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Figure 1: TREESCOPE enables interactive and unified exploration of network traffic for large-scale fat-tree networks, including the visual
analytics of network counters, job queue logs, job placements, and routing scheme. The figure shows the network traffic during the execution
of the same application using two routing schemes, ftree routing (left) and SAR scheme (right). The visualization shows temporal and
distributional statistics (top), and detailed per-link traffic on half of the 1296-node fat-tree cluster in use (bottom). The free routing distributes
the traffic more uniformly (average traffic maps to yellow) and is about 15% faster than the SAR scheme. TREESCOPE helps users explore
the data and formulate hypotheses on the causes for performance degradation, such as the presence of hotspots in the traffic on the right.

Abstract
Parallel simulation codes often suffer from performance bottlenecks due to network congestion, leaving millions of dollars of
investments underutilized. Given a network topology, it is critical to understand how different applications, job placements,
routing schemes, etc., are affected by and contribute to network congestion, especially for large and complex networks.
Understanding and optimizing communication on large-scale networks is an active area of research. Domain experts often
use exploratory tools to develop both intuitive and formal metrics for network health and performance. This paper presents
TREESCOPE, an interactive, web-based visualization tool for exploring network traffic on large-scale fat-tree networks.
TREESCOPE encodes the network topology using a tailored matrix-based representation and provides detailed visualization
of all traffic in the network. We report on the design process of TREESCOPE, which has been received positively by
network researchers as well as system administrators. Through case studies of real and simulated data, we demonstrate how
TREESCOPE’s visual design and interactive support for complex queries on network traffic can provide experts with new
insights into the occurrences and causes of congestion in the network.

CCS Concepts
•Human-centered computing → Visualization application domains; Visual analytics;
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1 Introduction

High-performance computing (HPC) is an integral component

of the modern scientific workflow. In order to support the

growing scale and complexity of scientific and engineering

applications, HPC facilities are constantly optimizing the use of

available resources. One of the primary performance bottlenecks in

large-scale applications is the communication between distributed

nodes. Hence, understanding the implications of the design and

configuration of the large-scale network interconnect on current

and future applications is crucial for optimally utilizing the existing

facilities as well as for planning and procuring next-generation

machines. A particularly important design parameter is the network
topology, which defines how thousands of computational nodes are

interconnected to form a supercomputer. Not only can the network

topology heavily influence the performance of certain applications,

but it also represents a hard constraint, as once installed, it usually

cannot be changed. Therefore, all other systemwide design choices

must be compatible with the network topology to obtain the best

performance in HPC applications.

Interconnect-related performance degradation on a network

topology can have many causes, and is often unique to a particular

configuration, state of the network, and even input parameters of

active applications. Communication-based slowdowns can occur

due to various factors, such as ill-suited routing schemes or

job-placement policies (mapping of applications to computational

nodes), especially if either is incompatible with the underlying

topology [JBW∗16]. Therefore, developing automatic techniques

to find and diagnose network problems has been challenging, and

remains an active area of research.

The lack of automated tools and the exploratory nature of

the problem make visual analytics solutions an attractive choice.

To develop such a system, it is crucial to understand the

diverse and sometimes conflicting needs of all interested users.

For example, network researchers are interested in developing

new routing schemes, new network configurations, whereas

system administrators are typically concerned with ongoing

network health, optimizing utilization, and diagnosing failures.

In general, both user groups are interested in visualization tools

to understand network behavior with some specific use-cases

including exploration of network traffic to identify congested and

underutilized portions of the network, and to determine potential

causes of problems.

Here, we focus on one of the most common network topology,

the fat-tree topology [Lei85]. In particular, we aim to allow

an interactive visual exploration of network congestion and its

potential causes. Several sophisticated visualization solutions have

been proposed for other topologies, such as torus [LLB∗12]

and dragonfly [BJL∗16, LMR∗17]. However, due to unique

characteristics such as the strictly hierarchical nature of the

topology, the fat-tree topology is significantly different from these

topologies, and intuitive visualizations for fat-trees are still lacking.

Instead, application specialists and system administrators typically

diagnose unexpected behavior via manual exploration, mostly

through aggregated statistics and/or simple, static visualizations,

which not only is slow and fails to scale, but more importantly is

error prone and disallows making detailed investigation.

Domain experts often have an intuitive expectation of how

a well-behaved network should look, e.g., ideally the network

should be evenly loaded, and hotspots (overloaded network links)

may indicate bottlenecks. Key metrics to characterize the state of

a network are the various hardware counters collected from

the computational nodes or network switches. In particular, the

number of packets sent over all network links or processed by

all network ports represents the total traffic on the network.

Although nonuniformly distributed packet counts may indicate

bottlenecks or underutilization, analysis of its root causes typically

requires supplementary information, e.g., job logs recording which

applications ran on which nodes and/or routing schemes indicating

potential sources or destinations of high packet volumes.

Contributions. We present TREESCOPE, a unified solution to

investigate network traffic on supercomputers with fat-tree

topology. Shown in Figure 1, TREESCOPE is an interactive

web-based visualization tool that enables users to explore network

traffic (and other relevant hardware counters) and investigate

the effects of job-placement and routing schemes. TREESCOPE

uses a tailored matrix-based graph encoding of the fat-tree

topology, which provides a high-level overview while also

supporting detailed queries for specific information. We discuss

our collaborative design process, as well as the data and

task abstractions, which will be relevant to other visualization

researchers working in similar domains. Through two case studies

using real and simulated data for applications of interest on

leadership-class computing machines, we report a success story

of how visualization research can be leveraged to support crucial

inquiries in other fields.

