


ingly, the problem boils down to recovering a low-rank

plus sparse matrix, closely related to the robust princi-

pal component analysis (RPCA) work; see e.g., [9–11].

Note that similar approaches have been popularly used

in other applications in power systems such as syn-

chrophasor data recovery [12], load data cleansing [13],

and forced oscillation location [14]. However, our resi-

dential load data matrix slightly differs from these exist-

ing models as a difference transformation is needed for

achieving the low-rank plus sparse structure. Similar

to earlier approaches, we introduce two convex regu-

larization norms to match such structural characteris-

tics and to cast the recovery problem as a convex opti-

mization one (Sec. 3). A post-processing procedure

is developed to improve the estimation error bias due

to the regularization penalty, while the recovery perfor-

mance is discussed in relation to RPCA results (Sec.

3.1). Numerical tests using real residential load data

demonstrate the effectiveness of our approaches in iden-

tifying large appliance activities and recovering the PV

outputs (Sec. 4). The presence of periodic HVAC loads

has resulted in some performance degradation, thereby

pointing out a future direction of including more diverse

types of measurements (voltage/current/reactive power)

for improved recovery performance.

Notation: Upper (lower) boldface symbols stand

for matrices (vectors); (·)T stands for matrix transposi-

tion; ‖ · ‖∗ denotes the matrix nuclear norm; ‖ · ‖1 the

L1-norm; | · | the entry-wise absolute value; and 1 stands

for the all-one vector of appropriate size.

2. System Model

Consider a distribution feeder system with residen-

tial homes connected at the feeder ends as shown in

Fig. 1. The goal is to recover the spatio-temporal active

power load matrix P ∈ R
N×T where N is the num-

ber of load nodes (residential households) and T is the

total number of time slots. The temporal resolution of

P represents the fastest time-scale of the all measure-

ments. This work assumes a minute-level time resolu-

tion, which can be generalized to even faster time-scales

such as the second-level time resolution of actual D-

PMUs [29].

To recover P, we consider two types of measure-

ment data, namely the smart meter data for each load

node and the aggregated power demand at the feeder

head. Typically, all residential households are equipped

with smart meters that collect electricity consumption

data at intervals of 15-minutes or one hour [5]. Note that

in this work, smart meter data is assumed to be available

every 15 minutes by averaging the corresponding 15

samples in P. For each house, every smart meter mea-

surement recorded is the average active power consumed

Figure 1: Overview of the distribution feeder system with
multiple load nodes and various types of measurements.

over the data collection interval. Given the 1/15 down-

sampling rate, the smart meter data matrix Y ∈ R
N×Ts

with Ts = T/15 is given by

Y = PA+EY , (1)

where matrix A ∈ R
T×Ts represents the time averag-

ing operation on P while EY denotes the measurement

noise matrix.

At the aggregation location, a D-PMU can collect

the total load profile, in addition to voltage/current pha-

sors, with fast minute-level resolution and high qual-

ity. To simplify the model, we assume that the network

losses are omitted from this aggregated measurement.

Hence, the total load measurement z ∈ R
T by aggregat-

ing over all N houses is given by

z
T = 1

T
P+ e

T

z , (2)

where ez is the D-PMU measurement noise vector and

the all-one vector 1 sums up all nodal profiles. Note that

multiple D-PMUs can be included as well using a gen-

eral matrix to replace 1
T. Moreover, although we con-

sider a simple aggregation scheme, the model in (2) can

be generalized to include feeder losses as well. If the

losses are a fixed percentage of the total demand, then

one can scale the aggregated load measurement to reflect

the consumed power only. The most general solution

will be to represent the exact losses using (possibly lin-

earized) distribution power flow models; see e.g., [15].

Clearly, using the measurements in (1) and (2),

the problem of recovering matrix P is underdetermined.

The total number of equations, given by (1) and (2),

equals to (NTs + T ) which is much smaller than NT ,

the number of unknowns. Therefore, we will exploit cer-

tain characteristics and special structures of matrix P to

achieve good recovery results.
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3. Spatio-Temporal Load Recovery

It is well known that load demand curves at

the transmission level exhibit high correlation among

nearby locations, and thus share similar temporal pat-

terns. This property has been widely used by load fore-

casting and data cleansing works; see e.g., [13, 16–18].

