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Abstract—Fast power system state estimation (SE) solution
is of paramount importance for achieving real-time decision
making in power grid operations. Semidefinite programming
(SDP) reformulation has been shown effective to obtain the global
optimum for the nonlinear SE problem, while suffering from high
computational complexity. Thus, we leverage the recent advances
in nonconvex SDP approach that allows for the simple first-order
gradient-descent (GD) updates. Using the power system model,
we can verify that the SE objective function enjoys nice properties
(strongly convex, smoothness) which in turn guarantee a linear
convergence rate of the proposed GD-based SE method. To
further accelerate the convergence speed, we consider the accel-
erated gradient descent (AGD) extension, as well as their robust
versions under outlier data and a hybrid GD-based SE approach
with additional synchrophasor measurements. Numerical tests
on the IEEE 118-bus, 300-bus and the synthetic ACTIVSg2000-
bus systems have demonstrated that FGD-SE and AGD-SE, can
approach the near-optimal performance of the SDP-SE solution
at significantly improved computational efficiency, especially so
for AGD-SE.

Index Terms—Power system state estimation, semidefinite pro-
gramming, gradient descent, accelerated gradient descent, robust
estimation.

I. INTRODUCTION

OWER system state estimation (SE) aims to obtain the
operating condition of the grid, namely nodal complex
voltages, from noisy measurements at buses and branches. The
SE problem is of paramount importance for reliable control
and economic operation of power systems; see e.g., [1], [2].
Due to a nonlinear measurement model, SE is traditionally
formulated as a nonlinear least-squares (LS) problem and
solved by Gauss-Newton (GN) iterations [3]. The GN method
iteratively updates the variables by minimizing an approxi-
mate objective through linearization. Albeit computationally
efficient per iteration, the convergence of GN iterations is
not guaranteed. Recent work [4]-[6] and references therein
have provided insightful understandings on GN divergence,
such as heavy loading conditions or bad data including topol-
ogy errors. To tackle this issue, a semidefinite programming
(SDP) reformulation of the SE problem has been proposed
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in [7] through rank relaxation. The resultant convex problem
achieves near-optimal guarantees to solve the original non-
convex SE. To promote lower-rank solutions, [8] suggested a
nuclear norm based penalization. General penalization terms
are designed in [9], [10] for recovery guarantees and quantifi-
able estimation error of the SDP-SE formulation. To account
for bad data, robust SDP-SE has been developed by modeling
outliers using a sparse vector [S], [11]. Although global optima
of SDP-SE can be obtained by generic convex solvers such as
the interior-point method, the high-order polynomial complex-
ity therein could challenge real-time implementation in large-
scale systems [11]. Recent work has focused on using conic
relaxation or composite optimization techniques for the SDP-
SE problem [9], [12]. A parallelizable SDP-SE solution was
also developed in [7], [13] using graph-specific decomposition.
However, it remains open on how to develop fast SDP-SE
solvers with simple implementation steps.

Recently, a nonconvex approach to solving SDPs by repre-
senting the solution matrix using the Burer-Monteiro factoriza-
tion [14], [15] has become popular. The factorization form can
easily eliminate the positive semi-definite (PSD) constraint of
SDP problems. This way, the first-order gradient descent (GD)
updates are readily applicable to the resultant nonconvex ob-
jective, leading to the so-termed factored GD (FGD) algorithm
[16]. Linear convergence guarantee for FGD is available if the
original SDP objective is strongly convex and smooth with
sufficiently close initialization. Albeit at linear convergence
rate, FGD may suffer from slow convergence speed depending
on the conditioning of objective function. To tackle this, the
popular extension of accelerated GD (AGD) method [17] was
considered for the nonconvex SDP reformulation in [18].

The goal of the present work is to accelerate large-scale
SDP-based SE method by leveraging latest advances in fast
SDP solution techniques. Our contribution is two-fold. First,
we develop a class of fast GD-based solvers for the SDP-SE
formulation that can achieve guaranteed linear convergence
rate to a closely approximate SDP-SE solution. Specifically,
we have successfully adopted both the FGD and AGD methods
for the SDP-SE problem with excellent performance under
regular SE conditions. Second, we further enhance the FGD-
/AGD-SE solvers to account for practical concerns such as
the presence of outliers or synchrophasor data. Our proposed
robust GD-SE solutions incur a simple hard thresholding step
to tackle outliers, while a hybrid GD-SE method is developed
by extending the gradient direction to include synchropha-
sor measurements. All the GD-SE methods and extensions
enjoy extremely efficient update per iteration, with linear
convergence rate verified by our analysis and numerical tests.
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Numerical results also confirm the excellent performance of
the GD-SE methods in estimating the voltage phasors and
identifying outliers.

The rest of the paper is organized as follows. The SDP-
SE problem and the nonconvex reformulation are introduced
in Section II. Section III presents the FGD-/AGD-SE meth-
ods along with the convergence analysis specifically for the
power system models. Section IV develops the robust GD-
SE methods and the PMU-aided extensions. Several numerical
tests presented in Section V corroborate the faster computation
time of FGD and AGD relative to the SDP-SE solver, and
improved estimation performance over GN iterations. The
paper is wrapped up in Section VI.

Notation: Upper (lower) boldface symbols stand for ma-
trices (vectors); | - | stands for the magnitude; (-)7 denotes
transposition; (-)* complex-conjugate transposition; R(-)/(-)
the real/imaginary part; Tr(-) the matrix trace; rank(-) the
matrix rank; || - || the Frobenius norm; || - |2 the spectral
norm, and V > 0 denotes V is a positive semi-definite (PSD)
matrix.