2 Fat-Tree Networks

The fat-tree topology [Lei85] was designed to connect processors

in parallel clusters and supercomputers. As commodity hardware

became available to build systems with the fat-tree topology,

they became popular and are widely used today to build

medium- to large-scale supercomputers and infrastructure for data

centers. Currently, about 50% of machines listed in the TOP500

list [MSDS] as well as several data centers [XZWX17] use

fat-tree topology. The fat-tree network derives its name from its

resemblance to a k-ary tree whose communication bandwidth

increases as we get closer to the root. However, in practice,

hardware cables provide a fixed amount of bandwidth, and network

switches have a fixed number of ports. Thus, multiple switches

are grouped together closer to the root to provide the increase in

bandwidth. Typical implementations of the fat-tree topology are

based on Clos networks [Clo53], and both terms are often used

interchangeably.

Referring to Figure 2, we describe the construction of a

three-level (the most common configuration) fat-tree using network

switches with a fixed port count, k. The level 1 (L1), called the

edge layer, is the lowest level of the tree. Half the ports of each L1

switch are connected to k/2 compute nodes. The remaining ports

are connected to k/2 switches in level 2 (L2), also known as the

aggregation layer. The L1 switches connected to L2 switches form

a fully connected bipartite graph, commonly called a pod. Pods are

connected in an all-to-all manner at level 3 (L3), also called the core
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aggregation (L2)

edge (L1)

core (L3)

compute nodes
pod 0 pod 1 pod 2 pod 3

Figure 2: A small fat-tree network for k = 4 contains 8 L1, 8
L2, 4 L3 switches, and up to 16 compute nodes. The L1 and L2
switches are logically grouped into four separate closely connected
pods, and the L3 switches (from 2 bundles) connect different pods.
The bold dashed line shows an example of the path between two
compute nodes in different pods, which takes five hops.

layer, through specialized hardware called director-class switches
(referred hereon as “bundles” to avoid confusion with standard

switches), such that L3 switches corresponding to each bundle

connect to some of the L2 switches in each pod. A full-bisection,

three-level fat-tree with equal bandwidth across levels, as shown

in the figure, supports k pods, and is comprised of k2/2 L1, k2/2

L2, and k2/4 L3 switches, and k3/4 compute nodes. The pairs

of nodes/switches are connected via a bidirectional link, which in

practice is implemented using two independent physical cables.

3 Related Work

Several approaches exist for visualizing network traffic [IGJ∗14].

One set of techniques focuses on the logical organization

of the data, e.g., visualizing the flow of data between MPI

ranks [HE91,HCR01,SMM∗13]. Other approaches aim to visualize

the impact of traffic on the hardware interconnect [LLB∗12,

BJL∗16]. Here, we focus on the latter, since the goal is to identify

hotspots/congestion in the physical network infrastructure, and

investigate how different applications, routing schemes, and/or job

placement policies may contribute to it. Designing visualizations

for complex and multi-dimensional connectivity between network

components is challenging, especially because visualization

layouts are not transferable among different topologies due to

their vastly different configurations. Several visualizations have

been developed for n-dimensional tori [ABC∗05], which can

be naturally represented as regular meshes [LLB∗12, MIB∗14,

TSW14, CDJM14]. Similarly, dragonfly topologies have been

visualized with graph-based layouts [BJL∗16, LMR∗17].

Graph visualization. The visualization community has studied

graph visualization in great detail [Ber67, PCJ97, BETT98,

HMM00]. It is well accepted that node-link visualizations,

which use lines to denote links between connected nodes,

suffer significantly from scalability and occlusion [GFC04,

GFC05]. Instead, matrix-based representations visualize the

connectivity as adjacency matrices [Ber67]. Such representations

have been shown to be better suited for almost all types of

graph-specific queries [GFC04, GFC05], except route-finding,

where the node-link representations can perform better for

relatively small graphs. Matrix-based visualizations have been

successfully in a wide variety of applications, e.g., visualization of

social networks [HF06], telecommunication networks [BETT98],

HPC networks [WCC∗17], and brain networks [ABHR∗13].

Considering the dense connectivity of the fat-tree topology,

TREESCOPE uses a matrix-based layout to visualize the network.

Fat-tree visualization tools. Fat-tree specific tools include the

Paraver visualization tool [Bar] as well as the Boxfish fat-tree

module [BDM15]. Both use layered graph approaches with the

corresponding scalability and occlusion issues. To alleviate some

of the occlusion, Brown et al. [BDM15] propose to omit unused

links. However, this can be misleading since unused links are not

necessarily idle, but may be dysfunctional, which, especially for

system administrators, makes them one of the more important

aspects of a network. Zhou et al. [ZSC03] visualize the network

connectivity as a symmetric adjacency matrix, with the nodes and

switches grouped together to form both the rows and columns

of the matrix. Two-way traffic can naturally be visualized on the

matrix, while the transactions are depicted through 3D glyphs

animation. However, such a representation suffers from sparsity

and redundancy, since each switch and node appears twice, once

as an input and once as an output. In practice, the sparsity is of

particular concern as screen space is limited, and therefore large

networks cannot be easily displayed. Furthermore, a pure matrix

layout does not reflect the structure of the network, and it is

difficult to determine the (logical) distance between two nodes or

to understand the hierarchical organization of the switches. One

particular requirement for TREESCOPE was to design a compact,

yet complete, visual representation of the network topology.

4 Design Methodology

Designing an interactive visualization tool to support

domain-specific inquiries is challenging, especially due to the gaps

between the understanding and expectations of visualization

scientists and domain experts [Wij06]. Fortunately, there

exists extensive literature on methodologies for visualization

design [AS05, Mun09, SMM12, BNTM16], guiding the process

for a successful design by translating the domain knowledge and

vocabulary into visualization terminology, and exploring various

visualization choices suited to the application at hand.

We followed the four-phase nested model proposed by

Munzner [Mun09], as it offers a clear distinction between different

design phases as well as specific guidelines for appropriate

validation. Due to space restrictions, this paper presents only the

first three phases and omits the last phase (algorithm design).

