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Figure 1: Visualizations using our “generalized tube” primitives. (a): DTI tractography data, semi-transparent fixed-radius streamlines

(218K line segments). (b): A generated neuron assembly test case, streamlines with varying radii and bifurcations (3.2M l. s.). (c): Aneurysm

morphology, semi-transparent streamlines with varying radii and bifurcations (3.9K l. s.) and an opaque center line with fixed radius and

bifurcations (3.9K l. s.). (d): A tornado simulation, with radius used to encode the velocity magnitude (3.56M l. s.). (e): Flow past a torus,

fixed-radius pathlines (6.5M l. s.). Rendered at: (a) 0.38FPS, (b) 7.2FPS, (c) 0.25FPS, (d) 18.8FPS, with a 20482 framebuffer; (e) 23FPS with

a 2048×786 framebuffer. Performance measured on a dual Intel® Xeon® E5-2640 v4 workstation, with shadows and ambient occlusion.

Abstract

We present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports

tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with

interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging

tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray

tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines,

pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality

rendering, with low memory overhead.

CCS Concepts

• Computing methodologies → Ray tracing;

† mengjiao@sci.utah.edu

1. Introduction

Visualization focuses on helping scientists explore or explain data

through software systems that provide static or interactive visual
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representations. Creating a visualization typically requires two steps:

choosing the best representation to convey the data visually and then

efficiently rendering this representation. Although often viewed as

separate stages, the two are tightly intertwined. Constraints imposed

in the second stage—particularly the primitives and model sizes

supported by the rendering system—influence the choices of visual

representations made in the first stage.

In this paper, we are concerned with high-performance and

high-fidelity rendering of data represented as 3D line primitives.

Such line primitives are used to represent data in a range of scien-

tific domains, such as fluid dynamics (e.g., streamlines and path-

lines) [Ste00, MTHG03, STH∗09, GGTH07, Mer12], medical imag-

ing (e.g., diffusion tensor imaging) [RBE∗06,MSE∗06,ZDL03], and

vector field visualization (e.g., magnetic or vector fields) [PVH∗02,

CYY∗11, MCHM10]. Additional attributes can be encoded along

the line by varying the line color, thickness [LMSC11], or opac-

ity [WVDLH05, GRT13, KRW18]. This same type of geometry—

long, thin lines with varying thickness—is also useful for repre-

senting other data, such as ganglions in neuron datasets [Mar06]

or vessels in aneurysm visualization [SSV∗14], although such data

further requires the method to support acyclic graph structures.

To visualize such line primitives, much of the visualization com-

munity has focused on tessellating their surfaces and rasterizing

the resulting primitives, leveraging the high triangle rasterization

performance of GPUs. However, it is difficult to support transparent

geometries, ambient occlusion, and global illumination effects in a

rasterizer. Ray tracing provides a direct method for rendering non-

polygonal geometries, such as tubes, streamlines, etc., by directly

computing ray-surface intersections with the objects. A ray tracer

naturally supports effects such as transparency, ambient occlusion,

and global illumination, allowing for high-quality visualization.

Line primitives have been widely employed in visualization,

and several open-source applications exist for ray tracing them,

with varying levels of support for bifurcations, transparency, and

varying radius (e.g., Embree [WWB∗14], OSPRay [WJA∗17],

“Brayns” [Blu19]). Prior work has addressed, in part, features such

as varying radii [SGS05], transparency [SZH97, ZSH96, MTHG03,

KRW18], and bifurcations [TWHS05, TWSH02, TAC∗13, KP17,

SSV∗14]. However, no single method supports all three features

in combination, making the implementation of general visualiza-

tion software and its use by scientists more challenging, as special

purpose methods must be used for each domain.

In this paper, we explore the use of ray tracing to efficiently

visualize a class of data that is best represented as 3D line primitives.

We propose a new rendering primitive, the “generalized tube”, that

supports varying radii, bifurcations, and correct transparency, and

is applicable to any ray tracer. Moreover, our technique provides

high-quality interactive rendering, with low memory overhead. We

implement our method as a module in the OSPRay [WJA∗17] ray

tracer and evaluate it on a range of datasets. Our contributions are:

• A new method for rendering 3D line primitives, the “general-

ized tube”, supporting varying radii, bifurcations, and correct

transparency;

• An efficient CSG-based intersection approach that enables our

primitive to support correct transparency with interior surface

removal;

• Demonstration of our approach on a range of datasets, from

scalar and vector fields, to neuron morphologies and topological

structures;

• Implementation of our approach as an open-source module in

OSPRay [WJA∗17], to allow use of in a range of visualization

packages.

2. Background and Related Work

In this section, we summarize recent work on rendering 3D line prim-

itives (Section 2.1) and related work on ray tracing non-polygonal

surfaces (Section 2.2).

2.1. Rendering Line Primitives

The majority of work in visualization has focused on GPU-based

approaches to render 3D line primitives. Early work by Zöckler

et al. [ZSH96] proposed to render the streamlines as illuminated

line primitives. Schussman and Ma [SM02] proposed self-orienting

surfaces (SOS). SOS renders view-aligned triangle strips that are

shaded using fixed-function illumination and bump mapping. SOS

formed the basis of later imposter-based streamline and streamtube

methods, where view-aligned triangle strips [PFK07] or a combina-

tion of strips and point sprites [SKH∗04, MSE∗06] are rasterized,

and ray-cylinder and ray-sphere intersections are computed in the

fragment shader. Bhagvat et al. [BJCW09] defined a conical frus-

tum representation for line segments and rendered it via GPU ray

casting of the relief-mapped frusta. Oeltze et al. [OP05] used con-

volution surfaces, which have varying-radius and bifurcations, to

visualize vasculature. Stoll et al. [SGS05] presented an approach for

rendering stylized line primitives based on imposters that is able to

support varying radii of the control points. Melek et al. [MMYK06]

presented an approach based on a GPU implementation of SOS

for visualizing neuronal fibers. Kanzler et al. [KRW18] recently

proposed a voxel-based GPU ray-casting method for rendering 3D

line primitives with transparency, shadows, and ambient occlusion.