II. PROBLEM FORMULATION

Consider a transmission network modeled as a graph G =
(N, E), with the set of buses (nodes) in A := {1,..., N} and
the set of lines (edges) in £ := {(n,n’)}. The complex voltage
phasor V;, per bus n € A can be expressed in the rectangular
coordinate as V,, = R(V,,) + j(V4,). All nodal voltages form
the full system state vector v := [Vi,...,Vy]T € CVN. To
estimate nodal voltages in v, a subset of the following system
variables are measured:

e P,(Qy): the active (reactive) power injection at bus n;
o Phn/(Qnn): the active (reactive) power line flow from
bus n to bus n';
e |V,]: the voltage magnitude at bus n.
The ac power flow model [1, Ch. 4] asserts power variables
are nonlinearly (quadratically) related to the state v.
Collecting the noisy measurements in the vector z :=
{B} AQu} {Pan } AQu 1 {IVul?H] " € RE, where L is
the total number of measurements, one can write the /¢-th
measurement in z as

ze=he(v)+e, W=1,...,L @))

where hy(-) stands for the nonlinear transformation from v,
and ¢, accounts for the additive measurement error. Given
this measurement model, the SE problem can be cast as a
(weighted) LS minimization one over v. Without loss of gen-
erality (Wlog), we assume the weight coefficients are included
by the model (1). Thus, it suffices to consider the unweighted
LS-SE objective throughout the paper. Due to its nonlinear
objective, Gauss-Newton (GN) has been the workhorse solu-
tion for LS-SE; see e.g., [19]. GN iteratively approximates the
objective by linearizing (1) at the latest solution. This iterative
linearization procedure, though computationally efficient if
convergent, can be potentially divergent under heavy loading
or bad data conditions; see e.g., [4], [6]. The lack of statistical
robustness was identified in [4] to cause divergence of GN in
addition to numerical instability concerns.
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One approach to tackle the nonlinearity is to introduce the
outer-product matrix V := vv’* € CN*N consisting of all
quadratic terms involving v. This way, each measurement in
(1) is linearly related to V, as given by

2p =v'Hyv + e =Tr(H/ V) 4+ ¢, V=1,...,L. (2

where H, € CN*N is Hermitian matrix depending on the
network topology and line parameters (see e.g., [7], [20] for
the definitions). Reformulating the LS objective about v using
(2) leads to the following semidefinite program (SDP) for V:

L

V = arg m\i,n f(v):=
=1

% [z — Te(H, V)] (3a)

st.V=0 (3b)

where the PSD constraint in (3b) together with rank(V) = 1
can guarantee the existence of v that satisfies V = vv. Due
to the nonconvexity of rank constraint, it is dropped through
a well-appreciated semidefinite relaxation (SDR) procedure
that leads to the convex SDP-SE formulation (3). Solving
the latter can achieve a near-optimal performance for the SE
problem as the solution tends to have very low-rank; see [10],
[11]. General convex solvers such as the popular interior-point
method based solver SeDuMi [21] can obtain the optimal A%
in polynomial time. Nonetheless, these solution methods can
scale unfavorably as the number of buses or measurements
increase, with worst-case complexity at O(N*®) [11]. Thus,
it is necessary to develop accelerated algorithms for solving
large-scale SDP-SE in real-time.

Motivated by recent work on nonconvex SDP solvers [16],
we consider an equivalent formulation of (3). The idea is
to use matrix factorization to represent the PSD matrix as
product of two factor matrices, as first proposed by [14], [15].
Accordingly, it can tackle the main computational challenge
caused by the PSD conic constraint (3b). In general, expressing
V = UU™ using a rank—r matrix U € CV*", one can
reformulate (3) as an unconstrained one for the complex U:

U=arg min g(U):= fUU"). )

The rest of paper will consider the case of r = 1; i.e., U
becomes a vector u. The advantage of using a rank-one u here
is two-fold: (i) the relaxed SDP problem (3) is likely to attain
a nearly rank-one solution; and (ii) searching for rank-one
solutions has the lowest computational complexity. Note that
the function g(u) in (4) is equivalently the traditional (W)LS-
SE objective, which is again nonconvex. Interestingly, based
on the SDP formulation (3), one can show that the gradient
descent (GD) updates for the reformulation (4) can achieve
guaranteed convergence to a closely approximate solution to
(3). Thus, we develop a class of GD-SE methods that enjoy
both low computational time and guaranteed convergence.

III. GRADIENT-DESCENT BASED SE SOLVERS

Thanks to the unconstrained structure and convenient gra-
dient computation, we can use first-order methods such as
gradient descent (GD) to solve (4). This simple approach,
termed as factored GD (FGD) in [16], has been shown to
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converge to the global optimum of general SDP problems,
at a linear rate similar to that of classical GD method for
strongly convex and smooth functions [22, Ch. 9]. Inspired
by these results, we first use power flow analysis to prove the
convergence rate of FGD for our LS-SE problem. Furthermore,
we will propose an accelerated scheme of FGD for improved
convergence rate.

A. Factored Gradient Descent Method

To develop the FGD updates for (4), it suffices to compute
the derivative Vg(u) for any complex u. Using the chain rule,
one can write

L
Vg(u) =2V f(uu®) x u=">"2[u*Hmu - z|Hu. (5)
=1

The rigorous derivation for a complex derivative is slightly
more complicated, with the details in Appendix A. Given step-
size ), the main FGD-SE steps are tabulated in Algorithm 1 for
general rank-r solutions. To select the 7 value and establish the
convergence results, one needs to investigate the characteristics
of the original SDP function f(V).

