Runtime Hardware Security Verification
Using Approximate Computing:
A Case Study on Video Motion Detection

Mengmei Ye, Xianglong Feng, and Sheng Wei

Department of Electrical and Computer Engineering
Rutgers University, Piscataway, NJ, USA
Email: {mengmei.ye, xianglong.feng, sheng.wei}@rutgers.edu

Abstract—The heterogeneous CPU-FPGA system architecture
has been adopted in system-on-chip (SoC), server, and cloud
computing platforms to achieve design flexibility and hardware-
level performance acceleration. While benefiting the system per-
formance, the newly added FPGA component in the traditional
CPU-based computing platforms could result in undetectable
system security issues via third-party FPGA IP cores that are
produced by untrusted vendors. Traditional hardware and/or
software security verification mechanisms do not suffice to
address the unique security and runtime performance challenges
introduced by the new system architecture. In this paper,
we develop a novel approximate computing-based approach
to achieve a fast and accurate enough repeated execution for
security verification. We implement and evaluate the approximate
computing-based security verification framework by conducting
a case study on a CPU-FPGA based video motion detection
system, in which our experiments on Xilinx Zynq SoC justifies
the premium security and low performance overhead obtained
by the proposed approach.

I. INTRODUCTION

The heterogeneous CPU-FPGA system architecture has
been recently adopted in practice to achieve design flexibility,
performance acceleration, and power optimization. For exam-
ple, Intel Xeon CPU [1] and Xilinx Zynq system on chip (SoC)
[2] adopt FPGAs as on-chip accelerators. Also, Amazon Web
Services (AWS) [3] and Microsoft Azure [4] have deployed
FPGAs to support accelerated cloud computing.

Although CPU-FPGA system is capable of achieving su-
perior performance benefits, there exist many challenges that
the developers and industrial practitioners must address to
effectively adopt it into practice. From the development
perspective, the software (i.e., CPU) part is straightforward
to design, debug, and repair, since there are many mature
software debugging or repair tools available [5]. However,
developing error-free Intellectual Property (IP) cores in FPGA
is a challenging task, and there are much fewer tools available
to debug the IP cores. Under this circumstance, the system
designers would heavily rely on third-party vendors to design
and deliver the IP cores for system integration in the CPU-
FPGA system.

978-1-7281-3544-1/19/$31.00 ©2019 IEEE

While the third-party IP (3PIP)-based model has been effec-
tively adopted as a means to optimize the hardware production
and integration flow, there exist inevitable security concerns
given that the 3PIPs may be produced by untrusted vendors.
While in the past decades many existing research efforts have
been targeting the 3PIP security problem under the context of
traditional IC supply chain [6][7][8], we observe that the 3PIP
security problem would become even more challenging under
the context of CPU-FPGA systems. For example, the fact that
FPGAs are more and more widely deployed in the public
cloud infrastructure significantly enlarges the traditional attack
surfaces for potential hardware Trojan and other physical
attacks. Also, FPGAs are designed to be flexible and capable
of conducting dynamic partial reconfiguration [9][10], which
the attacker could leverage to covertly embed and reconfigure
hardware Trojans at runtime [11], pushing the requirement
for security verification (e.g., hardware Trojan detection) from
offline/static analysis to online/runtime monitoring.

In this paper, we aim to address the 3PIP security issue
under the context of the CPU-FPGA system by developing
an efficient runtime security verification mechanism. Although
there have been several existing solutions aiming to verify the
security of IP cores, they either rely on the availability of a
golden chip (e.g., [12]), which is not feasible in reality, or
conduct only offline/static verification (e.g., [13]) which does
not fulfill the runtime security requirement. Our key insight in
addressing the runtime hardware security challenge is inspired
by the runtime redundancy-based verification [14][15] used in
fault-tolerant system designs, where one or multiple repeated
executions of the key algorithms or operations are conducted to
approve or disapprove the potentially faulty primary execution.
While the redundancy-based verification works effectively for
fault-tolerant systems, there are two major challenges to apply
it to the security domain. (1) security challenge: Under the
security context the repeated executions must be conducted
on a separate trusted component, other than the component
under verification, as otherwise the repeated executions would
also be contaminated with the attack and eventually result in
false negatives in the security verification; and (2) performance
challenge: The repeated executions may cause significant per-

formance overhead and thus easily compromise the premium
runtime performance benefit brought by the IP core.

