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Abstract

Enhancing the spatio-temporal observability of residen-
tial loads is crucial for achieving secure and efficient
operations in distribution systems with increasing pen-
etration of distributed energy resources (DERs). This
paper presents a joint inference framework for resi-
dential loads by leveraging the real-time measurements
from distribution-level sensors.  Specifically, smart
meter data is available for almost every load with unfor-
tunately low temporal resolution, while distribution syn-
chrophasor data is at very fast rates yet available at
limited locations. By combining these two types of data
with respective strengths, the problem is cast as a matrix
recovery one with much less number of observations
than unknowns. To improve the recovery performance,
we introduce two regularization terms to promote a low-
rank plus sparse structure of the load matrix via a differ-
ence transformation. Accordingly, the recovery problem
can be formulated as a convex optimization one which
is efficiently solvable. Numerical tests using real res-
idential load data demonstrate the effectiveness of our
proposed approaches in identifying appliance activities
and recovering the PV output profiles.

1. Introduction

Power distribution systems are known to lack in
real-time observability, especially for the individual res-
idential loads. Limited amount of sensor measurements
are available for distribution system monitoring, typi-
cally from a few line monitors and control devices. Con-
sequently, traditional distribution state estimation (DSE)
methods [1-3] suffer from low estimation accuracy and
robustness, and, furthermore, they fail to provide timely
visibility of residential loads.

To address this challenge, advanced sensing and
communication technologies have been increasingly
deployed in distribution systems. One type of sensing
device is the distribution synchrophasor measurement
unit (D-PMU) [4]. D-PMUs provide high-quality phasor

URI: https://hdl.handle.net/10125/64116
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

H{CSS

and power measurements at sub-second sampling rates
of a few grid locations. In addition, smart meters are
widely installed at every household to collect the elec-
tricity consumption data at intervals of 15 minutes to one
hour [5]. These two types of sensors show the trade-off
between spatial diversity and temporal resolution. Ubig-
uitously available smart meter data can lose the transient
load information due to time averaging, while the high-
rate D-PMU data suffers from limited deployment due
to high installation costs. Therefore, neither type of sen-
sors alone can directly provide the dynamic load profile
at each feeder node.

Meanwhile, increasing penetration of distributed
energy resources (DERs) greatly challenges distribu-
tion system management, thereby calling for enhanced
spatio-temporal observability of residential loads. For
example, to validate the security of electric vehicle (EV)
charging command, one can estimate the start/end time
of EV charging using the change points of the high-
rate household load profile [6]. Similarly, the dynamic
load profile can also be used to verify residential pho-
tovoltaic (PV) systems’ inverter control settings [7]. In
addition to that, the real-time information on residential
PV outputs is necessary for achieving effective protec-
tion design in distribution systems, as the solar genera-
tion level can significantly affect the fault current magni-
tude therein [8]. Hence, residential load profiles of high
spatial and temporal resolutions are crucial for achieving
secure and reliable operations in distribution systems.

This paper proposes a joint inference frame-
work for residential loads by leveraging the respective
strengths of D-PMU and smart meter data. To recover
the spatio-temporal load matrix, both the smart meter
data and the aggregated load measurements provided by
D-PMUs are modeled as linear transformations of the
load matrix (Sec. 2). To tackle the identifiability issue
therein, we first present two key characteristics of the
underlying load matrix. While spatial correlation among
load profiles manifests in a low-rank matrix of lower-
dimensional representation, the nodal appliance activi-
ties lead to sparse changes in the matrix rows. Accord-
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ingly, the problem boils down to recovering a low-rank
plus sparse matrix, closely related to the robust princi-
pal component analysis (RPCA) work; see e.g., [9-11].
Note that similar approaches have been popularly used
in other applications in power systems such as syn-
chrophasor data recovery [12], load data cleansing [13],
and forced oscillation location [14]. However, our resi-
dential load data matrix slightly differs from these exist-
ing models as a difference transformation is needed for
achieving the low-rank plus sparse structure. Similar
to earlier approaches, we introduce two convex regu-
larization norms to match such structural characteris-
tics and to cast the recovery problem as a convex opti-
mization one (Sec. 3). A post-processing procedure
is developed to improve the estimation error bias due
to the regularization penalty, while the recovery perfor-
mance is discussed in relation to RPCA results (Sec.
3.1). Numerical tests using real residential load data
demonstrate the effectiveness of our approaches in iden-
tifying large appliance activities and recovering the PV
outputs (Sec. 4). The presence of periodic HVAC loads
has resulted in some performance degradation, thereby
pointing out a future direction of including more diverse
types of measurements (voltage/current/reactive power)
for improved recovery performance.