Specifically, consider a compact form f(V) = 3|z —
H(V)||3, where #(-) stands for the linear mapping in the
SDP objective (3). In general, strong convexity is needed for
the loss function f. Nonetheless, it is challenging to show that
over any PSD V of an arbitrary rank r. Instead, we can restrict
it to a subset of V’s [23]. Specifically, we consider the subset

V= {Vlrank(V) =1 and V2 < V,,, <V2Vn}  (6)

where V/V are lower/upper bounds on bus voltage magnitude.
These bounds (e.g., 5% from unity) are easily available
thanks to well-designed power system voltage control mecha-
nism. Using the subset V, we can show the following bounds
as given in Appendix B.

1

Proposition 1. For any V €V as given by (6), its mapped
output H(V) for the SDP-SE objective | in (3) satisfies

m- [VI[E < [HW)IE < M- V]E (7

where m and M are positive coefficients. Hence, the objective
f is m-strongly convex and M -smooth over restricted set V
with the condition number k = M /m.

Proposition 1 is shown by leveraging the power flow model
embedded in the mapping H. It is a key result to ensure the
convergence of FGD for the objective g, even though the latter
is not (strongly) convex itself. For example, heavy loading
conditions would lead to larger angular separation across the
transmission line. Our numerical experience suggests that this
increased angular separation has resulted in decreased value
of m, and thereby higher condition number x = M /m. This
observation coincides with that for GN-SE method, as heavy
loading conditions make it more likely to diverge [4]. Sec.
III-B will introduce a GD scheme that can better tackle ill-
conditioned problems due to e.g., heavy loading.

As developed in [16], using the initial V) = uouOH one can
set the step-size according to

1

T M Volla + [VF(Vo)ll2)

®)

Algorithm 1 FGD-SE

Input: Function f, rank r, maximum iteration number K.
Output: u and V = uu*
Initialize ug € C™*" and set Vo = upu/}.
Set the step-size 1 as in (8).
for k=0 to K do
U1 = up —nVg(uyg)
end for
return u = ug and V = uguj

AN A T

where the constant ratio 1/c was picked as 1/16 in [16] but can
be better tuned up according to specific problems. In practice,
the smoothness parameter M can be approximated by the ratio
IV (Vo) = VF(V)#/IIVo — V]| for any V € V.

To establish the local convergence of Algorithm 1 for the
SDP-SE problem, we need the following two assumptions
regarding the approximation to the global optimal G and
V! :=aa™, using small constant numbers p, and p,.

(as1) The initial ug satisfies Dist(ug, ) < £[/dfl2, where
Dist denotes the minimum Euclidean distance between
the two complex vectors up to any rotational change.

(as2) The optimum V satisfies |V — V1| < Lee |3,

Assumption (asl) requires the initial guess to be sufficiently
close to the optimal 1. As the upper bound scales with ||]|2, it
could be reasonable for good initialization such as flat start or
the SE solution from dc power flow model. Assumption (as2)
relates to the rank-one approximation to V. Since the SDP-SE
solution V is nearly rank-1 [10], [11], the upper bound therein
could also be satisfied in practice.

Proposition 2. Suppose (asl) and (as2) hold and use the
step-size in (8). Under Proposition 1 with the SE objective f
satisfying (7), the FGD-SE updates in Algorithm 1 converge
linearly to a neighborhood of Q. Specifically, it can be shown
that the update at iteration k satisfies

Dist(ugy1,1)? < o - Dist(ug, @)% + 8- |V = V% (9)
where 0 < a < 1 is the contraction rate and (3 is a constant
number, both depending on the optimal Q.

A sketch of the proof is provided here following from
[16, Lem. 14-16]. Due to the rotational ambiguity, define
Dist(ug, ) := ||0g]l2 := |Jux — GRy]||2, where the rotation
matrix Ry, yields the smallest Euclidean distance between the
two. Since ugy1 — GRy; = (up41 — ug) + (up — GRy), one
can derive the following bound:

18541113 < s — wgll3 + [|8kll2 — 2(upi1 — up, —0).

The FGD update dictates ux; — ux = nVf(Vi)ug. It is
important to characterize the third term in relation to the
first two. By considering V!, the third term is re-written
as 2(upy1 — wg, —0x) = n(Vf(Vi), Vi — V) +
NV f(Vi), 8,.0) where 7 is the fixed stepsize in (8). Using
Proposition 1 and (as1), one can show (V f(Vy), Vi—V1) >
01|V f (Vi) ug|*+aq||6k]|2—B1 ||V —V1||%, with all positive
constants 61, «; and (7. Additionally, using (as2) we have
(VF(Vi), 0k0l) > —0al[VF(ViJuel® — az]8]? with
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positive 6 and «ay again. Adding these two lower bounds
together, one can bound Dist(ug1,1)? := ||6441]|3 as

18541113 < =031V F(Ve)ug|% + a8k + BV — V3.

Since —#3 is negative, the first term can be ignored, which
completes the proof for (9).