TREESCOPE was developed through a collaborative process with

domain experts, who were actively involved in our design process

and provided continuous feedback on the evolving visualization

design of TREESCOPE. These domain experts include three staff

members at LLNL’s HPC facility looking to monitor the network

traffic on supercomputers, as well as four research scientists trying

to understand the impact of the network on the communication

performance of application codes (and vice versa). These experts

also evaluated TREESCOPE through case studies, two of which are

discussed in this paper.

4.1 Domain Problem Characterization

This section summarizes the first phase of our design

process [Mun09]. Over a period of 6 months, we conducted
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bi-weekly in-depth discussions with domain experts to learn

about application domain, understand the issues and challenges

they face, and gather a list of requirements. Generally, domain

experts are interested in potential communication bottlenecks,

and in how to improve the network throughput, and thus, the

performance. Communication bottlenecks are often caused by

network congestion or hotspots, which slow down communication

routed through them, and in turn negatively impact application

performance. Hotspots can be broadly defined as switches or

links that have much higher traffic passing through them than the

global average. Existing tools to identify congestion are limiting in

both scale and functionality. Currently, experts typically explore

aggregated statistics which can obscure many localized effects and

rarely provide specific insights. Instead, descriptive visualizations

that support an interactive exploration of the data are needed.

During the discussions, we jointly developed a list of specific

types of data (D#) the target design should support as well as a set

of specific tasks (T #) necessary to understand network congestion.

Exploration of network traffic. The primary use-case for

TREESCOPE is the exploration of network traffic to identify

congestion. To facilitate such exploration, the experts collect

(D1) detailed connectivity information of the network, i.e, for each

switch in the network, a list of all switches it was connected

to through all active ports; and

(D2) network counters for each port (captured every 30–90

seconds), such as the amount of data sent and received, the

number of dropped packets, the aggregated wait time before

packets were forwarded, as well as status flags and errors,

such as buffer overload, etc.

Given the design of a fat-tree topology, detailed information for

each switch, such as level and pod id can be derived from the

connectivity information. For any of the network counters, one is

typically interested in

(T 1) temporal statistics of traffic to determine if and when the

network was underperforming;

(T 2) distributional statistics of traffic to find underutilized and/or

congested network links;

(T 3) combined/filtered statistics and visualization to isolate the

congestion with respect to level (e.g., the L1 → L2 links)

and/or directionality (e.g., the L1 → L2 → L3 links); and

(T 4) a simple and intuitive, yet complete visualization of traffic

on all links and switches in the network, to facilitate visual

examination of congestion.

Exploration of job execution. Visual identification of hotspots

and/or underutilized links is only the first step toward the overall

goal. If a bottleneck is observed, users are interested in identifying

potential causes, e.g., which jobs (applications running on HPC

machines) were creating these bottlenecks. Therefore, users collect

(D3) a complete job history, i.e., a record of which jobs were

running on which nodes along with their start and end times.

Using this auxiliary data, users want to complement the

understanding of network traffic, and examine if any specific jobs

were responsible for congestion. In particular, the tasks are to

(T 5) provide a simultaneous visualization of job placement on

corresponding nodes on the network; and

(T 6) visualize traffic during the execution of selected job(s).

Exploration of traffic routing. For a root-cause analysis of where

the congestion originates, it is important to explore the flow of

traffic on the network. To this end, users collect

(D4) routing tables, i.e., which ports were used to send packets

between two nodes. We note that routing tables are dynamic,

and can change for various reasons, such as switch, node, or

link failures, experimental setups, etc.

Using time-varying routing tables, specific user queries include

(T 7) footprint of a (set of) job(s), i.e., all routes (potentially) used

for communication by chosen job(s), useful for hypothesizing

about the role of corresponding job(s) in creating congestion;

(T 8) footprint of a (set of) network component(s), i.e., the subset

of the network reachable from a selected switch/port, useful

for hypothesizing about the role of an overloaded port in

creating congestion; and

(T 9) arbitrary combinations of the above.

Exploration of inter-job interference. A particularly important

goal is to identify whether certain communication-heavy jobs

interfered with other jobs’ communication by congesting the

network. This can be achieved through a combination of job-related

and routing-related tasks defined above, i.e, (T 6), (T 7), and (T 8).

4.2 Data and Task Abstraction

The next phase of the design process [Mun09] entails translating

the scope and requirement for TREESCOPE into visualization

vocabulary using appropriate abstractions, followed by validation

with the domain experts. We summarize several of our discussions

with the domain experts spanning a period of about 3 months.

First of all, it is important to note that the so-called “fat-tree

topology” is a misnomer, as the underlying connectivity implies

a graph, not a tree (see Figure 2). The compute nodes and switches
in the network form the nodes of the graph, and links in the network

correspond to graph’s edges. Since network switches are uniquely

associated with levels L1, L2, and L3, we define a concise notation

for all graph nodes by denoting the compute nodes as L0 nodes.

We note that although a fat-tree topology may contain more than

three levels, to the best of our knowledge, such a full-bisection

bandwidth configuration with four or more levels has not been

deployed in practice; hence, we focus TREESCOPE on fat-tree

networks containing three levels only.

Recall from Section 2 that network links are bidirectional, and

behave independently; therefore, we consider them as pairs of

graph edges with opposite directionality. Aggregating bidirectional

traffic into a single link, as done in similar tools for other types of

network topology [LLB∗12, BJL∗16], can be misleading. Indeed,

considering the two directions separately is important to our users

because following the traffic direction may indicate which nodes

are possibly creating bottlenecks, e.g., in cases when one direction

of the link is loaded while the opposite is used sparingly. To

establish a precise notion for bidirectional links, we call a given

link {s → d} an “up” link if the level of the source node, s, is
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(a) (b)

(c)
Figure 3: TREESCOPE provides both
overview and detailed visualizations of
network traffic. The figure shows various
components of TREESCOPE. (a) A complete
UI panel is provided on the left with several
options to enable interactive queries.
(b) Summary overviews (temporal and
distributional) are given at the top. (c) The
central component is the detailed fat-tree view,
showing per-link and per-switch traffic on
adjacency matrices. The visible elements are
filtered based on the active traffic range, which
is selected using the brush in the histogram.
Interactive selection and filtering is important
to show heavily loaded links. Both summary
plots are shown in six colors (grouped by level
and direction), whereas three single-hue color
maps are used for “up” links, “down” links,
and switches, respectively.

lower than that of the destination node, d. The reverse directions

are correspondingly called “down” links.