However, as the approach is based on re-sampling the data to a

grid, the resulting line quality is inherently dependent on the chosen

grid resolution. Eichelbaum et al. [EHS13] presented an improved

3D line rendering approach to enhance structural perception by

providing a novel ambient occlusion method. Recent work by Lin-

dow et al. [LBLH19] proposed a hybrid rasterization and raycasting

approach for ribbon and stick rendering of DNA and RNA.

Although domain-specific tools exist that support efficient meth-

ods for rendering streamlines [BSG∗09, GKM∗15], off-the-shelf

visualization tools, such as ParaView [Aya15] and VisIt [CBW∗12],

default to tessellating them. For example, in the visualization toolkit

(VTK) [SLM04], the default method for rendering streamlines is

to tessellate them. Similarly, in the field of neuroscience, we are

aware of at least one major project that originally rendered large

neuron datasets by tessellating them [BMB∗13], and dealt with the

large number of triangles produced using parallel rendering [Eil13].

However, as dataset size grows, tessellation can require the use of

numerous powerful GPUs to fit the data in memory and achieve

interactive framerates.
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Figure 2: Illustration of the input data structure. We make a list of

control points, each with a position, radius, and predecessor index.

Each control point and its cylinder or cone stump connection to its

predecessor is refered to as a “link”.

2.2. Ray Tracing Non-Polygonal Primitives

Parker et al. [PSL∗98] proposed one of the first interactive applica-

tions of ray tracing non-polygonal primitives to visualize implicit

isosurfaces. Following this work, a large body of visualization re-

search has explored ray tracing for rendering non-polygonal or

implicit geometry [DPH∗03, GIK∗07, BPL∗12, KWN∗13, WKJ∗15,

WKI∗17]. Today, the most common applications of ray tracing

non-polygonal primitives are the rendering of spheres to represent

particle data [GIK∗07, WKJ∗15] and combinations of spheres and

cylinders for ball-and-stick models [KWN∗13, Sto98] or stream-

lines [WJA∗17].

OSPRay’s current streamline geometry [WJA∗17] is implemented

as a combination of sphere primitives linked together with cylinders.

This approach is simple to implement in a ray tracer and produces

high-quality images for opaque, fixed radius streamlines. However,

this method inherently lacks support for varying radii along the

streamline and does not support transparency or bifurcations.

Favreau’s “Brayns” ray tracer [Blu19] employs a combination

of sphere, cylinder, and cone stump primitives in a manner similar

to our own for interactive ray tracing of large neuron assemblies.

Our work, although developed independently, has been motivated

by similar challenges when visualizing such large-scale neuron data.

Outside visualization, the most common application of ray tracing

non-polygonal surfaces, is found in movie rendering, in particular

for memory-efficient rendering of subdivision surfaces [BBLW07,

BWN∗15], hair [WBW∗14], and curve or ribbon primitives [BK85].

Recently, Embree [WWB∗14] has introduced support for curves

with varying radii by adding support for varying-radii features to

their Bézier and B-Spline curve primitives. These primitives have

also been made available in OSPRay, which builds on top of Embree.

Such curves are visually pleasing, but they are expensive to render

and do not support bifurcations or varying radii.

3. Method Overview

We represent our generalized tubes with a combination of spheres

to represent the control points, cylinders for fixed-radius links, and

cone stumps for varying-radii links. In the following sections, we

describe the input data structure to specify these primitives (Sec-

tion 3.1) and how we compute the appropriate spheres, cylinders,

and cone stumps to represent the tubes (Section 3.2).

3.1. Input Data Structure

Although more general representations of lines or tubes are possible,

for the purposes of this work we consider only input data in the form

of linearly connected control points. The input data is specified as

a list of control points, each with a position and radius, along with

a connectivity attribute, which specifies how the control points are

connected (Figure 2). For the sake of simplicity, we consider only

acyclic graphs, where each point can have at most one predecessor.

Although simple, we have found this input structure sufficient to

represent all the datasets used in our evaluation. We note that a

generalization to cyclic graphs is straightforward.

With these assumptions, we can view our input as being simply

a set of what we call “links”. Each link specifies a control point

and a reference to the control point preceding it, or “-1” if the link

is the starting point of the streamline. Bifurcations are then simply

cases where two links connect to the same predecessor. Figure 2

shows an illustration of a set of tube primitives with constant and

varying-radii links and a bifurcation.

Depending on the application domain, it sometimes makes sense

to talk logically about entire segments of links (e.g., an entire gan-

glion in a neuron, a particle trace). However, as each such logical

segment can be reduced to a series of links, we leave this higher

level semantic information to the application, and from the point of

a ray tracer consider only individual links.

3.2. Choice of Representation

Given this input data structure, the next step toward rendering it in

a ray tracer is to break it up into smaller geometric primitives, for

which ray-surface intersections can be more easily formulated.

In OSPRay’s current implementation of streamlines with a fixed

radius, each control point is internally represented as a sphere and

the links between points as cylinders. The cylinder composes the

bulk of the streamline, and the spheres round off the corners where

two cylinders meet. As all the radii are the same, these primitives

will always fit perfectly together, creating the appearance of a single

connected streamline. Implementing this approach is straightfor-

ward: ray-sphere and ray-cylinder intersections are well described in

the literature [Dra99, PJH16], and building an acceleration structure

on these primitives can be left to Embree.

For our generalized tube primitives, we follow a similar approach;

however, properly handling the varying radii of the control points

requires some modifications, as illustrated in Figure 3.

