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Abstract—Fast power system state estimation (SE) solution
is of paramount importance for achieving real-time decision
making in power grid operations. Semidefinite programming
(SDP) reformulation has been shown effective to obtain the global
optimum for the nonlinear SE problem, while suffering from high
computational complexity. Thus, we leverage the recent advances
in nonconvex SDP approach that allows for the simple first-order
gradient-descent (GD) updates. Using the power system model,
we can verify that the SE objective function enjoys nice properties
(strongly convex, smoothness) which in turn guarantee a linear
convergence rate of the proposed GD-based SE method. To
further accelerate the convergence speed, we consider the accel-
erated gradient descent (AGD) extension, as well as their robust
versions under outlier data and a hybrid GD-based SE approach
with additional synchrophasor measurements. Numerical tests
on the IEEE 118-bus, 300-bus and the synthetic ACTIVSg2000-
bus systems have demonstrated that FGD-SE and AGD-SE, can
approach the near-optimal performance of the SDP-SE solution
at significantly improved computational efficiency, especially so
for AGD-SE.

Index Terms—Power system state estimation, semidefinite pro-
gramming, gradient descent, accelerated gradient descent, robust
estimation.

I. INTRODUCTION

POWER system state estimation (SE) aims to obtain the

operating condition of the grid, namely nodal complex

voltages, from noisy measurements at buses and branches. The

SE problem is of paramount importance for reliable control

and economic operation of power systems; see e.g., [1], [2].

Due to a nonlinear measurement model, SE is traditionally

formulated as a nonlinear least-squares (LS) problem and

solved by Gauss-Newton (GN) iterations [3]. The GN method

iteratively updates the variables by minimizing an approxi-

mate objective through linearization. Albeit computationally

efficient per iteration, the convergence of GN iterations is

not guaranteed. Recent work [4]–[6] and references therein

have provided insightful understandings on GN divergence,

such as heavy loading conditions or bad data including topol-

ogy errors. To tackle this issue, a semidefinite programming

(SDP) reformulation of the SE problem has been proposed
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in [7] through rank relaxation. The resultant convex problem

achieves near-optimal guarantees to solve the original non-

convex SE. To promote lower-rank solutions, [8] suggested a

nuclear norm based penalization. General penalization terms

are designed in [9], [10] for recovery guarantees and quantifi-

able estimation error of the SDP-SE formulation. To account

for bad data, robust SDP-SE has been developed by modeling

outliers using a sparse vector [5], [11]. Although global optima

of SDP-SE can be obtained by generic convex solvers such as

the interior-point method, the high-order polynomial complex-

ity therein could challenge real-time implementation in large-

scale systems [11]. Recent work has focused on using conic

relaxation or composite optimization techniques for the SDP-

SE problem [9], [12]. A parallelizable SDP-SE solution was

also developed in [7], [13] using graph-specific decomposition.

However, it remains open on how to develop fast SDP-SE

solvers with simple implementation steps.

Recently, a nonconvex approach to solving SDPs by repre-

senting the solution matrix using the Burer-Monteiro factoriza-

tion [14], [15] has become popular. The factorization form can

easily eliminate the positive semi-definite (PSD) constraint of

SDP problems. This way, the first-order gradient descent (GD)

updates are readily applicable to the resultant nonconvex ob-

jective, leading to the so-termed factored GD (FGD) algorithm

[16]. Linear convergence guarantee for FGD is available if the

original SDP objective is strongly convex and smooth with

sufficiently close initialization. Albeit at linear convergence

rate, FGD may suffer from slow convergence speed depending

on the conditioning of objective function. To tackle this, the

popular extension of accelerated GD (AGD) method [17] was

considered for the nonconvex SDP reformulation in [18].

The goal of the present work is to accelerate large-scale

SDP-based SE method by leveraging latest advances in fast

SDP solution techniques. Our contribution is two-fold. First,

we develop a class of fast GD-based solvers for the SDP-SE

formulation that can achieve guaranteed linear convergence

rate to a closely approximate SDP-SE solution. Specifically,

we have successfully adopted both the FGD and AGD methods

for the SDP-SE problem with excellent performance under

regular SE conditions. Second, we further enhance the FGD-

/AGD-SE solvers to account for practical concerns such as

the presence of outliers or synchrophasor data. Our proposed

robust GD-SE solutions incur a simple hard thresholding step

to tackle outliers, while a hybrid GD-SE method is developed

by extending the gradient direction to include synchropha-

sor measurements. All the GD-SE methods and extensions

enjoy extremely efficient update per iteration, with linear

convergence rate verified by our analysis and numerical tests.
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Numerical results also confirm the excellent performance of

the GD-SE methods in estimating the voltage phasors and

identifying outliers.

The rest of the paper is organized as follows. The SDP-

SE problem and the nonconvex reformulation are introduced

in Section II. Section III presents the FGD-/AGD-SE meth-

ods along with the convergence analysis specifically for the

power system models. Section IV develops the robust GD-

SE methods and the PMU-aided extensions. Several numerical

tests presented in Section V corroborate the faster computation

time of FGD and AGD relative to the SDP-SE solver, and

improved estimation performance over GN iterations. The

paper is wrapped up in Section VI.

Notation: Upper (lower) boldface symbols stand for ma-

trices (vectors); | · | stands for the magnitude; (·)T denotes

transposition; (·)H complex-conjugate transposition; <(·)/=(·)
the real/imaginary part; Tr(·) the matrix trace; rank(·) the

matrix rank; ‖ · ‖F the Frobenius norm; ‖ · ‖2 the spectral

norm, and V � 0 denotes V is a positive semi-definite (PSD)

matrix.

