DOI: 10.1111/cgf.13703

Eurographics Conference on Visualization (EuroVis) 2019 Volume 38 (2019), Number 3
M. Gleicher, H. Leitte, and 1. Viola
(Guest Editors)

Ray Tracing Generalized Tube Primitives: Method and Applications

Mengjiao Han' 1 Ingo Wald2*3, Will Usherlvz, Qi Wu1*4, Feng Wangl, Valerio Pascucci!, Charles D. Hansenl, and Chris R. Johnson!

ISCI Institute, University of Utah 2Intel Corporation 3Now at NVIDIA ~ *Now at University of California, Davis

Figure 1: Visualizations using our “generalized tube” primitives. (a): DTI tractography data, semi-transparent fixed-radius streamlines
(218K line segments). (b): A generated neuron assembly test case, streamlines with varying radii and bifurcations (3.2M I. s.). (c): Aneurysm
morphology, semi-transparent streamlines with varying radii and bifurcations (3.9K l. s.) and an opaque center line with fixed radius and
bifurcations (3.9K L. 5.). (d): A tornado simulation, with radius used to encode the velocity magnitude (3.56M . s.). (e): Flow past a torus,
fixed-radius pathlines (6.5M L. s.). Rendered at: (a) 0.38FPS, (b) 7.2FPS, (c) 0.25FPS, (d) 18.8FPS, with a 20482 [framebuffer; (e) 23FPS with
a 2048x 786 framebuffer. Performance measured on a dual Intel® Xeon® E5-2640 v4 workstation, with shadows and ambient occlusion.

Abstract

We present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports
tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with
interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging
tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray
tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines,
pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality
rendering, with low memory overhead.

CCS Concepts
e Computing methodologies — Ray tracing;

1. Introduction

Visualization focuses on helping scientists explore or explain data
' mengjiao@sci.utah.edu through software systems that provide static or interactive visual

®© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

468 Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications

representations. Creating a visualization typically requires two steps:
choosing the best representation to convey the data visually and then
efficiently rendering this representation. Although often viewed as
separate stages, the two are tightly intertwined. Constraints imposed
in the second stage—particularly the primitives and model sizes
supported by the rendering system—influence the choices of visual
representations made in the first stage.

In this paper, we are concerned with high-performance and
high-fidelity rendering of data represented as 3D line primitives.
Such line primitives are used to represent data in a range of scien-
tific domains, such as fluid dynamics (e.g., streamlines and path-
lines) [Ste00, MTHGO3, STH*09, GGTHO7, Mer12], medical imag-
ing (e.g., diffusion tensor imaging) [RBE*06, MSE*06,ZDL03], and
vector field visualization (e.g., magnetic or vector fields) [PVH*02,
CYY*11,MCHMI10]. Additional attributes can be encoded along
the line by varying the line color, thickness [LMSC11], or opac-
ity [WVDLHO5, GRT13, KRW18]. This same type of geometry—
long, thin lines with varying thickness—is also useful for repre-
senting other data, such as ganglions in neuron datasets [Mar(06]
or vessels in aneurysm visualization [SSV*14], although such data
further requires the method to support acyclic graph structures.

To visualize such line primitives, much of the visualization com-
munity has focused on tessellating their surfaces and rasterizing
the resulting primitives, leveraging the high triangle rasterization
performance of GPUs. However, it is difficult to support transparent
geometries, ambient occlusion, and global illumination effects in a
rasterizer. Ray tracing provides a direct method for rendering non-
polygonal geometries, such as tubes, streamlines, etc., by directly
computing ray-surface intersections with the objects. A ray tracer
naturally supports effects such as transparency, ambient occlusion,
and global illumination, allowing for high-quality visualization.

Line primitives have been widely employed in visualization,
and several open-source applications exist for ray tracing them,
with varying levels of support for bifurcations, transparency, and
varying radius (e.g., Embree [WWB*14], OSPRay [WJA*17],
“Brayns” [Blu19]). Prior work has addressed, in part, features such
as varying radii [SGS05], transparency [SZH97,ZSH96, MTHGO3,
KRW 18], and bifurcations [TWHS05, TWSH02, TAC*13, KP17,
SSV*14]. However, no single method supports all three features
in combination, making the implementation of general visualiza-
tion software and its use by scientists more challenging, as special
purpose methods must be used for each domain.

In this paper, we explore the use of ray tracing to efficiently
visualize a class of data that is best represented as 3D line primitives.
We propose a new rendering primitive, the “generalized tube”, that
supports varying radii, bifurcations, and correct transparency, and
is applicable to any ray tracer. Moreover, our technique provides
high-quality interactive rendering, with low memory overhead. We
implement our method as a module in the OSPRay [WJA*17] ray
tracer and evaluate it on a range of datasets. Our contributions are:

e A new method for rendering 3D line primitives, the “general-
ized tube”, supporting varying radii, bifurcations, and correct
transparency;

e An efficient CSG-based intersection approach that enables our
primitive to support correct transparency with interior surface
removal;

e Demonstration of our approach on a range of datasets, from
scalar and vector fields, to neuron morphologies and topological
structures;

e Implementation of our approach as an open-source module in
OSPRay [WJA*17], to allow use of in a range of visualization
packages.

2. Background and Related Work

In this section, we summarize recent work on rendering 3D line prim-
itives (Section 2.1) and related work on ray tracing non-polygonal
surfaces (Section 2.2).

2.1. Rendering Line Primitives

The majority of work in visualization has focused on GPU-based
approaches to render 3D line primitives. Early work by Zockler
et al. [ZSH96] proposed to render the streamlines as illuminated
line primitives. Schussman and Ma [SM02] proposed self-orienting
surfaces (SOS). SOS renders view-aligned triangle strips that are
shaded using fixed-function illumination and bump mapping. SOS
formed the basis of later imposter-based streamline and streamtube
methods, where view-aligned triangle strips [PFK07] or a combina-
tion of strips and point sprites [SKH*04, MSE*06] are rasterized,
and ray-cylinder and ray-sphere intersections are computed in the
fragment shader. Bhagvat et al. [BJCW(09] defined a conical frus-
tum representation for line segments and rendered it via GPU ray
casting of the relief-mapped frusta. Oeltze et al. [OP05] used con-
volution surfaces, which have varying-radius and bifurcations, to
visualize vasculature. Stoll et al. [SGSO5] presented an approach for
rendering stylized line primitives based on imposters that is able to
support varying radii of the control points. Melek et al. [MMYKO06]
presented an approach based on a GPU implementation of SOS
for visualizing neuronal fibers. Kanzler et al. [KRW 18] recently
proposed a voxel-based GPU ray-casting method for rendering 3D
line primitives with transparency, shadows, and ambient occlusion.
However, as the approach is based on re-sampling the data to a
grid, the resulting line quality is inherently dependent on the chosen
grid resolution. Eichelbaum et al. [EHS13] presented an improved
3D line rendering approach to enhance structural perception by
providing a novel ambient occlusion method. Recent work by Lin-
dow et al. [LBLH19] proposed a hybrid rasterization and raycasting
approach for ribbon and stick rendering of DNA and RNA.

Although domain-specific tools exist that support efficient meth-
ods for rendering streamlines [BSG*09, GKM*15], off-the-shelf
visualization tools, such as ParaView [Ayal5] and VisIt [CBW*12],
default to tessellating them. For example, in the visualization toolkit
(VTK) [SLMO04], the default method for rendering streamlines is
to tessellate them. Similarly, in the field of neuroscience, we are
aware of at least one major project that originally rendered large
neuron datasets by tessellating them [BMB*13], and dealt with the
large number of triangles produced using parallel rendering [Eil13].
However, as dataset size grows, tessellation can require the use of
numerous powerful GPUs to fit the data in memory and achieve
interactive framerates.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications 469

noded linko link1 :

Input: link3
node0: pos0, rado, -1
node1: pos1, rad1, 0
[pos0, rado, -1, pos1, rad1, 0,

node3: pos3, rad3, 1 pos3, rad3, 1, pos4, rad4, 2]

node4: pos4, rad4, 2

Figure 2: lllustration of the input data structure. We make a list of
control points, each with a position, radius, and predecessor index.
Each control point and its cylinder or cone stump connection to its
predecessor is refered to as a “link”.