Several factors play a role in leading to this similarity,

including weather conditions (i.e. temperature, irradi-

ance) and economic conditions (i.e. electricity prices).

Although this spatial correlation property is well known

to hold for transmission-level loads, we have observed

it for distribution-level loads as well. Fig. 2(a) plots the

load profiles of one winter day for 30 residential houses

(15 of which have PV panels) located in the same neigh-

borhood in Austin, TX. Fig. 2(b) plots the load profile of

one selected house with PV during a summer day. Com-

pared to the winter profiles, the summer one has a high

level of periodic HVAC loads. These plots have been

generated from minute-level real data available through

the PecanStreet Dataport [19]. It has been observed that

there exists a daytime temporal pattern among the 15

houses with PVs, corresponding to a typical daily solar

irradiance profile in Austin, TX. Similarly for the 15

houses without PVs, they share the same minimal base

loading pattern. Additionally, during the time periods

with no solar irradiance, all 30 houses share a similar

minimal base-load pattern. Thus, the spatial correlation

among minute-level residential loads is mainly due to

the PV output and the base loading, not from the usage

of electric appliances. We assume load matrix P has an

underlying low-rank component L ∈ R
N×T , rows of

which are either highly correlated (PVs) or close to zero

(no PVs). Note that the load nodes are located within

the same feeder (connected to the same D-PMU), and,

therefore, in the same neighborhood. This ensures that

houses with PVs will exhibit similar solar irradiance pat-

terns. The effect of a variable type of houses, including

houses not co-located, on the similarity of temporal pat-

tern and recovery performance will be investigated in

future.

Interestingly, residential load curves go beyond

the temporal similarity of transmission loads as they

also include rectangular waveforms which are not syn-

chronized across locations. These components reflect

the large appliance activities at individual households.

For example, the visible ones in Fig. 2(a) correspond

to the charging events of household electric vehicles

(EVs), while the frequency patterns in Fig. 2(b) relate

to the summer-time HVAC loads. Generally speaking,

these appliance activities still occur infrequently over

the course of a day and show no strong correlation with

other households. Hence, they can be captured by sparse

changes in the daily load profiles, represented by an

(a)

(b)

Figure 2: Actual residential load profiles available from
the PecanStreet Dataport [19] for (a) 30 houses on a
winter day and (b) a single house with PVs on a sum-
mer day.

additional component S ∈ R
N×T in matrix P. Note that

S itself may not be sparse but rather piece-wise constant.

Hence, the consecutive differences for each load are

sparse, as defined by Dn,t = Sn,t−Sn,t−1, ∀(n, t) with

Sn,t =
∑t

τ=1
Dn,τ . Thus, matrix S becomes sparse

under the linear transformation given by S = DU

where U ∈ R
T×T is an upper triangular matrix of all

ones.

This way, the data matrix P can be decomposed

into a low-rank matrix augmented by an additional

sparse-change matrix such that P = L + S = L +
DU. This formulation of P mimics the model used

by the framework of robust principal component anal-

ysis (RPCA) which decomposes a large data matrix into

a low-rank plus sparse from [9]. For RPCA, the low-

rank component similarly captures the spatial correla-

tion among the rows, while the sparse component repre-

sents outlier entries that are not correlated across rows.
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Hence, our data model is slightly different from the

RPCA setting. However, by defining matrix W = U
−1

that can compute the consecutive differences between

the columns, we obtain

X := PW = (L+DU)W = K+D (3)

where K := LW is also of low rank. This is because

of the temporal pattern in L in Fig. 2(a) leads to

high correlation of the column differences of L as well.

Clearly, the transformed matrix X satisfies the low-rank

plus sparse structure, and its components K and D are

related to the measurements in (1)-(2) as

Y = (K+D)UA+Ey, (4a)

z
T
W = 1

T(K+D) + e
T

zW. (4b)

Now the problem of recovering P becomes one of

recovering a low-rank plus sparse matrix. One can intro-

duce meaningful regularization terms to promote this

structure. The nuclear matrix norm has been widely

adopted for low-rank matrix recovery in problems such

as matrix completion, subspace learning, and collabo-

rative filtering; see e.g., [9, 11, 20]. The matrix nuclear

norm is defined as the sum of the singular values:

‖K‖∗ :=

min {N,T}∑

i=1

σi(K), (5)

where σi(·) denotes the i-th largest singular value. It is

a convex function of the matrix input as shown in [21,

pg. 637], because it is the dual function of the matrix

spectral norm (or, the maximum singular value).