Note that (9) shows that the accuracy of the convergent
solution depends on the term 3|V — V1|2 If the optimum
V is rank-one, the FGD-SE updates will accordingly converge
to the globally optimal V. This condition relates to the approx-
imation performance of SDP-SE (3) to the original unrelaxed
problem, which has been corroborated by both analytical and
numerical results [7], [10], [11]. Hence, we will not focus on
this aspect but instead discuss more on the convergence speed
of FGD-SE, as related to the « value. Faster convergence speed
requires a smaller «, which critically depends on the initial ug
and the condition number x. Various initialization schemes are
available for SE, including flat start and dc power flow based
solution. Our numerical tests suggest that these options work
well for the FGD-SE updates, even though they do not strictly
satisfy (asl). Our empirical experience has identified the main
issue to be that the SE objective f tends to have a very large
condition number x. As a result, the convergence speed for
FGD would gradually decrease as the number of iterations &
increases. This motivates us to develop an accelerated scheme
for FGD-SE as follows.

B. Accelerated Gradient Descent Method

Slower convergence speed as a result of ill-conditioned
objective function is a common issue for first-order methods.
One popular improvement is to use the Nesterov’s accelera-
tion scheme first proposed in [17]. This improved first-order
method has been shown to achieve superlinear convergence
rate for convex objectives. Loosely speaking, it can reduce the
condition number to /r. Here, we develop the accelerated GD
(AGD) based SE method for the nonconvex problem (4).

Different from FGD that uses only the instantaneous gradi-
ent, AGD takes the information from the past two iterations
to compute the update. Per iteration k, a time-varying inter-
polation is first performed to obtain

k—1
u+—uk+(

k+? 1o

) (ug —ug—1),Vk=1,2,...

which is used to update uy,; as the gradient descent on u*.
The ratio 1 = % is termed as the momentum parameter for
AGD, which increases to 1 as k approaches infinity. Note that
the paper [17] proposed a momentum parameter p = %
by generating a positive sequence {tj}. It was shown in [24]
that 5 > % and thus one can approximately set a simpler
parameter p = tt’z;l with ¢, = % For ugp at k = 0, the
update u; is simply computed using the FGD rule. The AGD

method is tabulated in Algorithm 2.

Remark 1. (AGD convergence for nonconvex g.) Recent
results in [18] show that AGD can achieve linear convergence
rate for approximating the SDP problem as well. Compared
to (asl), the initial condition can be updated to Dist(ug, i) <
% |[a]|2 for AGD where p, is again a small constant. Clearly,
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Algorithm 2 AGD-SE

Input: Function f, rank r, maximum iteration number K.
Output: u and V = uu*
. Initialize ug € C"*" and set Vo = upu/}.
. Set the step-size 1 as in (8).
: Compute u; = ug — nVg(up).
for k =1to K do
Update u™ as (10) and ug; = u™ — nVg(u™)
: end for
. return ug and V = uguj}

this condition is more relaxed than (asl) as it increases
the upper bound by a factor of /«. In addition to relaxed
condition, our numerical tests have shown that the AGD-SE
method will achieve faster convergence speed than FGD-SE
under exactly the same settings of initialization and step-size.

IV. PRACTICAL EXTENSIONS FOR GD-SE SOLVERS

In addition to convergence guarantees and speed, it is
truly important to consider practical issues in SE, such as i)
robustness to bad data (outliers), ii) incorporation of additional
meter types, and iii) multi-area implementation. Traditionally,
outliers arise in SE due to data contamination, meter failure
and synchronization issues [3], [4], [20]. More recently, ma-
licious cyber attacks [25] and topology errors [8] can also
contribute to SE outliers. Meanwhile, recent development of
phasor measurement units (PMUs) motivates us to expand the
SE solvers to incorporate synchrophasor data as well. There is
also increasing trend to consider multi-area SE among different
control centers [7], [13], [26]. All these practical concerns
have been shown to potentially worsen the convergence issue
of GN-SE method; see e.g., [4], [7], [8]. Due to page limit,
we focus on discussing the first two extensions for GD-SE.
Multi-area (Distributed) GD-SE can be developed using the
framework of distributed linear SE method such as [26].

A. Robust GD-SE against Outliers

One popular approach to tackle the presence of bad data is
to introduce a sparse vector 7 € RY with 7, # 0 indicating
an outlier entry. This way, the robust SDP-SE (RSDP-SE)
problem can be formulated as [11]

L
1
win f(V,7) = 3 Z{[z¢ - TH(HV)] - 7} (la
’ (=1

st. V=0, |70 < pL (11b)

with the pseudo-norm ||7|lo = >, 1{7; # 0} as the number of
nonzero entries and p is the given fraction of outliers. Hence,
the constraint (11b) ensures that 7 is sparse with at most pL
non-zero entries.

To generalize the GD-SE methods to the RSDP-SE problem
(11), we consider the nonconvex counterpart as ¢'(u,7) :=
f/(uu’, 7). Note that the GD updates now have to satisfy
the additional sparsity constraint (11b). To this end, we adopt
the idea of hard thresholding [27], [28] to obtain the fruncated

0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 29,2020 at 22:12:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2950392, IEEE

Transactions on Power Systems

LAN et al.: FAST NONCONVEX SDP SOLVERS FOR LARGE-SCALE POWER SYSTEM STATE ESTIMATION 5

Algorithm 3 RFGD-SE and RAGD-SE

Input: Function f, rank r, maximum iteration number K, and
outlier fraction p.
Output: u and V = uu

1: Initialize uy € C"*" and set Vo = ugu}t.

2: Compute the current error x, and threshold it to 7.
3: Update u; = ug — nVy ¢'(uo, 70)-

4: Set the step-size 7 as in (8).

