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Abstract—The increasing deployment of distribution-level
phasor measurement units (PMUs) calls for dynamic distribution
state estimation (DDSE) approaches that tap into high-rate mea-
surements to maintain a comprehensive view of the distribution-
system state in real time. Accordingly, this paper explores the
development of a fast algorithmic framework by casting the
DDSE task within the time-varying optimization realm. The
time-varying formulation involves a time-varying robustified
least-squares approach, and it naturally models optimal trajec-
tories for the estimated states under streaming of measurements.
The formulation is based on a linear surrogate of the AC power-
flow equations, and it includes an element of robustness with
respect to measurement outliers. The paper then leverages a
first-order prediction-correction method to achieve simple online
updates that can provably track the state variables from hetero-
geneous measurements. This online algorithm is computationally
efficient as it relies on the Hessian of the cost function with-
out computing matrix-inverse. Convergence and bounds on the
estimation errors of proposed algorithm can be analytically
established.

Index Terms—Distribution state estimation, synchrophasor
data, time-varying optimization, prediction-correction methods.

I. INTRODUCTION

R
ECENTLY, power distribution networks have witnessed
an increasing connection of renewable energy sources,

electric vehicles, energy storage systems, among other dis-
tributed energy resources. These transformations have pro-
pelled the development and deployment of advanced sens-
ing, communications, and control technologies. In particular,
distribution-level phasor measurement units (PMUs), termed
as µPMUs [1] have equipped distribution system operators
with synchronized, high-quality and high-resolution measure-
ments that can be collected on a fast time scale. It is timely
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to design efficient and effective distribution situational aware-
ness modules that can leverage the availability of PMU data
therein.

Distribution dynamic state estimation (DDSE) is a funda-
mental tool that can enable general distribution operations
and control tasks. This is similar to the operational paradigm
for wide-area transmission grids [2]. Nonetheless, distribution
networks have unique characteristics compared to transmission
systems, such as unbalanced loads and higher resistance-to-
reactance ratios [3]. Specifically, the unbalanced nature of
distribution systems necessitates the multi-phase modeling
at increased dimension and coupling. Moreover, nodes with
zero injections commonly exist while historic load data are
often included to improve redundancy. The high variation
of accuracy from both types of data can lead to numerical
conditioning issues. Thus, the dynamic SE approaches tradi-
tionally developed for transmission grids may not be directly
applicable for distribution systems with PMU data.

Traditionally, distribution SE research has been limited to
the static setting, constrained by meter availability and data
rates. Several efforts have been focused on addressing the
numerical conditioning issue using, e.g., branch current for-
mulation [4], conversion to current measurements [5], [6],
zero-injection information [7], [8]. More recent work has con-
sidered the incorporation of synchrophasor data for static SE,
but using the purely linear SE assuming sufficient observabil-
ity from PMU data only [9]–[11]. This is not yet a reality
for distribution networks, and thus legacy meters should still
be included for distribution SE. Motivated by the availability
of fast PMU measurements, dynamic SE methods has been
developed relying on the recursive Kalman filter (KF) updates
for distribution systems [12], [13]. Note that dynamic SE in
transmission systems also uses variations of KF recursions as
the “workhorse” algorithm; see, e.g., [14], [15]. Please also
see a recent review on distribution SE in [3].

This paper aims to develop an efficient and effective
DDSE solution technique that can address the unique char-
acteristics of distribution networks and fast sampling rates
of PMU data. We leverage the linearized multi-phase AC
power flow model recently developed in [16]. The model
can account for unbalanced operation, as well as for wye
and delta connections. Based on this model, Section II for-
mulates a new DDSE problem by advocating a time-varying

optimization formalism. This formulation involves a time-
varying robustified least-squares approach, and it naturally
models optimal trajectories for the estimated states under
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streaming of measurements. Thus, our proposed DDSE for-
mulation is novel due to its linearized model and time-varying
nature to account for dynamic states and data. Based on the
DDSE formulation, Section III proposes an algorithmic frame-
work to track the state of the distribution system by lever-
aging running prediction-correction methodologies [17], [18].
Prediction-correction methods involve two phases, sequen-
tially implemented at each time step: i) a prediction phase
where, based on the measurements collected up the current
time instant, the algorithm attempts to predict the optimal
solution of the next time period by exploring into intrinsic
temporal correlations of the cost function; and, ii) once a new
datum/measurement becomes available, the correction phase
refines the predicted solution. To facilitate the development
of computationally affordable algorithms, the paper consid-
ers first-order prediction-correction (FOPC) methods that rely
on the Hessian of the cost function, instead of requiring the
computation of its inverse [18]. FOPC methods are very attrac-
tive for DDSE problems where measurements are collected at
high frequency by distribution-level PMUs or even distributed
energy resources to enhance real-time situational awareness,
which is another contribution of the present work. In particular,
FOPC has merits in the following two cases:

• The DDSE task has a given computational budget to esti-
mate the state before a new measurement is collected and
processed. In this case, in par with the computational budget
specified for each interval between the arrival of two mea-
surements, FOPC is shown numerically to outperform iterative
algorithms without prediction steps.

• FOPC can perform a prediction of the state while wait-
ing for the measurement to be transmitted from the PMUs
to the state estimator; once the measurement is received, the
correction step can be performed. The prediction stage is
shown to enable substantial improvements in terms of tracking
performance.

