
Runtime Hardware Security Verification
Using Approximate Computing:

A Case Study on Video Motion Detection

Mengmei Ye, Xianglong Feng, and Sheng Wei

Department of Electrical and Computer Engineering

Rutgers University, Piscataway, NJ, USA

Email: {mengmei.ye, xianglong.feng, sheng.wei}@rutgers.edu

Abstract—The heterogeneous CPU-FPGA system architecture
has been adopted in system-on-chip (SoC), server, and cloud
computing platforms to achieve design flexibility and hardware-
level performance acceleration. While benefiting the system per-
formance, the newly added FPGA component in the traditional
CPU-based computing platforms could result in undetectable
system security issues via third-party FPGA IP cores that are
produced by untrusted vendors. Traditional hardware and/or
software security verification mechanisms do not suffice to
address the unique security and runtime performance challenges
introduced by the new system architecture. In this paper,
we develop a novel approximate computing-based approach
to achieve a fast and accurate enough repeated execution for
security verification. We implement and evaluate the approximate
computing-based security verification framework by conducting
a case study on a CPU-FPGA based video motion detection
system, in which our experiments on Xilinx Zynq SoC justifies
the premium security and low performance overhead obtained
by the proposed approach.

I. INTRODUCTION

The heterogeneous CPU-FPGA system architecture has

been recently adopted in practice to achieve design flexibility,

performance acceleration, and power optimization. For exam-

ple, Intel Xeon CPU [1] and Xilinx Zynq system on chip (SoC)

[2] adopt FPGAs as on-chip accelerators. Also, Amazon Web

Services (AWS) [3] and Microsoft Azure [4] have deployed

FPGAs to support accelerated cloud computing.

Although CPU-FPGA system is capable of achieving su-

perior performance benefits, there exist many challenges that

the developers and industrial practitioners must address to

effectively adopt it into practice. From the development

perspective, the software (i.e., CPU) part is straightforward

to design, debug, and repair, since there are many mature

software debugging or repair tools available [5]. However,

developing error-free Intellectual Property (IP) cores in FPGA

is a challenging task, and there are much fewer tools available

to debug the IP cores. Under this circumstance, the system

designers would heavily rely on third-party vendors to design

and deliver the IP cores for system integration in the CPU-

FPGA system.

While the third-party IP (3PIP)-based model has been effec-

tively adopted as a means to optimize the hardware production

and integration flow, there exist inevitable security concerns

given that the 3PIPs may be produced by untrusted vendors.

While in the past decades many existing research efforts have

been targeting the 3PIP security problem under the context of

traditional IC supply chain [6][7][8], we observe that the 3PIP

security problem would become even more challenging under

the context of CPU-FPGA systems. For example, the fact that

FPGAs are more and more widely deployed in the public

cloud infrastructure significantly enlarges the traditional attack

surfaces for potential hardware Trojan and other physical

attacks. Also, FPGAs are designed to be flexible and capable

of conducting dynamic partial reconfiguration [9][10], which

the attacker could leverage to covertly embed and reconfigure

hardware Trojans at runtime [11], pushing the requirement

for security verification (e.g., hardware Trojan detection) from

offline/static analysis to online/runtime monitoring.

In this paper, we aim to address the 3PIP security issue

under the context of the CPU-FPGA system by developing

an efficient runtime security verification mechanism. Although

there have been several existing solutions aiming to verify the

security of IP cores, they either rely on the availability of a

golden chip (e.g., [12]), which is not feasible in reality, or

conduct only offline/static verification (e.g., [13]) which does

not fulfill the runtime security requirement. Our key insight in

addressing the runtime hardware security challenge is inspired

by the runtime redundancy-based verification [14][15] used in

fault-tolerant system designs, where one or multiple repeated

executions of the key algorithms or operations are conducted to

approve or disapprove the potentially faulty primary execution.

While the redundancy-based verification works effectively for

fault-tolerant systems, there are two major challenges to apply

it to the security domain. (1) security challenge: Under the

security context the repeated executions must be conducted

on a separate trusted component, other than the component

under verification, as otherwise the repeated executions would

also be contaminated with the attack and eventually result in

false negatives in the security verification; and (2) performance

challenge: The repeated executions may cause significant per-978-1-7281-3544-1/19/$31.00 ©2019 IEEE