To promote sparse D, one can use the popular L1-

norm regularization, as used in the fields of compressed

sensing and sparse signal recovery; see e.g., [22–24].

The L1-norm is defined as the sum of entry-wise abso-

lute values, given by

‖D‖1 :=
∑

n,t

|Dn,t|. (6)

Since the L1-norm is a tight convex relaxation of the

L0 pseudo-norm (the number of nonzero entries), it has

been shown to be able to efficiently find the sparse signal

representation with performance guarantees. Note that

the nuclear norm in (5) can be thought of as the L1-norm

of the matrix singular values. Therefore, minimizing the

nuclear norm can lead to fewer numbers of nonzero sin-

gular values, and thus a low-rank matrix solution.

Using the two norms, one can formulate the matrix

X recovery problem as

min
K,D

‖K‖∗ + λ‖D‖1 (7a)

subject to − ξy ≤ Y − (K+D)UA ≤ ξy (7b)

− ξz ≤ z
T
W − 1

T(K+D) ≤ ξz (7c)

where λ > 0 is a fixed weight coefficient to balance K

and D and parameters ξy, ξz > 0 are pre-determined

error bounds. We will discuss the choice of λ in Sec.

3.1. As for the error bounds, they can be set accord-

ing to the meter accuracy for each type of measure-

ment or even to account for potential modeling inac-

curacy due to e.g., bad data or feeder losses. If only

measurement noise is considered, then the infinity norm

based error constraints in (7b)-(7c) correspond to uni-

formly distributed noise. This assumption is valid for

practical systems as meter accuracy is specified by the

maximum error percentage. One can use different error

criteria such as the Frobenius norm for Gaussian dis-

tributed noise. Moreover, the error bounds can be dif-

ferent for every measurement entry, since they would

scale with the actual data due to instrumentation as dis-

cussed in Sec. 4. The recovery problem (7) is a con-

vex problem that can be solved by generic convex opti-

mization solvers. The computational complexity may

grow fast with the matrix dimension, thereby calling

for accelerated solutions such as alternating minimiza-

tion [25] or adaptive updates using subspace learning

approaches [26], which will be explored in the future

to develop fast algorithms for solving (7).

One main issue of the proposed recovery formula-

tion (7) is that the L1-norm regularization may penalize

the magnitude of nonzero entries of D. Hence, the solu-

tion D̂ tends to be smaller in magnitude than the actual

values and is thus biased. We have observed through

numerical studies that the presence of frequent HVAC

activities during the summer days could make this issue

worse. This is because the periodic HVAC activities

could exhibit a certain level of temporal pattern, and thus

are partially captured by L. As a result, the output D̂

from (7) is more likely to suffer from smaller magni-

tudes.

To tackle this issue, we will develop a post-

processing scheme based on the recovered support of

D̂ from (7). Albeit the magnitude bias, the nonzero

entries of D can be accurately identified by solving (7).

Hence, one can use the solution D̂ to obtain the sub-

set of nonzero entries in M = {(n, t)| |D̂n,t| > 0}.

In the numerical tests, we use a small positive thresh-

old to reflect the numerical accuracy of the zero entries.

Using the estimated support in M, one can recast the

recovery problem (7) by neglecting the penalty term on

D. Instead, an additional constraint can be introduced

to directly set all other entries not in M to be zero. With

the given M, the post-processing problem is formulated
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Algorithm 1 Recovering matrices K and D

1: Input: Smart meter data Y and D-PMU data z.

2: Output: Estimated K̂ and D̂

3: Step 1: Solve the problem (7) to obtain the biased

estimation K̂
b and D̂

b.

4: Step 2: Find the set of nonzero entries M :=
{(n, t)| |D̂n,t| > 0}.

5: Step 3: Solve the problem (8) using M to obtain

the updated estimates K̂ and D̂.

as

min
K,D

‖K‖∗ (8a)

subject to Dn,t = 0, ∀(n, t) 6∈ M (8b)

− ξy ≤ Y − (K+D)UA ≤ ξy (8c)

− ξz ≤ z
T
W − 1

T(K+D) ≤ ξz. (8d)

This way, the nonzero entries of D can be better esti-

mated. The full matrix recovery algorithm including this

post-processing step is tabulated in Algorithm 1.