Several different models for task abstraction have been

proposed [AES05, LPP∗06, HS12, BM13, BNTM16]. Here, we

follow a multi-level typology [BM13] to characterize the scope

and requirements of TREESCOPE. This approach allows translating

domain-specific tasks into a sequence of interdependent abstract

visualization tasks, using which their scope can be defined with

respect to why and how a visualization task is performed, as well as

what the task inputs and outputs are.

Why? The primary undertaking of TREESCOPE is to discover the

presence and causes of network congestion, and its dependence

upon factors like routing schemes and job placement. The required

tasks aim to explore and query the data for trends and anomalies,

as well as for comparison and summarization of data.

How? Next, we establish the encoding and manipulation of

visualization tasks with respect to the corresponding data. (T 1)

and (T 2) deal with time-series and distribution data; we choose

1D plots as they are well suited for the purpose and the domain

experts are familiar with them. (T 3) then becomes a simple

filtering operation on (T 1) and (T 2). (T 4) requires visualization

of the entire network; our encoding for graph visualization is

described in Section 5.1. Visualizing the job placement, i.e., (T 5),

is an attribute-based task [LPP∗06], and can be performed by

highlighting relevant nodes of the graph (discussed in Section 5.2).

(T 6) is also a filtering operation based upon the time range when

a given job was active. The tasks related to routing are browsing
tasks [LPP∗06], and can be generally described as following certain

paths using the active routing tables based on a known set of

source/destination nodes (T 7), a selected link (T 8), or both (T 9).

What? The lowest level descriptors of tasks further categorize

them based on data semantics. In this context, (T 1), (T 2), and

(T 4) relate to temporal patterns as well as ranges and distributions

to provide summarized information. All other tasks are related to

graph-based data, and represent various attributes on either nodes

(T 5), or links (T 3), (T 6), (T 7), (T 8), and (T 9).

5 Visualization and Interaction Design of TREESCOPE

Designing an interactive visualization tool that highlights the

required details in the data, and yet has a low perceptual

complexity, requires careful attention. Even within the

requirements of TREESCOPE described in Section 4.1, there

existed various degrees of freedom. A key feature of our design

process was continued engagement with domain experts, which

allowed us make many design decision considering both domain-

and visualization-specific concerns. In order to accommodate space

restrictions, we are not able to discuss the various initial prototypes

of TREESCOPE; we focus on only the final visualization and the

most important design choices. Figure 3 gives an overview of

TREESCOPE; this section describes the visual encoding of various

data elements (Sections 5.1–5.3), and how TREESCOPE maps

these visual encodings to the required tasks through interactive

exploration (Sections 5.4–5.6).

5.1 Encoding the Fat-Tree Topology

The primary use case of TREESCOPE is to visualize network

traffic: every link in the network must be displayed without

occlusion. As is known from the visualization literature [Ber67,

BETT98, HMM00, GFC04, GFC05], adjacency matrices make
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an excellent choice for displaying large-scale graphs, because

they transform dense connectivity into compact, symmetrical,

and uncluttered visual elements, leading to a highly scalable

visual encoding. Therefore, we choose a matrix-view layout to

display network traffic. This section describes how we encode the

dense connectivity of fat-tree topology into a set of adjacency

matrices, which when juxtaposed carefully, give a complete view

of the network. Network traffic patterns can then be visualized

as a heat map on these matrices, thereby providing a powerful

focus-plus-context visualization to investigate congestion.

In order to fully appreciate the challenges and considerations in

the visual design, we describe the visual encoding of TREESCOPE

using an example of a full-scale production system containing 1296

compute nodes, 72 switches at L1 and L2 each, and 36 switches at

L3, with each switch having 36 ports. The network consists of four

pods, each containing 18 L1 and 18 L2 switches, and these pods

are bridged together by two bundles of 18 L3 switches each.

Since pods represent both logical and structural units of

networks, we encode the fat-tree network with respect to pods.

This discussion exemplifies only a single pod, referring to Figure 4.

Recall that each L1 switch in a given pod p is connected to

multiple L0 nodes, all associated with the same pod; we denote

their connectivity as {L0}p ⇒ {L1}p. Furthermore, the bipartite

graph between the sets of L1 and L2 switches within the pod

p can be denoted as {L1}p ⇔ {L2}p. Finally, each L2 switch

is connected to an L3 switch from some bundle b; therefore,

we qualify sets of L2 switches in a pod, i.e., {L2}p, further

based on the bundle they connect to, i.e., {L2}b
p, and denote their

connectivity to L3 switches as {L2}b
p ⇔ {L3}b. Therefore, the

entire connectivity relevant to a given pod p can be summarized

as {{L0}p ⇒ {L1}p ⇔ {L2}b
p ⇔ {L3}b} for all b.

Since L0 nodes are connected to L1 nodes through dedicated

links, which rules out interference on {L0}p ⇒ {L1}p links,

making them of less interest to the users. Therefore, in order to

create a compactly packed visualization, TREESCOPE omits direct

visualization of L0–L1 connectivity; the traffic on such links can

be visualized indirectly, as will be shown later.

In general, a single {L1}p ⇔ {L2}p interconnect can be

represented using a single adjacency matrix, {L1}p×{L2}p. To

depict bidirectionality of links, we extend the matrix horizontally

by duplicating L2 switches: one adjacency submatrix visualizes the

traffic from {L1}p to {L2}p, and the other shows the traffic in

the opposite direction. For example, the figure shows directional

submatrices in different colors (note the difference in the ordering

of direction-specific submatrices, to be explained ahead).