II. PROBLEM FORMULATION

Consider a transmission network modeled as a graph G =
(N , E), with the set of buses (nodes) in N := {1, ..., N} and

the set of lines (edges) in E := {(n, n′)}. The complex voltage

phasor Vn per bus n ∈ N can be expressed in the rectangular

coordinate as Vn = <(Vn)+j=(Vn). All nodal voltages form

the full system state vector v := [V1, ..., VN ]T ∈ C
N . To

estimate nodal voltages in v, a subset of the following system

variables are measured:

• Pn(Qn): the active (reactive) power injection at bus n;

• Pnn′(Qnn′): the active (reactive) power line flow from

bus n to bus n′;
• |Vn|: the voltage magnitude at bus n.

The ac power flow model [1, Ch. 4] asserts power variables

are nonlinearly (quadratically) related to the state v.

Collecting the noisy measurements in the vector z :=
[

{P̌n}, {Q̌n}, {P̌nn′}, {Q̌nn′}, {|V̌n|2}
]T ∈ R

L, where L is

the total number of measurements, one can write the `-th
measurement in z as

z` = h`(v) + ε`, ∀` = 1, . . . , L (1)

where h`(·) stands for the nonlinear transformation from v,

and ε` accounts for the additive measurement error. Given

this measurement model, the SE problem can be cast as a

(weighted) LS minimization one over v. Without loss of gen-

erality (Wlog), we assume the weight coefficients are included

by the model (1). Thus, it suffices to consider the unweighted

LS-SE objective throughout the paper. Due to its nonlinear

objective, Gauss-Newton (GN) has been the workhorse solu-

tion for LS-SE; see e.g., [19]. GN iteratively approximates the

objective by linearizing (1) at the latest solution. This iterative

linearization procedure, though computationally efficient if

convergent, can be potentially divergent under heavy loading

or bad data conditions; see e.g., [4], [6]. The lack of statistical

robustness was identified in [4] to cause divergence of GN in

addition to numerical instability concerns.

One approach to tackle the nonlinearity is to introduce the

outer-product matrix V := vv
H ∈ C

N×N , consisting of all

quadratic terms involving v. This way, each measurement in

(1) is linearly related to V, as given by

z` = v
H
H`v + ε` = Tr(H`V) + ε`, ∀` = 1, . . . , L. (2)

where H` ∈ C
N×N is Hermitian matrix depending on the

network topology and line parameters (see e.g., [7], [20] for

the definitions). Reformulating the LS objective about v using

(2) leads to the following semidefinite program (SDP) for V:

V̂ = argmin
V

f(V) :=
L
∑

`=1

1

2
[z` − Tr(H`V)]

2
(3a)

s.t.V � 0 (3b)

where the PSD constraint in (3b) together with rank(V) = 1
can guarantee the existence of v that satisfies V̂ = vv

H. Due

to the nonconvexity of rank constraint, it is dropped through

a well-appreciated semidefinite relaxation (SDR) procedure

that leads to the convex SDP-SE formulation (3). Solving

the latter can achieve a near-optimal performance for the SE

problem as the solution tends to have very low-rank; see [10],

[11]. General convex solvers such as the popular interior-point

method based solver SeDuMi [21] can obtain the optimal V̂

in polynomial time. Nonetheless, these solution methods can

scale unfavorably as the number of buses or measurements

increase, with worst-case complexity at O(N4.5) [11]. Thus,

it is necessary to develop accelerated algorithms for solving

large-scale SDP-SE in real-time.

Motivated by recent work on nonconvex SDP solvers [16],

we consider an equivalent formulation of (3). The idea is

to use matrix factorization to represent the PSD matrix as

product of two factor matrices, as first proposed by [14], [15].

Accordingly, it can tackle the main computational challenge

caused by the PSD conic constraint (3b). In general, expressing

V = UU
H using a rank−r matrix U ∈ C

N×r, one can

reformulate (3) as an unconstrained one for the complex U:

Û = arg min
U∈CN×r

g(U) := f(UU
H). (4)

The rest of paper will consider the case of r = 1; i.e., U

becomes a vector u. The advantage of using a rank-one u here

is two-fold: (i) the relaxed SDP problem (3) is likely to attain

a nearly rank-one solution; and (ii) searching for rank-one

solutions has the lowest computational complexity. Note that

the function g(u) in (4) is equivalently the traditional (W)LS-

SE objective, which is again nonconvex. Interestingly, based

on the SDP formulation (3), one can show that the gradient

descent (GD) updates for the reformulation (4) can achieve

guaranteed convergence to a closely approximate solution to

(3). Thus, we develop a class of GD-SE methods that enjoy

both low computational time and guaranteed convergence.

III. GRADIENT-DESCENT BASED SE SOLVERS

Thanks to the unconstrained structure and convenient gra-

dient computation, we can use first-order methods such as

gradient descent (GD) to solve (4). This simple approach,

termed as factored GD (FGD) in [16], has been shown to
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converge to the global optimum of general SDP problems,

at a linear rate similar to that of classical GD method for

strongly convex and smooth functions [22, Ch. 9]. Inspired

by these results, we first use power flow analysis to prove the

convergence rate of FGD for our LS-SE problem. Furthermore,

we will propose an accelerated scheme of FGD for improved

convergence rate.