We address both challenges by developing a CPU-FPGA
based security verification framework that employs approxi-
mate computing. In particular, we address the security chal-
lenge by deploying the verification process (i.e., the repeated
executions) in the CPU component, which is separate from
the FPGA (i.e., where the IP core resides) and considered
as trustworthy. Furthermore, to address the performance chal-
lenge, we employ approximate computing and develop an
approximate software version of the IP core on the CPU for
the runtime repeated executions. The key rationale behind
this design is that the computation accuracy required by the
repeated executions (i.e., for security verification) is orders
of magnitude lower than that required by the IP core under
verification. It is because a malicious security attack would
typically dramatically change the results of the system, which
can be effectively and efficiently captured by an inaccurate but
fast approximate execution.

To this end, we develop and deploy the approximate
computing-based verification framework to a CPU-FPGA pro-
totype and conduct a comprehensive case study using a video
motion detection application. The approximate computing
algorithm employs two types of application-level approxima-
tions, namely spatial approximation and temporal approxima-
tion, to achieve the goals of runtime repeated execution and
verification. Our empirical hardware evaluation on the Xilinx
Zynq CPU-FPGA platform justifies the premium security and
performance of the proposed approach.

II. RELATED WORK
A. Security Verification Methods

Currently there are two main categories of techniques for
security verification against untrusted software and hardware
computations. The first category, namely verifiable computing,
examines the correctness of the computation by requiring a
proof associated with the computation results [16][17][18].
However, it is challenging to reduce the performance over-
head between the prover (i.e., the party that conducts the
computation) and the verifier (i.e., the party that verifies the
correctness) in the verification protocol. The second category
examines the information flow of the computation to ensure
that the data and program execution are routed and executed
in the expected manner [8][13][19]. The existing information
flow tracking techniques are mostly static (i.e., at compilation
time instead of runtime), which are not sufficient to defend
against the hardware security threats discussed in this research.

B. Approximate Computing

Approximate computing has been leveraged to trade com-
putation accuracy for performance acceleration and en-
ergy/resource savings [20]. In addition, there have been re-
search works that employ approximate computing for au-
thentication and information protection in embedded systems
[21][22]. The approximation strategies include hardware-level

approximation such as critical path reduction [23] and preci-
sion control [24], as well as software-level approximation such
as loop perforation [20].

To the best of our knowledge, our work is the first use
of approximate computing to verify 3PIP security in the
CPU-FPGA architecture. Compared to the verifiable comput-
ing mechanisms, the IP cores as provers in the proposed
verification process do not need to provide any additional
protocol-based proofs. In addition, our method focusing on
runtime results-based verification is orthogonal to the recent
CPU-FPGA security work aiming to prevent the attacks using
hardware and system level techniques [25][26].

III. THREAT MODEL

Fig. 1 shows the threat model we consider in this work,
where a hardware Trojan in the untrusted 3PIP manipulates
the system functionality and sends falsified results to the
CPU. We consider two types of hardware Trojans, namely
the spatial Trojan (or STrojan) and the temporal Trojan (or
TTrojan), which falsify the computation results in the spatial
and temporal manners, respectively.

FPGA

Untrusted
3PIP

Fig. 1. Threat model considered in this paper: The untrusted 3PIP in the
FPGA sends falsified results to the CPU.

Specifically, in the CPU-FPGA system, the CPU requests
the FPGA to compute a certain number of jobs, where each job
consists of multiple independent iterative tasks. The STrojan
compromises a subset of tasks in every requested job, and the
TTrojan compromises a subset of jobs completely (i.e., all the
tasks in these targeted jobs are compromised). For example,
in an encryption IP that encrypts messages, we assume each
message is a job and each word in the message is a task. The IP
with the STrojan could return the falsified encrypted messages
with incorrectly encrypted words in each of them. The IP with
the TTrojan could return the encrypted messages where all the
words in a subset of the messages are incorrectly encrypted.
Note that other possible attacks, such as side channel attacks
[27][28], are out of the scope for this paper.

