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Abstract—This paper focuses on the secure integration of dis-
tributed energy resources (DERs), especially pluggable electric
vehicles (EVs), with the power grid. We consider the vehicle-to-grid
(V2G) system where EVs are connected to the power grid through
an ’aggregator’ In this paper, we propose a novel Cyber-Physical
Anomaly Detection Engine that monitors system behavior and
detects anomalies almost instantaneously (worst case inspection
time for a packet is 0.165 seconds1). This detection engine ensures
that the critical power grid component (viz.,aggregator) remains
secure by monitoring (a) cyber messages for various state changes
and data constraints along with (b) power data on the V2G
cyber network using power measurements from sensors on the
physical/power distribution network. Since the V2G system is time-
sensitive, the anomaly detection engine also monitors the timing
requirements of the protocol messages to enhance the safety of the
aggregator. To the best of our knowledge, this is the first piece
of work that combines (a) the EV charging/discharging protocols,
the (b) cyber network and (c) power measurements from physical
network to detect intrusions in the EV to power grid system.

Index Terms—Cyber-Physical, Security, Intrusion Detection,
Vehicle-to-Grid, Electric Vehicles, Anomaly Detection

I. INTRODUCTION

Fig.1 shows the conceptual architecture of the V2G system.

The main components in this system include EVs, aggregators

and the power grid. The EV to power grid operations considered

in this paper are (a) charging where EV acts as a load and

draws power from the grid, (b) discharging where EV acts as

a power generator and supplies power to the grid. Aggregators

are entities that act as mediators between end users (viz.,EVs)

and the utility operator [7]. Aggregators are particularly useful

in coordinating discharging operations between the EVs and

the power grid. This is because individual EVs have very

small power capacities in comparison with the scales of power

generation and distribution at the power grid. Therefore, for

efficient discharging operations, a large number of EVs are

required. With aggregators acting as intermediaries between the

utility power grid operator and the EVs [7], all communication

messages between the EVs and the power grid pass through

aggregators. In the model presented in Figure 1, the aggregator

can be a prime target for attackers since (i) it manages multiple

EVs and (ii) is also directly connected to the power grid

utility system. A successful intrusion at the aggregator level

can have serious consequences for the power grid. In fact, it is

well documented that the power grid is vulnerable to a wide

1Minimum latency on V2G network is 2 seconds

Fig. 1: Conceptual Architecture of a Vehicle-to-Grid (V2G)

system. [15]

range of attacks [13]. Therefore, ensuring the security of this

critical component (viz.,aggregator) is essential to ensure secure

integration of DERs such as EVs with the power grid. To this

end, we propose a Cyber-Physical Anomaly Detection Engine

with mechanisms to detect anomalous behavior in aggregators

of the V2G system. For our anomaly detection engine, we rely

on both the cyber and physical properties of the system. On the

cyber side, we focus on the communication protocol in the V2G

system to ensure correct operation of the aggregator, while we

validate its behavior using the physical side of the system in the

form of power measurements.

The main contributions of this work are:

1) An enumeration of the correct sequences of commands

in the V2G communication protocol. This is used to

generate an aggregator state machine for our detection

engine (§IV-A)

2) Development of a Cyber-Physical Anomaly Detection En-

gine that can detect malicious activity at the aggregator

level as soon as they occur. The anomaly detection engine

monitors communication on the V2G cyber network using

power measurements from sensors on the physical/power

distribution network (§IV-D). It also makes use of tim-

ing constraints related to frequency of periodic messages

(§IV-B) and subscription period (§IV-C) to differentiate

between correct/incorrect system behavior.

3) Implementation and evaluation of a prototype of the Cyber-

Physical Anomaly Detection Engine (§V)978-1-5386-8099-5/19/$31.00 ©2019 IEEE
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ments related to the EV charging load can be obtained from

the sensors installed on the power distribution grid. Potential

sources for the actual power data include the connected EV

charging equipment, smart meters and distribution line measur-

ing devices. These sensors are assumed to be able to report the

instantaneous active power or even complex power readings that

are time-stamped for validating the cyber states of EV activities.

To this end, let P (t) denote the active power measurement for

time period t, with the time resolution of ∆t. We plot a sample

daily profile of P (t) for an actual residential home in Fig. 5,

both with and without the EV charging load. The residential

home power demand and the EV charging data are obtained

from the Pecan Street database at a minute-level sampling rate

[1]. As observed from the data, the EV charging load exhibits

unique pattern that is different from other residential appliances

and devices. First, the EV power demand is at least 3kW and

also higher than that of other typical household loads [5]. Based

on the observed power profiles from the Pecan Street dataset,

only the air-conditioning load has a comparable level of power

demand. Second, the EV charging typically lasts for hours at

the constant rated power demand level, which is different from

the periodic pattern of air-conditioning load. Therefore, for the

EV load, there is a noticeable change only at the start and end

time points of charging.