A. Factored Gradient Descent Method

To develop the FGD updates for (4), it suffices to compute

the derivative ∇g(u) for any complex u. Using the chain rule,

one can write

∇g(u) = 2∇f(uuH)× u =
L
∑

`=1

2
[

u
H
H`u− z`

]

H`u. (5)

The rigorous derivation for a complex derivative is slightly

more complicated, with the details in Appendix A. Given step-

size η, the main FGD-SE steps are tabulated in Algorithm 1 for

general rank-r solutions. To select the η value and establish the

convergence results, one needs to investigate the characteristics

of the original SDP function f(V).
Specifically, consider a compact form f(V) = 1

2‖z −
H(V)‖22, where H(·) stands for the linear mapping in the

SDP objective (3). In general, strong convexity is needed for

the loss function f . Nonetheless, it is challenging to show that

over any PSD V of an arbitrary rank r. Instead, we can restrict

it to a subset of V’s [23]. Specifically, we consider the subset

V := {V|rank(V) = 1 and
¯
V 2 ≤ Vnn ≤ V̄ 2 ∀n} (6)

where
¯
V/V̄ are lower/upper bounds on bus voltage magnitude.

These bounds (e.g., ±5% from unity) are easily available

thanks to well-designed power system voltage control mecha-

nism. Using the subset V , we can show the following bounds

as given in Appendix B.

Proposition 1. For any V ∈ V as given by (6), its mapped

output H(V) for the SDP-SE objective f in (3) satisfies

m · ‖V‖2F ≤ ‖H(V)‖22 ≤ M · ‖V‖2F (7)

where m and M are positive coefficients. Hence, the objective

f is m-strongly convex and M -smooth over restricted set V
with the condition number κ = M/m.

Proposition 1 is shown by leveraging the power flow model

embedded in the mapping H. It is a key result to ensure the

convergence of FGD for the objective g, even though the latter

is not (strongly) convex itself. For example, heavy loading

conditions would lead to larger angular separation across the

transmission line. Our numerical experience suggests that this

increased angular separation has resulted in decreased value

of m, and thereby higher condition number κ = M/m. This

observation coincides with that for GN-SE method, as heavy

loading conditions make it more likely to diverge [4]. Sec.

III-B will introduce a GD scheme that can better tackle ill-

conditioned problems due to e.g., heavy loading.

As developed in [16], using the initial V0 = u0u
H
0 one can

set the step-size according to

η =
1

c(M‖V0‖2 + ‖∇f(V0)‖2)
(8)

Algorithm 1 FGD-SE

Input: Function f , rank r, maximum iteration number K.

Output: u and V = uu
H

1: Initialize u0 ∈ C
n×r and set V0 = u0u

H
0 .

2: Set the step-size η as in (8).

3: for k = 0 to K do

4: uk+1 = uk − η∇g(uk)
5: end for

6: return u = uK and V = uKu
H
K

where the constant ratio 1/c was picked as 1/16 in [16] but can

be better tuned up according to specific problems. In practice,

the smoothness parameter M can be approximated by the ratio

‖∇f(V0)−∇f(V)‖F /‖V0 −V‖F for any V ∈ V .

To establish the local convergence of Algorithm 1 for the

SDP-SE problem, we need the following two assumptions

regarding the approximation to the global optimal û and

V̂
1 := ûû

H, using small constant numbers ρu and ρv .

(as1) The initial u0 satisfies Dist(u0, û) ≤ ρu

κ
‖û‖2, where

Dist denotes the minimum Euclidean distance between

the two complex vectors up to any rotational change.

(as2) The optimum V̂ satisfies ‖V̂ − V̂
1‖F ≤ ρv

κ1.5 ‖û‖22.

Assumption (as1) requires the initial guess to be sufficiently

close to the optimal û. As the upper bound scales with ‖û‖2, it

could be reasonable for good initialization such as flat start or

the SE solution from dc power flow model. Assumption (as2)

relates to the rank-one approximation to V̂. Since the SDP-SE

solution V̂ is nearly rank-1 [10], [11], the upper bound therein

could also be satisfied in practice.

Proposition 2. Suppose (as1) and (as2) hold and use the

step-size in (8). Under Proposition 1 with the SE objective f
satisfying (7), the FGD-SE updates in Algorithm 1 converge

linearly to a neighborhood of û. Specifically, it can be shown

that the update at iteration k satisfies

Dist(uk+1, û)
2 ≤ α ·Dist(uk, û)

2 + β · ‖V̂ − V̂
1‖2F (9)

where 0 < α < 1 is the contraction rate and β is a constant

number, both depending on the optimal û.

A sketch of the proof is provided here following from

[16, Lem. 14-16]. Due to the rotational ambiguity, define

Dist(uk, û) := ‖δk‖2 := ‖uk − ûRk‖2, where the rotation

matrix Rk yields the smallest Euclidean distance between the

two. Since uk+1 − ûRk = (uk+1 − uk) + (uk − ûRk), one

can derive the following bound:

‖δk+1‖22 ≤ ‖uk+1 − uk‖22 + ‖δk‖2 − 2〈uk+1 − uk, −δk〉.

The FGD update dictates uk+1 − uk = η∇f(Vk)uk. It is

important to characterize the third term in relation to the

first two. By considering V̂
1, the third term is re-written

as 2〈uk+1 − uk, −δk〉 = η〈∇f(Vk), Vk − V̂
1〉 +

η〈∇f(Vk), δkδ
H
k 〉 where η is the fixed stepsize in (8). Using

Proposition 1 and (as1), one can show 〈∇f(Vk), Vk−V̂
1〉 ≥

θ1‖∇f(Vk)uk‖2+α1‖δk‖2−β1‖V̂−V̂
1‖2F , with all positive

constants θ1, α1 and β1. Additionally, using (as2) we have

〈∇f(Vk), δkδ
H
k 〉 ≥ −θ2‖∇f(Vk)uk‖2 − α2‖δk‖2 with
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positive θ2 and α2 again. Adding these two lower bounds

together, one can bound Dist(uk+1, û)
2 := ‖δk+1‖22 as

‖δk+1‖22 ≤ −θ3‖∇f(Vk)uk‖2F + α‖δk‖22 + β‖V̂ − V̂
1‖2F .