To show two levels of interconnects, {L1}p×{L2}b
p×{L3}b,

we stack the corresponding adjacency matrices on top of each

other, such that the {L2}p switches are shared horizontally between

them. To suborganize the visualization with respect to bundles, we

separate the {L2}p and {L3}p switches into subsets corresponding

to bundles (two bundles in our example), and depict pod p as

two juxtaposed sets of {L1}p×{L2}b
p×{L3}b matrices. In this

representation, the {L2}b
p and {L3}b are visualized as two separate

stacks, horizontal and vertical, respectively; however, there is only

a single vertical stack of {L1}p, since they do not depend upon b.

{L1}0 ×{L2}0
0

{L3}0 ×{L2}0
0

{L1}0 ×{L2}1
0

{L3}1 ×{L2}1
0

Figure 4: TREESCOPE encodes large-scale graphs implied by the
fat-tree topology using matrix-based representations. The figure
shows one of the many pods (superscripted 0) and two bundles
(subscripted 0 and 1) in the network. The connectivity within a
given pod is visualized using a set of adjacency matrices between
nodes at adjacent levels, i.e., {L1}0 × {L2}0

0, {L3}0 × {L2}0
0,

etc. The key features of the encoding include (1) omission of
the less important, {L0}0 ⇒ {L1}0, connectivity, (2) hierarchical
view of the pod by splitting the pod with respect to bundles
(within dashed boxes), (3) separate matrices for “up” and “down”
traffic (different colors), (4) duplication of L2 switches (solid vs.
hollow gray switches) to enable visualization of directional traffic,
and (5) reordering of directional submatrices to allow consistent
aggregation (incoming or outgoing) of traffic for L2 switches.

Finally, an important decision was to reorder the

direction-specific submatrices. Note that the ordering of

submatrices corresponding to “up” and “down” links is inverted for

the {L3}b×{L2}b
p matrix, as compared to the {L1}p×{L2}b

p. This

modified ordering assigns a consistent traffic direction to every

column with respect to {L2}b
p switches. In other words, every

column either brings traffic in or takes it out of a given L2 switch,

allowing the visualization of a meaningful aggregate on them:

“incoming” or “outgoing” traffic. Whereas the layout duplicates the

L2 switches corresponding to the two traffic directions, duplicating

L1 and L3 switches would require additional horizontal space.

Therefore, we instead split each L1 and L3 switch in half to display

corresponding “incoming” and “outgoing” traffic.

Our encoding not only arranges the network with respect to pods

but also with respect to bundles within each pod, thus providing

a hierarchical view of pods. Domain experts found this design

easy to understand as it provides a physical layout perception

and closely matched their intuition about the the network. Finally,

this design is highly scalable, since all such bundles used in a

network are typically of the same size, which leads to an optimal

use of screen space as these adjacency matrices are of the same

size, and can be packed compactly inside a pod. Note that the

example illustrated in the figure contains only two bundles, and

therefore, the pod contains two sub-parts. However, a larger number

of submatrices can also be arranged horizontally, but still maintain

the compactness and symmetry of the layout.
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Figure 5: Job-placement schemes can be visualized on L1 switches
by color-coding them in proportion to the number of compute nodes
occupied by corresponding jobs to the total number of compute
nodes connected to them (the L1 switches). For selected jobs in
the table, a stacked-histogram type visualization conveys which L1
switches contain compute nodes corresponding to different jobs.

5.2 Encoding of Job Placement

The exploration of application jobs is a crucial component of our

target analysis. Recall that the fat-tree view does not show L0

(compute) nodes. Therefore, in order to understand the impact of a

given job-placement scheme, TREESCOPE instead uses an indirect

visualization of job-to-node mapping: we show job-to-L1 mapping,

which is a many-to-many mapping, and can be computed using

job-to-node and node-to-L1 mappings, both of which are unique.

L1 nodes are visualized as horizontal rectangles (see Figure 4),

which allows augmenting the visualization with job-placement

information without any additional visual elements. As shown

in Figure 5, TREESCOPE displays the job-to-L1 mapping using

a stacked-histogram-type visualization, where “stacks” represent

portions of L1 nodes occupied by different jobs: given a job that

occupies n j out of n active L0 nodes connected to a given L1 node,

the width of the corresponding stack is w · n j/n, with w being the

width of the rectangle representing the L1 node. The portion of an

L1 node not used for any of the selected jobs is shown in dark gray.

5.3 Encoding of Quantitative and Categorical Data

Designing an effective color scheme is crucial for perceptual

accuracy [SSM11,ZH16]. The color schemes used in TREESCOPE

are inspired by ColorBrewer [HB03, Bre17]. TREESCOPE uses

a single-hue color map to display the network traffic because

such color maps are perceptually uniform [LH92, ZH16]. In some

cases, the users may be interested in comparing the traffic to

some reasonable quantity, for which TREESCOPE also offers

choices of diverging color maps. TREESCOPE allows the user to

choose up to four (single-hue and/or diverging) color maps: one

each for “up”/“down” links, “incoming”/“outgoing” switch traffic.

The default choices are single-hue color maps: ‘green’, ‘orange’,

‘purple’, and ‘magenta’, respectively. ‘Red’ is not used to avoid

the red/green colorblindness issue. Fewer color maps may be used,

which is strongly recommended to reduce chromatic complexity.

Two categorical color maps are chosen to visualize summary plots

and job placements. A paired scheme (light/dark pairs) is used for

the former to maintain context between similar groups, e.g., L1 →
L2, and L2 → L1 links. On the other hand, job placement uses a set

of darker hues. Unfortunately, it is not possible to make these two

schemes mutually exclusive due to a limited color set (considering

color blindness). However, since these colored components are

spatially distant on the screen, and do not interact with each other,

the users did not have any problems in practice.

5.4 Exploration of Network Traffic
Upon selection of a metric of interest, such as “data_sent”, through

a UI dropdown, the user can explore the network behavior by

interacting with the visualization as described below.