Notation: Upper (lower) boldface symbols stand
for matrices (vectors); (-)7 stands for matrix transposi-
tion; || - ||« denotes the matrix nuclear norm; || - ||; the
L1-norm; | - | the entry-wise absolute value; and 1 stands
for the all-one vector of appropriate size.

2. System Model

Consider a distribution feeder system with residen-
tial homes connected at the feeder ends as shown in
Fig. 1. The goal is to recover the spatio-temporal active
power load matrix P € RY*T where N is the num-
ber of load nodes (residential households) and 7T is the
total number of time slots. The temporal resolution of
P represents the fastest time-scale of the all measure-
ments. This work assumes a minute-level time resolu-
tion, which can be generalized to even faster time-scales
such as the second-level time resolution of actual D-
PMUs [29].

To recover P, we consider two types of measure-
ment data, namely the smart meter data for each load
node and the aggregated power demand at the feeder
head. Typically, all residential households are equipped
with smart meters that collect electricity consumption
data at intervals of 15-minutes or one hour [5]. Note that
in this work, smart meter data is assumed to be available
every 15 minutes by averaging the corresponding 15
samples in P. For each house, every smart meter mea-
surement recorded is the average active power consumed
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Figure 1: Overview of the distribution feeder system with
multiple load nodes and various types of measurements.

over the data collection interval. Given the 1/15 down-
sampling rate, the smart meter data matrix Y € RV *7s
with Ty = T'/15 is given by

Y = PA + Evy, (1

where matrix A € RT*7T: represents the time averag-
ing operation on P while Ey- denotes the measurement
noise matrix.

At the aggregation location, a D-PMU can collect
the total load profile, in addition to voltage/current pha-
sors, with fast minute-level resolution and high qual-
ity. To simplify the model, we assume that the network
losses are omitted from this aggregated measurement.
Hence, the total load measurement z € R” by aggregat-
ing over all IV houses is given by

z' =1"P te], )

where e, is the D-PMU measurement noise vector and
the all-one vector 1 sums up all nodal profiles. Note that
multiple D-PMUs can be included as well using a gen-
eral matrix to replace 17. Moreover, although we con-
sider a simple aggregation scheme, the model in (2) can
be generalized to include feeder losses as well. If the
losses are a fixed percentage of the total demand, then
one can scale the aggregated load measurement to reflect
the consumed power only. The most general solution
will be to represent the exact losses using (possibly lin-
earized) distribution power flow models; see e.g., [15].

Clearly, using the measurements in (1) and (2),
the problem of recovering matrix P is underdetermined.
The total number of equations, given by (1) and (2),
equals to (NTs + T') which is much smaller than NT,
the number of unknowns. Therefore, we will exploit cer-
tain characteristics and special structures of matrix P to
achieve good recovery results.
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3. Spatio-Temporal Load Recovery