Since −θ3 is negative, the first term can be ignored, which

completes the proof for (9).

Note that (9) shows that the accuracy of the convergent

solution depends on the term β‖V̂ − V̂
1‖2F . If the optimum

V̂ is rank-one, the FGD-SE updates will accordingly converge

to the globally optimal V̂. This condition relates to the approx-

imation performance of SDP-SE (3) to the original unrelaxed

problem, which has been corroborated by both analytical and

numerical results [7], [10], [11]. Hence, we will not focus on

this aspect but instead discuss more on the convergence speed

of FGD-SE, as related to the α value. Faster convergence speed

requires a smaller α, which critically depends on the initial u0

and the condition number κ. Various initialization schemes are

available for SE, including flat start and dc power flow based

solution. Our numerical tests suggest that these options work

well for the FGD-SE updates, even though they do not strictly

satisfy (as1). Our empirical experience has identified the main

issue to be that the SE objective f tends to have a very large

condition number κ. As a result, the convergence speed for

FGD would gradually decrease as the number of iterations k
increases. This motivates us to develop an accelerated scheme

for FGD-SE as follows.

B. Accelerated Gradient Descent Method

Slower convergence speed as a result of ill-conditioned

objective function is a common issue for first-order methods.

One popular improvement is to use the Nesterov’s accelera-

tion scheme first proposed in [17]. This improved first-order

method has been shown to achieve superlinear convergence

rate for convex objectives. Loosely speaking, it can reduce the

condition number to
√
κ. Here, we develop the accelerated GD

(AGD) based SE method for the nonconvex problem (4).

Different from FGD that uses only the instantaneous gradi-

ent, AGD takes the information from the past two iterations

to compute the update. Per iteration k, a time-varying inter-

polation is first performed to obtain

u
+ = uk +

(

k − 1

k + 2

)

(uk − uk−1), ∀k = 1, 2, . . . (10)

which is used to update uk+1 as the gradient descent on u
+.

The ratio µ = k−1
k+2 is termed as the momentum parameter for

AGD, which increases to 1 as k approaches infinity. Note that

the paper [17] proposed a momentum parameter µ = tk−1
tk+1

by generating a positive sequence {tk}. It was shown in [24]

that tk ≥ k+1
2 and thus one can approximately set a simpler

parameter µ = tk−1
tk+1

with tk = k+1
2 . For u0 at k = 0, the

update u1 is simply computed using the FGD rule. The AGD

method is tabulated in Algorithm 2.

Remark 1. (AGD convergence for nonconvex g.) Recent

results in [18] show that AGD can achieve linear convergence

rate for approximating the SDP problem as well. Compared

to (as1), the initial condition can be updated to Dist(u0, û) ≤
ρa√
κ
‖û‖2 for AGD where ρa is again a small constant. Clearly,

Algorithm 2 AGD-SE

Input: Function f , rank r, maximum iteration number K.

Output: u and V = uu
H

1: Initialize u0 ∈ C
n×r and set V0 = u0u

H
0 .

2: Set the step-size η as in (8).

3: Compute u1 = u0 − η∇g(u0).
4: for k = 1 to K do

5: Update u
+ as (10) and uk+1 = u

+ − η∇g(u+)
6: end for

7: return uK and V = uKu
H
K

this condition is more relaxed than (as1) as it increases

the upper bound by a factor of
√
κ. In addition to relaxed

condition, our numerical tests have shown that the AGD-SE

method will achieve faster convergence speed than FGD-SE

under exactly the same settings of initialization and step-size.

IV. PRACTICAL EXTENSIONS FOR GD-SE SOLVERS

In addition to convergence guarantees and speed, it is

truly important to consider practical issues in SE, such as i)

robustness to bad data (outliers), ii) incorporation of additional

meter types, and iii) multi-area implementation. Traditionally,

outliers arise in SE due to data contamination, meter failure

and synchronization issues [3], [4], [20]. More recently, ma-

licious cyber attacks [25] and topology errors [8] can also

contribute to SE outliers. Meanwhile, recent development of

phasor measurement units (PMUs) motivates us to expand the

SE solvers to incorporate synchrophasor data as well. There is

also increasing trend to consider multi-area SE among different

control centers [7], [13], [26]. All these practical concerns

have been shown to potentially worsen the convergence issue

of GN-SE method; see e.g., [4], [7], [8]. Due to page limit,

we focus on discussing the first two extensions for GD-SE.

Multi-area (Distributed) GD-SE can be developed using the

framework of distributed linear SE method such as [26].

A. Robust GD-SE against Outliers

One popular approach to tackle the presence of bad data is

to introduce a sparse vector τ ∈ R
L with τ` 6= 0 indicating

an outlier entry. This way, the robust SDP-SE (RSDP-SE)

problem can be formulated as [11]

min
V,τ

f ′(V, τ ) =
L
∑

`=1

1

2

{

[z` − Tr(H`V)]− τ`
}2

(11a)

s.t. V � 0, ‖τ‖0 ≤ ρL (11b)

with the pseudo-norm ‖τ‖0 =
∑

` 1{τ` 6= 0} as the number of

nonzero entries and ρ is the given fraction of outliers. Hence,

the constraint (11b) ensures that τ is sparse with at most ρL
non-zero entries.

To generalize the GD-SE methods to the RSDP-SE problem

(11), we consider the nonconvex counterpart as g′(u, τ ) :=
f ′(uuH, τ ). Note that the GD updates now have to satisfy

the additional sparsity constraint (11b). To this end, we adopt

the idea of hard thresholding [27], [28] to obtain the truncated
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Algorithm 3 RFGD-SE and RAGD-SE

Input: Function f , rank r, maximum iteration number K, and

outlier fraction ρ.