Relative to traditional KF-based approaches, it is worth
pointing out that: (i) FOPC provides an appreciable flexibility
to include a variety of performance metrics in the cost function
of the problem; for example, the paper will demonstrate how
the DDSE can be easily robustified by modifying the cost func-
tion. (ii) KF requires covariance matrices; in a DDSE setting
where heterogeneous measurements are collected at different
rates, it is practically challenging to obtain accurate estimates
of noise covariance matrices. Last, (iii) KF typically needs the
Hessian inverse computations, which can be too computation-
ally burdensome; on the other hand, FOPC relies on first-order
updates at no Hessian inversion step. Overall, FOPC is nat-
urally data-driven, while KF is grounded on models for the
dynamics and the noises. Hence, using the preferred time-
varying optimization algorithms, our proposed FOPC-based
DDSE methods are computationally efficient and flexible to
incorporate various types of measurements, as shown by the
numerical tests in Section IV.

II. MODELING AND PROBLEM STATEMENT

We consider a generic multi-phase unbalanced distribution
system with multiphase nodes collected in the set N ∪ {0},

N := {1, . . . , N}, and distribution line segments collected in
the set of edges E := {(m, n)}. Node 0 denotes the three-phase
slack bus, i.e., the point of connection of the distribution grid
with the rest of the electrical system. At each multiphase node,
the loads can be either wye- or delta-connected [19], with the
number of each type being NY , N� respectively.

We briefly introduce the AC power-flow model for
multiphase distribution systems (a comprehensive description
can be found in [16], [19]). To this end, let Nφ denote the total
number of single-phase connections; for example, Nφ = 3N

if all the nodes are three-phase. Let v be a vector collect-
ing the line-to-ground voltages in all phases of the nodes
in N ; similarly, vector i collects all the phase net current
injections, i� the phase-to-phase currents in all the delta con-
nections, and vectors sY and s� collect the net complex powers
injected for wye- and delta-connected loads, respectively. All
of these vectors are of length Nφ . With these definitions, the
AC power-flow equations can be compactly written as:

diag
(

HT
(
i�

)∗
)

v + sY = diag(v)i∗, (1a)

s� = diag(Hv)(i�)∗, i = YL0v0 + YLLv, (1b)

where [YL0, YLL] ∈ CNφ×(3+Nφ) is the submatrix of the admit-
tance matrix Y by eliminating the slack-bus rows, while H is
an Nφ × Nφ block-diagonal matrix mapping v to line-to-line
voltages; see [16] for a detailed description. We leverage a
linearized AC power flow model to facilitate the development
of computationally affordable algorithms that can be imple-
mented in real time. For any given complex sY , s� and its
voltage solution v, a fixed-point approximation of (1) has been
developed in [16] to obtain a linearized model that exactly
touches upon (sY , s�, v) and (0, 0, w), where w is the zero-
load voltage solution to (1). Notice that, relative to alternative
linearization techniques (e.g., [20]–[23]), the approach in [16]
accounts for both wye and delta connections.

For real-valued notations, define the 2Nφ × 1 rectangular-
form voltage vector

z :=
[
�{v}T,�{v}T

]T
. (2)

For the power variables, similarly define the real-valued vec-
tors uY and u� to convert only the non-zero entries in
sY and s�, respectively. Accordingly, consider the following
linearized model of (1):

z̃ = MYuY + M�u� + m = Mu + m (3)

where the model parameters MY ∈ R
2Nφ×2NY

φ , M� ∈

R
2Nφ×2N�

φ , and m ∈ R2Nφ×1, with M := [MY , M�] and
u := [(uY)T, (u�)T]T. The vector m := [�{w}T,�{w}T]T

ensures that (0, 0, w) always satisfies the model (3) for u = 0.
In addition, matrices M� and MY are computed based on the
network parameters and a given voltage profile.

Remark 1 (Power State Variables): The linear model (3)
asserts that the power vector u can uniquely determine the
system-wide voltage phasor. Accordingly, u is used as the
unknown states in the ensuring DDSE formulation. This
setting is different from conventional transmission SE with
voltage phasor as state variables, and the reason is two-fold.
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First, the model (3) with u as unknowns can conveniently
include the zero-injection constraints, which are popular in
distribution systems. Note that u only contains buses with
non-zero loads, and thus no additional equality constraints are
needed to account for zero-injection buses. Second, a voltage-
phasor based model would require inverting the linear system
in (3), which may incur numerical instability issue. Therefore,
the unique characteristics of distribution systems make it more
convenient to adopt the power variables as the unknown states.

A. Problem Statement

We introduce the measurement model for our µPMU
assisted DDSE problem. Assume that the temporal axis is dis-
cretized as tk = hk, where k = 0, 1, . . . , and the sampling
period is h = tk+1 − tk. Assume that µPMUs are located
at a subset of nodes Mv ⊂ N ; let Mv denote the number
of line-to-ground voltage measurements collected from the
multi-phase nodes in Mv. These µPMUs can obtain accu-
rate measurements of the voltages in rectangular coordinates,
and they can produce measurements in real time. Furthermore,
net injected powers from wye and delta connections are mea-
sured at the multi-phase nodes in MY

u and M�
u , respectively,

with Mu := MY
u

⋃
M�

u ⊂ N . Accordingly, let Mu denote
the number of nodes in Mu.

In this setting, at each time instant tk a set of new measure-
ments are collected and processed for DSSE; the interval h

can be small – even on the order of seconds – if the fast-
acting measurement capabilities of µPMUs and distributed
energy resources are leveraged. In particular, (a subset of) the
following quantities are measured at every time tk, k ∈ N:

• y
(k)
v ∈ R2Mv×1: measurements of the line-to-ground volt-

ages at all the phases of the nodes Mv. The measurement
model for the µPMUs is y

(k)
v = z

(k)

Mv
+ n

(k)
v with the

measurement noise n
(k)
v .