It is well known that load demand curves at
the transmission level exhibit high correlation among
nearby locations, and thus share similar temporal pat-
terns. This property has been widely used by load fore-
casting and data cleansing works; see e.g., [13, 16-18].
Several factors play a role in leading to this similarity,
including weather conditions (i.e. temperature, irradi-
ance) and economic conditions (i.e. electricity prices).
Although this spatial correlation property is well known
to hold for transmission-level loads, we have observed
it for distribution-level loads as well. Fig. 2(a) plots the
load profiles of one winter day for 30 residential houses
(15 of which have PV panels) located in the same neigh-
borhood in Austin, TX. Fig. 2(b) plots the load profile of
one selected house with PV during a summer day. Com-
pared to the winter profiles, the summer one has a high
level of periodic HVAC loads. These plots have been
generated from minute-level real data available through
the PecanStreet Dataport [19]. It has been observed that
there exists a daytime temporal pattern among the 15
houses with PVs, corresponding to a typical daily solar
irradiance profile in Austin, TX. Similarly for the 15
houses without PVs, they share the same minimal base
loading pattern. Additionally, during the time periods
with no solar irradiance, all 30 houses share a similar
minimal base-load pattern. Thus, the spatial correlation
among minute-level residential loads is mainly due to
the PV output and the base loading, not from the usage
of electric appliances. We assume load matrix P has an
underlying low-rank component L € RV*T rows of
which are either highly correlated (PVs) or close to zero
(no PVs). Note that the load nodes are located within
the same feeder (connected to the same D-PMU), and,
therefore, in the same neighborhood. This ensures that
houses with PVs will exhibit similar solar irradiance pat-
terns. The effect of a variable type of houses, including
houses not co-located, on the similarity of temporal pat-
tern and recovery performance will be investigated in
future.

Interestingly, residential load curves go beyond
the temporal similarity of transmission loads as they
also include rectangular waveforms which are not syn-
chronized across locations. These components reflect
the large appliance activities at individual households.
For example, the visible ones in Fig. 2(a) correspond
to the charging events of household electric vehicles
(EVs), while the frequency patterns in Fig. 2(b) relate
to the summer-time HVAC loads. Generally speaking,
these appliance activities still occur infrequently over
the course of a day and show no strong correlation with
other households. Hence, they can be captured by sparse
changes in the daily load profiles, represented by an
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Figure 2: Actual residential load profiles available from
the PecanStreet Dataport [19] for (a) 30 houses on a
winter day and (b) a single house with PVs on a sum-
mer day.

additional component S € R *T in matrix P. Note that
S itself may not be sparse but rather piece-wise constant.
Hence, the consecutive differences for each load are
sparse, as defined by D, s = S, + — Sy +—1, V(n,t) with
Spt = 23:1 Dy, ». Thus, matrix S becomes sparse
under the linear transformation given by S = DU
where U € RT*T is an upper triangular matrix of all
ones.

This way, the data matrix P can be decomposed
into a low-rank matrix augmented by an additional
sparse-change matrix such that P = L+ S = L +
DU. This formulation of P mimics the model used
by the framework of robust principal component anal-
ysis (RPCA) which decomposes a large data matrix into
a low-rank plus sparse from [9]. For RPCA, the low-
rank component similarly captures the spatial correla-
tion among the rows, while the sparse component repre-
sents outlier entries that are not correlated across rows.
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Hence, our data model is slightly different from the
RPCA setting. However, by defining matrix W = U~}
that can compute the consecutive differences between
the columns, we obtain

X:=PW=(L+DUW=K+D (3

where K := LW is also of low rank. This is because
of the temporal pattern in L in Fig. 2(a) leads to
high correlation of the column differences of L as well.
Clearly, the transformed matrix X satisfies the low-rank
plus sparse structure, and its components K and D are
related to the measurements in (1)-(2) as

Y = (K + D)UA +E,, (4a)
z2Z7W=1"(K+D)+elW. (4b)

Now the problem of recovering P becomes one of
recovering a low-rank plus sparse matrix. One can intro-
duce meaningful regularization terms to promote this
structure. The nuclear matrix norm has been widely
adopted for low-rank matrix recovery in problems such
as matrix completion, subspace learning, and collabo-
rative filtering; see e.g., [9, 11,20]. The matrix nuclear
norm is defined as the sum of the singular values:

min {N,T'}

> aiK), (5)

=1

1K} =

where () denotes the i-th largest singular value. It is
a convex function of the matrix input as shown in [21,
pg. 637], because it is the dual function of the matrix
spectral norm (or, the maximum singular value).