3.2.1. Linking with Cylinders and Naïve Cone Stumps

To solve the problem of choosing correct representation,

we compared two existing approaches first: the existing

OSPRay’s [WJA∗17] streamlines and connected cones from the

Blue Brain project [Mar06]. The first prototype is a trivial extension

of OSPRay’s [WJA∗17] existing streamlines, where we simply chose

the cylinder’s radius to be that of the smaller control point. This ap-

proach prevented any holes from appearing, but the images produced

were quickly judged unacceptable (Figure 3a). Clearly, the proper

geometric primitive to linearly connect two spheres with different

radii is a cone stump, not a cylinder. Similar to “Brayns” [Blu19],
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(a) Cylinder links produce clear discontinuities. (b) Naïve cone links result in banding artifacts. (c) We compute correct tangent cone links.

Figure 3: When linking control points of varying radii, cylinders are clearly the wrong choice (a); however, incorrectly chosen cones will also

produce artifacts (b). To smoothly link the control points, we compute cones that are tangent to the spheres at their intersection (c).

Figure 4: Our method for computing a tangent cone stump to con-

nect control points of varying radii.

we next computed cone stumps linking the control points, whose

caps were centered at P1 and P2, with radius r1 and r2, respectively,

oriented along �P1P2 = P2 −P1 (Figure 3b).

Although this naïve way of computing the cones gives acceptable

results in many cases, it produces noticeable banding artifacts in

sections where the radius changes rapidly (Figure 3b). Similar to

sweeping a sphere along a trajectory [VW85], the real shape that

linearly connects two spheres is a slightly different cone stump than

the one produced using the computation described above. Specif-

ically, the naïve cone is not tangent to the sphere where the two

meet (Xi’s in Figure 3b). As a result, the larger sphere protrudes

through the cone stump, and at the thinner end there is a visible,

sharp change in surface curvature.

3.2.2. Computing Properly Tangential Cones

The desired cone, which smoothly connects the control points—the

one tangential to the spheres at the points Xi—is shown in Figure 3c.

A cone is described by its apex (A), orientation (Ĉ), and radius (w).

To clip the infinite cone to a cone stump, we will also require the

clipping plane locations z1 and z2 along the axis of revolution Ĉ. An

illustration of the tangential cone computation is given in Figure 4.

Our computation is somewhat similar to the silhouette computation

of Gumhold [Gum03], although differs in the properties we require

in the end, and thus we include it for completeness. The cone’s

orientation is given by

Ĉ =
P2 −P1

||P2 −P1||
(1)

Defining p1 = ||P1 −A|| and p2 = ||P2 −A||, we find from the theo-

rem of intersecting tubes that

r2

r1
=

p2

p1

Substituting p2 = ||P2 −P1||+ p1, we can solve for p1

r2

r1
=

||P2 −P1||+ p1

p1

p1 = ||P2 −P1||
r1

r2 − r1

Thus, we find the apex at

A = P1 − p1Ĉ (2)

Next, we compute the locations of the clipping planes z1 and z2.

Due to congruence and the theorem of intersecting lines, we know

that

p1 − z1

r1
=

r1

p1

which we solve for z1.

z1 = p1 −
r2

1

p1

We proceed similarly for the second clipping plane location z2.

z2 = p2 −
r2

2

p2

Finally, to compute the width of the cone at P2, we first define

x2 = ||X2 − A||. From the Pythagorean theorem, x2 =
√

p2
2 − r2

2.

Again, using the theorem of intersecting lines we can find w.

x2

p2
=

r2

w

w =
p2r2

x2

Once the modified cone stump’s coordinates are known, we can

compute ray-cone stump intersections (Section 4.1). The intersec-

tion computation is the same as for a naïve cone stump; the only

difference is in the cone parameters. Our approach links the geom-

etry correctly, though does not ensure the normals are continuous

where the cone and sphere meet (Figure 3c).

4. Implementation

We represent the control points as spheres and link them with either

cylinders or cone stumps. When the control points have the same

radii, it is sufficient to link them with a cylinder; however, if the

radii differ, we must use a cone stump. Ray-sphere, ray-cylinder,

and ray-cone intersections are well described in the ray tracing
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literature [PJH16, Dra99]. Bhagvat et al. [BJCW09] presented a

similar approach for ray-conical frusta intersection; however, our

definition of a cone stump is not identical to a conical frusta. As an

understanding of this operation is key to reproduce this paper, we

briefly summarize our ray-cone stump intersection.

4.1. Ray-Cone Stump Intersection

Following Dodgson’s discussion [Dra99], we consider the infinite

dual-sided cone of which our cone stump is a part, and construct a

transformation that transforms this cone into the unit cone, with the

apex at the origin, the z-axis as the axis of rotation, and a slope of 1.

To do this, we compute the position of the non-truncated cone’s apex

A (Equation (2)) and an orthonormal basis v̂x, v̂y, v̂z that transforms

ẑ to Ĉ. The vectors v̂x and v̂y are then scaled by w/p2, to span the

larger cap and transform the cone to one with slope 1. The matrix

M that transforms our cone stump to the unit coordinate system is

thus given by Equation (3).

M =
[

w
p2

v̂x
w
p2

v̂y Ĉ A
]−1

(3)

This unit coordinate system places the larger cap at z = 1 by

design, whereas the smaller cap position is found by

zcap =
z1

z2

We can now see our cone stump as the intersection of the slab

[z = zcap,z = 1] with the infinite unit cone X2+Y 2 = Z2, and we can

formulate our ray-cone stump intersection accordingly. Given a ray

r(t) = o+td̂, we transform the ray into the cone’s coordinate system

by applying M−1, yielding r′(t). We can then insert the transformed

ray into the unit cone equation and solve the resulting quadratic.

