image, and that field is used in place
of the image itself for the rest of the workflow. The density field p*

(c) Inside material

(a) Full MSC graph  (b) Simpified 1-Skeleton
Fig. 10: Using Morse-Smale complex (MSC) representation to compute
a 1 — skeleton from the signed distance field

is generated for each image. The super-level set threshold identified
during visual inspection is used to create an index volume from p*,
where each voxel is labeled either as background if it has value below
the threshold, or with the identifier of its junction. A disjoint-set Union-
Find data structure is used in a pass through the index volume to identify
the connected components in the volume. Additionally, we generate
boundary surfaces of each connected component using VTK [45] to
enable rapid loading and visual verification in Paraview.

5.3 Workflow for Creating Proto-Ligaments

In a foam, the ligaments are portions of material connecting two junc-
tions. For the analysis of ligaments, the desired objective is to extract a
line in the medial axis of ligaments connecting junctions. Our strategy
is to extract a skeleton representation of the foam and then identify
the subset of its lines that form the ligaments. Our approach to skele-
tonization is based on computing the Morse-Smale complex (MSC)
of a distance field, simplifying it to remove spurious connections, and
clipping the 1-skeleton using junctions. First, a threshold is selected to
identify the interface between material and background. Next, a signed
distance field is computed using this interface. The MSC is computed
and simplified, and the ridge-like arcs entirely within the material are
saved. The arcs are then clipped by the components of the junction to
create proto-ligaments. These are piecewise linear paths connecting
two different junctions. Determining whether a proto-ligament corre-
sponds to an actual ligament or to an artifact is left to the time tracking
stage of the overall workflow.

Estimating Material Interface Threshold. The surface of the mate-
rial is an isosurface of the image intensity. Picking the right intensity
value to separate material from background is a first step to skeleton
generation (Figure 7, step 6). The material scientists know, a priori, the
relative density of the material for most samples. In this case, they sup-
ply a number that is the percentage of the foam volume that is material
vs. the total enclosed volume of the sample, for the uncompressed (time
= 0) foam. Foam images are available either as filling an axis-aligned
rectangular domain, or as a cylinder inside the rectangular domain. In
the former case, we use a threshold that simply includes the correct
percentage of voxels. In the latter case, we found that manual interven-
tion was needed to either set the threshold, or pick the subdomain on
which the automated threshold could be computed. For both simulated
and imaged data, the image acquisition parameters are kept constant
so that the same threshold separates material from background in the
entire time series. However, we found that for certain time series CT
images, the average image intensity fluctuated between time steps. In
this case, a new threshold was computed for each subsequent time step
by including the same number of high-intensity voxels as the prior
step. In particular, given a threshold TR1 at time step T1, we compute
the number of voxels in an iso-volume at TR1 (i.e., number of voxels
with value lower of equal to TR1) and find the corresponding threshold
TR2 at time step T2 that will produce the same number of voxels in
an iso-volume at TR2. This approach uses the fact that no matter is
created or lost during the time series.

Distance field computation. A distance transform is a field where
where each voxel in a volume represents the shortest distance from
that voxel to an object. In our case, the distance transform computed
(Figure 7, step 7) for each voxel is the signed Euclidean distance to
the surface of the material, with positive values inside the material and
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(b) Unstable arcs

(a) Maxima in junctions

Fig. 11: The 1-skeleton generated by the Morse-Smale complex places
a maximum (red spheres) in each junction (pink blobs) (a), with arcs
(yellow tubes) connecting them. This graph structure is used to derive the
connectivity of junctions. The locations of the 1-skeleton within disk-like
regions is not stable. In (b) the skeleton in consecutive time steps (red
for gray time step, blue for purple) shifts from one side of the disk to the
other, highlighting the need for stable junction extraction.

negative outside. We use a distance field to ensure that subsequent
skeleton computation places the arcs in the middle of each ligament.
MS complex computation/simplification. The Morse-Smale com-
plex has been well established as a means of extracting the 1-skeleton
of a distance field to the interface surface of a porous solid [29], (Fig-
ure 7, step 8). Key aspects that make it attractive are the ability to
simplify the representation with respect to noise, and to explore the
reconstruction as thresholds are varied interactively [26]. We use a
parallel discrete gradient algorithm [28] and MSC computation in the
open source library MSCEER [27]. The MSC of the signed distance
field, without any simplification, contains a super set of the features we
are interested in (see Figure 10a).