Output: u and V = uu
H

1: Initialize u0 ∈ C
n×r and set V0 = u0u

H
0 .

2: Compute the current error χ0 and threshold it to τ 0.

3: Update u1 = u0 − η∇u g′(u0, τ 0).
4: Set the step-size η as in (8).

5: for k = 1 to K do

6: if RAGD updates then

7: Compute u
+ = uk + (k−1

k+2 )(uk − uk−1)
8: else if RFGD updates then

9: Set u+ = uk

10: end if

11: Compute the current error χk = z−H(u+(u+)H).
12: Threshold the error to τ k = DρL(χk).
13: Update uk+1 = u

+ − η∇u g′(u+, τ k).
14: end for

15: return uK and V = uKu
H
K

gradient by removing the data samples with significantly high

mismatch error. For a given integer γ ≤ L, define the hard

thresholding operator Dγ as

[

Dγ(χ)
]

`
:=

{

χ`, if |χ`| ≥ |χ(γ)|,
0, otherwise,

(12)

where |χ(γ)| denotes the entry in χ ∈ R
L with the γ-

largest absolute value. Equivalently, D throws away the γ-

largest values of χ. For any given u, one can use the

thresholding operator on the instantaneous error mismatch,

namely χ` = z` − u
H
H`u. Hence, by setting the outlier

indicator τ = DρL(χ), the former always satisfies the sparsity

constraint, and the gradient of g′ at u becomes

∇u g′(u, τ ) = 2∇uf
′(uuH, τ )× u

=

L
∑

`=1

2
(

u
H
H`u− z` + τ`

)

H`u. (13)

Since τ is the hard thresholded output of χ, the summation in

(13) only takes (L− ρL) measurements of smaller mismatch

errors and rules out the rest of higher mismatch errors.

Using the truncated gradient in (13), we can develop the

robust (R)FGD and (R)AGD methods for SE, as tabulated in

Algorithm 3. The two algorithms are jointly presented as they

are only different in the gradient updates, on either u+ or uk.

Other settings such as initialization and step-size follow from

the original FGD/AGD method.

Remark 2. (Performance of Robust GD-SE) The GD based

updates using truncated gradient in (13) has been proposed

for solving nonconvex optimization problems under outliers,

such as the robust phase retrieval problem [27], [29], and more

recently the robust matrix factorization problem [28]. Results

therein suggest the truncated GD can achieve linear conver-

gence rate with sufficiently good initialization, given that the

original function is strongly convex and smooth. However, the

convergence guarantee and rate of the truncated AGD updates

are still an open question for nonconvex optimization. Our

numerical tests have shown that the RAGD-SE method could

achieve accelerated convergence performance than RFGD-SE,

while both are shown to converge numerically.

B. Augmented GD-SE with PMU Data

Compare to legacy quadratic measurement model of v,

PMUs provide synchronous phasor data that are linearly

related to the state v. If bus n is equipped with a PMU, then its

voltage phasor Vn and the incident line current phasors {Inn′}
are available with high accuracy. When there are sufficient

PMU measurements making the system observable, SE will

be non-iterative and fast thanks to the the linearity between

the PMU measurements and the system states. Currently and

in near future, power systems still have limited PMUs due to

the high installation and networking costs. Hence, SE must be

performed using both the legacy meters and PMU data.

Let {ζn}n∈P denote all the PMU measurements, where

P ⊆ N denotes the PMU-instrumented buses. The noisy

PMU data at bus n can be modeled as ζn = Φnv + εn,

where Φn denotes the measurement matrix constructed in

accordance to the bus index n and line parameters [30] and

εn the measurement noise assumed to be complex zero-mean

Gaussian. Given both z and {ζn}n∈P , the joint SE problem

aims to minimize the augmented error objective as

min
u∈CN

ga(u) := g(u) +
1

2

∑

n∈P
‖ζn −Φnu‖22. (14)

The PMU-augmented SE problem (14) is still nonconvex due

to g(u). Nonetheless, its gradient function can be formed by

∇ga(u) = ∇g(u) +
∑

n∈P
Φ

H
n (Φnu− ζn). (15)

Using this gradient function, both FGD-SE and AGD-SE

methods can be extended to include PMU data. The new LS

term from PMU data can be thought of as an additional reg-

ularization term on the original objective, which can improve

the effectiveness of gradient update thanks to the accuracy

of PMU data. Accordingly, the augmented FGD-SE or AGD-

SE methods could accelerate their respective counterparts, as

verified by our numerical results.

V. NUMERICAL RESULTS

The proposed FGD/AGD-SE methods and their extensions

have been tested on a laptop with Intel R© CPU @ 2.2GHz

(8GB RAM) in the MATLAB R© R2017a simulator. They are

compared with the SDP-SE solutions using the MATLAB-

based optimization modeling package CVX [31] together with

SeDuMi [21] solver. Three power transmission system test

cases, namely, the IEEE 118-bus, 300-bus, and the synthetic

ACTIVSg2000-bus [32] systems are used with the pertinent

power flow solver and GN-SE iterations implemented by the

MATLAB-based toolbox MATPOWER [33]. To generate the

measurements, random Gaussian noise (in p.u.) is added to the

power flow output, with σ` = 0.02 at line flow meters, 0.04 at

power injection meters, 0.004 at voltage meters, and 0.0004

at PMUs, respectively. Empirical root mean-square estimation
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Fig. 1: Average iterative error from the ground-truth V for the (left) 118-bus, (middle) 300-bus and (right) 2000-bus systems.