IV. APPROXIMATE-COMPUTING BASED SECURITY
VERIFICATION IN CPU-FPGA SYSTEM

To defend against the aforementioned threat model, we
design a hardware security verification mechanism by using
approximate computing (AC). In the proposed mechanism, we
assume that the CPU is trusted and benign, but the FPGA
is not trusted. Fig. 2 shows the CPU-FPGA system overview
with the proposed framework. The AC verification mechanism
residing in the CPU contains two stages, namely approximate
computation and security verification. In the approximate
computation stage, we propose two approximation strategies,
namely spatial approximation and temporal approximation

AC Verification Mechanism

Input Jobs

Security Verification

Verification

Component Trojan Detection Results

Fig. 2. CPU-FPGA system overview with the AC verification mechanism. The 3PIP in the FPGA conducts the actual computation. The AC verification
mechanism in the CPU requires two stages to detect if the 3PIP contains Trojans, namely approximate computation and security verification.

to convert the input jobs to approximated jobs. Then, the
software computation processes the approximated jobs and
sends the completed jobs to the verification component in
the security verification stage. In the meantime, the IP in the
FPGA sends the completed jobs by the actual computation
to the verification component in the CPU. Furthermore, the
verification component compares the approximate results with
the actual results and generates the Trojan detection results.

Spatial/Temporal Approximation. As shown in Fig. 3,
there are m input jobs, where each job includes n tasks, i.e.,
n*m tasks in total. The spatial approximation randomly selects
x different tasks from each job and generates m approximated
jobs, i.e., x*m tasks in total. For the temporal approximation,
y out of the m jobs are selected with each containing all the
n tasks.

Job 1

-

x Tasks
Approximated Jobs

Task 1 l] Task i
ooy (=)

Job t

Tas|
o] ()

Job 1

A
Iy
%o,
&,
7
o
4’/,,,6
»
%

Input Jobs

y Jobs

Approximated Jobs

Fig. 3. Demonstration of spatial/temporal approximation. The spatial approx-
imation randomly selects a subset of tasks from every input job. The temporal
approximation randomly selects a subset of jobs from all the inputs jobs.

Security Verification. To detect whether the IP contains
hardware Trojans, the verification component calculates the
factor value f; for each job as shown in Equation (1), where
IP; indicates the results of the completed ith job generated by
the IP, and AC; indicates the completed ith job generated by
the software computation. The verification component checks
the difference between the factor value f; and the ideal factor
value I shown in Equation (2). For the spatial approximation,
n and x indicate the number of tasks in each input job and the
number of tasks in each approximated job, respectively. For

the temporal approximation, since the selected jobs have the
same tasks in the corresponding input jobs, the ideal factor [is
1. If the difference between f; and [is larger than a threshold,
the verification component will report the IP is malicious.
For the special case of AC; =0, we consider it as an invalid
verification.

Ui
AG;

fi=)

I T, spatial approximation 2
T, temporal approximation

V. CASE STUDY ON VIDEO MOTION DETECTION
CPU-FPGA SYSTEM

Based on the proposed framework, we conduct a case study
on a CPU-FPGA based video motion detection system. As
shown in Fig. 4, the system involves three stages, namely video
pipeline, video processing, and AC-based security verification.
The implementation of the video pipeline stage is based on
[30] and [31]. First, the system loads the video input via
an HDMI-in module. The VDMA module (aka., video direct
memory access) transfers the video into the input block of
the DDR memory. In the video processing stage, the third-
party video motion detection IP reads the input memory block
and detects if the video contains any motions. Specifically,
the IP identifies the background and the foreground in the
input video frame, and conducts the pixel-by-pixel matching
between the foreground and the background to calculate the
pixel differences, which represents motions. After the video
processing stage, the IP loads the processed video into the
output block of the DDR memory. Then, the VDMA transfers
the video output via the HDMI-out module.

The output monitor in Fig. 4 shows that the benign IP
successfully detects the pedestrian (labelled with red rectan-
gles) as motions (i.e., white pixels). In the STrojan scenario,
the malicious IP removes a subset of detected motions to
mislead the system into ignoring partial actual motions. In the
TTrojan scenario, the malicious IP removes all the motions
in certain video frames, equivalent to disabling the motion
detection feature during the playback of those frames. To

Video Output

o
ecurity Verification :

AC Verification
Mechanism

Video Motion
Detection IP

Output

Fig. 4. The workflow of the video motion detection system (the video example is from [29]). The system requires three stages to complete the motion
detection process, namely video pipeline, video processing, and AC-based security verification.

detect the Trojans at runtime, the AC verification mechanism
is activated when the IP is generating the motion detection
results. It obtains the number of motions generated by the IP
and compares it with the approximate computing results to
decide whether the IP is malicious.

We implement the video motion detection CPU-FPGA
system on a Xilinx Zyng-7000 SoC ZC702 board that contains
dual ARM processors and FPGA as shown in Fig. 5. In the
FPGA, there are HDMI-in/out module (via a FPGA mezzanine
card, namely FMC), VDMA, and video motion detection IP.
The AC verification mechanism is executed by the ARM
processors. The laptop provides the video input, and the PC
monitor displays the video output with the detected motions.