5: for k=1 to K do

6:  if RAGD updates then

7: Compute u* = uy, + (£=2) (up — ug_1)

3

9

H

k42
else if RFGD updates then

: Set ut =u;
10:  end if
11:  Compute the current error x;, = z — H(ut(ut)™).
12 Threshold the error to 7, = D, (X )-
13:  Update ugy1 = ut — nVy ¢'(ut, 7p).
14: end for
15: return ug and V = uguk

gradient by removing the data samples with significantly high
mismatch error. For a given integer v < L, define the hard
thresholding operator D., as

2,00, = { o

where |x(?)| denotes the entry in x € R with the 7-
largest absolute value. Equivalently, D throws away the -
largest values of . For any given u, one can use the
thresholding operator on the instantaneous error mismatch,
namely x, = 2y — u™H,u. Hence, by setting the outlier
indicator 7 = D,1,()x), the former always satisfies the sparsity
constraint, and the gradient of ¢’ at u becomes

if [xe| > x|,
otherwise,

(12)

Va ¢ (u,7) = 2V f (uu” 1) x u
— Z 2(u*Hpu — 2 + 7)) Hou (13)
=1

Since T is the hard thresholded output of x, the summation in
(13) only takes (L — pL) measurements of smaller mismatch
errors and rules out the rest of higher mismatch errors.

Using the truncated gradient in (13), we can develop the
robust (R)FGD and (R)AGD methods for SE, as tabulated in
Algorithm 3. The two algorithms are jointly presented as they
are only different in the gradient updates, on either u™ or uy.
Other settings such as initialization and step-size follow from
the original FGD/AGD method.

Remark 2. (Performance of Robust GD-SE) The GD based
updates using truncated gradient in (13) has been proposed
for solving nonconvex optimization problems under outliers,
such as the robust phase retrieval problem [27], [29], and more
recently the robust matrix factorization problem [28]. Results
therein suggest the truncated GD can achieve linear conver-
gence rate with sufficiently good initialization, given that the
original function is strongly convex and smooth. However, the
convergence guarantee and rate of the truncated AGD updates

are still an open question for nonconvex optimization. Our
numerical tests have shown that the RAGD-SE method could
achieve accelerated convergence performance than RFGD-SE,
while both are shown to converge numerically.

B. Augmented GD-SE with PMU Data

Compare to legacy quadratic measurement model of v,
PMUs provide synchronous phasor data that are linearly
related to the state v. If bus n is equipped with a PMU, then its
voltage phasor V;, and the incident line current phasors {I,,,,' }
are available with high accuracy. When there are sufficient
PMU measurements making the system observable, SE will
be non-iterative and fast thanks to the the linearity between
the PMU measurements and the system states. Currently and
in near future, power systems still have limited PMUs due to
the high installation and networking costs. Hence, SE must be
performed using both the legacy meters and PMU data.

Let {¢, }nep denote all the PMU measurements, where
P C N denotes the PMU-instrumented buses. The noisy
PMU data at bus n can be modeled as ¢,, = P,V + €5,
where ®,, denotes the measurement matrix constructed in
accordance to the bus index n and line parameters [30] and
€, the measurement noise assumed to be complex zero-mean
Gaussian. Given both z and {¢,, }nep, the joint SE problem
aims to minimize the augmented error objective as

: a . 1 2
Jmin g (u) = g(u) + 5 > ¢, —®aul3 (14
nePpP
The PMU-augmented SE problem (14) is still nonconvex due
to g(u). Nonetheless, its gradient function can be formed by

Vg (u) = Vg(u) + Y ®X(®,u—(,).
nep

Using this gradient function, both FGD-SE and AGD-SE
methods can be extended to include PMU data. The new LS
term from PMU data can be thought of as an additional reg-
ularization term on the original objective, which can improve
the effectiveness of gradient update thanks to the accuracy
of PMU data. Accordingly, the augmented FGD-SE or AGD-
SE methods could accelerate their respective counterparts, as
verified by our numerical results.

15)

V. NUMERICAL RESULTS

The proposed FGD/AGD-SE methods and their extensions
have been tested on a laptop with Intel® CPU @ 2.2GHz
(8GB RAM) in the MATLAB® R2017a simulator. They are
compared with the SDP-SE solutions using the MATLAB-
based optimization modeling package CVX [31] together with
SeDuMi [21] solver. Three power transmission system test
cases, namely, the IEEE 118-bus, 300-bus, and the synthetic
ACTIVSg2000-bus [32] systems are used with the pertinent
power flow solver and GN-SE iterations implemented by the
MATLAB-based toolbox MATPOWER [33]. To generate the
measurements, random Gaussian noise (in p.u.) is added to the
power flow output, with o, = 0.02 at line flow meters, 0.04 at
power injection meters, 0.004 at voltage meters, and 0.0004
at PMUs, respectively. Empirical root mean-square estimation
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Fig. 1: Average iterative error from the ground-truth V for the (left) 118-bus, (middle) 300-bus and (right) 2000-bus systems

TABLE I: RMSE and GN Convergence Rate (GNCR)

SE Error
GN
SDP-GN
FGD-GN
AGD-GN

118-bus
0.022 (96%)
0.003 (100%)
0.003 (100%)
0.003 (100%)

300-bus
0.103 (70%)
0.017 (100%)
0.017 (100%)
0.017 (100%)

2000-bus
0.256 (30%)
N/A (N/A)
0.004 (100%)
0.004 (100%)