TABLE I: RMSE and GN Convergence Rate (GNCR)

SE Error 118-bus 300-bus 2000-bus

GN 0.022 (96%) 0.103 (70%) 0.256 (30%)
SDP-GN 0.003 (100%) 0.017 (100%) N/A (N/A)
FGD-GN 0.003 (100%) 0.017 (100%) 0.004 (100%)
AGD-GN 0.003 (100%) 0.017 (100%) 0.004 (100%)

TABLE II: Average Runtime of LS-SE Solutions

Time 118-bus 300-bus 2000-bus

GN 0.059s 2.039s 151.801s
SDP 8.650s 98.557s N/A
FGD 0.068s 0.749s 73.101s
AGD 0.039s 0.277s 35.733s

error (RMSE) ||v̂ − v||2/‖v‖2 is computed by averaging

over 100 Monte-Carlo realizations. For each realization, the

actual bus voltage magnitude (in p.u.) and phase angle (in

rad) of each bus are uniformly distributed over [0.95, 1.05]
and [−0.35π, 0.35π], respectively. To construct the normalized

systems, we follow the earlier approaches [12], [34] scale with

measurement as { z`
‖H`‖F

, H`

‖H`‖F
}L`=1.

To initialize all iterative updates, we set the bus voltage

magnitude to be its measured value, or 1 p.u.. The phase angles

are initialized as the linear SE solutions based on dc power

flow model. For all GD-based SE approaches throughout the

tests, the stepsize is chosen using (8) by fixing 1/c = 1/4.

Generally, the SDP-SE solution is not perfectly rank-one.

Thus, the popular eigen-decomposition approach is used to

retrieve the best rank-one approximation; see e.g., [7]. All

estimated voltage vectors by GD-SE or SDP-SE will be further

improved using the GN updates to reduce the optimality gap.

Empirically, 3-4 GN iterations are sufficient for convergence,

and thus this additional computational time is neglected for

evaluating the runtime of SDP-/GD-SE methods.

1) Test Case 1 on LS-SE Objective: We first test all methods

on the LS objective function (4). The measurements include all

bus voltage magnitudes, and all active and reactive line flows

at the ‘from’ end. The stopping criteria for GD-SE iterations

are based on consecutive change of the iterate and that of the

objective value, while the stop criterion for GN is based on

the first-order optimal condition.

To demonstrate the performance of FGD and AGD in

estimating the ground-truth V, the average iterative error

‖V1 − V‖F /‖V‖F , where matrix V
1 stands for the instan-

taneous matrix solution per iteration, is plotted in Fig. 1.

Both GD methods use the same step-size, showing nearly

linear convergence rate. Meanwhile, the AGD updates always

outperform FGD in terms of the convergence speed, thanks to

the improved condition number of AGD as in Remark 1.

We also compare the SE performance achieved by GD-SE

methods, to that by GN-SE and SDP-SE, as listed in Table I,

along with the percentage of convergence for the respective

GN updates. As mentioned earlier, the SDP-SE and GD-SE

solutions are used to initialize the GN updates (indicated

by the -GN) for reduced optimality gap. Table I shows that

these solutions achieve 100% GN convergence rate (GNCR),

verifying their near-optimal performance. As a comparison,

the GN-SE experiences divergence issues, even more seriously

as the system sizes increases. In addition, both FGD-GN and

AGD-GN achieve the same SE performance as the benchmark

SDP-GN. For the largest 2000-bus case, SDP-SE cannot be

solved by the generic CVX solver in reasonable time, and

thus its error performance is not reported. We can notice that

FGD-/AGD-GN still demonstrate superior error performance

for the 2000-bus case.

To better investigate the computational time improvement,

we have listed the average runtime of all solution techniques

over 100 realizations in Table II. Compared to the SDP

solver, both FGD and AGD scale nicely with the system size,

especially for AGD thanks to its improved initial condition.

Since the SDP solution is not found for the 2000-bus case, its

runtime is not reported. In contrast, AGD takes less than one

minute to converge. Compared to the two GD-based solutions,

the average runtime of GN from the original initialization

is much longer, mainly due to the divergence issue. Note

that the GN updates are set to stop at 200 iterations if not

convergent. This comparison again verifies the improvement of

gradient-based iterations, in approaching the globally optimal

SE solutions.

2) Test Case 2 on Robust SE: To generate outliers, five

measurement meters are randomly picked in each Monte-Carlo

run, with the corresponding data purposely manipulated to 5

times of actual value. To find the benchmark performance

for the proposed RFGD/RAGD method, we consider a re-

formulated robust SDP-SE model (RSDP) by using the l1-

norm instead of l0-norm term in (11) [35]. Specifically, we

solve its Lagrangian form augmenting the objective function
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TABLE III: RMSE and Outlier Identification Rate (OIR)

SE 118-bus 300-bus 2000-bus

LNR 0.177(48%) 0.529(4%) 1.363 (3%)
LAV 0.187(30%) 0.402(8%) 1.099 (2%)
SPL 0.218(4%) 0.358(3%) 0.451 (1%)

RSDP 0.028(60%) 0.078(45%) N/A (N/A)
RFGD 0.027(67%) 0.065(54%) 0.036 (55%)
RAGD 0.021(73%) 0.054(60%) 0.026 (72%)

TABLE IV: Average Runtime of Robust SE Solutions

Time 118-bus 300-bus 2000-bus

LNR 2.875s 24.626s 3091.6s
LAV 17.185s 42.623s 182.423s
SPL 1.424s 4.131s 90.342s

RSDP 8.345s 120.768s N/A
RFGD 0.419s 1.776s 79.165s
RAGD 0.226s 1.034s 42.188s

TABLE V: RMSE and OIR under Interacting Outliers (IO)

SE 118-bus 300-bus 2000-bus

LNR 29.924(38%) 0.422(10%) 1.205 (1%)
LAV 0.246(26%) 0.298(20%) 0.882 (0%)
SPL 0.197(9%) 0.321(2%) 0.379 (0%)