Solving this quadratic yields the (possibly empty) interval [tc0, tc1]
where the ray intersects the unit cone. If this interval is empty, or

outside the valid ray interval [tr0, tr1], there is no intersection and

we can exit.

If an intersection with the infinite unit cone is found, we then

compute the interval [tz0, tz1] where the ray overlaps the slab [z =
zcap,z = 1]. This ray-slab interval is then intersected with the pre-

viously computed ray-cone interval to find [ts0, ts1], which is the

interval where the ray overlaps the cone stump.

Given the ray-cone stump interval [ts0, ts1], the final step depends

on what exactly we need. In Section 4.3.1, we will need the actual

overlap interval between the ray and the cone stump, which is the

intersection of the ray-cone stump interval [ts0, ts1] and the valid

ray interval, [tr0, tr1]. If we are interested only in finding the ray’s

intersection with the cone stump’s surface, we need only the nearest

of [ts0, ts1], which is also inside the valid ray interval.

4.2. Acceleration Data Structure and Primitive Type

We use Embree [WWB∗14] for the acceleration structure and traver-

sal kernels. How we use Embree to build a bounding volume hier-

archy (BVH) over our primitives can significantly influence perfor-

mance and/or memory consumption, we discuss a few options and

their trade-offs in the following sections.

4.2.1. Individual Primitives vs. Complete Links

The first choice is whether we build our Embree BVH over the

individual link components (i.e., the spheres, cylinders, and cone

stumps), or over logical “link” primitives, which would then inter-

nally perform intersections with their components. In the former

case, we can implement three separate Embree geometries (one for

spheres, one for cylinders, and one for cone stumps) and have dedi-

cated intersection routines for each. Embree will then automatically

build a single BVH over the different primitives. In the latter case,

we have a single Embree geometry with a much more complex in-

tersection routine. The first approach could result in a poorer quality

BVH, with more BVH nodes and overlap between them, increasing

both memory use and traversal cost compared to the latter. However,

in the case of long, thin links with less overlap, it is likely that most

rays will intersect only the cylinder or cone primitives, resulting in

potentially higher performance in the first approach, compared to

the latter’s more costly primitive intersection.

The trade-offs between these two options are multi-faceted and

non-obvious, and can be concluded only by an experiment, which

we conduct in Section 6.1.

4.2.2. Precomputed vs. On-the-Fly Primitives

A second important choice is how much information we are going

to pre-compute for the primitives. On one extreme, we can keep

memory consumption low by not pre-computing anything, in which

case we can describe each link by as little as a pointer to its control

points; all other data—cone parameters, transformation matrices,

etc.—can be computed on the fly for every intersection test.

At the other extreme, we could conclude that re-doing these

computations millions of times per image is a waste, and could

pre-compute the cone coordinates and/or up to two transformation

matrices (the ray to object and object to world transforms) and store

these pre-computed attributes with the primitives. This is a clear

memory-vs-speed trade-off, which we will quantify with experi-

ments in Section 6.1.

4.2.3. Embree Integration

Regardless of the final implementation we choose based on the

experiments, our Embree integration is the same. To allow Em-

bree to build a BVH over our primitives and intersect rays with

them, we need to provide two methods for each primitive type. The

first method computes the bounds of the primitive, and the sec-

ond intersects a ray with the primitive. Depending on our choice

of implementation, these primitives will be the individual spheres,

cylinders, and cone stumps, or the entire links.

4.3. Transparency

Our current description of our generalized tubes can readily be used

to render opaque lines with both bifurcations and varying radii,

which were lacking in prior work. However, a third limitation of

prior work also applies to our description so far—artifacts when

rendering with transparency (Figure 5a).

These artifacts result from the fact that, whereas logically we want

our tubes primitive to be what in constructive solid geometry (CSG)
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(a) Interior surfaces shining through.

(b) Our method removes interior surfaces correctly.

Figure 5: (a) Without our CSG interior surface removal approach,

interior surfaces can be seen, producing visual artifacts. (b) Our

CSG intersection computation correctly finds only exterior surfaces

terms would be called the union of the base primitives, we have

actually implemented them as the sum of these primitives, resulting

in interior surfaces. Therefore, a naïve approach to transparency

will find and shade intersections with these interior surfaces as well,

producing visible artifacts.

4.3.1. Removing Interior Surfaces via CSG Intersection

The simplest approach to remove these interior surfaces is to bor-

row ideas from constructive solid geometry, and properly treat our

geometry as a union of the base primitives. Rather than finding the

closest ray-surface intersection with any base primitive, we can in-

stead compute all the intervals where the ray overlaps each primitive.

We can then sort these intervals and traverse them front to back,

counting the number of entry and exit events.

This incremental entry and exit counting tells us, at any point

along the ray, how many of these intervals we are currently over-

lapping. Each time we transition from 0 to 1, we are entering the

object, and at each transition from 1 to 0, we are exiting. All other

transitions are interior surfaces and can be ignored. Note that to

handle the case where rays start inside a tube, we must modify the

ray start interval and set tr0 =−∞ before intersecting the primitives.

4.3.2. Implementation via Intersection Filters

At first, Embree seems badly suited to this operation: like most ray

tracers, it is primarily targeted at first- and any-hit ray traversal. How-

ever, Embree also supports so-called “intersection filters”, which can

be used to implement multi-hit ray traversal [AGGW15, GWA16].

Using an intersection filter, we can implement exactly the algorithm

described above.

Figure 6: Our geometry module integrated into OSPRay can be

combined with volumes (left, 9.4 FPS) or other geometry (right,

22.8 FPS) to create interactive, high-quality visualizations.

In Embree, an intersection filter is a callback function that is called

after each ray-primitive intersection is encountered. The intersection

filter can then decide whether to accept or reject the hit and modify

additional per-ray data. To implement the algorithm described above,

each time Embree calls our intersection filter we compute the ray-

primitive overlap interval and store it in an auxiliary buffer attached

to each ray. We then reject the hit to force Embree to discard the

intersection and continue traversal, eventually iterating through all

the primitives overlapped by the ray.