TABLE II: Average Runtime of LS-SE Solutions

Time | 118-bus | 300-bus | 2000-bus
GN 0.059s 2.039s 151.801s
SDP 8.650s 98.557s N/A

FGD 0.068s 0.749s 73.101s
AGD 0.039s 0.277s 35.733s

error (RMSE) ||V — v||2/]|v]|2 is computed by averaging
over 100 Monte-Carlo realizations. For each realization, the
actual bus voltage magnitude (in p.u.) and phase angle (in
rad) of each bus are uniformly distributed over [0.95,1.05]
and [—0.357, 0.357], respectively. To construct the normalized

systems, we follow the earlier approaches [12], [34] scale with
measurement as {Hﬁzﬁ’ ﬁlﬁ}%ﬂ'

To initialize all iterative updates, we set the bus voltage
magnitude to be its measured value, or 1 p.u.. The phase angles
are initialized as the linear SE solutions based on dc power
flow model. For all GD-based SE approaches throughout the
tests, the stepsize is chosen using (8) by fixing 1/c = 1/4.
Generally, the SDP-SE solution is not perfectly rank-one.
Thus, the popular eigen-decomposition approach is used to
retrieve the best rank-one approximation; see e.g., [7]. All
estimated voltage vectors by GD-SE or SDP-SE will be further
improved using the GN updates to reduce the optimality gap.
Empirically, 3-4 GN iterations are sufficient for convergence,
and thus this additional computational time is neglected for
evaluating the runtime of SDP-/GD-SE methods.

1) Test Case 1 on LS-SE Objective: We first test all methods
on the LS objective function (4). The measurements include all
bus voltage magnitudes, and all active and reactive line flows
at the ‘from’ end. The stopping criteria for GD-SE iterations
are based on consecutive change of the iterate and that of the

objective value, while the stop criterion for GN is based on
the first-order optimal condition.

To demonstrate the performance of FGD and AGD in

taneous matrix solution per iteration, is plotted in Fig. 1.
Both GD methods use the same step-size, showing nearly
linear convergence rate. Meanwhile, the AGD updates always
outperform FGD in terms of the convergence speed, thanks to
the improved condition number of AGD as in Remark 1.

We also compare the SE performance achieved by GD-SE
methods, to that by GN-SE and SDP-SE, as listed in Table I,
along with the percentage of convergence for the respective
GN updates. As mentioned earlier, the SDP-SE and GD-SE
solutions are used to initialize the GN updates (indicated
by the -GN) for reduced optimality gap. Table I shows that
these solutions achieve 100% GN convergence rate (GNCR),
verifying their near-optimal performance. As a comparison,
the GN-SE experiences divergence issues, even more seriously
as the system sizes increases. In addition, both FGD-GN and
AGD-GN achieve the same SE performance as the benchmark
SDP-GN. For the largest 2000-bus case, SDP-SE cannot be
solved by the generic CVX solver in reasonable time, and
thus its error performance is not reported. We can notice that
FGD-/AGD-GN still demonstrate superior error performance
for the 2000-bus case.

To better investigate the computational time improvement,
we have listed the average runtime of all solution techniques
over 100 realizations in Table II. Compared to the SDP
solver, both FGD and AGD scale nicely with the system size,
especially for AGD thanks to its improved initial condition.
Since the SDP solution is not found for the 2000-bus case, its
runtime is not reported. In contrast, AGD takes less than one
minute to converge. Compared to the two GD-based solutions,
the average runtime of GN from the original initialization
is much longer, mainly due to the divergence issue. Note
that the GN updates are set to stop at 200 iterations if not
convergent. This comparison again verifies the improvement of
gradient-based iterations, in approaching the globally optimal
SE solutions.

2) Test Case 2 on Robust SE: To generate outliers, five
measurement meters are randomly picked in each Monte-Carlo
run, with the corresponding data purposely manipulated to 5
times of actual value. To find the benchmark performance
for the proposed RFGD/RAGD method, we consider a re-

formulated robust SDP-SE model (RSDP) by using the [;-
norm instead of [p-norm term in (11) [35]. Specifically, we
solve its Lagrangian form augmenting the objective function

estimating the ground-truth V, the average iterative error
[V — V| z/||V]||F, where matrix V! stands for the instan-
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TABLE III: RMSE and Outlier Identification Rate (OIR)

SE 118-bus
LNR [0.177(48%)
LAV |0.187(30%)| 0.402(8%)
SPL | 0.218(4%) | 0.358(3%) | 0.451 (1%)
RSDP |0.028(60%)|0.078(45%)| N/A (N/A)
RFGD |0.027(67%)|0.065(54%)|0.036 (55%)
RAGD|0.021(73%)[0.054(60%)[0.026 (72%)

300-bus
0.529(4%)

2000-bus
1.363 (3%)
1.099 (2%)