2.2. Ray Tracing Non-Polygonal Primitives

Parker et al. [PSL*98] proposed one of the first interactive applica-
tions of ray tracing non-polygonal primitives to visualize implicit
isosurfaces. Following this work, a large body of visualization re-
search has explored ray tracing for rendering non-polygonal or
implicit geometry [DPH*03, GIK*07, BPL*12, KWN*13, WKJ*15,
WKI*17]. Today, the most common applications of ray tracing
non-polygonal primitives are the rendering of spheres to represent
particle data [GIK*07, WKJ*15] and combinations of spheres and
cylinders for ball-and-stick models [KWN™*13, Sto98] or stream-
lines [WJA*17].

OSPRay’s current streamline geometry [WJA*17] is implemented
as a combination of sphere primitives linked together with cylinders.
This approach is simple to implement in a ray tracer and produces
high-quality images for opaque, fixed radius streamlines. However,
this method inherently lacks support for varying radii along the
streamline and does not support transparency or bifurcations.

Favreau’s “Brayns” ray tracer [Blul9] employs a combination
of sphere, cylinder, and cone stump primitives in a manner similar
to our own for interactive ray tracing of large neuron assemblies.
Our work, although developed independently, has been motivated
by similar challenges when visualizing such large-scale neuron data.

Outside visualization, the most common application of ray tracing
non-polygonal surfaces, is found in movie rendering, in particular
for memory-efficient rendering of subdivision surfaces [BBLWO07,
BWN*15], hair [WBW™14], and curve or ribbon primitives [BK85].
Recently, Embree [WWB™*14] has introduced support for curves
with varying radii by adding support for varying-radii features to
their Bézier and B-Spline curve primitives. These primitives have
also been made available in OSPRay, which builds on top of Embree.
Such curves are visually pleasing, but they are expensive to render
and do not support bifurcations or varying radii.

3. Method Overview

We represent our generalized tubes with a combination of spheres
to represent the control points, cylinders for fixed-radius links, and
cone stumps for varying-radii links. In the following sections, we
describe the input data structure to specify these primitives (Sec-
tion 3.1) and how we compute the appropriate spheres, cylinders,
and cone stumps to represent the tubes (Section 3.2).

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

3.1. Input Data Structure

Although more general representations of lines or tubes are possible,
for the purposes of this work we consider only input data in the form
of linearly connected control points. The input data is specified as
a list of control points, each with a position and radius, along with
a connectivity attribute, which specifies how the control points are
connected (Figure 2). For the sake of simplicity, we consider only
acyclic graphs, where each point can have at most one predecessor.
Although simple, we have found this input structure sufficient to
represent all the datasets used in our evaluation. We note that a
generalization to cyclic graphs is straightforward.

With these assumptions, we can view our input as being simply
a set of what we call “links”. Each link specifies a control point
and a reference to the control point preceding it, or “-1” if the link
is the starting point of the streamline. Bifurcations are then simply
cases where two links connect to the same predecessor. Figure 2
shows an illustration of a set of tube primitives with constant and
varying-radii links and a bifurcation.

Depending on the application domain, it sometimes makes sense
to talk logically about entire segments of links (e.g., an entire gan-
glion in a neuron, a particle trace). However, as each such logical
segment can be reduced to a series of links, we leave this higher
level semantic information to the application, and from the point of
a ray tracer consider only individual links.

3.2. Choice of Representation

Given this input data structure, the next step toward rendering it in
aray tracer is to break it up into smaller geometric primitives, for
which ray-surface intersections can be more easily formulated.

In OSPRay’s current implementation of streamlines with a fixed
radius, each control point is internally represented as a sphere and
the links between points as cylinders. The cylinder composes the
bulk of the streamline, and the spheres round off the corners where
two cylinders meet. As all the radii are the same, these primitives
will always fit perfectly together, creating the appearance of a single
connected streamline. Implementing this approach is straightfor-
ward: ray-sphere and ray-cylinder intersections are well described in
the literature [Dra99, PJH16], and building an acceleration structure
on these primitives can be left to Embree.

For our generalized tube primitives, we follow a similar approach;
however, properly handling the varying radii of the control points
requires some modifications, as illustrated in Figure 3.

3.2.1. Linking with Cylinders and Naive Cone Stumps

To solve the problem of choosing correct representation,
we compared two existing approaches first: the existing
OSPRay’s [WJA*17] streamlines and connected cones from the
Blue Brain project [Mar06]. The first prototype is a trivial extension
of OSPRay’s [WJA*17] existing streamlines, where we simply chose
the cylinder’s radius to be that of the smaller control point. This ap-
proach prevented any holes from appearing, but the images produced
were quickly judged unacceptable (Figure 3a). Clearly, the proper
geometric primitive to linearly connect two spheres with different
radii is a cone stump, not a cylinder. Similar to “Brayns” [Blu19],

470 Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications

(a) Cylinder links produce clear discontinuities.

(b) Naive cone links result in banding artifacts.

(¢) We compute correct tangent cone links.

Figure 3: When linking control points of varying radii, cylinders are clearly the wrong choice (a); however, incorrectly chosen cones will also
produce artifacts (b). To smoothly link the control points, we compute cones that are tangent to the spheres at their intersection (c).

A D)

Figure 4: Our method for computing a tangent cone stump to con-
nect control points of varying radii.

we next computed cone stumps linking the control points, whose
caps were centered at P; and P», with radius 7| and r,, respectively,
oriented along Pi P>, = P, — P; (Figure 3b).

Although this naive way of computing the cones gives acceptable
results in many cases, it produces noticeable banding artifacts in
sections where the radius changes rapidly (Figure 3b). Similar to
sweeping a sphere along a trajectory [VWS85], the real shape that
linearly connects two spheres is a slightly different cone stump than
the one produced using the computation described above. Specit-
ically, the naive cone is not tangent to the sphere where the two
meet (X;’s in Figure 3b). As a result, the larger sphere protrudes
through the cone stump, and at the thinner end there is a visible,
sharp change in surface curvature.

3.2.2. Computing Properly Tangential Cones

The desired cone, which smoothly connects the control points—the
one tangential to the spheres at the points X;—is shown in Figure 3c.
A cone is described by its apex (A), orientation (€), and radius (w).
To clip the infinite cone to a cone stump, we will also require the
clipping plane locations z; and z, along the axis of revolution C. An
illustration of the tangential cone computation is given in Figure 4.
Our computation is somewhat similar to the silhouette computation
of Gumhold [GumO3], although differs in the properties we require
in the end, and thus we include it for completeness. The cone’s
orientation is given by

P, — P

oo PP
[|P,—Pi]|

€y

Defining p; = ||P; —A|| and py = ||P, —Al|, we find from the theo-
rem of intersecting tubes that

n_mr

Pl

Substituting py = ||P, — P ||+ p1, we can solve for p;
rn || =P+ pi

r 14!
A
p1=|[P,—P|
rn—r
Thus, we find the apex at
A=P —pC 2

Next, we compute the locations of the clipping planes z; and z5.
Due to congruence and the theorem of intersecting lines, we know
that

pi—a _ 1
r P1
which we solve for z;.
7
i =r1—
P
We proceed similarly for the second clipping plane location z;.
2
’
u=p—-=
P2

Finally, to compute the width of the cone at P5, we first define

x = ||X» — Al|. From the Pythagorean theorem, x; = {/p3 — 3.
Again, using the theorem of intersecting lines we can find w.