(T 1) Temporal statistics. The exploration typically begins with

looking at statistics for arbitrary time ranges. TREESCOPE provides

a time chart (see (b) in Figure 3) that shows the maximum or the

average traffic (based on UI choice) for all links in the network

for each time step for the entire time range. This gives a quick

overview and helps determine when the network utilization was

high/low. The time chart is augmented with a brush that allows the

user to select the active time range, i.e., the time range to focus on.

(T 2) Distributional statistics. Next, users are typically interested

in looking at the distribution of traffic counters to understand

how many (if any) links were underutilized or overloaded. To this

end, TREESCOPE displays a histogram (see (b) in Figure 3) of

total traffic on every link, restricted to the active time range. The

histogram also contains a brush that allows the user to select the

active traffic range, suggesting that the users are interested only in

the links with a certain range of utilization. The UI also enables the

user to view the complement of the brush selection to focus on both

the low and the high end of the traffic distribution.

(T 3) Combined/filtered statistics. Through the UI, the user

can choose to visualize the statistical plots with respect to the

directionality and/or level of links. When one or both of these

options are selected through the UI, the summary is decomposed

into up to six groups (three levels and two directions): the time

chart contains as many line plots, and the histogram is converted

into a stacked histogram with as many stacks, which allows various

types of comparisons, e.g., intra-pod vs. inter-pod traffic.

(T 4) Fat-tree network visualization. The core component of

TREESCOPE is the detailed fat-tree network view, which shows

traffic on every switch and link. The traffic metric under exploration

is aggregated (summed) for every link in the network for the active

time range, and displayed as a heat map on adjacency matrices. In

the case of switches, the maximum traffic is visualized. Whereas

the aggregation of traffic is performed for the active time range, the

visibility of links is decided based on the active traffic range: links

are displayed only if their traffic is in the range chosen by the user.

Our choices are guided by the domain experts’ interest in observing

the total traffic flowing in the network for the active time range

for underutilized and/or overloaded links. The aggregation and

filtering are interactive, and the visualization updates dynamically

with changes in user selection.

5.5 Exploration of Job Execution
A selectable and sortable table in the UI provides a listing of

the available jobs. Users are often not interested in jobs running

either for a small amount of time, or on a small number of nodes.

Therefore, TREESCOPE provides UI options to filter jobs based

on user-defined thresholds. Furthermore, an additional checkbox

in the UI enables filtering of jobs based on time range: any jobs not

running for any part of the active time range are not shown.
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source (L1)
destination (L1)

hop 1 (L2)

hop 2 (L3) hop 2 (L3)

hop 3 (L3)

same L3 switch shown in both pods

Figure 6: The route between a pair of end nodes (or switches)
can be visualized by highlighting the switches and links that the
corresponding traffic goes through. The arrows denote the direction
of routes, and show how the traffic is routed. Since the L3 switches
are repeated in every pod, the traffic goes into a particular L3
switch but may come out from the same switch in a different pod.

(T 5) Visualization of job placement. Through the UI, users

can change the display mode of switches from “traffic” to “job

mapping”, revealing the stacked-histogram visualization of job

placement. The “stacks” in the visualization correspond to the

tabulation of job information through color. Any L1 nodes not

occupied by selected jobs are faded away. As shown in Figure 5,

when viewed in conjunction with this table, a simple and intuitive

visualization of job placement in the network is obtained.

(T 6) Visualization of traffic during a job’s execution. All

components of the visualization are dynamic and interlinked. By

selecting a job in the table, the user expresses interest in the

network traffic only while the corresponding job as well as all other

concurrent jobs were running. Upon selection of a job through the

table, the active time range is changed to the time range of the

job’s execution, which, in turn, updates the entire visualization,

including the traffic visualization in the fat-tree view. Moreover, if

the time-based filtering of job table is enabled, the update of active

time range in turn updates the table to contain concurrent jobs only.

5.6 Exploration of Traffic Routing

The ability to dynamically highlight routing information on the

network enables the users to explore possible causes of network

congestion. Given the encoding of fat-tree topology described in

Section 5.1, the route between a pair of L1 switches in different

pods is illustrated in Figure 6. The figure is augmented by arrows

to help the reader trace the route; note that the arrows are not

shown in TREESCOPE, because in real use cases, multiple such

routes have to be visualized simultaneously, in which case such

line visualizations create clutter and perceptual complexity. In

particular, TREESCOPE visualizes routes by highlighting only the

corresponding links and switches by fading out (using opacity)

all others. Since we prefer to use quantitative single-hue color

maps to display traffic on links, a white-colored link implies low

traffic. In order to use opacity as a descriptive visual channel,

we must, therefore, use a non-white background, which allows

distinguishing a non-faded link with low traffic from a faded link.

We next describe the route-based queries enabled by TREESCOPE.

(T 7) Footprint of a (set of) job(s). A selection in the job table

implies the user’s intent to explore how traffic corresponding to

the selected job was routed through the network. Given a (set

of) selected job(s), J, TREESCOPE determines the set of switches

and links used by J. In particular, since main interest is in the

bottlenecks created due to job interference, only the links used by

all jobs in J are shown. Furthermore, since the goal is to understand

which switches could be sending the corresponding traffic, all the

switches used by any of the selected jobs are displayed.

(T 8) Footprint of a (set of) network component(s). The user can

select one or more switches/ports in the network as sources (click)

or destinations (shift+click), in which case, TREESCOPE highlights

the route between the selected end points, determined using the

active routing table.

(T 9) Combinations of the above. Common use cases combine

both types of selection: the job-based route is treated as primary,

and network selection is used to refine it into the final set of

switches and links to be visualized. For example, in a typical

exploration, a user would select a job, J, and then possibly select an

overloaded port, � (say, as a source). Before the second selection,

all L0 nodes of J, N(J), are treated as both sources and destinations,

and all possible routes available to the job are visualized. Upon the

second selection, � is treated as the source, and all possible routes

through � that could carry traffic to N(J) are computed. Specifically,

if d(�) is the set of destinations that � can forward any incoming

traffic to, then d(�) ∩ N(J) is used as the set of destinations for

computing routes. Through these interactive queries, the user can

investigate causes of congestion, e.g., due to job interference, as

discussed in Section 6.2.