Detected Motions

Output
Monitor

Input
Monitor

Zynq SoC

Fig. 5. Video motion detection system setup (the video example is from [29]).
The input monitor provides the input video to the Zynq SoC for the motion
detection process. Then, the output monitor displays the detected motions.

VI. EXPERIMENTAL EVALUATION

We apply the proposed verification mechanism into the CPU
component of the video motion detection system to defend
against the STrojan and TTrojan embedded in the FPGA
component of the system. We evaluate the effectiveness and
efficiency of the proposed method on a video input with 400
frames from [29]. Specifically, we aim to answer the following
questions.

1) Effectiveness: Can our AC verification mechanism distin-

guish between benign IPs and malicious IPs successfully?

2) Efficiency: Can our approximate computation achieve
high performance at runtime?

A. Experimental Setup

In the FPGA, we develop the following IPs in the motion
detection system. (1) NoTrojan IP: The IP is benign and
conducts accurate computation. Note that it is only to evaluate
if our AC verification mechanism identifies the NoTrojan IP as
a benign IP correctly, and we do not rely on this IP to detect
Trojans, i.e., no golden Trojan-free model is required in our
verification approach. (2) STrojan IP: The IP hides a certain
number of pixels in the output frames. In the experiments, it
removes the upcoming motions after more than 5000 motions
in the frame. There are 353 out of 400 frames that are
compromised by the STrojan. (3) TTrojan IP: The IP hides all
the motions in a certain number of frames. In the experiments,
there are 142 frames compromised by the TTrojan (i.e., from
the 30th frame to the 90th frame, and from the 180th frame
to the 260th frame).

In the CPU, the AC verification mechanism treats each
frame as a job and each pixel in a frame as a task. There
are two approximation strategies. (1) Spatial approximation
(SAC), which processes one pixel in every x pixels (represented
as SAC_x); and (2) temporal approximation (7AC), which
processes accurate computation for one frame in every y
frames (represented as TAC_y). The motion detection algo-
rithm adopted by the software is the same as that implemented
in the FPGA IP. For security verification, the verification
component calculates the factor value for each frame and
decides whether the IP is benign or malicious.

B. Effectiveness Evaluation

We adopt the following four metrics to quantify the ef-
fectiveness of the proposed approach. Note that our AC
verification mechanism only identifies if the IP is malicious
and does not identify which Trojan is embedded in the IP.

o True positive (TP): the AC verification mechanism suc-
cessfully identifies the malicious IP.

o True negative (TN): the AC verification mechanism suc-
cessfully identifies the benign IP.

« False positive (FP): the AC verification mechanism
misidentifies the benign IP as the malicious IP.

« False negative (FN): the AC verification mechanism
misidentifies the malicious IP as the benign IP.

We first evaluate whether the AC verification mechanism
detects the NoTrojan IP correctly by calculating its accuracy
based on Equation (3), which measures the occurrence rate of
all the TN outcomes, since the TP and FN do not exist in the
NoTrojan IP. TABLE I indicates the accuracy when we apply
SAC_36/TAC_20 with different thresholds. The threshold is
a percentage of the ideal factor value to distinguish between
the benign IP and the malicious IP. In the experiments, we
observe that the AC verification mechanism never misidentifies
the NoTrojan IP as the malicious IP unless the threshold is
set as 100% for SAC. The threshold 100% indicates that the
mechanism does not tolerate any difference generated from the
approximate computation and the actual computation, which
is why the accuracy decreases under this threshold.

TP+TN

accuracy = 3
TP+TN+FP+FN

TABLE I
ACCURACY FOR NOTROJAN IP DETECTION BY SAC_36 AND TAC_20.

Threshold 25% 50% 15% 100%
SAC Accuracy 1 1 1 0.97
TAC Accuracy 1 1 1 1

Furthermore, we evaluate whether the AC verification mech-
anism is able to detect the Trojans in the IP. Since the TN
and FP do not exist in the IPs with Trojans, we calculate
the precision and recall to comprehensively show the two
aspects of the accuracy as shown in Equation (4). (1) precision:
In all of the frames where the AC verification mechanism
identifies the Trojan as active, how many of them are truly
compromised by the Trojan; and (2) recall: In all of the frames
that the Trojan is truly active, how many of them are correctly
identified by the AC verification mechanism.