X2 _n
p2 W
_ pn
X2

Once the modified cone stump’s coordinates are known, we can
compute ray-cone stump intersections (Section 4.1). The intersec-
tion computation is the same as for a naive cone stump; the only
difference is in the cone parameters. Our approach links the geom-
etry correctly, though does not ensure the normals are continuous
where the cone and sphere meet (Figure 3c¢).

4. Implementation

We represent the control points as spheres and link them with either
cylinders or cone stumps. When the control points have the same
radii, it is sufficient to link them with a cylinder; however, if the
radii differ, we must use a cone stump. Ray-sphere, ray-cylinder,
and ray-cone intersections are well described in the ray tracing

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications 471

literature [PJH16, Dra99]. Bhagvat et al. [BICW09] presented a
similar approach for ray-conical frusta intersection; however, our
definition of a cone stump is not identical to a conical frusta. As an
understanding of this operation is key to reproduce this paper, we
briefly summarize our ray-cone stump intersection.

4.1. Ray-Cone Stump Intersection

Following Dodgson’s discussion [Dra99], we consider the infinite
dual-sided cone of which our cone stump is a part, and construct a
transformation that transforms this cone into the unit cone, with the
apex at the origin, the z-axis as the axis of rotation, and a slope of 1.
To do this, we compute the position of the non-truncated cone’s apex
A (Equation (2)) and an orthonormal basis Vy,Vy, V; that transforms
2 to C. The vectors v, and Vy are then scaled by w/ps, to span the
larger cap and transform the cone to one with slope 1. The matrix
M that transforms our cone stump to the unit coordinate system is
thus given by Equation (3).
~ -1
M=[%y 2y C A] 3)
This unit coordinate system places the larger cap at z =1 by
design, whereas the smaller cap position is found by

Zcap = sl
cap —
p P

We can now see our cone stump as the intersection of the slab
[z= Zeapy 2= 1] with the infinite unit cone X2+Y2 =272 and we can
formulate our ray-cone stump intersection accordingly. Given a ray
r(t) = 0+1d, we transform the ray into the cone’s coordinate system
by applying M !, yielding #(¢). We can then insert the transformed
ray into the unit cone equation and solve the resulting quadratic.
Solving this quadratic yields the (possibly empty) interval [f.(,%.1]
where the ray intersects the unit cone. If this interval is empty, or
outside the valid ray interval [t,0,2,1], there is no intersection and
we can exit.

If an intersection with the infinite unit cone is found, we then
compute the interval [t,9,7,1] where the ray overlaps the slab [z =
Zeaps 2 = 1]. This ray-slab interval is then intersected with the pre-
viously computed ray-cone interval to find [ty0,%,1], which is the
interval where the ray overlaps the cone stump.

Given the ray-cone stump interval [f59,%1], the final step depends
on what exactly we need. In Section 4.3.1, we will need the actual
overlap interval between the ray and the cone stump, which is the
intersection of the ray-cone stump interval [fy,%] and the valid
ray interval, [t,0,7,1]. If we are interested only in finding the ray’s
intersection with the cone stump’s surface, we need only the nearest
of [t50,%,1], which is also inside the valid ray interval.

4.2. Acceleration Data Structure and Primitive Type

We use Embree [WWB™14] for the acceleration structure and traver-
sal kernels. How we use Embree to build a bounding volume hier-
archy (BVH) over our primitives can significantly influence perfor-
mance and/or memory consumption, we discuss a few options and
their trade-offs in the following sections.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

4.2.1. Individual Primitives vs. Complete Links

The first choice is whether we build our Embree BVH over the
individual link components (i.e., the spheres, cylinders, and cone
stumps), or over logical “link” primitives, which would then inter-
nally perform intersections with their components. In the former
case, we can implement three separate Embree geometries (one for
spheres, one for cylinders, and one for cone stumps) and have dedi-
cated intersection routines for each. Embree will then automatically
build a single BVH over the different primitives. In the latter case,
we have a single Embree geometry with a much more complex in-
tersection routine. The first approach could result in a poorer quality
BVH, with more BVH nodes and overlap between them, increasing
both memory use and traversal cost compared to the latter. However,
in the case of long, thin links with less overlap, it is likely that most
rays will intersect only the cylinder or cone primitives, resulting in
potentially higher performance in the first approach, compared to
the latter’s more costly primitive intersection.

The trade-offs between these two options are multi-faceted and
non-obvious, and can be concluded only by an experiment, which
we conduct in Section 6.1.

4.2.2. Precomputed vs. On-the-Fly Primitives

A second important choice is how much information we are going
to pre-compute for the primitives. On one extreme, we can keep
memory consumption low by not pre-computing anything, in which
case we can describe each link by as little as a pointer to its control
points; all other data—cone parameters, transformation matrices,
etc.—can be computed on the fly for every intersection test.

At the other extreme, we could conclude that re-doing these
computations millions of times per image is a waste, and could
pre-compute the cone coordinates and/or up to two transformation
matrices (the ray to object and object to world transforms) and store
these pre-computed attributes with the primitives. This is a clear
memory-vs-speed trade-off, which we will quantify with experi-
ments in Section 6.1.

4.2.3. Embree Integration

Regardless of the final implementation we choose based on the
experiments, our Embree integration is the same. To allow Em-
bree to build a BVH over our primitives and intersect rays with
them, we need to provide two methods for each primitive type. The
first method computes the bounds of the primitive, and the sec-
ond intersects a ray with the primitive. Depending on our choice
of implementation, these primitives will be the individual spheres,
cylinders, and cone stumps, or the entire links.

4.3. Transparency

Our current description of our generalized tubes can readily be used
to render opaque lines with both bifurcations and varying radii,
which were lacking in prior work. However, a third limitation of
prior work also applies to our description so far—artifacts when
rendering with transparency (Figure 5a).

These artifacts result from the fact that, whereas logically we want
our tubes primitive to be what in constructive solid geometry (CSG)

472 Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications

A

(b) Our method removes interior surfaces correctly.

Figure 5: (a) Without our CSG interior surface removal approach,
interior surfaces can be seen, producing visual artifacts. (b) Our
CSG intersection computation correctly finds only exterior surfaces

terms would be called the union of the base primitives, we have
actually implemented them as the sum of these primitives, resulting
in interior surfaces. Therefore, a naive approach to transparency
will find and shade intersections with these interior surfaces as well,
producing visible artifacts.

4.3.1. Removing Interior Surfaces via CSG Intersection

The simplest approach to remove these interior surfaces is to bor-
row ideas from constructive solid geometry, and properly treat our
geometry as a union of the base primitives. Rather than finding the
closest ray-surface intersection with any base primitive, we can in-
stead compute all the intervals where the ray overlaps each primitive.
We can then sort these intervals and traverse them front to back,
counting the number of entry and exit events.

This incremental entry and exit counting tells us, at any point
along the ray, how many of these intervals we are currently over-
lapping. Each time we transition from O to 1, we are entering the
object, and at each transition from 1 to 0, we are exiting. All other
transitions are interior surfaces and can be ignored. Note that to
handle the case where rays start inside a tube, we must modify the
ray start interval and set ¢,y = —co before intersecting the primitives.

4.3.2. Implementation via Intersection Filters

At first, Embree seems badly suited to this operation: like most ray
tracers, it is primarily targeted at first- and any-hit ray traversal. How-
ever, Embree also supports so-called “intersection filters”, which can
be used to implement multi-hit ray traversal [AGGW 15, GWA16].
Using an intersection filter, we can implement exactly the algorithm
described above.