This introduces a new challenge, that is, to find the right amount

of persistence simplification to produce a skeleton that is consistent
with the input foam structure. In other words, we want our 1-skeleton
to include all and only the arcs connecting maxima that correspond to
junctions in the foam. In all the examples we have seen, each junction
contained a maximum in the MSC (see Figure 11a). Although the exact
location of that maximum within a junction was unstable, for instance,
moving between sides of disk-like structures between time steps (see
Figure 11b), each junction had a high persistence maximum. Intuitively,
the accumulation of material at junctions tends to increase the distance
value, which also corresponds to a local increase in the geodesic density
function p*. To find the right persistence to simplify the complex,
removing noise while keeping the main ridge-like structures, we use
the number of junctions found in the previous step. Specifically, the
number of junctions extracted using the geodesic density is the target
the number of maxima that we want to have in our 1-skeleton. Given
this input, we repeatedly apply cancellation operations on the MSC [26]
until only the desired number of maxima remain. The 1-skeleton is
formed by the critical points and the 2-saddle-maximum arcs (ridge-
like structure) that remain after simplification. However, we note that
there is no guarantee that each junction has exactly one maximum. An
exact matching is not needed; instead, we use the 1-skeleton as a graph
embedded in the domain that illuminates the connections between
junctions and their pathways.
Proto-ligaments: connecting junctions with the 1-skeleton. The
ridge-like arcs of the 1-skeleton cross between junctions. In the interior
of junctions, the exact location of the maximum, and the arcs them-
selves, are unstable, as shown in Figure 11b. Therefore, we remove
the portion of the 1-skeleton that is interior to a junction (Figure 7,
step 9). We define a proto-ligament as any remaining path connect-
ing two different junctions. We use the index volumes created during
the connected component sweep of the junctions workflow to query
whether a point on an arc is inside a junction. We use the terminology
proto-ligament, because the existence of a path between junctions does
not necessarily indicate the existence of a ligament; in later time steps,
newly created paths can be found between junctions due to the material
self-contacting. These are not to be considered in the final analysis.

5.4 Time Tracking Junctions, Resolving Ligaments

Our feature tracking system does a forward trace of junctions and
ligaments, using the resolved features of time step i — 1 to resolve
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(b) Inspecting ligament tracking

(a) Junction tracking

Fig. 12: We show the result of closest point matching (a) between
junctions in consecutive time steps. For visual verification, we also
produce closest point matching between tracked ligaments (b). The
ligaments and their matches are colored according to feature id.

features at time step i. It is a two-stage strategy, first creating a mapping
between junctions, and then using that mapping to infer a mapping of
ligaments. Proto-ligaments in time step i are accepted as true ligaments
if a precursor is identified from time step i — 1.

Mapping Junctions. The relatively large time steps taken between
CT images restrict the kind of feature tracking that is possible. For
instance, overlap tracking fails because the junctions often move a
distance several times their own size. Instead, we employ a greedy
matching approach, where the largest, closest junctions are matched
first, followed by smaller, farther junctions (Figure 7, step 10).

Let J;,J;_1 be the sets of junctions in time steps i, and i — 1, respec-
tively. We wish to build a set of pairs ¢ = (‘yj,'m) uniquely mapping
between junctions of time steps i and i — 1. Each point p of each junc-
tion y; € J; is inserted into a spatial acceleration structure, in our case a
kd-tree K;. Similarly, each point of each junction J; € J;_; is inserted
into K;_1. Let Closest](p, K) return the identifier of the junction that
has the closest point to p in K. We build a ||J;|| x ||J;_; | matrix M,
where for y; € J; and % € Ji_1, the m;; element of M is