• y
(k)
u ∈ R2Mu×1: measurements of the net active and reac-

tive powers from wye and/or delta connections at nodes
Mu. The measurement model is y

(k)
u = u

(k)

Mu
+ n

(k)
u with

the measurement noise n
(k)
u .

Using (3), the measurement equation per time tk is:
⎡
⎢⎣

y
(k)
v

yY
u

(k)

y�
u

(k)

⎤
⎥⎦ =

⎡
⎣

JvMY(k)
JvM�(k)

JY 0

0 J�

⎤
⎦

[
uY (k)

u�(k)

]

+

⎡
⎣

mv

0

0

⎤
⎦ +

⎡
⎢⎣

n
(k)
v

nY
u

(k)

n�
u

(k)

⎤
⎥⎦ (4)

where: Jv is a suitable permutation matrix which selects rows
of z to form zMv

; and, similarly for JY and J�, selecting the

measured loads. Note that MY(k)
and M�(k)

are time-variant
and the last iterate z(k) is utilized as the voltage profile for the
fixed-point linearization. In our algorithmic development later
on, z(k) is approximated by its estimated value ẑ(k) at each
time step.

Remark 2 (Heterogeneous Measurements): Although we
model the DDSE problem for only voltage phasor data from

PMUs and power data from pseudo-measurements or smart
meters, it can be generalized to encompass a variety of
measurements available in distribution systems, as reviewed
in [3]. First, the zero-injection constraint is always satisfied
by model (4) as only load buses are included by the power
variables. Second, as detailed in [16], [24], the linearized
model (3) is generalizable to voltage magnitude, line currents,
and power flows. Accordingly, real-time measurements of
these variables can be included in (4). To fit various sensing
frequency of different measurements, one can set h as the
fastest sampling time (typically from PMUs) and maintain
the values of other slower measurements until new datum
arrives.

Next, consider rewriting the measurement model (4) in the
following compact form:

y(k) = G(k)u(k) + m̄ + n(k) (5)

where y(k) := [(y(k)
v )T, (yY

u
(k)

)T, (y�
u

(k)
)T]T, m̄ :=

[mT
v , 0T, 0T]T, n(k) := [(n(k)

v )T, (nY
u

(k)
)T, (n�

u
(k)

)T]T, and

G(k) :=

⎡
⎣

JvMY(k)
JvM�(k)

JY 0

0 J�

⎤
⎦. (6)

The data yu is usually collected or generated at much lower
quality compared to the high-resolution µPMU data. In fact,
yu is either collected from meters or generated from historic
load information. Thus, to account for different granularities
and precisions, we define the instantaneous error mismatch
loss function �(k)(z) at time tk as:

�(k)(u) :=
1

2

∥∥∥y(k)
v − G(k)

v u − mv

∥∥∥
2

2
+ L

(
yY

u

(k)
− JYuY

)

+ L
(

y�
u

(k)
− J�u�

)
(7)

with G
(k)
v := [JvMY(k)

, JvM�(k)
], and the Huber loss function

L(ε) :=
∑

i Li(εi) written as

Li(εi) :=

⎧
⎨
⎩

−δεi − δ2/2, if εi < −δ

|εi|
2/2, if |εi| ≤ δ

δεi − δ2/2, if εi > δ

(8)

where δ > 0 is a positive parameter determined by the
load data quality. The Huber loss function is utilized to
reject possible outliers, or down-weight data with substantial
measurement errors [25].

Remark 3 (Weighted Error Objective): To accommodate
varying data quality, non-uniform weights can be assigned to
different types of measurements. With the high accuracy of
voltage data from PMUs, one can use a large positive weight
for the voltage error term in (4). Note that this weighted error
objective does not affect the problem structure and thus is not
included specifically by the algorithmic developments.

Using the error mismatch �(k), we formulate the following
state estimation problem at time tk:

P(k)(u): min
u∈R

Nφ

f (k)(u) := �(k)(u) + r(k)(u), k ∈ N (9)

where r(k)(u) is a (possibly time-varying) regularization func-
tion that renders the overall cost function f (k)(u) globally
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strongly convex. Notice further that the problem (9) is uncon-
strained; however, possible prior information on the minimum
and maximum values of the vector u can be naturally incor-
porated in the proposed approach.

Problem (9) models a time-varying state estimation task
under streaming of measurements, and it implicitly defines
an optimal trajectory {u(k,�)}k∈N for the estimation task.
Accordingly, the objective here is to track {u(k,�)}k∈N by pro-
cessing the incoming measurements in real time. One way to
obtain {u(k,�)}k∈N is to solve the problem P(k)(u) to conver-

gence (i.e., a batch solution) at each time step tk. However,
in a real-time setting with an asynchronous streaming of mea-
surements, a batch solution of (9) might not be achievable
within an interval h due to underlying communication and
computational complexity requirements. Thus, the objective
of the paper is to develop an algorithmic solution to generate
a sequence {u(k)} of approximate optimizers for the time-
varying problem {P(k)(u)}, which eventually converges to the
optimization trajectory {u(k,�)}. Accordingly, the next section
presents a running prediction-correction method to solve (9) in
real time. Before doing so, a remark on the strong convexity
of {P(k)(u)} is in order.