Figure 6: Our geometry module integrated into OSPRay can be
combined with volumes (left, 9.4 FPS) or other geometry (right,
22.8 FPS) to create interactive, high-quality visualizations.

In Embree, an intersection filter is a callback function that is called
after each ray-primitive intersection is encountered. The intersection
filter can then decide whether to accept or reject the hit and modify
additional per-ray data. To implement the algorithm described above,
each time Embree calls our intersection filter we compute the ray-
primitive overlap interval and store it in an auxiliary buffer attached
to each ray. We then reject the hit to force Embree to discard the
intersection and continue traversal, eventually iterating through all
the primitives overlapped by the ray.

Some care must be taken when implementing this approach within
OSPRay, as we want to apply the intersection filter only to our tube
primitives. To achieve this, our OSPRay geometry internally builds
a separate Embree scene over the base tube primitives and applies
our intersection filter to this scene. Our OSPRay geometry then
reports the Embree scene bounds to OSPRay as its bounds, and in
its intersection method forwards the ray on to traverse its Embree
scene and collects the ray intervals. After the ray intervals have been
collected, they are sorted and the closest exterior surface is found
and returned as the hit point.

This method can correctly remove interior surfaces from being
reported incorrectly as hits, and can therefore handle transparency
correctly (Figure 5b). However, this method comes at significant
cost, due to the overhead in finding, storing, and sorting the ray-
primitive intervals, along with the partial loss of early ray termina-
tion, as we must now find all intervals along the ray. We quantify
this performance impact in Section 6.3.

5. Applications

In Figure 1, we show several sample visualization applications en-
abled by our module within OSPRay, ranging from DTI tractography,
flow visualization, and vessel morphology to large-scale neuron as-
semblies. Our method can provide high-fidelity results at interactive
framerates. Figure 6 shows the DTI tractography dataset in different
visualization use cases. On the left in Figure 6, the full set of tracts
is shown in the context of the underlying DWI volume to provide
an overview visualization. On the right in Figure 6, a sub-set of the
tracts is shown along with two slices of the DWI volume to focus on
a specific region of the brain. Both visualizations are rendered with
OSPRay’s scivis renderer, which can render combined volumetric
and surface data with high-quality shading effects such as shadows
and ambient occlusion.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications 473

Figure 7: An illustrative visualization of neuron activity rendered
using OSPRay’s path tracer with emissive materials.

Figure 8: The far and near views used for benchmarks on the DTI
dataset, with ambient occlusion and shadows.

Figure 7 shows an illustrative visualization of neuron activity,
similar to those used by the Blue Brain Project [Mar06], rendered
with OSPRay’s path tracer renderer. An emissive material is applied
to the neurons to indicate the firing of electrical signals throughout
the assembly.

6. Experiments and Results

We first quantity the different implementation choices discussed
in Section 4.2 with a set of benchmarks to find a suitable default
implementation (Section 6.1). We then focus our evaluation on two
key aspects of our method: the absolute performance achieved when
rendering opaque geometry (Section 6.2) and the impact of the CSG
interior surface removal method (Section 6.3). Finally, we compare
the performance, rendering quality, and memory consumption of
our method against Embree’s existing curve primitive (Section 6.4).

Our evaluations are done using our method implemented as a
module within OSPRay 1.7.2, built with Embree 3.2.0 and ISPC
1.9.1. We ran our benchmarks on three machines, Desktop, with an
Intel® 17-5930K CPU (12 logical cores at 3.7 GHz) and 32GB RAM;
Workstation, a dual socket workstation with two Intel® Xeon® E5-
2640 v4 CPUs (40 logical cores at 2.4 GHz) and 128GB RAM; and
FSM, a quad socket workstation with four Xeon E7-8890 v3 CPUs
(144 logical cores at 2.5 GHz) and 3TB RAM.

We conducted our benchmarks on four representative datasets at
varying levels of model complexity to evaluate typical use cases of
our generalized tubes. The first is a diffusion tensor imaging (DTI)
tractography dataset [WTBJ19] consisting of 220,711 nodes and
218,637 cylinder links with a fixed radius (Figure 8).

The second dataset is a representative model of the neuron assem-
blies used in neuron simulations, such as those of the Blue Brain

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Project [Mar06]. To generate these models, we wrote a tool that
creates an assembly of neurons by placing N randomly or manually
chosen base neurons (Figures 9a to 9d) at random locations within
a properly scaled bounding box. Using the assembly generation
program, we created datasets ranging in size from 43 to 20> neurons
(far view: Figures 9e to 9g; near view: Figure 1b), in total consisting
of 28,032 spheres, 2,496 cones, and 25,472 cylinders; up to 9.4M
spheres, 2.4M cones, and 7M cylinders. To provide an accurate rep-
resentation of this data, where each neuron is unique, we do not use
OSPRay’s instancing features, and instead render actual transformed
copies of the base neurons.

The third dataset consists of different sub-sets of pathlines ex-
tracted from a tornado simulation (Figure 1d). The first sub-set,
“Tornado 1M”, consists of 4096 pathlines and 947,872 fixed ra-
dius links. The second sub-set, “Tornado 6.5M”, consists of 24,576
pathlines and 6.5M links, where we encode the velocity using the
pathline radius. The third sub-set, “Tornado 35.9M”, consists of
0.13M lines with 35.9M fixed-radius links. The last dataset used for
benchmarking is the Torus Flow simulation (Figure 1le), consisting
of 263,144 pathlines with 6.5M fixed-radius links. This range of
datasets captures a variety of use cases for pathlines in practice. The
DTI, Torus Flow, and Tornado data is represented with a dense dis-
tribution of long, thick lines; the neuron assemblies contain almost
random, bifurcating, and highly intersecting lines with varying radii.
On the DTI and Tornado datasets, we also use the line radius to
encode additional attributes, such as fractional anisotropy (FA), on
the DTI data, and velocity, on the Tornado 6.5M sub-set.

In the evaluation, we benchmark rendering performance using
three renderers in OSPRay: the ray casting renderer is a basic pri-
mary ray-only renderer; the scivis renderer computes common sec-
ondary effects useful in scientific visualization (e.g., ambient occlu-
sion and shadows); and the path tracing renderer is a photorealistic
global illumination renderer. We render with one sample per pixel
with all the renderers and use OSPRay’s progressive refinment to
refine the image. We configure the scivis renderer to take one sample
for ambient occlusion when shading. Unless otherwise specified,
benchmarks were run on the Workstation with a 1024 x 1024 frame-
buffer.

6.1. Quantification of Implementation Choices

In this section, we quantify the trade-offs of the different implemen-
tation choices discussed in Section 4.2 on six datasets. In addition to
the Brain DTI tractographies and neuron assemblies (103, 143 and
20%), we also evaluate the Tornado 1M dataset and the Torus Flow.
We evaluate the four possible implementation choices discussed in
Section 4.2: (a) separate sphere, cylinder, and cone stump primitives
with on-the-fly transform computations; (b) separate primitives as
in (a), but this time with the transforms pre-computed; (c) com-
bined link primitives with on-the-fly transform computations; and
(d) combined link primitives with pre-computed transforms.