RSDP 0.056(47%) 0.060(41%) N/A (N/A)
RFGD 0.043(52%) 0.044(49%) 0.029 (54%)
RAGD 0.036(60%) 0.037(55%) 0.027 (58%)

TABLE VI: Runtime of Robust SE Solutions under IO

Time 118-bus 300-bus 2000-bus

LNR 3.625s 29.075s 2583.1s
LAV 32.659s 45.445s 180.909s
SPL 1.551s 4.397s 92.465s

RSDP 9.359s 132.801s N/A
RFGD 0.490s 2.139s 90.286s
RAGD 0.240s 1.605s 43.793s

as V̂ = argminV,τ f ′(V, τ ) + λ‖τ‖1, where λ is a pos-

itive parameter. The GN-based largest normalized residual

(LNR) test as developed in [19, Ch. 5] is included as well.

LNR repeats a procedure consisting of bad data detection,

identification, and deletion of single measurement of largest

error, until no bad data are to be found. We also implement

the classical robust least-absolute value (LAV) estimator [3],

which iteratively solves the linearized problem using the latest

iterates. Recently, the robust LAV objective has been solved

using the so-termed stochastic prox-linear (SPL) method [20],

which can accelerate the convergence speed by using a special

linearization on the complex phasor representation.

We test all robust solvers, namely LNR, LAV, SPL, RSDP,

RFGD/RAGD, on the three test cases. For simplicity, the

initialization is set to be flat start. Again, the l1-norm based

RSDP is solved by CVX, where λ is set based on the

level of 3 times noise standard deviation. For all methods,

the total number of outliers is set to be 10. This choice is

very conservative but shown reasonable performance under

good measurement redundancy. More advanced methods for

determining the number of outliers can be found in [36, Ch.

6]. Upon the convergence of all methods, 10 measurements

with the largest deviation errors will be identified as outliers

and compared to the ground truth to compute the identification

success rate. Afterwards, the other measurements together with

the solution of u will be used to evoke the GN iterations for

evaluating the SE error performance.
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Fig. 2: Estimation performance for the IEEE 118-bus system

with 5 actual outliers.

Table III lists the RMSE and success rate of identifying

outliers for all robust SE methods, while Table IV provides the

average runtime. Similar to Test Case 1, RFGD and RAGD

consistently outperform the other robust solutions, in both the

SE error and outlier identification rate (OIR), with similar

computational time. Compared to Table I, all the methods

experience slightly larger RMSE because of the existence of

outlier data. However, the performance of RFGD/RAGD is

still elegant as they both can identify the majority of outliers.

Interestingly for the robust case, RAGD at fastest runtime

slightly outperforms RFGD in terms of error performance.

Also, both of them can even improve the RSDP solution. This

is perhaps because the robust GD methods perform outlier

thresholding at every iteration and thus exclude outlier data

more effectively. Notably, Table III indicates that the OIR for

LNR, LAV, or SPL decreases as the system size increases from

118-bus to 2000-bus. This points out the importance of having

a well-designed robust SE algorithm for practical systems. The

normalized error for each Monte-Carlo run using the 118-bus

system as plotted in Fig. 2 also confirms that GD-based robust

SE solutions consistently outperform other counterparts.

We further test the proposed robust SE methods in the

presence of multiple interacting outliers (IO). Following the

steps in [19, Ch. 5], in every realization we pick five bad data

to be interacting, such that residuals of these measurements

are strongly correlated based on the measurement residual

sensitivity matrix. The RMSE and the OIR are listed in Table

V, and Table VI shows the average runtime. Compared to the

results for random outliers in Table III, the presence of IO can

lead to increased RMSE values, especially for the LNR and

LAV estimators using the 118-bus case. For the larger 300-

bus and 2000-bus cases, the impact of IO is very minimal.

By and large, the proposed RFGD and RAGD methods still

outperform other robust estimators in both the RMSE and OIR,

even for the IO case.

3) Test Case 3 on Low-Redundancy (LR) System: To better

address numerical stability concerns, we test a modified 118-

bus system with LR in measurements. This LR 118-bus system
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TABLE VII: LS-SE Results for the LR 118-bus System

SE GN SDP-GN FGD-GN AGD-GN

RMSE 0.075 0.007 0.007 0.007
GNCR 94% 100% 100% 100%

Runtime 0.052s 7.854s 0.056s 0.042s

TABLE VIII: Robust-SE Results for the LR 118-bus System

SE LNR LAV SPL RSDP RFGD RAGD

RMSE 0.843 0.628 0.387 0.091 0.079 0.072
OIR 12% 13% 5% 55% 64% 69%
Time 3.466s 31.835s 1.501s 10.932s 0.563s 0.382s

has a total of 418 measurements, including all the bus voltage

magnitudes and 300 power measurements; see e.g., the setting

in [4]. All other settings follow from Test Case 1. The SE

results are shown in Table VII, including all three metrics.

Compared with the original system results in Tables I, the

LR system shows similar comparisons among the four SE

methods. Notably, the convergence rate of GN updates slightly

decreases and RMSE error increases, as a result of less

measurements. Thus, the proposed GD-SE methods are more

robustness to low measurement redundancy.

We also test all robust solvers using the LR 118-bus system

with 5 randomly selected outliers. All other settings follow

from Test Case 2. The RMSE, OIR and average runtime

are listed in Table VIII. The results for both LNR and

LAV using the LR system show high level of performance

degradation compared to those for the original system in Table

III. Specifically, the OIR of LNR decreases from 48% to

12%, while that of LAV decreases from 30% to 13%. On

the contrary, our proposed RFGD/RAGD methods can still

maintain the same performance (> 60% of OIR) for the LR

system. Hence, the LR system tests further demonstrate the

convergence issue of traditional SE methods, while confirming

that our proposed ones are more effective in dealing with ill-

conditioned problems or bad data.