3.1 Recovery Performance

This subsection discusses the recovery guarantees

that could be achieved by problem (7), as related to

the theoretical results from the RPCA work; see e.g.,

[9–11]. As mentioned earlier, the general RPCA frame-

work deals with the similar low rank plus sparse matrix

form, but assumes the full (or partial) observability of

the full matrix itself. Hence, the theoretical results

therein is not directly applicable to our problem setting

where the unknown matrix is observed with dimension-

ality reduction of both column- and row-space [cf. (4)],

at the ratios of T/Ts and N/1, respectively. Nonethe-

less, the RPCA results can still provide insightful intu-

itions regarding the recovery conditions and the param-

eter settings in our framework.

Certain conditions on K and D are required in

order to achieve accurate RPCA results [9, 26, 27].

Loosely speaking, the low rank component K cannot

be sparse and the sparse component D cannot be of low

rank. For K, the column space spanned by either its left

or right singular vectors needs to have low to almost zero

in coherency with the identity matrix, thereby ensuring

the singular vectors are not sparse. This implies that the

temporal pattern of load profiles cannot be sparse itself.

Meanwhile, for the sparse component D, the location

of its non-zero entries should be random with no peri-

odic or correlated patterns. The randomness condition

would promote D to be, ideally, full rank, while a non-

periodic sparse pattern would make sure no frequency-

induced low-rank component exists in D. As it will soon

become clear in Section 4, the non-periodic condition

is very important in the analysis of summer-time data,

where frequent HVAC activities could be problematic in

recovering the low-rank and sparse components of the

load matrix.

The other insight provided by the RPCA work is

the choice of weight λ, used to balance the low-rank and

sparse components. As mentioned in [9,11], the λ value

should be chosen according to the matrix dimension, as

O(1/
√
T ) if the dimension T � N . This setting can

effectively balance the scaling of the two norms with

respect to T , at around
√
T and T , respectively. It will

be used by numerical tests in Section 4.

4. Simulation Results

This section presents the numerical results of

recovering P obtained by solving problem (7) and using

Algorithm 1 on a winter and summer data set respec-

tively. For the winter data set, it turns out the solution

to (7) is sufficiently good as there is no periodic HVAC

activity that could potentially lead to biased D. How-

ever, for the summer data set with high level of HVAC

activities, the post-processing step in Algorithm 1 turns

out to be useful as it improves the separation of the cor-

related PV profiles from the sparse appliance events.

The ground-truth data P is obtained from the

PecanStreet’s Dataport [19] for the 30 residential homes

shown in Fig. 2(a) for one winter day and similarly

for one summer day. The active power demand data

is at minute-level resolution. Only half of the houses

have PVs installed and all the houses are located in the

same neighborhood (Mueller, Austin). Only 6 houses

have EV charging events. Based on P, we syntheti-

cally generate the measurements in (1)-(2) by adding

random noise. Additionally, we assume that the smart

meters record at 15 minute intervals. Using the Ameri-

can National Standard Institute (ANSI) C12.20 Standard

[28], we assume the smart meters installed at each resi-

dential home are rated at ±0.2% error accuracy. Accord-

ingly, the entries of Ey are independently drawn from

a uniform distribution based on this accuracy. As for

the fast aggregated measurement z, we follow from the

D-PMU data-sheet [29], where the ±0.01% total vector

error of the phasor measurement leads to active power

measurement error within ±0.02%. Hence, the entries

of ez are drawn from independent uniform distributions

using the ±0.02% accuracy.