6 Case Studies

The HPC domain experts, who have evaluated TREESCOPE,

include performance analysis and optimization experts, network

researchers, and system administrators at LLNL. They are

convinced that TREESCOPE provides novel capabilities for

intuitive and rapid analysis of performance monitoring data

gathered on HPC networks. System administrators can use

TREESCOPE to monitor the health of a supercomputer network

via the summary overviews. The summary views can also aid in

visually identifying time ranges of interest, which can then be

loaded in the detailed fat-tree view. Subsequently, one can identify

network hotspots or links with a high number of error counters

and also the switches and/or jobs responsible for the anomalies.

At the same time, TREESCOPE is a powerful tool to compare the

impact of different workloads, routing schemes, or job placements

on network congestion using data obtained either empirically

or via simulations. Here, we present two studies performed by

domain experts, who are also co-authors of this paper, to exemplify

the aforementioned utilities of TREESCOPE. These co-authors

work with the application developers and system administrators

on performance analysis and network optimization of scientific

workloads at LLNL. They have extensive experience in network

analysis of large scale parallel applications, and have worked with

other visualization tools designed for network analysis.
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Figure 7: Interactive filtering in TREESCOPE allows the user to visualize only the hotspot links (using histogram selection) to refine the
understanding of network congestion. It is noted that whereas ftree routing (left) results in many links with above-average traffic (Figure 1),
the number of hotspots links is significantly smaller in comparison to SAR routing (right). This explains the 17% better performance obtained
with ftree routing for the selected application. The figure uses a diverging colormap for traffic, with yellow mapped to the average value.

6.1 Comparison of Routing Schemes

The first case study analyzes experimental data gathered to

compare different routing schemes for applications running on a

1296-node fat-tree cluster. A system reservation was requested for

24 hours and two routing schemes, denoted hereon as ftree and

SAR, respectively, were tested for 12 hours each. ftree is a static

routing [Zah10] used on many fat-tree based supercomputers. SAR,

on the other hand, is a scheduling-aware routing [DH16], which

attempts to distribute traffic over as many links as possible while

considering the jobs running in the queue. For the 24-hour period,

network counters were recorded along with job queue logs.

From the job queue logs, the domain experts identified two jobs,

ftree.qball and sar.qball, that were running the same application

(qball) with different routings and which had a significant

difference in performance. The goal was to investigate how changes

in network traffic due to routing were impacting the application’s

performance. Using two instances of TREESCOPE, the experts

loaded the data for the two routing schemes and selected the two

specific jobs. Once a job is selected, only counter data in the

corresponding time frame is displayed. Since only a single job

utilizing most of the machine (1024 nodes) is under consideration,

all the traffic during that time is due to the selected job.

The traffic generated by the application using the two routing

schemes is shown in Figure 1. The average traffic on a link

is almost the same (< 0.2 GB) for both schemes, as expected,

because the same application is sending traffic over the system.

However, the observed maximum traffic is significantly higher for

SAR (2.93 TB) as compared to ftree (1.78 TB). This can be seen

in the respective histograms on the right. To study network traffic,

we use a consistent diverging color map for the range 0–2.93 TB,

with its mid point (yellow) mapped to the average traffic, and the

maximum and minimum mapped to red and blue respectively. The

experts noticed that ftree results in more L1 ↔ L2 links with higher

than average traffic. Also notice that ftree uses a few specific L3

switches more heavily than others. In contrast, SAR distributes

traffic over more L3 switches. For L1 ↔ L2 links, SAR results in

an uneven distribution of traffic and fewer links with higher than

average traffic (in comparison to ftree).

In order to identify the cause of the performance difference in the

two executions (about 17%), the experts filtered the traffic to look

at hotspots links, i.e., links with traffic higher than 1 TB. As shown

in Figure 7, it was observed that SAR results in significantly more

hotspots as compared to ftree (at all levels), denoted by many more

L1 ↔ L2 links that are colored orange and red. This higher network

traffic is the cause for congestion, and therefore the performance

degradation with SAR. The experts also concluded that even for

the traffic-oblivious SAR, some adversarial traffic patterns exist

that slowed down the application when optimizing for intra-job

all-to-all communication.

What distinguishes such an exploration from a typical

otherwise-possible analysis is that TREESCOPE provides an easily

understandable spatial context to the observed numbers. The

domain experts can not only see the differences in distribution of

traffic, but also find out where such links exist in the network and
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Figure 8: Network traffic during the execution of several jobs on a 8-pod cluster is mapped to a white–orange color scale. Left: The overall
traffic is high, yet no perceivable traffic patterns are observed. Right: Restricting the visualization to congested links and the traffic from a
particular job, Qbox, highlights the connection between the two, suggesting the culpability of Qbox for creating congestion in all pods.

Figure 9: The same experiment (compare with Figure 8), when performed with a different job-placement policy, shows that much fewer links
are overloaded (left), suggesting less network congestion overall. Right: Visualizing the job-placement and traffic for the same job (Qbox),
which is now mapped to pods 2 and 3 only, creates fewer hotspots, restricted locally to the corresponding pods, thus avoiding reducing
congestion due to job interference.

how they are connected to the rest of the network. For example,

it becomes immediately obvious from the figure that even though

the ftree routing distributes the incoming traffic from compute

nodes (L0 → L1 → L2) very well and no hotspots are observed

on the corresponding links, the traffic distribution going “down”,

i.e., on L2 → L1 links, is not well balanced. Such insights are

highly valuable to the domain experts to further tune the routing

algorithms or job-placements for a supercomputer.

6.2 Optimizing the Performance of Applications

In this section, we demonstrate the utility of TREESCOPE for

investigating degraded network performance and finding solutions

that improve overall application performance on production HPC

systems. On such systems, simultaneous execution of multiple jobs

that share network resources often results in inter-job interference.