To promote sparse D, one can use the popular L1-
norm regularization, as used in the fields of compressed
sensing and sparse signal recovery; see e.g., [22-24].
The L1-norm is defined as the sum of entry-wise abso-
lute values, given by

D = [Del- (©6)
n,t
Since the L1-norm is a tight convex relaxation of the
L0 pseudo-norm (the number of nonzero entries), it has
been shown to be able to efficiently find the sparse signal
representation with performance guarantees. Note that
the nuclear norm in (5) can be thought of as the L1-norm
of the matrix singular values. Therefore, minimizing the
nuclear norm can lead to fewer numbers of nonzero sin-
gular values, and thus a low-rank matrix solution.
Using the two norms, one can formulate the matrix
X recovery problem as

min K. + D] (7a)
subjectto — &, <Y —(K+D)UA <¢, (7b)
— ¢ <z’ W-1"(K+D)<¢ (T0)

where A > 0 is a fixed weight coefficient to balance K
and D and parameters §,,§, > 0 are pre-determined
error bounds. We will discuss the choice of X in Sec.
3.1. As for the error bounds, they can be set accord-
ing to the meter accuracy for each type of measure-
ment or even to account for potential modeling inac-
curacy due to e.g., bad data or feeder losses. If only
measurement noise is considered, then the infinity norm
based error constraints in (7b)-(7c) correspond to uni-
formly distributed noise. This assumption is valid for
practical systems as meter accuracy is specified by the
maximum error percentage. One can use different error
criteria such as the Frobenius norm for Gaussian dis-
tributed noise. Moreover, the error bounds can be dif-
ferent for every measurement entry, since they would
scale with the actual data due to instrumentation as dis-
cussed in Sec. 4. The recovery problem (7) is a con-
vex problem that can be solved by generic convex opti-
mization solvers. The computational complexity may
grow fast with the matrix dimension, thereby calling
for accelerated solutions such as alternating minimiza-
tion [25] or adaptive updates using subspace learning
approaches [26], which will be explored in the future
to develop fast algorithms for solving (7).

One main issue of the proposed recovery formula-
tion (7) is that the L1-norm regularization may penalize
the magnitude of nonzero entries of D. Hence, the solu-
tion D tends to be smaller in magnitude than the actual
values and is thus biased. We have observed through
numerical studies that the presence of frequent HVAC
activities during the summer days could make this issue
worse. This is because the periodic HVAC activities
could exhibit a certain level of temporal pattern, and thus
are partially captured by L. As a result, the output D
from (7) is more likely to suffer from smaller magni-
tudes.

To tackle this issue, we will develop a post-
processing scheme based on the recovered support of
D from (7). Albeit the magnitude bias, the nonzero
entries of D can be accurately identified by solving (7).
Hence, one can use the solution D to obtain the sub-
set of nonzero entries in M = {(n,t)| |D,.| > 0}.
In the numerical tests, we use a small positive thresh-
old to reflect the numerical accuracy of the zero entries.
Using the estimated support in M, one can recast the
recovery problem (7) by neglecting the penalty term on
D. Instead, an additional constraint can be introduced
to directly set all other entries not in M to be zero. With
the given M, the post-processing problem is formulated
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Algorithm 1 Recovering matrices K and D

1: Input: Smart meter data 'Y and D-PMU data z.

2: Output: Estimated K and D

3: Step 1: Solve the problem (7) to obtain the biased
estimation K and D?.