.. TP
precision = ———
TP+FP 4
TP)
recall = ———
TP+ FN
TABLE II

PRECISION AND RECALL FOR STROJAN IP DETECTION
BY SAC_36 AND TAC_20.

Threshold 25% 50% 75% 100%
Precision 1 1 1 1

SAC Recall 087 092 094 095
Precision 1 1 1 1
TAC Recall 094 1 ! i

TABLE II shows the precision and recall results for
SAC_36/TAC_20 with different thresholds when they defend

TABLE III
PRECISION AND RECALL FOR TTROJAN IP DETECTION
BY SAC_36 AND TAC_20.

Threshold 25% 50% 75% < 100%
Precision 1 1 1 0.95
sac Recall 096 096 0.96 0.96
Precision 1 1 1 1
ac Recall 1 1 1 1

against STrojan. We observe that, when the AC verification
mechanism identifies an IP as malicious, the IP is always
truly embedded with Trojans (i.e., the precision is always
1). However, with different thresholds the AC verification
mechanism ignores 5% to 13% cases when the Trojan is active.
We argue that increasing the threshold is helpful to increase the
detection sensitivity and reduce the errors. TABLE III shows
the precision and recall for SAC_36/TAC_20 with different
thresholds against TTrojan. We observe that the TAC perfectly
identifies the IP with TTrojan (i.e., the precision and recall are
always 1s). For the SAC, there are 4% error rates for the recall,
because the SAC misidentifies the malicious IP as a benign IP
when the hidden motions are relatively small. Also, increasing
the threshold to 100% compromises the precision of SAC for
the same reason as in the NoTrojan experiments.
2 - precision - recall

Fj-score = 5
! g precision + recall ®)

After the experiments of SAC_36/TAC_20 with different
thresholds, we fix the threshold as 85% that performs well
with the high accuracy in all the aforementioned experiments.
Then, we change the parameters of SAC/TAC to discuss how
the parameters affect the detection results. In the experiments,
we notice that the parameters only affect the results for
SAC against STrojan/TTrojan. To illustrate the precision and
recall at the same time, we calculate the Fi-score [32] as
shown in Equation (5). Fig. 6 shows the Fi-score results
of SAC with different parameter values against the STrojan
and TTrojan. We observe that higher SAC parameter values
increase the computation error and reduce the Fj-score. Also,
the decreasing trend is approximately linear.

F,-Score for SAC against STrojan and TTrojan

A STrojan TTrojan
= == Linear (STrojan) Linear (TTrojan)
1
0.98
(] £F=-==--_ oo
5 0.96 B
3 A
'+ 0.94
[FNy
0.92
0.9
36 72 108 144

SAC Parameters

Fig. 6. Fi-score comparison for SAC with different parameters (i.e., SAC_36,
SAC_72, SAC_108, and SAC_144).

-71%

-1
I = 0% g3,
0 0 | |

Accurate SAC_36 SAC_72 SAC_108 SAC_144

(a) Time Comparison between Accurate and SAC Computations

-48%
-65%
- 0,
4% 79%

£ 150000

100000
50000 I I l

0

Accurate TAC_20 TAC_30 TAC_40 TAC_50

(b) Time Comparison between Accurate and TAC Computations

Fig. 7. Time comparison between the accurate computation and the approximate computation conducted by the SAC/TAC with different parameters.

C. Efficiency Evaluation

Furthermore, we evaluate the efficiency of the SAC and
TAC. Fig. 7 shows the time consumption of the approximate
computation stage, since it is the primary overhead in the
proposed mechanism. In Fig. 7(a), we notice that the SAC
consumes at least 71% less time compared to the accurate
computation conducted by the benign IP in the FPGA. Also,
as shown in Fig. 7(b), the TAC consumes at least 48% less
time than the accurate computation conducted by the IP. The
results indicate that the SAC and TAC are able to verify the
security with low performance overhead.

VII. CONCLUSION

In this paper, we developed a novel approximate computing
based hardware security verification mechanism by leveraging
spatial and temporal approximation strategies to verify 3PIP
security in the CPU-FPGA system. We deployed a video
motion detection system in Zynq SoC as a case study and
evaluated the efficiency and effectiveness of the proposed
mechanism. In the future, we will leverage our mechanism
to a diverse set of applications, such as security verification
for neural networks to defend against adversarial attacks.

ACKNOWLEDGEMENT

We appreciate the constructive reviews provided by the
anonymous reviewers. This work was supported in part by the
National Science Foundation under Award CNS-1912593.