Some care must be taken when implementing this approach within

OSPRay, as we want to apply the intersection filter only to our tube

primitives. To achieve this, our OSPRay geometry internally builds

a separate Embree scene over the base tube primitives and applies

our intersection filter to this scene. Our OSPRay geometry then

reports the Embree scene bounds to OSPRay as its bounds, and in

its intersection method forwards the ray on to traverse its Embree

scene and collects the ray intervals. After the ray intervals have been

collected, they are sorted and the closest exterior surface is found

and returned as the hit point.

This method can correctly remove interior surfaces from being

reported incorrectly as hits, and can therefore handle transparency

correctly (Figure 5b). However, this method comes at significant

cost, due to the overhead in finding, storing, and sorting the ray-

primitive intervals, along with the partial loss of early ray termina-

tion, as we must now find all intervals along the ray. We quantify

this performance impact in Section 6.3.

5. Applications

In Figure 1, we show several sample visualization applications en-

abled by our module within OSPRay, ranging from DTI tractography,

flow visualization, and vessel morphology to large-scale neuron as-

semblies. Our method can provide high-fidelity results at interactive

framerates. Figure 6 shows the DTI tractography dataset in different

visualization use cases. On the left in Figure 6, the full set of tracts

is shown in the context of the underlying DWI volume to provide

an overview visualization. On the right in Figure 6, a sub-set of the

tracts is shown along with two slices of the DWI volume to focus on

a specific region of the brain. Both visualizations are rendered with

OSPRay’s scivis renderer, which can render combined volumetric

and surface data with high-quality shading effects such as shadows

and ambient occlusion.
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Figure 7: An illustrative visualization of neuron activity rendered

using OSPRay’s path tracer with emissive materials.

Figure 8: The far and near views used for benchmarks on the DTI

dataset, with ambient occlusion and shadows.

Figure 7 shows an illustrative visualization of neuron activity,

similar to those used by the Blue Brain Project [Mar06], rendered

with OSPRay’s path tracer renderer. An emissive material is applied

to the neurons to indicate the firing of electrical signals throughout

the assembly.

6. Experiments and Results

We first quantify the different implementation choices discussed

in Section 4.2 with a set of benchmarks to find a suitable default

implementation (Section 6.1). We then focus our evaluation on two

key aspects of our method: the absolute performance achieved when

rendering opaque geometry (Section 6.2) and the impact of the CSG

interior surface removal method (Section 6.3). Finally, we compare

the performance, rendering quality, and memory consumption of

our method against Embree’s existing curve primitive (Section 6.4).

Our evaluations are done using our method implemented as a

module within OSPRay 1.7.2, built with Embree 3.2.0 and ISPC

1.9.1. We ran our benchmarks on three machines, Desktop, with an

Intel® i7-5930K CPU (12 logical cores at 3.7 GHz) and 32GB RAM;

Workstation, a dual socket workstation with two Intel® Xeon® E5-

2640 v4 CPUs (40 logical cores at 2.4 GHz) and 128GB RAM; and

FSM, a quad socket workstation with four Xeon E7-8890 v3 CPUs

(144 logical cores at 2.5 GHz) and 3TB RAM.

We conducted our benchmarks on four representative datasets at

varying levels of model complexity to evaluate typical use cases of

our generalized tubes. The first is a diffusion tensor imaging (DTI)

tractography dataset [WTBJ19] consisting of 220,711 nodes and

218,637 cylinder links with a fixed radius (Figure 8).

The second dataset is a representative model of the neuron assem-

blies used in neuron simulations, such as those of the Blue Brain

Project [Mar06]. To generate these models, we wrote a tool that

creates an assembly of neurons by placing N randomly or manually

chosen base neurons (Figures 9a to 9d) at random locations within

a properly scaled bounding box. Using the assembly generation

program, we created datasets ranging in size from 43 to 203 neurons

(far view: Figures 9e to 9g; near view: Figure 1b), in total consisting

of 28,032 spheres, 2,496 cones, and 25,472 cylinders; up to 9.4M

spheres, 2.4M cones, and 7M cylinders. To provide an accurate rep-

resentation of this data, where each neuron is unique, we do not use

OSPRay’s instancing features, and instead render actual transformed

copies of the base neurons.

The third dataset consists of different sub-sets of pathlines ex-

tracted from a tornado simulation (Figure 1d). The first sub-set,

“Tornado 1M”, consists of 4096 pathlines and 947,872 fixed ra-

dius links. The second sub-set, “Tornado 6.5M”, consists of 24,576

pathlines and 6.5M links, where we encode the velocity using the

pathline radius. The third sub-set, “Tornado 35.9M”, consists of

0.13M lines with 35.9M fixed-radius links. The last dataset used for

benchmarking is the Torus Flow simulation (Figure 1e), consisting

of 263,144 pathlines with 6.5M fixed-radius links. This range of

datasets captures a variety of use cases for pathlines in practice. The

DTI, Torus Flow, and Tornado data is represented with a dense dis-

tribution of long, thick lines; the neuron assemblies contain almost

random, bifurcating, and highly intersecting lines with varying radii.

On the DTI and Tornado datasets, we also use the line radius to

encode additional attributes, such as fractional anisotropy (FA), on

the DTI data, and velocity, on the Tornado 6.5M sub-set.