4) Test Case 4 on PMU-aided SE: We further evaluate the

SE performance with the additional PMU data on the three

test cases. All methods in Test Case 1 are considered, with

their PMU-aided counterparts denoted by the subscript p here.

For GNp, the sequential approach of including PMU data in

[37] is adopted. It entails two steps: i) the LS-based SE is

performed first to process the legacy measurements, followed

by ii) a post-processing step which only involves a linear

models together with PMU data. Four buses are selected to

equip with PMUs, namely {10, 12, 27, 15}, based on the PMU

placement work in [26]. For these buses, the legacy meters are

no longer included.

Similarly, Table IX lists the SE error and average runtime

for all PMU-augmented solutions. Compare to Table I, the

SE error has been improved for all scenarios, thanks to the

accurate PMU data. Both FGDp and AGDp still achieve

the same estimation performance as SDPp. Compared to the

runtime in Table II, the two GD-based solutions are even faster

with PMU data, thanks to the additional regularization that the

latter provides to the objective function.

TABLE IX: RMSE and Average Runtime of PMU-aided SE

SE Error (Time) 118-bus 300-bus 2000-bus

GNp 0.016 (0.289s) 0.091 (7.837s) 0.182 (151.504s)
SDPp 0.002 (8.415s) 0.015 (99.070s) N/A (N/A)
FGDp 0.002 (0.058s) 0.015 (0.469s) 0.003 (72.848s)
AGDp 0.002 (0.019s) 0.015 (0.114s) 0.003 (30.626s)

VI. CONCLUSIONS

This paper presented a gradient descent (GD) based frame-

work for solving the nonconvex SE formulation, in order

to accelerate the convex SDP-based SE for power system

monitoring. The SDP formulation can offer near-optimality

performance and improve the divergence issue of the iterative

GN method. To tackle the high computational complexity of

SDP-SE, we propose to adopt the factored (F)GD-update for

the nonconvex objective on voltage phasor vector. Further-

more, the accelerated (A)GD-update is developed to improve

the condition of the objective function. For FGD-SE, a linear

convergence rate is guaranteed based on the analysis of

the strong convexity and smoothness of the LS objective,

whereas simiar result also holds for AGD-SE. Both proposed

FGD-/AGD-SE methods can be extended to include practical

scenarios of measurement outliers and PMU data. Extensive

numerical comparisons have demonstrated the near-optimal

error performance of the proposed approaches, while greatly

reducing the computation time.

Interesting future research directions open up, including the

convergence guarantee and rate of robust AGD-SE method.

Moreover, we are interested to pursue the constrained SDP

extension for SE problem under voltage limits or even optimal

power flow problem.

APPENDIX

A. Calculation of Complex Gradient of a Real Function

Consider a real function g with the complex u input, the

complex gradient direction is given by [38, Ch. 4]

∇g(u) =
∂g(u)

∂<(u) + j
∂g(u)

∂=(u) . (16)

For the nonconvex SE objective g in (4), we can use the chain-

rule to find

∇g(u) =
∑L

`=1
(uH

H`u− z`)∇(uH
H`u). (17)

To find the second-term in (17), let u = r + jx and H` =
R`+jX`, and thus the real function (uH

H`u) = Tr[R`(rr
T +

xx
T )−X`(xr

T − rx
T )]. Thus, we have

∂(uH
H`u)

∂r

(i)
= 2R`r−X`x+X

T
` x

(ii)
= 2R`r− 2X`x

where (i) is due to the derivative of trace, and (ii) follows

from X
T
` = −X` as H` is Hermitian. Simiarly, we can find

the partial derivative with respect to x and thus the complex

gradient ∇(uH
H`u) = (2R`r − 2X`x) + j(2R`x + 2X`r),

which is exactly equal to the complex product of 2H`u. This

completes the proof of (5).
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B. Analysis of the SDP-SE Objective Function f

Consider any V ∈ V , H(V) is the vector of error-free

measurements. Thus, we have

‖H(V)‖22 =
∑

n∈NV

|Vn|4 +
∑

(n,n′)∈ES

P 2
nn′ +

∑

(n,n′)∈ES

Q2
nn′

+
∑

n∈NS

P 2
n +

∑

n∈NS

Q2
n, (18)

where the sets denote the corresponding meter locations. Using

the power flow model, we can derive upper/lower bounds for

each of the summand terms in (18). First, using the voltage

limits in (6) we have

¯
V 4 ≤ |Vn|4 ≤ V̄ 4. (19)

As for the line flows, a trivial lower bound is 0, with the upper

bound given by

P 2
nn′ +Q2

nn′ = |Snn′ |2 = |Vn(ynn′(Vn − Vn′))H|2
≤|Vn|2|ynn′ |2(|Vn|+ |Vn′ |)2 ≤ 4|ynn′ |2V̄ 4, (20)

by applying the triangle inequality. Similarly, the power injec-

tion is upper bounded by

P 2
n +Q2

n = |Sn|2 = |Vni
H
n |2 = |Vn(

∑

ν∈Nn

ynνVν)
H|2

≤|Vn|2
(

∑

(n,ν)∈E
|ynν |V̄

)2

≤
(

∑

(n,ν)∈E
|ynν |

)2

V̄ 4. (21)

This way, we can find the upper/lower bounds for ‖H(V)‖22
to quantify the two positive parameters m and M . Note that

we use a trivial lower bound of 0 for power measurements.

This bound can be further improved by assuming a minimal

angular separation between the two end buses of any line or

using the system’s total power demand.
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