REFERENCES

[1] “Intel FPGA acceleration hub for Intel Xeon CPU with FPGAs,” www.
intel.com/content/www/us/en/programmable/solutions/acceleration-hub.

[2] “Xilinx Zynq SoCs with hardware and software programmability,” www.
xilinx.com/products/silicon-devices/soc/zynq-7000.html.

[3] “Amazon EC2 F1 instances,” aws.amazon.com/ec2/instance-types/f1/.

[4] “Microsoft Azure cloud computing platform & services,” azure.
microsoft.com.

[5S] L. Gazzola et al., “Automatic software repair: A survey,” in IEEE
Transactions on Software Engineering, 2019, pp. 34-67.

[6] M. Tehranipoor et al., “A survey of hardware trojan taxonomy and
detection,” in IEEE Design Test of Computers, 2010, pp. 10-25.

[7]1 T. Huffmire et al., “Moats and drawbridges: An isolation primitive for
reconfigurable hardware based systems,” in S&P, 2007, pp. 281-295.

[81 W. Hu er al., “Property specific information flow analysis for hardware
security verification,” in ICCAD, 2018.

[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]
(17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

(271
[28]

[29]
[30]

[31]

[32]

E. L. Horta et al., “Dynamic hardware plugins in an FPGA with partial
run-time reconfiguration,” in DAC, 2002, pp. 343-348.

T. El-Ghazawi et al., “The promise of high-performance reconfigurable
computing,” in Computer, 2008, pp. 69-76.

A. P. Johnson et al., “Fault attack on AES via hardware Trojan insertion
by dynamic partial reconfiguration of FPGA over ethernet,” in WESS,
2014.

X. Wang et al., “Hardware Trojan detection and isolation using current
integration and localized current analysis,” in DFT, 2008, pp. 87-95.
X. Li et al., “Caisson: A hardware description language for secure
information flow,” in PLDI, 2011, pp. 109-120.

P. M. Frank, “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy,” in Automatica, 1990, pp. 459-474.

W. Hong et al., “Applying observer based FDI techniques to detect
faults in dynamic and bounded stochastic distributions,” in International
Journal of Control, 2000, pp. 1424-1436.

M. Walfish er al., “Verifying computations without reexecuting them,”
in Communications of the ACM, 2015, pp. 74-84.

B. Parno er al., “Pinocchio: Nearly practical verifiable computation,” in
S & P, 2013, pp. 238-252.

R. S. Wahby er al., “Full accounting for verifiable outsourcing,” in CCS,
2017, pp. 2071-2086.

J. Shin et al., “A hardware-based technique for efficient implicit infor-
mation flow tracking,” in ICCAD, 2016, pp. 1-7.

S. Mittal, “A survey of techniques for approximate computing,” in ACM
Computing Surveys, 2016, pp. 62:1-62:33.

M. Gao et al., “Approximate computing for low power and security in
the internet of things,” in Computer, 2017, pp. 27-34.

W. Liu et al., “Approximate computing and its application to hardware
security,” in Cyber-Physical Systems Security, 2018, pp. 43-67.

S. Hashemi et al., “Drum: A dynamic range unbiased multiplier for
approximate applications,” in ICCAD, 2015, pp. 418-425.

V. K. Chippa et al., “Scalable effort hardware design,” in IEEE Trans-
actions on VLSI Systems, 2014, pp. 2004-2016.

M. Ye et al., “HISA: Hardware isolation-based secure architecture for
CPU-FPGA embedded systems,” in ICCAD, 2018, pp. 1-8.

A. Coughlin et al., “Breaking the trust dependence on third party
processes for reconfigurable secure hardware,” in FPGA, 2019, pp. 282—
291.

F. Schellenberg et al., “An inside job: Remote power analysis attacks
on FPGAs,” in DATE, 2018, pp. 1111-1116.

M. Zhao et al., “FPGA-based remote power side-channel attacks,” in S
& P, 2018, pp. 229-244.

“Video sample,” www.youtube.com/watch?v=Bnk6dMQFNa8&t=3s.

J. Sykora, “Motion detection in VGA video (640x480) on ZC702 (Zynq
FPGA),” www.youtube.com/watch?v=LT2mGCnVoYA.

X. Feng et al., “Towards the security of motion detection-based video
surveillance on IoT devices,” in Thematic Workshops of ACM Multime-
dia, 2017.

C. J. V. Rijsbergen, “Information retrieval,” in Butterworth-Heinemann,
1979.