In the evaluation, we benchmark rendering performance using

three renderers in OSPRay: the ray casting renderer is a basic pri-

mary ray-only renderer; the scivis renderer computes common sec-

ondary effects useful in scientific visualization (e.g., ambient occlu-

sion and shadows); and the path tracing renderer is a photorealistic

global illumination renderer. We render with one sample per pixel

with all the renderers and use OSPRay’s progressive refinment to

refine the image. We configure the scivis renderer to take one sample

for ambient occlusion when shading. Unless otherwise specified,

benchmarks were run on the Workstation with a 1024×1024 frame-

buffer.

6.1. Quantification of Implementation Choices

In this section, we quantify the trade-offs of the different implemen-

tation choices discussed in Section 4.2 on six datasets. In addition to

the Brain DTI tractographies and neuron assemblies (103, 143 and

203), we also evaluate the Tornado 1M dataset and the Torus Flow.

We evaluate the four possible implementation choices discussed in

Section 4.2: (a) separate sphere, cylinder, and cone stump primitives

with on-the-fly transform computations; (b) separate primitives as

in (a), but this time with the transforms pre-computed; (c) com-

bined link primitives with on-the-fly transform computations; and

(d) combined link primitives with pre-computed transforms.

Table 1 shows the performance and memory consumption for

each option. As expected, the overall performance and memory con-

sumption of (b) are higher than those of (a), due to pre-computing

and storing the transformation matrices of the primitives, thereby

avoiding redundant computation. Interestingly, the performance dif-

ference between (a) and (b) is not as large on datasets with a denser
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(a) (b) (c) (d) (e) (f) (g)

Figure 9: (a-d) The base neurons used to build the neuron assembly benchmark scenes, from NeuroMorpho.org [ADH07]. The base neurons

consist of: (a) 438 nodes, 39 cone links, and 398 cylinder links [JSP∗01]; (b) 1176 nodes, 645 cone links, and 530 cylinder links [AA09]; (c)

2140 nodes, 320 cone links, and 1819 cylinder links [KP17]; (d) 955 nodes, 206 cone links, and 748 cylinder links [VPRK02]. (e-g) Examples

of the generated neuron assemblies used in the benchmarks, rendered interactively with ambient occlusion. The assemblies are generated by

randomly placing the base neurons N times within a scaled box. The assemblies have: (e) 103, (f) 143, and (g) 203 neurons.

Table 1: Performance and memory use comparison of the four implementation choices, shown as FPS / MB, benchmarked with the scivis

renderer. We find that option (d) provides the best balance of performance and memory use.

Implementation DTI (r = 0.25) Tornado 1M Torus Flow 103 neurons 143 neurons 203 neurons

(a) separate, on-the-fly 32.3 / 120.3 8.0 / 292.9 56.2 / 1861.9 22.8 / 166.8 14.3 / 374.0 0.9 / 2666.0

(b) separate, pre-computed 37.7 / 163.4 9.2 / 485.5 56.3 / 3189.0 27.4 / 257.4 17.1 / 618.0 1.2 / 4584.4

(c) combined, on-the-fly 34.0 / 99 9.0 / 197.0 52.7 / 1102.0 22.7 / 134.3 14.1 / 235.2 0.9 / 1533.0

(d) combined, pre-computed 43.1 / 122.9 11.5 / 297.3 67.3 / 1797.6 27.8 / 184.8 17.1 / 355.0 1.2 / 2534.2

distribution of pathlines (e.g., the Torus and neuron assemblies). In

these datasets, although we pre-compute transformation matrices for

all primitives, we are likely intersecting only a small sub-set of them,

given our fixed viewpoint. Similar results are seen when comparing

on the fly vs. pre-computation on the combined link primitives. We

find option (d) provides better performance at the cost of more mem-

ory use than (c) for most datasets; again, the performance difference

becomes smaller on the denser datasets.

When comparing the separate primitive options (a, b) with the

combined link primitive options (c, d), we find that the combined

links have lower memory consumption and tend to have better ren-

dering performance. The combined link primitives reduce memory

use by sharing the control point data among the sphere and cone or

cylinder primitives, and also reduce the total number of primitives

Embree must build the BVH over, potentially leading to a shallower

BVH with fewer nodes. With the combined link primitive, we find

performance improvements on sparser data (DTI, Tornado) and the

Torus. On these datasets, the individual link primitives are relatively

short, and thus the rays are likely to intersect both the cylinder or

cone stump link and the sphere for the control point. However, we

find less performance improvement of the completed link primitives

on the neuron assemblies. On the neuron assemblies, the individ-

ual links are longer, and therefore rays are more likely to require

traversing only the cylinders or cone stumps. Overall, we find that

(d), combined link primitives with pre-computed transformation

matrices, provides the best memory-performance trade-off, and we

use this implementation throughout the rest of the benchmarks.

6.2. Performance on Opaque Geometry

To evaluate overall performance and how our primitive scales with

the model configuration and complexity, we examine the effect

on performance of several single neuron morphologies, the DTI

Table 2: Performance on the Desktop with a 10242 framebuffer.

Frame Rate (FPS)

Dataset Ray Casting SciVis Path Tracing

Neuron (a) 94.9 90.0 47.7

Neuron (b) 118.8 111.0 76.2

Neuron (c) 107.9 95.4 66.5

Neuron (d) 87.3 52.2 15.6

DTI (r = 0.05mm) 37.8 13.1 2.1

DTI (r = 0.15mm) 44.7 16.6 2.3

DTI (r = 0.30mm) 50.6 16.9 2.8

tractography data with several different radii, and increasing the

number of neurons in the neuron assemblies.

We find that our method achieves high framerates when rendering

small to medium datasets, such as the neuron morphologies and DTI

tractographies, on a typical desktop system (Table 2). On the DTI

tractography data we render at multiple radii and observe that for

opaque geometry increasing the radius improves the performance.

With very thin lines the rays must traverse further through the data,

whereas thicker lines lead to more occlusion and thus require less

traversal to find a hit. We find that even for the most expensive

rendering method evaluated, path tracing, we still achieve interactive

framerates.