TABLE IV: Average Runtime of Robust SE Solutions

Time 118-bus 300-bus 2000-bus
LNR 2.875s 24.626s 3091.6s
LAV 17.185s 42.623s 182.423s
SPL 1.424s 4.131s 90.342s
RSDP 8.345s 120.768s N/A
RFGD 0.419s 1.776s 79.165s
RAGD 0.226s 1.034s 42.188s
TABLE V: RMSE and OIR under Interacting Outliers (IO)
SE 118-bus 300-bus 2000-bus
LNR (29.924(38%)(0.422(10%)| 1.205 (1%)
LAV | 0.246(26%) |0.298(20%)| 0.882 (0%)
SPL | 0.197(9%) | 0.321(2%) | 0.379 (0%)
RSDP | 0.056(47%) |0.060(41%)| N/A (N/A)
RFGD | 0.043(52%) |0.044(49%)|0.029 (54%)
RAGD| 0.036(60%) |0.037(55%)|0.027 (58%)
TABLE VI: Runtime of Robust SE Solutions under 10
Time | 118-bus | 300-bus | 2000-bus
LNR 3.625s 29.075s 2583.1s
LAV 32.659s 45.445s 180.909s
SPL 1.551s 4.397s 92.465s
RSDP 9.359s 132.801s N/A
RFGD 0.490s 2.139s 90.286s
RAGD 0.240s 1.605s 43.793s

as V = argminy » f'(V,7) + A|7|1, where X is a pos-
itive parameter. The GN-based largest normalized residual
(LNR) test as developed in [19, Ch. 5] is included as well.
LNR repeats a procedure consisting of bad data detection,
identification, and deletion of single measurement of largest
error, until no bad data are to be found. We also implement
the classical robust least-absolute value (LAV) estimator [3],
which iteratively solves the linearized problem using the latest
iterates. Recently, the robust LAV objective has been solved
using the so-termed stochastic prox-linear (SPL) method [20],
which can accelerate the convergence speed by using a special
linearization on the complex phasor representation.

We test all robust solvers, namely LNR, LAV, SPL, RSDP,
RFGD/RAGD, on the three test cases. For simplicity, the
initialization is set to be flat start. Again, the /;-norm based
RSDP is solved by CVX, where A is set based on the
level of 3 times noise standard deviation. For all methods,
the total number of outliers is set to be 10. This choice is
very conservative but shown reasonable performance under
good measurement redundancy. More advanced methods for
determining the number of outliers can be found in [36, Ch.
6]. Upon the convergence of all methods, 10 measurements
with the largest deviation errors will be identified as outliers
and compared to the ground truth to compute the identification
success rate. Afterwards, the other measurements together with
the solution of u will be used to evoke the GN iterations for
evaluating the SE error performance.

Normalized error

Monte Carlo runs

Fig. 2: Estimation performance for the IEEE 118-bus system
with 5 actual outliers.

Table III lists the RMSE and success rate of identifying
outliers for all robust SE methods, while Table IV provides the
average runtime. Similar to Test Case 1, RFGD and RAGD
consistently outperform the other robust solutions, in both the
SE error and outlier identification rate (OIR), with similar
computational time. Compared to Table I, all the methods
experience slightly larger RMSE because of the existence of
outlier data. However, the performance of RFGD/RAGD is
still elegant as they both can identify the majority of outliers.
Interestingly for the robust case, RAGD at fastest runtime
slightly outperforms RFGD in terms of error performance.
Also, both of them can even improve the RSDP solution. This
is perhaps because the robust GD methods perform outlier
thresholding at every iteration and thus exclude outlier data
more effectively. Notably, Table III indicates that the OIR for
LNR, LAYV, or SPL decreases as the system size increases from
118-bus to 2000-bus. This points out the importance of having
a well-designed robust SE algorithm for practical systems. The
normalized error for each Monte-Carlo run using the 118-bus
system as plotted in Fig. 2 also confirms that GD-based robust
SE solutions consistently outperform other counterparts.

We further test the proposed robust SE methods in the
presence of multiple interacting outliers (IO). Following the
steps in [19, Ch. 5], in every realization we pick five bad data
to be interacting, such that residuals of these measurements
are strongly correlated based on the measurement residual
sensitivity matrix. The RMSE and the OIR are listed in Table
V, and Table VI shows the average runtime. Compared to the
results for random outliers in Table III, the presence of IO can
lead to increased RMSE values, especially for the LNR and
LAV estimators using the 118-bus case. For the larger 300-
bus and 2000-bus cases, the impact of IO is very minimal.
By and large, the proposed RFGD and RAGD methods still
outperform other robust estimators in both the RMSE and OIR,
even for the IO case.

3) Test Case 3 on Low-Redundancy (LR) System: To better
address numerical stability concerns, we test a modified 118-
bus system with LR in measurements. This LR 118-bus system
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TABLE VII: LS-SE Results for the LR 118-bus System

SE GN SDP-GN | FGD-GN | AGD-GN
RMSE 0.075 0.007 0.007 0.007
GNCR 94% 100% 100% 100%

Runtime | 0.052s 7.854s 0.056s 0.042s

TABLE VIII: Robust-SE Results for the LR 118-bus System

SE LNR LAV SPL RSDP RFGD | RAGD
RMSE | 0.843 0.628 0.387 0.091 0.079 0.072

OIR 12% 13% 5% 55% 64% 69%
Time 3.466s | 31.835s | 1.501s | 10.932s | 0.563s | 0.382s

has a total of 418 measurements, including all the bus voltage
magnitudes and 300 power measurements; see e.g., the setting
in [4]. All other settings follow from Test Case 1. The SE
results are shown in Table VII, including all three metrics.
Compared with the original system results in Tables I, the
LR system shows similar comparisons among the four SE
methods. Notably, the convergence rate of GN updates slightly
decreases and RMSE error increases, as a result of less
measurements. Thus, the proposed GD-SE methods are more
robustness to low measurement redundancy.