4: Step 2: Find the set of nonzero entries M :=
{(n )] [ Dy | > 0.

5: Step 3: Solve the problem (8) using M to obtain
the updated estimates K and D.

as
m’ln | | ‘ ‘ ( a)

subject to D, =0, VY(n,t) ¢ M (8b)
-& <Y - (K+D)UA <g, (8¢c)
— 6, <zZ'W-1"(K+D) <&, (8d)

This way, the nonzero entries of D can be better esti-
mated. The full matrix recovery algorithm including this
post-processing step is tabulated in Algorithm 1.

3.1 Recovery Performance

This subsection discusses the recovery guarantees
that could be achieved by problem (7), as related to
the theoretical results from the RPCA work; see e.g.,
[9-11]. As mentioned earlier, the general RPCA frame-
work deals with the similar low rank plus sparse matrix
form, but assumes the full (or partial) observability of
the full matrix itself. Hence, the theoretical results
therein is not directly applicable to our problem setting
where the unknown matrix is observed with dimension-
ality reduction of both column- and row-space [cf. (4)],
at the ratios of T'/T, and N/1, respectively. Nonethe-
less, the RPCA results can still provide insightful intu-
itions regarding the recovery conditions and the param-
eter settings in our framework.

Certain conditions on K and D are required in
order to achieve accurate RPCA results [9, 26, 27].
Loosely speaking, the low rank component K cannot
be sparse and the sparse component D cannot be of low
rank. For K, the column space spanned by either its left
or right singular vectors needs to have low to almost zero
in coherency with the identity matrix, thereby ensuring
the singular vectors are not sparse. This implies that the
temporal pattern of load profiles cannot be sparse itself.
Meanwhile, for the sparse component D, the location
of its non-zero entries should be random with no peri-
odic or correlated patterns. The randomness condition
would promote D to be, ideally, full rank, while a non-
periodic sparse pattern would make sure no frequency-
induced low-rank component exists in D. As it will soon
become clear in Section 4, the non-periodic condition

is very important in the analysis of summer-time data,
where frequent HVAC activities could be problematic in
recovering the low-rank and sparse components of the
load matrix.

The other insight provided by the RPCA work is
the choice of weight A, used to balance the low-rank and
sparse components. As mentioned in [9, 11], the A value
should be chosen according to the matrix dimension, as
O(1/V/T) if the dimension T >> N. This setting can
effectively balance the scaling of the two norms with
respect to 7', at around /7 and T, respectively. It will
be used by numerical tests in Section 4.

4. Simulation Results

This section presents the numerical results of
recovering P obtained by solving problem (7) and using
Algorithm 1 on a winter and summer data set respec-
tively. For the winter data set, it turns out the solution
to (7) is sufficiently good as there is no periodic HVAC
activity that could potentially lead to biased D. How-
ever, for the summer data set with high level of HVAC
activities, the post-processing step in Algorithm 1 turns
out to be useful as it improves the separation of the cor-
related PV profiles from the sparse appliance events.

The ground-truth data P is obtained from the
PecanStreet’s Dataport [19] for the 30 residential homes
shown in Fig. 2(a) for one winter day and similarly
for one summer day. The active power demand data
is at minute-level resolution. Only half of the houses
have PVs installed and all the houses are located in the
same neighborhood (Mueller, Austin). Only 6 houses
have EV charging events. Based on P, we syntheti-
cally generate the measurements in (1)-(2) by adding
random noise. Additionally, we assume that the smart
meters record at 15 minute intervals. Using the Ameri-
can National Standard Institute (ANSI) C12.20 Standard
[28], we assume the smart meters installed at each resi-
dential home are rated at +0.2% error accuracy. Accord-
ingly, the entries of E, are independently drawn from
a uniform distribution based on this accuracy. As for
the fast aggregated measurement z, we follow from the
D-PMU data-sheet [29], where the +0.01% total vector
error of the phasor measurement leads to active power
measurement error within +0.02%. Hence, the entries
of e, are drawn from independent uniform distributions
using the £0.02% accuracy.