Strong convexity can ensure that the optimizer trajectory for
the sequence of problems {P(k)(u)} is unique. In addition, it
allows us to establish convergence for the proposed online
algorithms. Regarding the regularization function, possible
choices are exemplified next:

i) r(k)(u) = a
2‖u − u

(k)
pr ‖2

2, a > 0 and where u
(k)
pr is a priori

guess on the load profile;
ii) r(k)(u) = a

2‖u‖2
2, and it is time invariant;

iii) if the Hessian of the cost function is available, or, a sub-
space tracking method is in place, the regularization function
can be set to r(k)(u) = a

2 uTQ(k)u, where the positive eigenval-
ues of the matrix Q(k) are in the null space of the Hessian of
�(k)(u). The options i) and ii) would involve a deviation from
optimal solutions that one would have obtained by minimizing
�(k)(u), with the magnitude of a possible deviation dependent
on the parameter a; see [26]. The option iii) would not per-
turb the optimal solution, but the overall solution would incur
a higher computational complexity.

III. DYNAMIC STATE ESTIMATION

We consider First-Order Prediction-Correction (FOPC)

method [18] to solve the DDSE problem at hand. Inspired by
Kalman filtering approaches, prediction-correction approaches
allow one to solve a broad class of time-varying convex
optimization objectives in a dynamic setting by involving
two stages: a prediction phase and a correction phase. In
the prediction phase, the algorithm attempts to approach the
optimal solution of the next time period (without new observa-
tions) by tapping into intrinsic temporal correlations of the cost
function; on the other hand, in the correction phase the pre-
dicted vector is corrected using the latest measurement. This
mechanism improves the response time to external dynam-
ics and shows a good convergence result when the objective
function changes smoothly over time, which is the case in the
DDSE setting.

A. FOPC Algorithm

Consider a continuously time-varying unconstrained
optimization with objective f (x; t) to model external dynam-
ics, along with the sampled counterpart {f (k) := f (x; tk)} for
tk = kh, k ∈ N. The goal is to produce a trajectory {x(k)} such
that x(k) ≈ x∗(tk), where x∗(tk) denotes the optimal solution
at time tk. In order to predict the solution at time tk+1, a
strategy is to find x(k+1|k) that satisfies the condition

∇xf (k+1)
(

x(k+1|k)
)

= (1 − γ )∇xf (k)
(

x(k)
)
, (10)

with γ ∈ [0, 1]. Varying γ , this condition imposes optimality
(γ = 1), or the fact that the estimate x(k+1|k) is no worse than
x(k) in terms of suboptimality (γ = 0) even when the function
changes. The choice γ = 1 combines moving towards the
optimizer while moving with the varying objective function;
the choice γ = 0 represents a rigid motion with the objective.

Notwithstanding the choice of γ , condition (10) cannot be
computed at time tk without information about f (k+1). Instead,
consider the following Taylor approximation:

(1 − γ )∇xf (k)(x(k)) = ∇xf (k+1)
(

x(k+1|k)
)

≈ ∇xf (k)
(

x(k)
)

+ ∇xxf (k)
(

x(k)
)(

x(k+1|k) − x(k)
)

+ h∇txf (k)
(

x(k)
)
. (11)

By solving this equation, we have a recursion of the form:

x(k+1|k) = x(k) −
[
∇xxf (k)(x(k))

]−1

×
(
γ∇xf (k)

(
x(k)

)
+ h∇txf (k)

(
x(k)

))
, (12)

which (as anticipated) combines a Newton’s step with a rigid
motion with the objective function.

Concerning over the cost of computing the inverse of the
Hessian in a possibly small time interval h, the FOPC method
further involves a first-order update to solve (11). Specifically,
the prediction solution of (11) is sought by constructing an
equivalent quadratic optimization as follows

x(k+1|k) = argminx f̂ (k)(x) (13)

where

f̂ (k)(x) :=
1

2
xT∇xxf (k)

(
x(k)

)
x +

(
γ∇xf (k)(x(k))

− ∇xxf (k)(x(k))x(k) + h∇txf (k)
(

x(k)
))T

x. (14)

Thus, one can replace the update (12) with the gradient descent
solution for (14); i.e., each iteration p is given by:

x̂p+1 = x̂p − α
[
∇xxf (k)(xk)(̂xp − x(k)) + γ∇xf (k)(xk)

+ h∇txf (k)(xk)
]
, p = 0, . . . , P − 1 (15)

where integer P is the number of prediction steps that one
can afford within an interval h, and α > 0 the stepsize to
be designed later on. Hence, the predicted solution is set to
x(k+1|k) = x̂P.

Initializing at x(k+1|k), the correction phase further involves
C first-order gradient steps; that is, for each c = 0, . . . , C − 1

x̂c+1 = x̂c − β∇xf (k+1)(̂xc)
(

x̂c − x(k)
)

(16)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 29,2020 at 22:07:16 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: DDSE USING SYNCHROPHASOR DATA 825

Algorithm 1 FOPC for DDSE

Notation: û(k) and û(k|k−1) are the estimate/prediction of u(k)

at time tk and tk−1 respectively, k ∈ N.
Initialization: Choose the number of prediction and correction
steps P, C, the stepsizes α, β, the parameter γ ∈ [0, 1], the
parameter δ of the Huber loss, the regularizer r. Set m =

[�{w}T,�{w}T]T and u(0) = 0.
Algorithm: for k = 0, 1, 2, · · · , perform:
At time tk−1:
Prediction step:

[S1-0] When k = 0, set û(0|−1) = u0, ẑ(0|−1) = m and skip
the following prediction.
[S1-1] Set ū0 = û(k−1).
[S1-2] For p = 0, . . . , P − 1, do:

ūp+1 : = ūp − α
[(

∇uuf (k−1)
(

û(k−1)
))

(ūp − û(k−1))

+ h∇tuf (k−1)
(

û(k−1)
)

+ γ
(
∇uf (k−1)(̂u(k−1))

)]
(17)

[S1-3] Set û(k|k−1) = ūP and compute

ẑ(k|k−1) =
[
MY(k−1)

M�(k−1)
]
û(k|k−1) + m. (18)

At time tk:
Function update:

[S2-1] Compute the updated AC linear model M�(k)
and

MY(k)
using the current estimate of voltage, i.e., ẑ(k|k−1). This

is used to update the linear model G(k) in (5).
[S2-2] Update f (k) from f (k−1) using G(k) and the new
observations y(k).
Corrections step:

[S3-1] Set ū0 = û(k|k−1).
[S3-2] For c = 0, . . . , C − 1, do:

ūc+1 : = ūc − β∇uf (k)(ūc) (19)

[S3-3] Set û(k) = ūC and compute

ẑ(k) =
[
MY(k)

M�(k)
]
û(k) + m. (20)

with the stepsize β > 0. The final corrected estimate is set as
x(k+1) = x̂C. The number of steps P and C for the prediction
and correction stages, respectively, are selected based on the
duration of the interval h.

The complete running FOPC algorithm for the DDSE
problem (9) is tabulated as Algorithm 1. Selection strategies
for P, C as well as the stepsizes α and β will be elabo-
rated in the next subsection. Notice that, once the prediction
û(k|k−1) and the corrected estimate û(k) are obtained, the volt-
age vectors can be readily calculated using the linearized
model (3). Alternatively, given the estimate of the power injec-
tions, the voltages can be calculated by solving the AC power
flow equations (see, e.g., the fixed-point power flow method
in [16]).

B. Online Tracking Results

This subsection describes in which sense the sequence of
approximate optimizers {̂u(k)}k∈N generated by Algorithm 1
tracks the sampled solution trajectory u(∗,k). To this end, we
will adapt some of the results of [18] to the DDSE problem.

The following assumptions on the cost function of (9) and
its time variations are presupposed.

Assumption 1: The cost function f (k)(u) is ν-strongly con-
vex for all k ∈ N. The regularized function r(k)(u) is
Lr-strongly smooth for all k ∈ N.

Assumption 2: There exists a constant C0 < +∞ so that
the time variation of the gradient of the cost f (k)(u) can be
bounded as

∥∥∥∇tuf (k)(u)

∥∥∥ ≤ C0, for all k ∈ N. (21)

Assumption 1 guarantees that the solution trajectory is
unique. This is why one may need a regularizer r(k)(u). As
explained in Section II, this assumption can be verified by uti-
lizing a suitable regularization function. Assumption 2 makes
sure that the functional changes are bounded and thus it is pos-
sible to bound the errors arising from a time-varying problem.
Recalling that the cost function f (k) may change over time
because of the processing of a different datum y(k), possi-
ble changes in the linearized model G(k), or changes in the
cost function (for example, tuning of the Huber function), the
assumption simply states that the temporal variation of the
gradient of the function is finite. The temporal variation is not
finite only when the function f (k)(u) has a jump discontinuity
for a given k; this is not the case for the cost function proposed
in the paper, as well as traditional state estimation problems
in power systems.

Note that, in the sequel, the exact value C0 will not be
needed for determining the parameters such as stepsizes, but
we will only need the bounded condition.

First of all, we show that the Hessian of the cost function
is lower and upper bounded uniformly in time, as follows.

Proposition 1: Under Assumption 1, the Hessian
∇uuf (k)(u) of the cost function (9) is lower and upper
bounded uniformly in time as

ν ≤

∥∥∥∇uuf (k)(u)

∥∥∥ ≤ L, for all k ∈ N. (22)

Proof: The lower bound follows directly from
Assumption 1. The upper bound follows by direct
computation. The Hessian of f (k)(u) is bounded as
∥∥∥∇uuf (k)(u)

∥∥∥ =

∥∥∥∇uu�(k)(u) + ∇uur(k)(u)

∥∥∥

≤

∥∥∥G(k)
v

T
G(k)

v

∥∥∥ +

∥∥∥JY T
JY

∥∥∥ +

∥∥∥J�T
J�

∥∥∥ + Lr.

By properly defining L as the upper bound of the right-hand
term, the Hessian is upper bounded.

We are now ready for the online tracking result.
Theorem 1 (Adapted from [18, Th. 3]): Consider the

sequence {̂u(k)}k∈N generated by Algorithm 1, and let
Assumptions 1-2 hold true. Let u(∗,k) be the optimizer of (9)
at time tk. Choose stepsizes α and β as

α < 2/L, β < 2/L, (23)
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and define the following non-negative quantities

�P = max{|1 − αν|, |1 − αL|},

�C = max{|1 − βν|, |1 − βL|}. (24)

Further, select the number of correction steps C in a way that

τ0 := �C
C

[
�P

P +
(
�P

P + 1
)(

1 − γ + γ
2L

ν

)]
< 1. (25)

Then, the sequence {‖u(k)−u(∗,k)‖}k∈N converges linearly with
rate τ0 to an asymptotic error bound, and

lim sup
k→∞

∥∥∥u(k) − u(∗,k)
∥∥∥ = O

(
�C

Ch
)
. (26)

Theorem 1 asserts that the sequence {̂u(k)}k∈N generated by
Algorithm 1 converges to (and tracks) the sampled solution
trajectory u(∗,k) up to an asymptotic bound. This bound is
linearly related to the sampling period h and exponentially
decreasing with C. Theorem 1 requires standard bounds on
the stepsizes (23) and a condition on the number of prediction
and correction steps (25).