We also test all robust solvers using the LR 118-bus system
with 5 randomly selected outliers. All other settings follow
from Test Case 2. The RMSE, OIR and average runtime
are listed in Table VIII. The results for both LNR and
LAV using the LR system show high level of performance
degradation compared to those for the original system in Table
III. Specifically, the OIR of LNR decreases from 48% to
12%, while that of LAV decreases from 30% to 13%. On
the contrary, our proposed RFGD/RAGD methods can still
maintain the same performance (> 60% of OIR) for the LR
system. Hence, the LR system tests further demonstrate the
convergence issue of traditional SE methods, while confirming
that our proposed ones are more effective in dealing with ill-
conditioned problems or bad data.

4) Test Case 4 on PMU-aided SE: We further evaluate the
SE performance with the additional PMU data on the three
test cases. All methods in Test Case 1 are considered, with
their PMU-aided counterparts denoted by the subscript ,, here.
For GN,, the sequential approach of including PMU data in
[37] is adopted. It entails two steps: i) the LS-based SE is
performed first to process the legacy measurements, followed
by ii) a post-processing step which only involves a linear
models together with PMU data. Four buses are selected to
equip with PMUs, namely {10, 12,27, 15}, based on the PMU
placement work in [26]. For these buses, the legacy meters are
no longer included.

Similarly, Table IX lists the SE error and average runtime
for all PMU-augmented solutions. Compare to Table I, the
SE error has been improved for all scenarios, thanks to the
accurate PMU data. Both FGD, and AGD, still achieve
the same estimation performance as SDP,,. Compared to the
runtime in Table II, the two GD-based solutions are even faster
with PMU data, thanks to the additional regularization that the
latter provides to the objective function.

IEEE TRANSACTIONS ON POWER SYSTEMS

TABLE IX: RMSE and Average Runtime of PMU-aided SE

SE Error (Time) 118-bus 300-bus 2000-bus
GN, 0.016 (0.289s) 0.091 (7.837s) 0.182 (151.504s)
SDP, 0.002 (8.415s) | 0.015 (99.070s) N/A (N/A)
FGD,, 0.002 (0.058s) 0.015 (0.469s) 0.003 (72.848s)
AGD,, 0.002 (0.019s) 0.015 (0.114s) 0.003 (30.626s)

VI. CONCLUSIONS

This paper presented a gradient descent (GD) based frame-
work for solving the nonconvex SE formulation, in order
to accelerate the convex SDP-based SE for power system
monitoring. The SDP formulation can offer near-optimality
performance and improve the divergence issue of the iterative
GN method. To tackle the high computational complexity of
SDP-SE, we propose to adopt the factored (F)GD-update for
the nonconvex objective on voltage phasor vector. Further-
more, the accelerated (A)GD-update is developed to improve
the condition of the objective function. For FGD-SE, a linear
convergence rate is guaranteed based on the analysis of
the strong convexity and smoothness of the LS objective,
whereas simiar result also holds for AGD-SE. Both proposed
FGD-/AGD-SE methods can be extended to include practical
scenarios of measurement outliers and PMU data. Extensive
numerical comparisons have demonstrated the near-optimal
error performance of the proposed approaches, while greatly
reducing the computation time.

Interesting future research directions open up, including the
convergence guarantee and rate of robust AGD-SE method.
Moreover, we are interested to pursue the constrained SDP
extension for SE problem under voltage limits or even optimal
power flow problem.

APPENDIX

A. Calculation of Complex Gradient of a Real Function

Consider a real function g with the complex u input, the
complex gradient direction is given by [38, Ch. 4]

_ 99(w) . 99(w)

VI = apm) T asm)

(16)

For the nonconvex SE objective g in (4), we can use the chain-
rule to find

Vo) = 3" (uHpu - ) V(' Hu).

(17)

To find the second-term in (17), let u = r + jx and Hy =
R/+jX, and thus the real function (u”*H,u) = Tr[Ry(rr” +
xx7) — X,(xr” —rx7)]. Thus, we have

HH i i1
M @ IRr — Xyx + X x 2 2Rr — 2Xpx
r

where (i) is due to the derivative of trace, and (iz) follows
from XZ = —Xy as Hy is Hermitian. Simiarly, we can find
the partial derivative with respect to x and thus the complex
gradient V(u?*Hyu) = (2R,r — 2X,x) + j(2Rex + 2X/r),
which is exactly equal to the complex product of 2H,u. This
completes the proof of (5).
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B. Analysis of the SDP-SE Objective Function f
Consider any V € V, H(V) is the vector of error-free

measurements. Thus, we have

neNy (n,n")€€s (n,n')€€s
+ 2 P+ X Qn (18)
neNs neNg

where the sets denote the corresponding meter locations. Using
the power flow model, we can derive upper/lower bounds for
each of the summand terms in (18). First, using the voltage

limits in (6) we have
Vi<Vt <V (19)

As for the line flows, a trivial lower bound is 0, with the upper
bound given by
P'sn’ + sz’ = |Snn/|2 = ‘Vn(ynn’(vn - ‘/TL')),H|2

<IValPlynn P (IVal + [V ) < Ay PV, (20)
by applying the triangle inequality. Similarly, the power injec-
tion is upper bounded by

Py +Qr =[S, = |Vniz;t|2 = [Va( Z ynVVV)H‘Z
veEN,

Wl (X nel?) < (X ) T

(n,w)e€ (n,v)e€

2L

This way, we can find the upper/lower bounds for ||#(V)]|3
to quantify the two positive parameters m and M. Note that
we use a trivial lower bound of 0 for power measurements.
This bound can be further improved by assuming a minimal
angular separation between the two end buses of any line or
using the system’s total power demand.
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