Table 1 shows the performance and memory consumption for
each option. As expected, the overall performance and memory con-
sumption of (b) are higher than those of (a), due to pre-computing
and storing the transformation matrices of the primitives, thereby
avoiding redundant computation. Interestingly, the performance dif-
ference between (a) and (b) is not as large on datasets with a denser

474

(a) (b) (0 (d)

Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications

(e ® (®

Figure 9: (a-d) The base neurons used to build the neuron assembly benchmark scenes, from NeuroMorpho.org [ADHO7]. The base neurons
consist of: (a) 438 nodes, 39 cone links, and 398 cylinder links [JSP*01]; (b) 1176 nodes, 645 cone links, and 530 cylinder links [AA09]; (c)
2140 nodes, 320 cone links, and 1819 cylinder links [KP17]; (d) 955 nodes, 206 cone links, and 748 cylinder links [VPRKO02]. (e-g) Examples
of the generated neuron assemblies used in the benchmarks, rendered interactively with ambient occlusion. The assemblies are generated by
randomly placing the base neurons N times within a scaled box. The assemblies have: (e) 10°, (f) 14°, and (g) 20° neurons.

Table 1: Performance and memory use comparison of the four implementation choices, shown as FPS / MB, benchmarked with the scivis
renderer. We find that option (d) provides the best balance of performance and memory use.

3

Implementation DTI (r =0.25) Tornado 1M Torus Flow 103 neurons 143 neurons 203 neurons
(a) separate, on-the-fly 32.3/120.3 8.0/292.9 56.2/1861.9 22.8/166.8 14.3/374.0 0.9/2666.0
(b) separate, pre-computed 37.7/163.4 9.2/4855 56.3/3189.0 27.4/2574 17.1/618.0 1.2/4584.4
(c) combined, on-the-fly 34.0/99 9.0/197.0 52.7/1102.0 22.7/1343 14.1/2352 0.9/1533.0
(d) combined, pre-computed 43.1/1229 11.5/2973 673/1797.6 27.8/184.8 17.1/355.0 1.2/2534.2

distribution of pathlines (e.g., the Torus and neuron assemblies). In
these datasets, although we pre-compute transformation matrices for
all primitives, we are likely intersecting only a small sub-set of them,
given our fixed viewpoint. Similar results are seen when comparing
on the fly vs. pre-computation on the combined link primitives. We
find option (d) provides better performance at the cost of more mem-
ory use than (c) for most datasets; again, the performance difference
becomes smaller on the denser datasets.

When comparing the separate primitive options (a, b) with the
combined link primitive options (c, d), we find that the combined
links have lower memory consumption and tend to have better ren-
dering performance. The combined link primitives reduce memory
use by sharing the control point data among the sphere and cone or
cylinder primitives, and also reduce the total number of primitives
Embree must build the BVH over, potentially leading to a shallower
BVH with fewer nodes. With the combined link primitive, we find
performance improvements on sparser data (DTI, Tornado) and the
Torus. On these datasets, the individual link primitives are relatively
short, and thus the rays are likely to intersect both the cylinder or
cone stump link and the sphere for the control point. However, we
find less performance improvement of the completed link primitives
on the neuron assemblies. On the neuron assemblies, the individ-
ual links are longer, and therefore rays are more likely to require
traversing only the cylinders or cone stumps. Overall, we find that
(d), combined link primitives with pre-computed transformation
matrices, provides the best memory-performance trade-off, and we
use this implementation throughout the rest of the benchmarks.

6.2. Performance on Opaque Geometry

To evaluate overall performance and how our primitive scales with
the model configuration and complexity, we examine the effect
on performance of several single neuron morphologies, the DTI

Table 2: Performance on the Desktop with a 10242 framebuffer.

Frame Rate (FPS)
Dataset Ray Casting SciVis Path Tracing
Neuron (a) 94.9 90.0 47.7
Neuron (b) 118.8 111.0 76.2
Neuron (¢) 107.9 95.4 66.5
Neuron (d) 87.3 52.2 15.6
DTI (r = 0.05mm) 37.8 13.1 2.1
DTI (r = 0.15mm) 44.7 16.6 2.3
DTI (r = 0.30mm) 50.6 16.9 2.8

tractography data with several different radii, and increasing the
number of neurons in the neuron assemblies.

We find that our method achieves high framerates when rendering
small to medium datasets, such as the neuron morphologies and DTI
tractographies, on a typical desktop system (Table 2). On the DTI
tractography data we render at multiple radii and observe that for
opaque geometry increasing the radius improves the performance.
With very thin lines the rays must traverse further through the data,
whereas thicker lines lead to more occlusion and thus require less
traversal to find a hit. We find that even for the most expensive
rendering method evaluated, path tracing, we still achieve interactive
framerates.

We benchmark the neuron assemblies from a viewpoint that dis-
plays the entire assembly (Figures 9e to 9g) on the Workstation at
a 1024 x 1024 framebufter (Figure 10). Even for extremely large
neuron assemblies, our method is able to provide interactive render-
ing at high quality, achieving 41FPS on the 14% neuron assembly
with the ambient occlusion renderer. When employing the most
expensive rendering method, path tracing, we still reach 7FPS on
the 143 assembly. Finally, we perform a large-scale stress test and
generate a neuron assembly with 1 billion links. Our method remains
interactive even at a 2400 x 600 framebuffer, achieving 22.5FPS on
FSM.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications 475

160
Ray Casting Renderer
1401 Scivis Renderer
120+ Path Tracing Renderer
0100
o
[
80
60
40 -
20
0 L L L 1 |
& 63 83 Num of Neurons 103 123 143

Figure 10: Rendering performance on the generated neuron assem-
blies (Figure 9). Our method performs well even at large scales (147,
1.2M links) with ambient occlusion.

Table 3: Triangulated models (Triangles) compared to our non-
polygonal generalized tubes (GT) on the Workstation (top) and
FSM (bottom). * indicates out of memory. GT consumes far less
memory and provides higher framerates.

Memory Use (GB)

Framerate (FPS)

Dataset Triangles GT Triangles GT
DTI 354 0.13 38.9 131.2
Torus * 1.8 * 134.5
103 Neurons 69.8 0.18 23.03 74.9
143 Neurons * 0.36 * 52.3
Tornado 6.5M * 1.7 * 79.2
Tornado 35.9M * 8.8 * 33.5
DTI 35.6 0.16 117.6 259.4
Torus 678.0 1.8 31.29 271.2
103 Neurons 70.1 0.2 65.5 151.4
143 Neurons 191.8 0.36 38.5 107.78
Tornado 6.5M 673.1 1.8 12.7 171.4
Tornado 35.9M * 9.0 * 75.8

6.2.1. Comparison to Tessellation

To perform a rough comparison between our method and the tes-
sellation approach, which is similar to the approach that is com-
monly employed in tools such as VTK and ParaView, we create
triangulated models of our data. These models are created by tes-
sellating the sphere, cylinder, and cone stump primitives into 960,
124, and 124 triangles, respectively. Although this coarse tessella-
tion leaves some gaps at the connections between the primitives,
it is a reasonable approximation to the models produced by VTK
and ParaView. We compare rendering performance and memory
consumption of our method against the tessellated models using
the ray casting renderer (Table 3). Similar to previous results in
molecular visualization [FKE13, GKM* 15, Sto98, HDS96], we find
significant performance and memory improvements when using our
non-polygonal geometry.

6.3. Performance Impact of CSG Intersection

As discussed previously in Section 4.3.1, the CSG intersection
method required to remove interior surfaces for correct transparency
comes at a significant cost. To quantify this cost, we compare the ren-
dering performance of the first-hit ray traversal, suitable for opaque
geometry, with our all-hit CSG traversal, suitable for transparency.
In both cases, we render opaque geometry, to avoid including other
performance impacts inherent in rendering with transparency, thus
isolating the impact of the CSG traversal method.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Hl Naive Ray Traversal ll CSG Ray Traversal
Brain DTl(near) r = 0.05

Brain DTl(near) r = 0.25

125 98
5.6 32 2.8 1.4

path tracing ray casting scivis path tracing

ray casting scivis

Figure 11: Performance impact of the CSG ray traversal required
for correct transparency. Benchmarks were performed rendering
opaque geometry in both cases, with only the traversal method
switched. Although the CSG traversal comes with a performance
impact, it remains interactive in most cases.