To better demonstrate this feature of EV load, we process

the power data using a simple high pass filter to determine the

rate of change between two consecutive data points, namely

∆P (t) = P (t) − P (t − ∆t). To capture the fast change due

to EV charging, the sampling rate of the power data needs to

be sufficiently high to show that the EV can reach its rated

power within two minutes while all other residential loads stay

relatively unchanged. If the sampling rate increases, one may

need to perform more sophisticated filtering process to recover

the EV charging states. The filtered output for the residential

home load with EV charging in Fig. 5 from approximately 3:35

– 6:00 AM is illustrated in Fig. 6. Note that the negative power

in the aggregated load in Fig. 5 is due to PV generation. The

first spike in the plot represents the time instant when the EV

charging started, reaching its rated power of around 3kW within

two minutes. Note that when the charging ended for this 3kW

rated EV, its power consumption slowly drops from the rated

power and is therefore not noticeable from the filtered output.

However, for EVs rated around 6kW or higher from the Pecan

Street dataset, the end charging time is more noticeable from the

filtered output. Specifically, the ’end charging’ characteristics

are very similar to the ’start charging’ ones as the EV’s power

consumption drops from its rated power to zero within two

minutes. This will result in a negative spike in the filtered output

with a magnitude close to its rated power.

The power data spike due to start/end of EV charging is

used to verify the physical state when a packet with power

measurement message is detected on the cyber network. Note

that if the load profile is at sufficiently high sampling rate, it

is unlikely that there is other major load change activity at the

start/end time of EV charging. Therefore, the turn-on/-off events

of air-conditioning loads will not confuse the engine with a

potential EV activity. If the sampling rate gets slower, it will be

necessary to smooth out the non-EV loads in order to determine

the power spike from EV charging. Note that this may reduce the

confidence in physical state verification part due to the existence

of other heavy loading appliances with periodic patterns (i.e.,

air-conditioning load). This component of the anomaly detection

engine handles attacks 1,2 in Tab. I.

We have performed a design space exploration for many

combinations of EV and household numbers for the SAE

protocol family. For instance, (i) it can handle multiple EVs at a

single household even if they start charging at the same instance

of time. In which case, the total power consumed by these EVs

is used to validate consistency on cyber and physical sides (ii)

it can can detect even if an EV stops charging partway before

reaching 100%. Due to space constraints, we do not present all

the details here but in the online tech report [14].

Fig. 5: Load profile of a residential home with and without the

EV charging load.

Fig. 6: Filtered output of the total EV included load in Fig. 5

during the EV charging period.

V. EVALUATION

To evaluate the anomaly detection engine, we implemented

a prototype in Python2.7 on the Intel i7 NUC platform with

specifications as follows:

• Platform - Intel i7 NUC

• Processor - Intel(R) Core(TM) i7-7567U CPU @ 3.5 GHz,

4 cores

• Memory - 32 GB RAM, 128 GB HDD

• Operating System - Ubuntu 16.04
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Our goal is to not only detect anomalies accurately but to

also do so as soon as a malicious network packet arrives at

the aggregator. The anomaly detection engine is placed at the

aggregator in the V2G system as shown in Fig. 2. This makes

it important to ensure that it does not introduce significant

delay to the packet transfer rate at the aggregator. We therefore

evaluate the prototype of our anomaly detection engine in

terms of (i) Accuracy is measured in terms of false positives

and false negatives. (ii) Performance is measured in terms of

average and worst case time taken by the anomaly detection

engine to inspect one packet and compared with minimum

network latency. Note that as mentioned previously, since there

are no existing anomaly detection engines to the best of our

knowledge that combine cyber and physical properties along

with communication standards for this type of system (§VII),

direct comparisons are not possible.

Power Data for EV Charging - Packets on the cyber network

are generated based on EV power profile data for charging ob-

tained from the Pecan Street database at a minute-level sampling

rate [1]. This data consists of timestamps and corresponding

power measurements with respect to each EV, from which all

required information (such as subscription period) for packet

generation can be extracted.

Power Data for EV Discharging - Using the above EV

charging data, we formulated the data for EV discharging based

on efficiency formulas [6]. From [ [6], eq. (12)], the magnitude

of EV charging/discharging power from/to the power grid is

described as follows

|Pgrid| =







EVrated

η1
= |Pc|

EVrated ∗ η2 = |Pd|
(1)

EVrated is the rated EV power, η1 is charging efficiency, η2 is

discharging efficiency, |Pc| is the magnitude of EV charging

power and |Pd| is the magnitude of EV discharging power.

Using algebraic manipulation and substituting EVrated, we

obtain the magnitude of EV discharging power as a function

of EV charging power. From the reference paper [6], we obtain

the charging and discharging efficiencies in Table II as 0.92

and 0.92 respectively. Plugging these values into the previous

equation, we get the magnitude of the EV discharging power is

approximately 85% of the EV charging power.

|Pd| = |Pc| ∗ η1 ∗ η2 = |Pc| ∗ 0.92 ∗ 0.92 = |Pc| ∗ 0.846 (2)

Currently, there are no EVs/EVSEs that support the SAE

J2847/1 and SAE J2847/3 standards since these communication

standards are still in the process of development. There has been

significant effort towards making the real world implementation

of SAE standards feasible [16], [17]. Once these standards

are implemented, our anomaly detection engine can be easily

integrated with them. Therefore, to test our anomaly detec-

tion engine, we generate packets with custom HTTP payloads

according to specifications provided by SAE communication

standards [8]. Further details on how the packets are generated

are provided below.