mjy =||p€y;|ClosestJ(p,K;_1) =k| +||q € 1 | ClosestJ (q,K;) = j|

Intuitively, the matrix M keeps track of how many times the closest
point g in the next time step to point p in the current time step occurred
for each possible pairing of junctions. Given M, the pairing P is
computed by finding the highest valued element /m; ;, pairing junctions
¥; and %, into paircj; = (¥j, %), adding ¢ to P, and then removing
row j and column k from M. This greedy approach is repeated until
M is empty. We illustrate the results of the closest point queries from
every point in time i — 1 to time i in Figure 12a. In practice, M is very
sparse and is stored as a sparse graph, and the temporal matching is
nearly linear in the number of junctions.

Resolving, and Tracking Ligaments. Ligaments are resolved and
tracked inductively (Figure 7, step 11). We accept every proto-ligament
in the first time step r = 0 as a ligament. Let P be the set of pairings
produced by the junction tracking between time step i and i — 1. Each
proto-ligament #; has endpoints connecting two junctions in the same
time step. We accept proto-ligament / in time i as a ligament, if the
junctions at its endpoints, %, ¥;, are mapped to the junctions time i — 1
that are also connected by an accepted ligament. Intuitively, a proto-
ligament becomes a ligament if, mapping its junctions back in time, the
mapped junctions have a ligament in the previous time step. Therefore,
only connections initially present in the uncompressed foam can be
carried forward by the time tracking, a desirable property when the
crushing can cause new connections to appear for material that is merely
adjacent. As a visual aide, and for debugging, we also provide users
with a visualization drawing a line segment between each vertex along
a ligament and the closest vertex on the tracked, matching ligament,
seen in Figure 12b.

5.5 Metrology

The quantities of interest to domain experts pertain mainly to the lig-
aments. The ligaments are available as a sequence of 3d points, and
the identifiers of the ligaments at each end point. Additionally, the
original image, the distance field, and the density fields are sampled
at each point along a ligament. Understanding what metric impacts
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material performance relies on collecting a broad spectrum of infor-
mation about the ligaments. The geometric realization of a ligament
originates from the 1-skeleton of the MSC, which was computed using
a discrete gradient approach. As a result, initial line segments on a
ligament are aligned with axis orientation. We perform constrained
iterative smoothing to remove these effects and obtain a smooth line
for each ligament. For each ligament, for each time step we compute:
Length: The accumulated Euclidean distance between adjacent points
on ligament
Curvature: For computing curvature ¢, we consider a normal vector
ftp, to each point p; along ligament £ of length b. Adjacent points, p;
to pj.1, are considered to curve proportionally to the cosine similarity
of these normal vectors. The curvature of the ligament is then the sum
of all cosine similarities between adjacent normal vectors along the
ligament.
b
€(f) = Z CDSim(ﬁPi?ﬁPm)
i=0

Orientation: Similarly, the orientation of a ligament is defined to be
the cosine similarity of the initial values of the 1-skeleton of a ligament
to the £, ¥ and Z axis vectors.

Cross section area and perimeter: We collect cross section areas
and perimeters along several slices normal to the ligament along its
path. As is done with curvature, to compute the cross section of a
ligament we obtain the normal vector from a voxel on the 1-skeleton
to its neighbor. With this normal vector and the perpendicular vector
tangential to the ligaments 1-skeleton, we compute and take a cross
sectional slice. Since multiple ligaments can be very near, potentially
almost touching, it is necessary to identify which ligament was initially
sliced. For this reason, the ligament of interest is marked, and once the
slice is obtained we compute all connected components. The connected
component with the marked voxel is then the cross sectional slice.

6 EVALUATION

The workflow of the entire process (depicted in Figure 7) was evaluated
using both simulated and imaged data. In particular, we considered
a small simulated dataset of size 300x300x300 voxels and four large
experimental datasets with XY resolution 1024x1024 and different
number of slices over the Z direction (see Table 1 for details). The eval-
uation was performed by four users who experimented with the process
and stages of the workflow, and results were verified and validated at
each stage.