30

0 1 1 1 1 1 1 1 1 I
400 800 1600 2400 3200 4:]00 4800 5200 5600 6000 6400

Layers Per Pixel

Figure 12: Performance impact of the CSG ray traversal required
for correct transparency. Benchmarks were performed by increasing
the number of layers of semi-transparent geometry per pixel. Our
method remains interactive, even at 6000 layers of transparency.

We measure this overhead on four datasets: the DTI tractography
data at r = 0.05 and r = 0.25, and the 10° and 14° neuron assem-
blies at a near viewport (Figure 11). As expected, the CSG traversal
decreases rendering performance; however, we find that for all but
the most expensive renderer (path tracing), the CSG traversal re-
mains interactive. We further observe that the CSG traversal has a
greater impact on the Brain DTI data than on the neuron assemblies,
and that the impact is greater as the radius increases on the DTI data.
In the case of the DTI data, the number of tracts overlapped by each
ray is higher than on the neuron assemblies, where the individual
lines are quite thin when viewed from far away. As the radius of the
tracts increases, the number of tracts overlapping each ray increases
correspondingly, translating to a more expensive CSG traversal. We
also evaluate how our method scales with the number of layers of
transparency per-pixel (Figure 12). Each layer’s opacity is set to 0.5,
with randomly generated RGB colors. Even at a large number of
transparent layers, our method remains interactive.

6.4. Smooth Curves vs. Linear Links

Although our focus in this work is on using linear links between
control points, we note that Embree’s Bézier curve primitive, which
also supports varying radii and transparency, was recently made
available in OSPRay to represent streamlines. Bifurcations can also
be emulated with Embree’s curves by duplicating the start point of
the branches, although the transparency at the bifurcation will be
incorrect. We compare our generalized tube with Embree’s Bézier

476 Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications

(a) Embree’s Bézier curve primitive. (b) Our generalized tube.
Figure 13: Although Embree’s curve primitive (a) provides a vi-
sually pleasing representation, it loses information encoded in the

radius and exhibits artifacts at bifurcations.

l B Generalized tube primitive | Embree curve primitive
Brain DTl r = 0.2 Brain DTI varying radius

150 150

131.7 127.3

100 100
w
-8
w

50 148.4 41.8 50 38.3

26.5 1.
7.3 6.4 6.2 4
0 0 4.7

Tornado 6.5M Subset Tornado 35.9M Subset

80
60
40 327

20 11.9
.7 1.9 12

ray casting scivis path tracing

ray casting scivis

path tracing

Figure 14: Comparison of rendering performance of our general-
ized tubes and Embree’s curve primitive. We find our method is up
to 2% to 4x faster for scientific visualization style use cases.

curve using a test case with three key features: varying radius, a
bifurcation, and transparency (Figure 13).

Compared to our generalized tube, Embree’s curve provides
smoother bends along the curve (at points B and C), giving a vi-
sually pleasing result. However, Embree’s curve primitive loses
information encoded using the line radius, which could result in
users misinterpreting the data. Finally, bifurcations must be faked
by duplicating the start point to create the branches (lines DF and
DE), resulting in artifacts at the bifurcation point, D. Due to the
duplication of D, interior surfaces can be seen in the overlap at the
bifurcation point, and the bifurcation does not round-off at the point.

For non-bifurcating lines, Embree’s curve primitive provides im-
ages roughly similar to those rendered by our method. In these cases,
we can perform a quantitative comparison and examine the render-
ing performance (Figure 14) and memory use of the two methods
(Table 4). We evaluate the methods on four datasets: the Brain DTI
data, with a fixed radius (r = 0.25) and varying radii, encoding the
fractional anisotropy, and the two Tornado sub-sets.

We find that the smoothness of Embree’s Bézier curves comes
with a performance cost compared to our simpler method (Figure 14).
On all datasets, we find better rendering performance with our
method, with the exception of path tracing on the Tornado sub-sets,
where our method performs similar to Embree. Finally, we observe
similar results in memory cost when using our generalized tube,
compared to Embree (Table 4). However, the implementation choice
we used in benchmark is not one that saves the most memory. As
discussed in Section 4.2 and Section 6.1, our method can reduce
memory usage and still be faster than Embree’s curve primitive.

Table 4: Average memory consumption of our generalized tube
and Embree’s curve primitive. In all cases, our method consumes
memory similar to that for Embree’s curve primitive.

Dataset Embree Curve Generalized Tubes
DTI (r =0.25) 0.13GB 0.13GB
DTI (varying r) 0.13GB 0.13GB
Tornado 6.5M 1.4GB 1.6GB
Tornado 35.9M 7.6GB 8.8GB

7. Discussion and Conclusion

In this paper, we have presented a new method for rendering gener-
alized tube primitives that supports varying radii and bifurcations.
This primitive type is applicable to a wide range of datasets, such as
flows, scalar or vector fields, neuron morphologies, and topological
structures. Furthermore, we used an efficient CSG-based intersec-
tion approach that enables correct transparency by removing interior
surfaces. Our approach provides high-performance rendering with
low memory overhead for up to billions of primitives. Furthermore,
our method is general enough to embed into any ray tracing frame-
work, such as Nvidia Optix [PBD*10], or production film renderers
such as Cycles [Fou] and Arnold [KCSG18].

Some challenges remain to be addressed in our proposed ap-
proach. Specifically, proper handling of transparency is important
for applications that require this feature; although our current CSG
method for removing interior surface has provided a solution, it
strongly impacts performance. Although we offer the faster non-
transparent traversal mode, it is up to the application to select this
mode, which, if past experience is any guide, will likely mean ap-
plications will pick the “slow but correct” mode by default. Future
work along this line to explore faster methods for transparency will
be valuable for end users of the primitive.

Finally, whereas the integration into tools such as ParaView
should in theory be simple, any such integration always uncov-
ers at least some missing or mismatched features that may require
additional modifications. Eventually, it is also worth considering the
broader question of whether it would make sense to add the geome-
try type and algorithms described in this paper to other ray tracers,
such as OptiX [PBD*10], taking advantage of Geforce RTX [nvi],
and if so, whether there is a need for some standardization of what
exactly a line primitive type would have to support in any given ray
tracer.

Despite these open issues, we believe our approach will be a
useful addition to the arsenal of geometric primitive types in visu-
alization. Although the applicability of our primitive is somewhat
specific, for applications that do need such primitives, ours will
significantly improve users’ ability to visualize and understand their
data.

Acknowledgements

This work was supported in part by the NIH (Grant P41 GM103545-
18). Additional support comes from the Intel Parallel Computing
Centers Program, NSF:CGV: Award 1314896, NSF:1IP: Award
1602127, NSF:ACI: Award 1649923, DOE/SciDAC DESC0007446,
CCMSC DE-NA0002375 and NSF:OAC: Award 1842042. The au-
thors wish to thank Ally Warner for the brain DTI dataset and Steve

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications 477

Petruzza for the torus flow and tornado datasets. The authors also
thank the Texas Advanced Computing Center (TACC) at The Uni-
versity of Texas at Austin for providing access to Stampede2.