If one chooses the parameter γ = 0 (i.e., rigid motion only),
then the second condition boils down to

�C
C

[
2�P

P + 1
]

< 1. (27)

Since both �P and �C are less than 1 by construction, the
condition (27) is not very restrictive. In fact, fixing a level of
prediction P̄, then the number of correction steps one has to
perform is

C ≥

⎡
⎢⎢⎢

−
log

(
2�P̄

P + 1
)

log �C

⎤
⎥⎥⎥

. (28)

For reasonable values such as �C = �P = 0.8 and P̄ = 4, it
implies that C ≥ 3 is sufficient. When γ > 0, Condition (25)
gets more restrictive, while the tracking error accuracy may
benefit from the Newton’s step in (12).

The choice of γ is important to trade-off convergence
region, requirements for prediction and correction steps, and
conditioning on the measurement matrix. On one hand, if
γ = 0, then the convergence region is bigger, Condition (25)
is less restrictive, which is good when one can afford only
a small number of prediction and correction steps (in a fast
sampling scenario); however γ = 0 could be more affected
by a badly conditioned measurement matrix. On the other
hand, if γ = 1, you get a Newton step in the prediction that
helps in case the measurement matrix is badly conditioned, the
convergence region gets smaller, and the number of required
prediction and correction steps gets higher.

More insights could be provided by the exact form of the
asymptotic error O(�C

Ch) in Theorem 1, as given by [18]

4
h�C

C

1 − τ0

C0

ν
(1 + L/ν)

(
2�P

P + 1
)
. (29)

Naturally, when C → ∞, the correction phase is equivalent
to the batch static estimation mode and thus the error would
go to 0. The worse conditioned the problem gets (i.e., small ν

and big L/ν), the higher the error is. Meanwhile, the faster the

problem varies (that is, for large values of C0), the greater the
error gets. In the DDSE context, the error scales with the exter-
nal dynamics (C0), and the measurement matrix conditioning
(which yields L).

Remark 4 (First-Order Backward Finite Difference):

Algorithm 1 requires one to compute ∇uf (k)(̂u(k)). Indeed, a
model for time derivative of the gradient ∇uf (k)(̂u(k)) might
not be available. Therefore, one can obtain an approximation
∇̂tuf (k)(̂u(k)) of ∇tuf (k)(̂u(k)) via first-order backward finite
difference, which is given by:

∇̂tuf (k)(u) =
1

h

(
∇uf (k)(u) − ∇uf (k−1)(u)

)
. (30)

The first-order backward finite difference requires information
of the previous step; the approximation error is bounded on
the order of O(h), as shown in [27].

Remark 5 (Projections to Convex Sets): In a prior
information in the set of admissible u(k) is available, the
correction Algorithm 1 can be modified to accommodate a
projection into convex sets. Letting X be a convex set, then
the prediction step is modified as:

ūp+1 := projX
{

ūp − α
[(

∇uuf (k−1)
(

û(k−1)
))(

ūp − û(k−1)
)

+ h∇tuf (k−1)
(

û(k−1)
)

+ γ
(
∇uf (k−1)

(
û(k−1)

))]}
(31)

where projX (y) = arg minu∈X ‖u − y‖2 is the projection
operator. On the other hand, the correction step is modified as:

ūc+1 := projX
{

ūc − β∇uf (k)(ūc)
}
. (32)

The results of the Theorem 1 are applicable to the case with
projections.

IV. NUMERICAL SIMULATIONS

Numerical tests have been performed using the IEEE 37-bus
and 123-bus test feeders (see, e.g., [28] for a description of
the feeders) on a standard laptop with Intel Core i7-7500 CPU
@2.70Hz. In the 37-bus test feeder, only 32 nodes (phases) are
connected to non-zero loads, all delta-connected. The 123-bus
test feeder is a popular case with 72 non-zero load nodes and
various single-, two-, and three-phase lines, with a mix of delta
and wye connections. The load profiles were generated from
a real dataset that the National Renewable Energy Laboratory
produced from real consumption data received from a utility
company in California; the data includes 55 load consumption
trajectories over the course of 24-hour, at a time-resolution of
6 seconds. The trajectories for the active power are described
in more details in [29]; 5 representative trajectories are shown
in Fig. 1. A constant power factor of 0.95 has been postu-
lated to create the trajectories for the reactive power. The load
profiles were randomly chosen for each load node.

As for the measurement settings, the DDSE algorithm used
both the load power data and PMU voltage data. We assume
the load active/reactive power injections are observed every-
where in the system. Nonetheless, since they are typically
collected by smart meters, the load profiles in Fig. 1 were
downsampled to generate the measurement data at a slower
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Fig. 1. Five sample active-power trajectories from the 24-hour load profile
dataset.