User Evaluation. For a given foam data, the users performed all the
interactive steps described in the previous section, and then visualized
and evaluated the results. Of the four domain scientists involved in
testing our system, two were considered experts (professors), as they
collaborated during the development of the techniques, and two were
undergraduates in materials science, previously involved only in sample
generation and imaging. Users were guided only by a flow chart similar
to the figures in Section 5 for running the tools, and a slide deck with
screen-shots for guiding the user through Paraview’s interface. All
software tools are linked with scripts, and produce state files for visual
inspection in Paraview.

User Feedback. During testing of an early prototype, users needed
several passes through the workflow to ensure the thresholds selected
separated junctions of the compressed foam. After reordering the work-
flow to first look at the most compressed time step, and defaulting to use
the generalized geodesic density, users reported that only occasionally
would they have to complete a second pass of the entire workflow. For
real CT image data, all users reported the ability to create satisfactory
results with only a single pass for threshold generation. The greatest
challenge was posed by simulated foams, where occasionally users
required two or three iterations of the junction extraction, as the last
time steps have heavily merged geometry. To ensure that the merged
junctions could be separated required users to switch to computing the
geodesic density on the distance field instead.

Performance. In Table 2, the computation times of the different analy-
sis steps are reported for one simulated and one experimental dataset.
The analysis were performed on a 12-core Intel(R) Xeon(R) Gold 6136
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Fig. 13: Curvature of ligaments over time and details of detected ligament
fracture. From the plot it is possible to detect deforming ligaments as
curves increasing over time. Separation occurs if the curve terminates
before the last time step. The images above show the last three time
steps before separation of the 4 highlighted ligaments. The images on
the last row show full separation, however fracture might occur at any
time step.

Table 1: Number of junctions and ligaments extracted from four experi-
mental foams (see corresponding foams in Figure 14). All datasets have
images of resolution 1024x1024 and number of slices as listed.

Foam N. slices

N. junctions  N. ligaments  Rel. density

a 759 1858 3651 5.34 %
b 759 083 2304 12.04 %
c 1043 1525 3130 395 %
d 1001 1063 1985 390 %

CPU @ 3.00GHz. The time for the users to select the various thresholds
was under 5 minutes. In Figure 14 we report images of the features
extracted in the four experimental foams, and we include a summary of
the number of junctions and ligament extracted from each of them in
Table 1. Users verified the results via visual inspection.

Visual Validation. Given that no ground-truth segmentation exists
for the data being analyzed, all the metrics and features extracted
were visually inspected and validated by the users at each step of the
process. In particular, Paraview was used to visualize isocontours of the
junctions in combination with tube visualization of the ligaments in the
context of the material interface surface (as in Figure 14). Furthermore,
coloring the ligaments by metrics (as in Figure 15) helped the user in
validating the values of each. For example, in Figure 15, ligaments
are either colored by inside/outside a junction (left), ligament length
(middle), and orientation respect to the Z axis (right).

Finally, since ligament and junctions are tracked over time, we were
able to observe the evolution of their metrics in order to detect changes
in connectivity. In particular, a change in the connectivity of junctions
and ligaments, or a drastic variation of cross section area over time can
be indicators of onset of ligament failure (e.g., fracture). For example,
in Figure 1 we highlight in the red boxes connectivity changes that have
been reported by the tracking analysis. In particular, those changes
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(a) (b)

(© (d)

Fig. 14: Junctions (pink) and ligaments (blue tubes) extracted from the CT scans of four foams traditionally manufactured (transparent gray isosurface).

These results were obtained without supervision by nonexpert users.

Analysis Syntethic Data  Experimental data
Geodesic Density 22.159s 58m 17.670s
Distance Field 32.182s 27m 9.592s
Gradient 31.947s 19m 24.507s
MSC graph extract 0.684s 21.342s
Tracking junctions 7.923s 7m 23.488s
Tracking ligaments 0.798s 3.183s

Table 2: Computation time of the analysis were performed using a
synthetic dataset of size 300x300x300 and an experimental dataset

of size 1043x1024x1024.
\ \ E 2 “"-" ! I‘“M‘ i.\ % : '“

Fig. 15: Some of the metrics extracted for the ligaments. On the left, a
binary field indicates when a point along the ligament is inside a junction
or not, in the middle, the color of the tubes indicates the length of each
ligament; and on the right, the color indicates the orientation respect to
the Z axis of the ligament.

correspond to ligaments that fracture at a certain time step during the
compression. In the yellow box, instead, is part of the material drifting
out of the field of view of the CT scan.