To solve the convex problem (7), we need to deter-
mine the value of the tuning parameter A and the error
bounds &, and &,. For all of the following test cases, a
value of 0.05 was used for . This value is chosen based
on O(1/v/T) (cf. Sec. 3.1) and it has produced consis-
tently good recovery results. The error bounds &, and &,
are determined based upon the added noise level to the
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Figure 3: Comparison between (a) the actual residential

load profiles and (b) the recovered P for the winter day-
time loads in test case 1.

synthetic data, where &, is set to be 0.2%|Y | while ¢, is
0.02%|z|T|W|.

To implement the convex problems (7) and (8),
we use the generic convex solver CVX [30] in the
MATLAB® R2018a simulator, on a laptop with Intel®
Core™i7 CPU @ 2.10 GHz and 8 GB of RAM. Under
this setting, the computational time for each problem is
pretty reasonable, taking around 5-10 minutes to process
a total of 7 hours of load data. We will develop acceler-
ated solutions as mentioned in Sec. 3 in the future.

1) Test Case 1 on winter day-time data: We first test
the winter data set for the day-time period from 9:00-
16:00 to recover the solar irradiance pattern. Fig. 3(b)
shows the recovered P obtained by (7) which matches
well with the ground-truth data in Fig. 3(a). Although
P is unable to capture the fast transients in the ground-
truth data, it has included the major changes of dynamic
load profiles such as the PV variations. To better illus-
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Figure 4: Recovered winter solar irradiance pattern in

test case 1: (a) the estimated L for all 30 houses and (b)
its first right singular vector, compared with with (c) the
ground-truth PV output data for the 15 houses with PVs.

trate the PV output recovery results, Fig. 4 plots the
estimated L and compares it with the ground truth data.
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Figure 6: Recovered load data for one residential home
with an EV charging event in test case 2.

Clearly, the estimated Lin Fig. 4(a) is of very low rank,
with its first right singular vector in Fig. 4(b). As men-
tioned in Sec. 3 the temporal pattern is mainly due to
the PV outputs. Although L does not recover the actual
ground-truth PV output, its first right singular vector has
captured the main temporal pattern and can indicate the
recovered PV output. It indeed matches well with the
solar irradiance pattern present in the ground-truth PV
outputs in Fig. 4(c). Since the winter data set does not
contain HVAC activities, the low-rank component L can
be ideally separated from the sparse changes and it con-
tains mainly the solar irradiance pattern.

2) Test Case 2 on winter night-time data: We fur-
ther test the winter data set for the night time period from
18:00-24:00 to demonstrate the capability of recovered
P in identifying EV events. Fig. 5 plots the receiving
operating curve (ROC) of detected EV start/stop charg-
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Figure 7: Ground-truth load profile for test case 3.
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Figure 8: Recovered L from (a) the solution to (7) and
(b) Algorithm 1 in test case 3.

ing events as compared to the ground truth for three A
values. Note that each ROC has been fitted with an expo-
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Figure 9: Recovered solar irradiance pattern: (a) the first

right singular vector of the estimated L using Algorithm
1, and (b) the PV-only output data.

nential function. For each ), the ROC is created by vary-
ing the detection threshold (as a percentage of EV power
rating). As the EVs have larger power ratings than other
appliances, the false positive (or false alarm) rate is very
small. Fig. 5 corroborates our recovery method’s per-
formance in EV identification, as all ROCs are close to
perfect detection (top left corner of the plane). Addi-
tionally, the value A = 0.05, as chosen for all our tests
cases, is very competitive among the three. One resi-
dential load is selected to demonstrate the recovery of
an EV charging event occurring at around 20:30-23:00,
as shown in Fig. 6. Compared to the smart meter mea-
surements which fail to indicate the exact EV charging
start/finish time, our estimated profile can well match
the actual minute-level profile.