Fig. 2. Relative error of tracking the instantaneous optimal system-wide
power state under fixed C steps.

time resolution of 10 minutes. Specifically, the power measure-
ments were kept as the average value within every 10-minute
window. Accordingly, the parameter for the Huber’s loss func-
tion in (8) was chosen to be δ = 8e−3, coinciding with the
maximum deviation of the down-sampled power measurement
from the actual one. Since PMUs are not installed everywhere,
only selected buses are equipped with voltage phasor data at
the fast resolution of 6 seconds, same to the original load data.
For the 37-bus feeder, 5 PMUs are used except for the last
test with varying number of PMUs from 0 to 5. The 123-bus
feeder has 10 PMUs. For both feeders, the PMU locations
are selected as the connection points on the feeder to major
laterals, same to the typical placement for distribution-level
monitoring/protection devices. Random Gaussian noises with
a small standard deviation of 2e−5 were added to the actual
voltage profiles. This noise setting coincides with a maximum
total vector error of 0.01% for the voltage phasor, according
to the data sheet for µPMUs [30].

A. 37-Bus Test Feeder

This test feeder was used to compare the FOPC-based
DDSE algorithm under different computational settings, with
the performance in terms of both the tracking error with the
instantaneous optimum and estimation error with the actual
voltage state. For simplicity of implementation, the regular-
ization term in (9) was chosen to be r(u) = 0.1‖u‖2. This
sufficiently small term guarantees convergence and yet does
not degrade significantly the performance of the estimation
problem. To enhance the effectiveness of the prediction step

Fig. 3. Relative error of estimating the ground-truth system-wide power state
(top) and voltage output (bottom) under fixed C steps.

under potentially ill-conditioning issue (see Section III), we set
the parameter γ = 0.9 to be close to 1. Based on these param-
eter settings, the norm of the Hessian matrix as in Prop. 1
can be bounded within the interval [5, 10]. Thus, the step-
size parameters α and β were chosen to be very small around
5e−2. according to Theorem 1. Accordingly, the two param-
eters therein, �P and �C, are around 0.75, both less than
1. To satisfy the convergence condition in (25), It turns out
C = 5 steps of correction is sufficient even if no prediction is
performed (P = 0), as τ0 � 0.5 in this case.

1) Fixed Number of Correction Steps: We first show the
advantage to add prediction phase before new measurements
are processed. As mentioned in Section I, FOPC can perform a
prediction of the state while waiting for the measurement to be
transmitted from the PMUs; once the measurement is received,
a fixed number of correction steps can be performed. Thus, this
test uses a fixed C = 5 steps of correction and compares the
results from P = 0, 5, 10 steps of prediction.

Fig. 2 plots the relative tracking error with the instantaneous
optimal state u(∗,k). Clearly, a larger number of P does help
the tracking of the optimal solution, with slightly more notice-
able change in mismatch error from P = 0 to P = 5 steps
of prediction. It also makes the relative error trajectory more
quickly to reach the steady-state level of below 0.1. Hence,
the prediction phase has been shown to improve the tracking
error performance for the time-varying DDSE problem.

Furthermore, we compare the relative estimation errors of
both the system-wide power states and corresponding volt-
age outputs with ground-truth values, as plotted in Fig. 3. As
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TABLE I
SUMMARY OF AVERAGE RELATIVE ESTIMATION ERROR WITH THE

GROUND-TRUTH VALUES FOR DIFFERENT PAIRS OF (P, C) VALUES

Fig. 4. Relative error of tracking the instantaneous optimal system-wide
power state under a fixed computational time.

for the power states, the relative estimation error increases
slightly from the tracking error level. This could be due to the
approximation error of the linearized model and the additional
measurement error. Meanwhile, the effectiveness of prediction
phase is still evident in improving the estimation error and
convergence rate. More interestingly, the voltage estimation
error is very minimal at the level of 1e − 3 for all scenarios,
corroborating that the PMU voltage data is instrumental for
recovering the feeder voltage profile even under highly uncer-
tain power data. The average relative power/voltage estimation
error for all scenarios in Fig. 3 is listed in Table I, showing
the consistent improvement with more prediction steps.

2) Fixed Computational Time: This test compares the
FOPC performance under a total computational time con-
straint. The computational time in the prediction phase
is mainly spent on a one-shot computation of Hessian
∇uuf (k)(̂u(k)) in (17), while that of the correction phase
grows linearly with C as it needs to compute the gradi-
ent in every step. We choose two sets of (P, C) values:
(8, 3) and (0, 6), both taking roughly a total of 0.3ms
per iteration.

Similar to the last test, Fig. 4 and Fig. 5 plot the relative
tracking and estimation error trajectories for both scenarios,
respectively. Interestingly, the improvement of including the
prediction phase can be demonstrated even if C has to be very
small to compensate for the one-shot Hessian computation.
Both the tracking and estimation errors for the power states
are lower for the case of (P, C) = (8, 3). The voltage error is
again very small thanks to the high-quality PMU data. Again,
the average relative power/voltage estimation error for both
scenarios in Fig. 5 is listed in Table I.

3) Varying Number of PMUs: We further compare the
performance when different number of PMUs are installed
in the system, by reducing it from 5 PMUs (as in previous
tests) to 0, for fixed (P, C) = (5, 5). Fig. 6 plots the rel-
ative error of estimating both the ground-truth power and

Fig. 5. Relative error of estimating the ground-truth system-wide power state
(top) and voltage output (bottom) under a fixed computational time.

Fig. 6. Relative error of estimating the ground-truth system-wide power state
(top) and voltage output (bottom) under varying number of PMUs.

voltage variables. Clearly, more high-resolution voltage data
can improve the estimation error performance. For the 37-bus
case, it seems that 3 PMUs are sufficiently good for estimating
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Fig. 7. Relative error of estimating the ground-truth system-wide power state
(top) and voltage output (bottom) compared to the WLS solution under large
power measurement noises.