Finally, to demonstrate that our process can help classify the behav-
ior of the ligaments, we observed the curvature value of each ligament
tracked over time (see Figure 13). From these results, it is possible to
quickly identify ligaments that are collapsing or fracturing during the
compression (i.e., increasing curvature value over time, followed by dis-
appearance). In Figure 13, we report four examples of ligaments with
increasing curvature that are fracturing at different time/compression
steps. In one particular case (i.e., second column from left), the lig-
ament feature extracted (in red) is still contacting the two junctions
even after the ligament separated (third image from top) because the
ligament is still touching the junction and producing two connected
maxima in the MSC. However, in the next time step, the connectivity is
lost and the ligament is correctly classified as fully fractured.

6.1 Limitations

Both experimental and simulated data present certain challenges that
our workflow is not currently addressing. For example, given the lim-
ited field of view of the CT scans, parts of the material can drift in and
out of the boundaries from one time step to the other (e.g., see yellow
box in Figure 1). This can cause junctions and ligaments to appear or
disappear from the boundaries. In our process, we currently ignore the
features at the boundaries, also because for large datasets the number
of features at the boundaries represents a very small percentage of the
total. A limitation of our approach is the assumption that junctions can
be identified independently for each time step. Although not yet en-
countered in the images processed so far, junctions that are completely
molded to each other are unlikely to be separable, and will cause a

failure in their segmentation and tracking. Currently, our use of the
generalized density does not leverage local material anisotropy, which
could be added as a penalty term to the local speed function, for im-
proved sensitivity to local morphology. Another limitation of this work
is the reliance on the existence of maxima within each junction; one
could imagine geometries, for instance a perfectly smooth T-junction,
where no maximum is detected inside a junction defined by p*. In this
case, the persistence simplification might remove potential ligaments
from the MSC 1-skeleton. Finally, computing the geodesic density
function is expensive, practically limiting the search radius used, and
discouraging experimentation with the speed function thresholds. We
will look to accelerate this computation in future work. Finally, as
foams become even larger and more complex, the visual validation
parts of the workflow may become onerous and error-prone.

7 CONCLUSIONS

There is a high demand for means to understand and correlate the design
space of material properties to the material performance metrics with
respect to attributes of their features for open cell metallic foams. Prior
to our work, the fine grain characterization of their features was accom-
plished via manual segmentation or with skeletonization approaches
that may not accurately model the variety of shapes present in nodes
and ligaments. In this work we introduce a high-throughput end-to-end
workflow to segment foams into junctions and ligaments and track
their behavior and properties over time. The task of tracking junctions
and ligaments for each time-series of images is reduced to finding five
thresholds: three to define the geodesic speed and radius, one for the
material interface, and one for the junction threshold. Experiments
performed by users on both simulated and imaged foams demonstrated
the large benefits of this workflow, generating sets of thousands of
ligaments and junctions with minimal user intervention. Furthermore,
metrics collected from this process helped classify the behavior of
ligaments over time, such as bending or breaking. The high throughput
of our workflow is an essential step toward populating databases to
be used to understand the parameters that regulate foam performance.
In the future we plan to more fully automate the threshold selection
(e.g., for cylindrical foams) and implement p* and other computational
stages of the workflow using accelerators (e.g., GPUs). Furthermore,
we will investigate utilizing neighborhoods in the junction/ligament
graph to improve time tracking, and make it more robust to large-scale
dislocations. Finally, we will investigate using existing junctions to
postulate a segmentation for time steps where junctions are lost, in-
dicating a catastrophic merging that is not separable using traditional
approaches.
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