We benchmark the neuron assemblies from a viewpoint that dis-

plays the entire assembly (Figures 9e to 9g) on the Workstation at

a 1024× 1024 framebuffer (Figure 10). Even for extremely large

neuron assemblies, our method is able to provide interactive render-

ing at high quality, achieving 41FPS on the 143 neuron assembly

with the ambient occlusion renderer. When employing the most

expensive rendering method, path tracing, we still reach 7FPS on

the 143 assembly. Finally, we perform a large-scale stress test and

generate a neuron assembly with 1 billion links. Our method remains

interactive even at a 2400×600 framebuffer, achieving 22.5FPS on

FSM.
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Figure 10: Rendering performance on the generated neuron assem-

blies (Figure 9). Our method performs well even at large scales (143,

1.2M links) with ambient occlusion.

Table 3: Triangulated models (Triangles) compared to our non-

polygonal generalized tubes (GT) on the Workstation (top) and

FSM (bottom). ∗ indicates out of memory. GT consumes far less

memory and provides higher framerates.

Memory Use (GB) Framerate (FPS)

Dataset Triangles GT Triangles GT

DTI 35.4 0.13 38.9 131.2

Torus * 1.8 * 134.5

103 Neurons 69.8 0.18 23.03 74.9

143 Neurons * 0.36 * 52.3

Tornado 6.5M * 1.7 * 79.2

Tornado 35.9M * 8.8 * 33.5

DTI 35.6 0.16 117.6 259.4

Torus 678.0 1.8 31.29 271.2

103 Neurons 70.1 0.2 65.5 151.4

143 Neurons 191.8 0.36 38.5 107.78

Tornado 6.5M 673.1 1.8 12.7 171.4

Tornado 35.9M * 9.0 * 75.8

6.2.1. Comparison to Tessellation

To perform a rough comparison between our method and the tes-

sellation approach, which is similar to the approach that is com-

monly employed in tools such as VTK and ParaView, we create

triangulated models of our data. These models are created by tes-

sellating the sphere, cylinder, and cone stump primitives into 960,

124, and 124 triangles, respectively. Although this coarse tessella-

tion leaves some gaps at the connections between the primitives,

it is a reasonable approximation to the models produced by VTK

and ParaView. We compare rendering performance and memory

consumption of our method against the tessellated models using

the ray casting renderer (Table 3). Similar to previous results in

molecular visualization [FKE13, GKM∗15, Sto98, HDS96], we find

significant performance and memory improvements when using our

non-polygonal geometry.

6.3. Performance Impact of CSG Intersection

As discussed previously in Section 4.3.1, the CSG intersection

method required to remove interior surfaces for correct transparency

comes at a significant cost. To quantify this cost, we compare the ren-

dering performance of the first-hit ray traversal, suitable for opaque

geometry, with our all-hit CSG traversal, suitable for transparency.

In both cases, we render opaque geometry, to avoid including other

performance impacts inherent in rendering with transparency, thus

isolating the impact of the CSG traversal method.
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Figure 11: Performance impact of the CSG ray traversal required

for correct transparency. Benchmarks were performed rendering

opaque geometry in both cases, with only the traversal method

switched. Although the CSG traversal comes with a performance

impact, it remains interactive in most cases.
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Figure 12: Performance impact of the CSG ray traversal required

for correct transparency. Benchmarks were performed by increasing

the number of layers of semi-transparent geometry per pixel. Our

method remains interactive, even at 6000 layers of transparency.

We measure this overhead on four datasets: the DTI tractography

data at r = 0.05 and r = 0.25, and the 103 and 143 neuron assem-

blies at a near viewport (Figure 11). As expected, the CSG traversal

decreases rendering performance; however, we find that for all but

the most expensive renderer (path tracing), the CSG traversal re-

mains interactive. We further observe that the CSG traversal has a

greater impact on the Brain DTI data than on the neuron assemblies,

and that the impact is greater as the radius increases on the DTI data.

In the case of the DTI data, the number of tracts overlapped by each

ray is higher than on the neuron assemblies, where the individual

lines are quite thin when viewed from far away. As the radius of the

tracts increases, the number of tracts overlapping each ray increases

correspondingly, translating to a more expensive CSG traversal. We

also evaluate how our method scales with the number of layers of

transparency per-pixel (Figure 12). Each layer’s opacity is set to 0.5,

with randomly generated RGB colors. Even at a large number of

transparent layers, our method remains interactive.

6.4. Smooth Curves vs. Linear Links

Although our focus in this work is on using linear links between

control points, we note that Embree’s Bézier curve primitive, which

also supports varying radii and transparency, was recently made

available in OSPRay to represent streamlines. Bifurcations can also

be emulated with Embree’s curves by duplicating the start point of

the branches, although the transparency at the bifurcation will be

incorrect. We compare our generalized tube with Embree’s Bézier
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(a) Embree’s Bézier curve primitive. (b) Our generalized tube.

Figure 13: Although Embree’s curve primitive (a) provides a vi-

sually pleasing representation, it loses information encoded in the

radius and exhibits artifacts at bifurcations.
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Figure 14: Comparison of rendering performance of our general-

ized tubes and Embree’s curve primitive. We find our method is up

to 2× to 4× faster for scientific visualization style use cases.

curve using a test case with three key features: varying radius, a

bifurcation, and transparency (Figure 13).

Compared to our generalized tube, Embree’s curve provides

smoother bends along the curve (at points B and C), giving a vi-

sually pleasing result. However, Embree’s curve primitive loses

information encoded using the line radius, which could result in

users misinterpreting the data. Finally, bifurcations must be faked

by duplicating the start point to create the branches (lines DF and

DE), resulting in artifacts at the bifurcation point, D. Due to the

duplication of D, interior surfaces can be seen in the overlap at the

bifurcation point, and the bifurcation does not round-off at the point.