TABLE II
SUMMARY OF AVERAGE COMPUTATION TIME AND AVERAGE RELATIVE

ESTIMATION ERROR WITH THE GROUND-TRUTH VALUES

FOR FOPC AND WLS METHODS

the system-wide voltage, as there is very limited improvement
when increasing to 5 PMUs.

4) WLS Comparison: Last, we compare the classical
weighted least-squares (WLS) solution, using various choices
of (P, C). The WLS solution takes around 0.25ms per iteration,
at the same computational time as the case of (P, C) = (1, 4).
We also include the case of (P, C) = (5, 5) for demonstrat-
ing the effectiveness of prediction steps. Moreover, this case
has used a pseudo-measurement scenario for generating power
measurements, with each datum randomly varying from 50%
to 150% of its actual value. Hence, the power measurements
are very inaccurate with large outliers.

Fig. 7 plots the relative error of estimating both the
ground-truth power and voltage variables. Clearly, the FOPC
method outperforms the WLS solution. Due to the bad power
data, the WLS method leads to an almost flat error floor
in the plots, unable to track the system changes. Between
the two FOPC updates, the trajectory for (P, C) = (5, 5)

shows slightly improved accuracy thanks to the additional
prediction steps. As compared to the smart-meter data based
results in Fig. 3, the error degrades slightly in Fig. 7 due

Fig. 8. Relative error of estimating the ground-truth system-wide power state
(top) and voltage output (bottom) of the 123-bus case for a fixed C.

Fig. 9. Relative error of estimating the ground-truth system-wide power state
(top) and voltage output (bottom) of the 123-bus case under varying number
of PMUs.

to the outliers. The average computation time and rela-
tive power/voltage estimation error is listed in Table II.
This test confirms the advantages of our proposed FOPC

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 29,2020 at 22:07:16 UTC from IEEE Xplore.  Restrictions apply. 



830 IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 1, JANUARY 2020

updates in terms of robustness to outlier data and computation
efficiency.

B. 123-Bus Test Feeder

Last, we tested the FOPC method on the 123-bus case to
demonstrate its scalability. The parameter settings follow from
those in the 37-bus tests, with the estimation error compar-
isons for fixed C given in Fig. 8 under 10 PMUs. In addition,
we also compare the estimation error for varying number of
PMUs for 0, 5, 7, or 10 PMUs for fixed (P, C) = (5, 5),
as plotted in Fig. 9. It is observed that the voltage estima-
tion improves noticeably from 7 PMUs to 10 PMUs. Other
observations are similar to those of the 37-bus tests, corrobo-
rating the improvement of including the prediction phase and
high-resolution voltage data from PMUs.

V. CONCLUSION

This paper presented a distribution state estimation algo-
rithm that can dynamically incorporate fast and accurate PMU
voltage data. The first-order prediction-correction (FOPC)
algorithm is proposed to solve the time-varying optimization
problem of DDSE using a linearized power flow model.
Compared to existing recursive updates, the FOPC iterations
are computationally simple and require no specific modeling of
system transition, suitable for the time-critical DDSE problem
where the load dynamics is difficult to model. Numerical tests
have shown that the data-driven prediction phase of FOPC is
effective in reducing the mismatch error in tracking the power
state variable. With the availability of high-resolution voltage
data, the voltage estimation error is significantly improved.
Future work includes exploring more diverse types of distribu-
tion system measurements and large-scale system validations
using real data.

NOMENCLATURE

N, NY/� Number of (wye/delta-connected) buses.
Nφ Number of single-phase nodes.
v, z Voltage phasor vector of all nodes and the real-

valued counterpart.
w, m Zero-loading voltage phasor vector of all nodes

and the real-valued counterpart.
i(i�) Current phaosr vector of phase net (phase-to-

phase) injections of all nodes.
sY(s�) Complex power vector of wye- (delta-) con-

nected loads of all nodes.
H Matrix mapping v to line-to-line voltages.
u, uY/� Real-valued power vector of (wye-/delta-

connected) nodes with non-zero loads.
M, MY/� Linear transformation matrix for all

(wye/delta-connected) loads.
h Fast sampling period.
tk Time index for discrete samples.
y
(k)
v Voltage measurement of z at time k.

y
(k)
u Power measurement of u at time k.

Jv, JY/� Measurement selection matrix.
y(k) Full measurement vector at time k.
G(k) Full measurement matrix at time k.

n(k) Full measurement noise at time k.
l(k) Error loss function at time k.
r(k), Lr Regularization function at time k that is

Lr-strongly smooth.
f (k), ν Total objective function at time k that is

ν-strongly convex.
L, δ Huber loss function parameterized by δ.
x∗(tk) Optimal solution to f (k) at tk.
x(k) Output solution by FOPC at time k.
x(k+1|k) Output prediction by FOPC at time k.
γ Parameter for FOPC prediction step.
f̂ (k)(x) Approximation of f (k) for FOPC prediction

with input x.
P, C Number of FOPC prediction/correction steps.
α, β Stepsize for FOPC prediction/correction steps.
x̂p, x̂c Iterate for FOPC prediction/correction step p/c.
û(k) FOPC output solution for DDSE at k.
û(k|k−1) FOPC prediction solution for DDSE at k.
C0 Upper bound on the gradient ∇tuf (k)(u).
ν, L Lower/Upper bound on the Hessian norm

‖∇uuf (k)(u)‖.
�P, �C Constant parameters for stepsize analysis.
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