Even within a job, different MPI processes may contend with each

other for network bandwidth. These factors result in congestion

and negatively impact the performance of individual jobs. Here, the

goal is to help the domain experts identify root causes of network

congestion in multi-job environments.

Network simulation tools such as TraceR [JBW∗16] are used

to study congestion scenarios because they provide a high degree

of configurability to interconnect experts that is typically not

possible on production systems. Using TREESCOPE, the domain

experts explore the data obtained from one such simulation, where

multiple large jobs are concurrently simulated on a 3200-node,

8-pod prototype system built using 40-port switches and 400-node

pods. As is typical in a production system, nodes are assigned to

jobs in a fragmented fashion throughout the system, i.e., a typical

job is allocated nodes attached to several switches and pods.

Figure 8 (left) visualizes the traffic distribution for the entire

system due to all jobs, and highlights the presence of generally

high congestion (darker colors) without any specifically identifiable

patterns. Thus, despite observing congestion, it remains difficult

to correlate it with potential root causes, such as a particular job,

placement strategy, or communication pattern. In such scenarios,

TREESCOPE’s ability to select individual job(s) and show only its

footprint on the network, in combination with value-based filtering

of links, provides a useful functionality for exploring the traffic

distribution. By viewing the traffic hotspots created by different

jobs one by one, the domain experts were able to isolate a single

job, Qbox, which creates most of the heavily loaded links observed

in Figure 8 (right). The job placement for Qbox, highlighted in blue

on L1 nodes, shows that it was allotted a large number of nodes

across all available pods. For all other jobs, TREESCOPE showed

that a very small fraction of links were hotspot links, implying that

Qbox is the main cause of congestion on network in this workload,

and may negatively impact the performance of other jobs.

To isolate the traffic initiated by Qbox, the domain experts

devised a pod-based job-placement policy, where jobs are

(preferably) allocated to nodes belonging to same pods. Qbox
was assigned two dedicated pods, pods 2 and 3. Figure 9

(left) shows that for the pod-based placement policy, the traffic

distribution in different pods changes based on the job allocated

to them. Indeed, pods 2 and 3 show high traffic and non-uniform

distributions, whereas other pods, especially pods 4 and 7, show

light traffic and uniform distributions. TREESCOPE makes it

easy to confirm, through job-based and value-based filtering,

and through visualization of job-placement, see Figure 9 (right),

that almost all of the congestion is indeed created by Qbox.
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Figure 10: Visualizing links that can be used for communication
from a switch or between a pair of switches show that task-to-node
mapping and routing policy result in overloading some links while
underutilizing other links. Traffic for two different jobs is shown.

Thus, as a result of the exploration enabled by TREESCOPE and

redesigning job-placement scheme, the performance of individual

jobs improves by 20.8% to 42.6%.

The isolation of job-specific traffic with a pod-based node

allocation policy also provides an opportunity for domain experts

to study link-usage patterns of individual jobs in order to optimize

their performance. Figure 10 demonstrates that viewing traffic on

all links available for communication to individual switches can

identify causes of congestion. The left image shows that when a

pair of switches is selected as a source-destination pair for Qbox,

some switches are overloaded whereas others are underutilized.

The image at the right shows that for a different job, when a switch

is selected as a source for communication with all other nodes used

for the same job, imbalance among switch utilization is present.

This suggests that an incompatibility between communication

patterns of these jobs and the static routing policy is the cause

of network congestion. These findings, which are hard to make

without the features provided by TREESCOPE, can help domain

experts devise solutions that can improve performance.

7 Conclusion

This paper introduces TREESCOPE, an interactive web-based

visualization tool for exploring traffic (and other relevant hardware

counters) and investigating the effects of job placement and routing

schemes on supercomputers using fat-tree networks. Using a new

matrix-based representation of the fat-tree topology, TREESCOPE

combines various sources of data, and supports a comprehensive

exploration through various types of complex queries. TREESCOPE

presents high-level and summarized, as well as detailed, per-link

and per-switch information to the user in a compact manner. Some

of the target users of TREESCOPE, both network researchers and

system administrators, have been actively involved in its design;

we summarize our collaborative process, including some important

decisions that led to the final visual design of TREESCOPE.

TREESCOPE enables users to not only identify hotspots in the

network, but also focus on the applications responsible for creating

the congestion. Using a combination of data (network counters, job

queue logs, job placements, and routing schemes), we demonstrate

the effectiveness of TREESCOPE in two case studies — one for

the traffic observed on real production systems, and another for a

simulated network study to design better job placement schemes.

In both scenarios, various features in TREESCOPE, such as traffic

visualization, visualization of job placement, and route-finding,

have proven useful allowing users to draw new insights.

Through evaluation of the current version of TREESCOPE, the

domain experts at LLNL have found it immensely useful for

a wide variety of domain queries. Several new directions have

also been identified to further improve the applicability of the

tool. Going forward, we plan to extend TREESCOPE to support

more-detailed data, such as the communication graph of processes

in an application, which will expose a new level of detail in

the analysis. Although the primary focus of TREESCOPE is on

commonly used three-level fat-tree topology for HPC clusters,

several aspects of the design are more generalizable than currently

supported in TREESCOPE. For example, the same visual design

could support other types of interaction and queries for the

administrators in data centers. The current visual design can also

be enhanced to support other configurations of fat-tree topologies,

such as beyond three-level fat-trees and dual-plane connections.

Finally, similar visualizations have been utilized in other related

contexts, such as inter-domain routing protocols [TRNC06]; we

would like to explore new application domains for TREESCOPE.

TREESCOPE addresses a clear need in the HPC community to

explore traffic on large-scale networks, as users are looking for

new ways to explore network data. To expand the user base beyond

our institution, TREESCOPE has been released publicly under BSD

license: https://github.com/LLNL/TreeScope.
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