References

[AA09] ACKER C. D., ANTIC S. D.: Quantitative Assessment of the
Distributions of Membrane Conductances Involved in Action Potential
Backpropagation Along Basal Dendrites. Journal of neurophysiology
(2009). 8

[ADHO7] AscoLI G. A., DONOHUE D. E., HALAVI M.: NeuroMor-
pho. Org: A Central Resource for Neuronal Morphologies. Journal of
Neuroscience (2007). 8

[AGGW15] AMSTUTZ J., GRIBBLE C., GUNTHER J., WALD I.: An
Evaluation of Multi-Hit Ray Traversal in a BVH using Existing First-
Hit/Any-Hit Kernels. Journal of Computer Graphics Techniques (JCGT)
(2015). 6

[Ayal5] AYACHIT U.: The Paraview Guide: A Parallel Visualization
Application. Kitware, Inc., 2015. 2

[BBLWO07] BENTHIN C., BOULOS S., LACEWELL D., WALD I.: Packet-
based Ray Tracing of Catmull-Clark Subdivision Surfaces. SCI Institute,
University of Utah, Technical Report (2007). 3

[BJCW09] BHAGVAT D., JESCHKE S., CLINE D., WONKA P.: GPU
Rendering of Relief Mapped Conical Frusta. In Computer Graphics
Forum (2009), Wiley Online Library. 2, 4

[BK85] BRONSVOORT W. F., KLOK F.: Ray Tracing Generalized Cylin-
ders. ACM Transactions on Graphics (TOG) (1985). 3

[Blul9] BLUEBRAIN: BlueBrain/Brayns, 2019. URL: https://github.
com/BlueBrain/Brayns. 2, 3

[BMB*13] BRITO J., MATA S., BAYONA S., PASTOR L., DEFELIPE
J., BENAVIDES PICCIONE R.: Neuronize: a tool for building realistic
neuronal cell morphologies. Frontiers in neuroanatomy (2013). 2

[BPL*12] BROWNLEE C., PATCHETT J., Lo L.-T., DEMARLE D.,
MITCHELL C., AHRENS J., HANSEN C.: A Study of Ray Tracing
Large-Scale Scientific Data in Parallel Visualization Applications. In
Proceedings of the Eurographics Workshop on Parallel Graphics and
Visualization, EGPGV (2012). 2

[BSG*09] BRUCKNER S., SOLTESZOVA V., GROLLER E., HLADUVKA
J., BUHLER K., JAT Y. Y., DICKSON B. J.: BrainGazer-Visual Queries
for Neurobiology Research. IEEE transactions on visualization and
computer graphics (2009). 2

[BWN*15] BENTHIN C., WOOP S., NIESSNER M., SELGRAD K., WALD
I.: Efficient Ray Tracing of Subdivision Surfaces using Tessellation
Caching. In Proceedings of the 7th Conference on High-Performance
Graphics (2015), ACM. 3

[CBW*12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C., WE-
BER G., ET AL.: VisIt: An End-User Tool For Visualizing and Analyzing
Very Large Data. High Performance Visualization-Enabling Extreme-
Scale Scientific Insight. Insight (2012). 2

[CYY*11] CHEN C.-K., YAN S., YU H., MAaX N., MA K.-L.: An
Illustrative Visualization Framework for 3D Vector Fields. In Computer
Graphics Forum (2011), Wiley Online Library. 2

[DPH*03] DEMARLE D. E., PARKER S., HARTNER M., GRIBBLE C.,
HANSEN C.: Distributed Interactive Ray Tracing for Large Volume Visu-
alization. In IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, 2003. PVG 2003. (2003), IEEE. 2

[Dra99] DRAKOS N.: Some Mathematics for Advanced Graph-
ics, 1999. URL: https://www.cl.cam.ac.uk/teaching/1999/
AGraphHCI/SMAG/node2.html. 3,4

[EHS13] EICHELBAUM S., HLAWITSCHKA M., SCHEUERMANN G.: Lin-
eAO—Improved Three-Dimensional Line Rendering. IEEE Transactions
on Visualization and Computer Graphics (2013). 2

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

[Eil13] EILEMANN S.: Equalizer Programming and User Guide: The
official reference for developing and deploying parallel, scalable OpenGL
applications using the Equalizer parallel rendering framework. Eyescale
Software GmbH, 2013. 2

[FKE13] FALK M., KRONE M., ERTL T.: Atomistic Visualization of
Mesoscopic Whole-Cell Simulations Using Ray-Casted Instancing. In
Computer Graphics Forum (2013), Wiley Online Library. 9

[Fou] FOUNDATION B.: Cycles Open Source Production Rendering. URL:
https://www.cycles-renderer.org/. 10

[GGTHO7] GARTH C., GERHARDT F., TRICOCHE X., HAGEN H.: Ef-
ficient Computation and Visualization of Coherent Structures in Fluid
Flow Applications. IEEE Transactions on Visualization and Computer
Graphics (2007). 2

[GIK*07] GRIBBLE C. P., IZE T., KENSLER A., WALD I., PARKER
S. G.: A Coherent Grid Traversal Approach to Visualizing Particle-Based
Simulation Data. [EEE Transactions on Visualization and Computer
Graphics (2007). 2,3

[GKM*15] GROTTEL S., KRONE M., MULLER C., REINA G., ERTL T.:
MegaMol—A Prototyping Framework for Particle-Based Visualization.
IEEE transactions on visualization and computer graphics (2015). 2,9

[GRT13] GUNTHER T., ROSSL C., THEISEL H.: Opacity Optimization
for 3D Line Fields. ACM Transactions on Graphics (TOG) (2013). 2

[Gum03] GUMHOLD S.: Splatting Illuminated Ellipsoids with Depth
Correction. In VMV (2003). 4

[GWA16] GRIBBLE C., WALD I., AMSTUTZ J.: Implementing Node
Culling Multi-Hit BVH Traversal in Embree. Journal of Computer Graph-
ics Techniques Vol (2016). 6

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: VMD: Visual
Molecular Dynamics. Journal of molecular graphics (1996). 9

[JSP*01] JACOBS B., SCHALL M., PRATHER M., KAPLER E.,
DRISCOLL L., BACA S., JACOBS J., FORD K., WAINWRIGHT M.,
TREML M.: Regional Dendritic and Spine Variation in Human Cerebral
Cortex: a Quantitative Golgi Study. Cerebral cortex (2001). 8

[KCSG18] KuLLA C., CONTY A., STEIN C., GRITZ L.: Sony Pictures
Imageworks Arnold. ACM Transactions on Graphics (TOG) (2018). 10

[KP17] KOVACS A., PAL B.: Astrocyte-Dependent Slow Inward Currents
(SICs) Participate in Neuromodulatory Mechanisms in the Pedunculo-
pontine Nucleus (PPN). Frontiers in cellular neuroscience (2017). 2,
8

[KRW18] KANZLER M., RAUTENHAUS M., WESTERMANN R.: A Voxel-
based Rendering Pipeline for Large 3D Line Sets. IEEE transactions on
visualization and computer graphics (2018). 2

[KWN*13] KNOLL A., WALD I., NAVRATIL P. A., PAPKA M. E.,
GAITHER K. P.: Ray Tracing and Volume Rendering Large Molecu-
lar Data on Multi-Core and Many-Core Architectures. In Proceedings of
the 8th International Workshop on Ultrascale Visualization (2013), ACM.
2,3

[LBLH19] LINDOW N., BAUM D., LEBORGNE M., HEGE H.-C.: Inter-
active Visualization of RNA and DNA Structures. /EEE transactions on
visualization and computer graphics (2019). 2

[LMSC11] LEE T.-Y., MISHCHENKO O., SHEN H.-W., CRAWFIS R.:
View Point Evaluation and Streamline Filtering for Flow Visualization.
In 2011 IEEE Pacific Visualization Symposium (2011), IEEE. 2

[Mar06] MARKRAM H.: The Blue Brain Project. Nature Reviews Neuro-
science (20006). 2,3, 6,7

[MCHM10] MARCHESIN S., CHEN C.-K., Ho C., MA K.-L.: View-
Dependent Streamlines for 3D Vector Fields. IEEE Transactions on
Visualization and Computer Graphics (2010). 2