3) Test Case 3 on summer day-time data: Lastly,
we test the summer data set for the day-time period from
9:00-16:00 to demonstrate the impact of frequent HVAC
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Figure 10: Selected residential load profiles in test case
3 for a house with (a) no HVAC activity, (b) periodic HVAC
activity, and (c) one EV charging event from 12:00-14:30.

activities. As shown in Fig. 2(b), there is a high level of
HVAC activity in the summer data. The periodicity of
the HVAC events would also manifest in a low-rankness
of the load matrix, which would make it challenging
to keep it solely in the sparse component D. To help
improve the summer data recovery, we apply the post-
processing step described in Algorithm 1.
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Fig. 7 and Fig. 8 plot respectively the ground-truth
load profile and the recovered L using both the solution
from (7) and Algorithm 1. Although the two estimates of
L look very similar, the post-processing step has shown
to improve the recovery of solar irradiance profile. With-
out the post-processing step, there are some large, peri-
odic transients present in the estimated L, as shown by
Fig. 8(a). The transients are mainly due to the peri-
odic HVAC activities and the penalty on the magnitude
of D in the objective of (7). After re-estimating L and
D using (8), Algorithm 1 is able to improve the recovery
of the magnitude of the entries in the estimated support
set M. Accordingly, Fig. 8(b) shows that the large tran-
sients have been reduced in L. To better show the recov-
ery improvement in the PV profiles, Fig. 9 compares the
the first right singular vector of the post-processed L to
the ground-truth PV output data. The parabolic trend
in the residential PV output data is well recovered by
the low-rank component. Compared to the winter data
results, the recovered L here is affected by the periodic
HVAC activities, and, therefore, exhibits some oscilla-
tion patterns of around 30-minute intervals as opposed
to the smoother trend in the actual PV profiles.

Fig. 10 shows the recovered residential load pro-
files for three selected houses. The recovered load pro-
files captures the trend in the actual profiles. However,
they are unable to match most of the fast HVAC events.
Upon closer observation, we find out that the estimated
profiles follow the smart meter data more often in the
presence of periodic changes, as shown in Fig. 10(b)-
(c). Nonetheless, the proposed method can well cap-
ture the significant amount of change in the load pro-
files, such as EV charging as shown in Fig. 10(c). Intu-
itively speaking, the performance degradation in recov-
ering the summer time data is fundamentally due to the
lack of observability in our system set-up. As there are
increasing amount of transient events in the underlying
load matrix, we need to use more measurements to be
able to keep up with the unknown information. In other
words, a single aggregated load profile provides insuf-
ficient amount of spatial diversity that is present in the
unknown load data. Therefore, we should explore var-
ious types of data (voltage/current/reactive power) that
D-PMUs can provide in addition to increasing the num-
ber of D-PMUs. This would require the incorporation of
distribution feeder modeling and it is currently pursued
to generalize the proposed load recovery framework.

5. Conclusions

This paper presents a matrix recovery algorithm to
enhance the spatio-temporal observability of residential
loads by jointly utilizing both the smart meter and D-
PMU data. Using the appropriate norm regularization,

this problem is cast as a convex optimization one to pro-
mote the underlying low-rank and sparse change charac-
teristics of the unknown load matrix. A post-processing
procedure is developed as well to mitigate the estimation
bias due to the regularization penalty. Numerical test
results using real residential load data demonstrate that
the recovery algorithm can effectively recover appliance
activities and the PV output profiles. However, the pres-
ence of periodic HVAC loads would lead to some per-
formance degradation in correctly identifying the sparse
changes.

We are currently exploring the use of various types
of D-PMU data, in addition to increased number of D-
PMUs, for improved recovery performance. Further-
more, we plan to investigate accelerated and online solu-
tion methods that can be implemented efficiently and in
real-time.
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