A. Accuracy

Testcases to test for false positives are generated based on

certain ground truth and testcases to test for false negatives are

obtained by modifying the former testcases to introduce various

kinds of anomalies.

Message Sequence Validation - The ground truth for testcase

generation here is the SAE standards [8]. (a) Testcases for

false positives include all possible valid sequences consisting of

parallel as well as repeating sequences. Due to the possibility

of a lot of valid variations, there is a large number of these test

cases. For instance, consider the charging operation. As shown

in Fig. 4, first a flow reservation with or without cancellation

is performed (note the existence of two possibilities already).

Then the EV starts sending periodic power updates to the

grid during its subscription period for charging. In parallel,

the EV also periodically fetches the flow reservation list from

the grid. Periodic messages give rise to repeating sequences

and increase the number of possible valid variations. Similarly,

parallel sequences of messages (power updates and fetching of

flow reservation list in this case) also increase the number of

possible valid variations. This is because one or more messages

from a parallel sequence (say, power updates in this case) can

arrive anywhere between messages in a related parallel sequence

(fetching of flow reservation list in this case). The sequence to

which the message belongs is identified using the message data.

(b) Testcases for false negatives were generated by randomly

placing invalid packets amidst valid sequences.

Message Frequency Validation - The ground truth for

testcase generation here is again the SAE standards [8]. (a)

Testcases for false positives consisted of packets with expected

message periodicities. (b) Testcases for false negatives consisted

of packets containing messages with periodicities different (i.e.,

periodicities lower and higher than expected values) from ex-

pected values as specified in the SAE standards [8].

Subscription Period Validation - The ground truth here

is based on the data obtained from the Pecan Street database

[1]. (a) Testcases for false positives consisted of packets with

subscription periods consistent with the aforementioned data.

(b) Testcases for false negatives consisted of packets with in-

consistencies where the actual subscription period was different

from previously agreed upon subscription period, i.e, the arrival

time of packets containing power status updates were modified

so as to be different from the time intervals specified in packets

containing the flow reservation list.

Consistency of Cyber and Physical States - We have a high

certainty on detecting the stop charging time for EVs with higher

rated power versus EVs with lower rated power for two reasons.

The first is that the stop charging characteristic for higher rated

EVs is very similar to the start charging characteristics of EVs

except that it will drop from its rated power to zero within two

minutes. The lower rated EVs take longer than two minutes to

stop charging so there will not be a noticeable negative spike

in the filtered load sequence. The second reason is that the

higher rated EVs are less sensitive to non-EV loads changes.

For instance, if an 1.5kW AC unit starts/stops around an EV

start/stop event, it will effect the total ∆P of two consecutive

time stamps. In the worst case scenario, the AC will reach
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VII. RELATED WORK

Securing the advanced metering system by using specification

based intrusion detection [2] monitors just the cyber state of

the system by observing traffic among access points and meters

at various layers to ensure expected behavior. We use similar

techniques to monitor the cyber state of a V2G aggregator. In

addition, we also check for consistency of cyber and physical

states of the system. The paper by Liao et al [12] focuses on

enhancing power grid security by using micro-synchrophasors

as a tool to monitor and manage distribution networks. This

work is similar to our work in that it uses data from sensors

for monitoring. However, in addition to using sensor readings,

our anomaly detection engine also monitors other data con-

straints related to the communication protocol specifications

along with timing constraints related to message frequencies

and subscription periods. Chen et al [3] propose an efficient and

secure authentication scheme for V2G networks that preserves

privacy. The paper focuses on securing the communication of

EVs in the V2G system of power grid. On the other hand,

our work focuses on securing the aggregator, an important

component of the V2G system, by increasing its resiliency to

attacks. There is some related work on identifying EV charging

profiles for improving power distribution system operations.

The statistical characteristics of EV’s state-of-charge or the

duration of charging period have been studied in [18], [20] by

analyzing a fleet of EV charging profiles. More recently, a deep

learning approach has been proposed in [21] to extract the EV

charging profile from the aggregated household demand as a

load disaggregation problem. However, we use a similar filtering

mechanism but for a different purpose, i.e., anomaly detection

to ensure security. We have developed a simple approach for

estimating EV charging status that is very suitable for real-

time implementation needs of the proposed anomaly detection

engine.

VIII. CONCLUSION

In this work, we have presented a novel architecture of a

Cyber-Physical Anomaly Detection Engine that captures the cy-

ber and physical properties of the system along with the related

communication standards to define correct system behavior. The

simple model of our anomaly detection engine demonstrates

that accurate and almost instantaneous detection of anomalies

is feasible. Although our prototype Cyber-Physical Anomaly

Detection Engine is based on SAE standards of communication

for V2G system, this architecture can be extended to other

communication standards for other DERs as well.
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