[Mer12] MERZKIRCH W.: Flow Visualization. Elsevier, 2012. 2

[MMYKO06] MELEK Z., MAYERICH D., YUKSEL C., KEYSER J.: Vi-
sualization of Fibrous and Thread-like Data. IEEE Transactions on
Visualization and Computer Graphics (2006). 2

478 Han et al. / Ray Tracing Generalized Tube Primitives: Method and Applications

[MSE*06] MERHOF D., SONNTAG M., ENDERS F., NIMSKY C., HAS-
TREITER P., GREINER G.: Hybrid Visualization for White Matter Tracts
using Triangle Strips and Point Sprites. IEEE Transactions on Visualiza-
tion and Computer Graphics (2006). 2

[MTHGO03] MATTAUSCH O., THEUSSL T., HAUSER H., GROLLER E.:
Strategies for Interactive Exploration of 3D Flow Using Evenly-spaced
Illuminated Streamlines. In Proceedings of the 19th spring conference on
Computer graphics (2003), ACM. 2

[nvi] NVIDIA GeForce RTX. URL: https://www.nvidia.com/
en-us/geforce/20-series/rtx/. 10

[OP0O5] OELTZE S., PREIM B.: Visualization of Vasculature With Convo-
lution Surfaces: Method, Validation and Evaluation. IEEE Transactions
on Medical Imaging (2005). 2

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MORLEY
K., ROBISON A., ET AL.: OptiX: A General Purpose Ray Tracing Engine.
In ACM transactions on graphics (Tog) (2010), ACM. 10

[PFKO7] PETROVIC V., FALLON J., KUESTER F.: Visualizing Whole-
Brain DTI Tractography with GPU-based Tuboids and LoD Management.
IEEE transactions on visualization and computer graphics (2007). 2

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation. Morgan Kaufmann, 2016. 3,
4

[PSL*98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C., SLOAN
P.-P.: Interactive Ray Tracing for Isosurface Rendering. In Proceedings
Visualization’98 (Cat. No. 98CB36276) (1998), IEEE. 2

[PVH*02] PosT F. H., VROLUJK B., HAUSER H., LARAMEE R. S,
DOLEISCH H.: Feature Extraction and Visualization of Flow Fields.
Eurographics 2002 State-of-the-Art Reports (2002). 2

[RBE*06] REINA G., BIDMON K., ENDERS F., HASTREITER P., ERTL
T.: GPU-based Hyperstreamlines for Diffusion Tensor Imaging. In
EuroVis (20006), Citeseer. 2

[SGS05] StoLL C., GUMHOLD S., SEIDEL H.-P.: Visualization with
stylized line primitives. In VIS 05. IEEE Visualization, 2005. (2005),
IEEE. 2

[SKH*04] ScCHIRSKI M., KUHLEN T., Hopp M., ADOMEIT P.,
PISCHINGER S., BISCHOF C.: Efficient Visualization of Large Amounts
of Particle Trajectories in Virtual Environments Using Virtual Tubelets.
In Proceedings of the 2004 ACM SIGGRAPH international conference on
Virtual Reality continuum and its applications in industry (2004), ACM.
2

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The Visual-
ization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware,
2004. 2

[SM02] SCHUSSMAN G., MA K.-L.: Scalable Self-Orienting Surfaces: A
Compact, Texture-Enhanced Representation for Interactive Visualization
of 3D Vector Fields. In 10th Pacific Conference on Computer Graphics
and Applications, 2002. Proceedings. (2002), IEEE. 2

[SSV*14] SANGALLI L. M., SECCHI P., VANTINI S., ET AL.:
AneuRisk65: A dataset of three-dimensional cerebral vascular geometries.
Electronic Journal of Statistics (2014). 2

[Ste00] STEINMAN D. A.: Simulated pathline visualization of computed
periodic blood flow patterns. Journal of Biomechanics (2000). 2

[STH*09] SHIK., THEISEL H., HAUSER H., WEINKAUF T., MATKOVIC
K., HEGE H.-C., SEIDEL H.-P.: Path Line Attributes - an Information
Visualization Approach to Analyzing the Dynamic Behavior of 3D Time-
Dependent Flow Fields. In Topology-Based Methods in Visualization II.
Springer, 2009. 2

[Sto98] STONE J. E.: An Efficient Library for Parallel Ray Tracing And
Animation. 3,9

[SZH97] STALLING D., ZOCKLER M., HEGE H.-C.: Fast Display of
Iluminated Field Lines. IEEE transactions on visualization and computer
graphics (1997). 2

[TAC*13] THOMANETZ V., ANGLIKER N., CLOETTA D., LUSTEN-
BERGER R. M., SCHWEIGHAUSER M., OLIVERI F., SUZUKI N.,
RUEGG M. A.: Ablation of the mMTORC2 component rictor in brain
or purkinje cells affects size and neuron morphology. J Cell Biol (2013).
2

[TWHSO05] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL H.-P.:
Topological Methods for 2D Time-Dependent Vector Fields Based on
Stream Lines and Path Lines. IEEE Transactions on Visualization and
Computer Graphics (2005). 2

[TWSHO02] TRICOCHE X., WISCHGOLL T., SCHEUERMANN G., HA-
GEN H.: Topology tracking for the visualization of time-dependent
two-dimensional flows. Computers & Graphics (2002). 2

[VPRKO02] VUKSIC M., PETANJEK Z., RASIN M. R., KosToVIC I.:
Perinatal Growth of Prefrontal Layer III Pyramids in Down Syndrome.
Pediatric neurology (2002). 8

[VWS85] VAN WUK J. J.: Ray Tracing Objects Defined by Sweeping a
Sphere. Computers & Graphics (1985). 4

[WBW*14] WooP S., BENTHIN C., WALD I., JOHNSON G. S., TABEL-
LION E.: Exploiting Local Orientation Similarity for Efficient Ray Traver-
sal of Hair and Fur. In High Performance Graphics (2014). 3

[WJA*17] WALD 1., JOHNSON G. P., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GUNTHER J., NAVRATIL P.: OSPRay-A CPU
Ray Tracing Framework for Scientific Visualization. IEEE transactions
on visualization and computer graphics (2017). 2,3

[WKI*17] WU K., KNOLL A., ISAAC B. J., CARR H., PAscuccI V.: Di-
rect Multifield Volume Ray Casting of Fiber Surfaces. IEEE transactions
on visualization and computer graphics (2017). 2

[WKJ*15] WALDI., KNOLL A., JOHNSON G. P., USHER W., PASCUCCI
V., PAPKA M. E.: CPU Ray Tracing Large Particle Data with Balanced
P-k-d Trees. In 2015 IEEE Scientific Visualization Conference (SciVis)
(2015), IEEE. 2, 3

[WTBJ19] WARNER A., TATE J., BURTON B., JOHNSON C. R.: A High-
Resolution Head and Brain Computer Model for Forward and Inverse
EEG Simulation. bioRxiv (2019). 7

[WVDLHO5] WUNSCHE B., VAN DER LINDEN J., HOLMBERG N.: DTI
volume rendering techniques for visualising the brain anatomy. In Inter-
national Congress Series (2005), Elsevier. 2

[WWB*14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics (TOG) (2014). 2,3, 5

[ZDL03] ZHANG S., DEMIRALP C., LAIDLAW D. H.: Visualizing Diffu-
sion Tensor MR Images Using Streamtubes and Streamsurfaces. /[EEE
Transactions on Visualization and Computer Graphics (2003). 2

[ZSH96] ZOCKLER M., STALLING D., HEGE H.-C.: Interactive Vi-
sualization of 3D-Vector Fields Using Illuminated Stream Lines. In
Proceedings of Seventh Annual IEEE Visualization’96 (1996), IEEE. 2

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