For non-bifurcating lines, Embree’s curve primitive provides im-

ages roughly similar to those rendered by our method. In these cases,

we can perform a quantitative comparison and examine the render-

ing performance (Figure 14) and memory use of the two methods

(Table 4). We evaluate the methods on four datasets: the Brain DTI

data, with a fixed radius (r = 0.25) and varying radii, encoding the

fractional anisotropy, and the two Tornado sub-sets.

We find that the smoothness of Embree’s Bézier curves comes

with a performance cost compared to our simpler method (Figure 14).

On all datasets, we find better rendering performance with our

method, with the exception of path tracing on the Tornado sub-sets,

where our method performs similar to Embree. Finally, we observe

similar results in memory cost when using our generalized tube,

compared to Embree (Table 4). However, the implementation choice

we used in benchmark is not one that saves the most memory. As

discussed in Section 4.2 and Section 6.1, our method can reduce

memory usage and still be faster than Embree’s curve primitive.

Table 4: Average memory consumption of our generalized tube

and Embree’s curve primitive. In all cases, our method consumes

memory similar to that for Embree’s curve primitive.

Dataset Embree Curve Generalized Tubes

DTI (r = 0.25) 0.13GB 0.13GB

DTI (varying r) 0.13GB 0.13GB

Tornado 6.5M 1.4GB 1.6GB

Tornado 35.9M 7.6GB 8.8GB

7. Discussion and Conclusion

In this paper, we have presented a new method for rendering gener-

alized tube primitives that supports varying radii and bifurcations.

This primitive type is applicable to a wide range of datasets, such as

flows, scalar or vector fields, neuron morphologies, and topological

structures. Furthermore, we used an efficient CSG-based intersec-

tion approach that enables correct transparency by removing interior

surfaces. Our approach provides high-performance rendering with

low memory overhead for up to billions of primitives. Furthermore,

our method is general enough to embed into any ray tracing frame-

work, such as Nvidia Optix [PBD∗10], or production film renderers

such as Cycles [Fou] and Arnold [KCSG18].

Some challenges remain to be addressed in our proposed ap-

proach. Specifically, proper handling of transparency is important

for applications that require this feature; although our current CSG

method for removing interior surface has provided a solution, it

strongly impacts performance. Although we offer the faster non-

transparent traversal mode, it is up to the application to select this

mode, which, if past experience is any guide, will likely mean ap-

plications will pick the “slow but correct” mode by default. Future

work along this line to explore faster methods for transparency will

be valuable for end users of the primitive.

Finally, whereas the integration into tools such as ParaView

should in theory be simple, any such integration always uncov-

ers at least some missing or mismatched features that may require

additional modifications. Eventually, it is also worth considering the

broader question of whether it would make sense to add the geome-

try type and algorithms described in this paper to other ray tracers,

such as OptiX [PBD∗10], taking advantage of Geforce RTX [nvi],

and if so, whether there is a need for some standardization of what

exactly a line primitive type would have to support in any given ray

tracer.

Despite these open issues, we believe our approach will be a

useful addition to the arsenal of geometric primitive types in visu-

alization. Although the applicability of our primitive is somewhat

specific, for applications that do need such primitives, ours will

significantly improve users’ ability to visualize and understand their

data.
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Perinatal Growth of Prefrontal Layer III Pyramids in Down Syndrome.
Pediatric neurology (2002). 8

[VW85] VAN WIJK J. J.: Ray Tracing Objects Defined by Sweeping a
Sphere. Computers & Graphics (1985). 4

[WBW∗14] WOOP S., BENTHIN C., WALD I., JOHNSON G. S., TABEL-
LION E.: Exploiting Local Orientation Similarity for Efficient Ray Traver-
sal of Hair and Fur. In High Performance Graphics (2014). 3

[WJA∗17] WALD I., JOHNSON G. P., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRÁTIL P.: OSPRay-A CPU
Ray Tracing Framework for Scientific Visualization. IEEE transactions

on visualization and computer graphics (2017). 2, 3

[WKI∗17] WU K., KNOLL A., ISAAC B. J., CARR H., PASCUCCI V.: Di-
rect Multifield Volume Ray Casting of Fiber Surfaces. IEEE transactions

on visualization and computer graphics (2017). 2

[WKJ∗15] WALD I., KNOLL A., JOHNSON G. P., USHER W., PASCUCCI

V., PAPKA M. E.: CPU Ray Tracing Large Particle Data with Balanced
P-k-d Trees. In 2015 IEEE Scientific Visualization Conference (SciVis)

(2015), IEEE. 2, 3

[WTBJ19] WARNER A., TATE J., BURTON B., JOHNSON C. R.: A High-
Resolution Head and Brain Computer Model for Forward and Inverse
EEG Simulation. bioRxiv (2019). 7

[WVDLH05] WÜNSCHE B., VAN DER LINDEN J., HOLMBERG N.: DTI
volume rendering techniques for visualising the brain anatomy. In Inter-

national Congress Series (2005), Elsevier. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST

M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM

Transactions on Graphics (TOG) (2014). 2, 3, 5

[ZDL03] ZHANG S., DEMIRALP C., LAIDLAW D. H.: Visualizing Diffu-
sion Tensor MR Images Using Streamtubes and Streamsurfaces. IEEE

Transactions on Visualization and Computer Graphics (2003). 2

[ZSH96] ZOCKLER M., STALLING D., HEGE H.-C.: Interactive Vi-
sualization of 3D-Vector Fields Using Illuminated Stream Lines. In
Proceedings of Seventh Annual IEEE Visualization’96 (1996), IEEE. 2

© 2019 The Author(s)

Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

478