To solve the convex problem (7), we need to deter-

mine the value of the tuning parameter λ and the error

bounds ξy and ξz . For all of the following test cases, a

value of 0.05 was used for λ. This value is chosen based

on O(1/
√
T ) (cf. Sec. 3.1) and it has produced consis-

tently good recovery results. The error bounds ξy and ξz
are determined based upon the added noise level to the
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(a)

(b)

Figure 3: Comparison between (a) the actual residential

load profiles and (b) the recovered P̂ for the winter day-
time loads in test case 1.

synthetic data, where ξy is set to be 0.2%|Y| while ξz is

0.02%|z|T|W|.
To implement the convex problems (7) and (8),

we use the generic convex solver CVX [30] in the

MATLAB R© R2018a simulator, on a laptop with Intel R©

CoreTMi7 CPU @ 2.10 GHz and 8 GB of RAM. Under

this setting, the computational time for each problem is

pretty reasonable, taking around 5-10 minutes to process

a total of 7 hours of load data. We will develop acceler-

ated solutions as mentioned in Sec. 3 in the future.

1) Test Case 1 on winter day-time data: We first test

the winter data set for the day-time period from 9:00-

16:00 to recover the solar irradiance pattern. Fig. 3(b)

shows the recovered P̂ obtained by (7) which matches

well with the ground-truth data in Fig. 3(a). Although

P̂ is unable to capture the fast transients in the ground-

truth data, it has included the major changes of dynamic

load profiles such as the PV variations. To better illus-

(a)

(b)

(c)

Figure 4: Recovered winter solar irradiance pattern in

test case 1: (a) the estimated L̂ for all 30 houses and (b)
its first right singular vector, compared with with (c) the
ground-truth PV output data for the 15 houses with PVs.

trate the PV output recovery results, Fig. 4 plots the

estimated L̂ and compares it with the ground truth data.
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Figure 5: Receiving operating curve (fitted by an expo-
nential function) for test case 2 showing the true positives
versus false positives for detecting EV events.

Figure 6: Recovered load data for one residential home
with an EV charging event in test case 2.

Clearly, the estimated L̂ in Fig. 4(a) is of very low rank,

with its first right singular vector in Fig. 4(b). As men-

tioned in Sec. 3 the temporal pattern is mainly due to

the PV outputs. Although L̂ does not recover the actual

ground-truth PV output, its first right singular vector has

captured the main temporal pattern and can indicate the

recovered PV output. It indeed matches well with the

solar irradiance pattern present in the ground-truth PV

outputs in Fig. 4(c). Since the winter data set does not

contain HVAC activities, the low-rank component L̂ can

be ideally separated from the sparse changes and it con-

tains mainly the solar irradiance pattern.

2) Test Case 2 on winter night-time data: We fur-

ther test the winter data set for the night time period from

18:00-24:00 to demonstrate the capability of recovered

P̂ in identifying EV events. Fig. 5 plots the receiving

operating curve (ROC) of detected EV start/stop charg-

Figure 7: Ground-truth load profile for test case 3.

(a)

(b)

Figure 8: Recovered L̂ from (a) the solution to (7) and
(b) Algorithm 1 in test case 3.

ing events as compared to the ground truth for three λ
values. Note that each ROC has been fitted with an expo-
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(a)

(b)

Figure 9: Recovered solar irradiance pattern: (a) the first

right singular vector of the estimated L̂ using Algorithm
1, and (b) the PV-only output data.

nential function. For each λ, the ROC is created by vary-

ing the detection threshold (as a percentage of EV power

rating). As the EVs have larger power ratings than other

appliances, the false positive (or false alarm) rate is very

small. Fig. 5 corroborates our recovery method’s per-

formance in EV identification, as all ROCs are close to

perfect detection (top left corner of the plane). Addi-

tionally, the value λ = 0.05, as chosen for all our tests

cases, is very competitive among the three. One resi-

dential load is selected to demonstrate the recovery of

an EV charging event occurring at around 20:30-23:00,

as shown in Fig. 6. Compared to the smart meter mea-

surements which fail to indicate the exact EV charging

start/finish time, our estimated profile can well match

the actual minute-level profile.

3) Test Case 3 on summer day-time data: Lastly,

we test the summer data set for the day-time period from

9:00-16:00 to demonstrate the impact of frequent HVAC

(a)

(b)

(c)

Figure 10: Selected residential load profiles in test case
3 for a house with (a) no HVAC activity, (b) periodic HVAC
activity, and (c) one EV charging event from 12:00-14:30.

activities. As shown in Fig. 2(b), there is a high level of

HVAC activity in the summer data. The periodicity of

the HVAC events would also manifest in a low-rankness

of the load matrix, which would make it challenging

to keep it solely in the sparse component D. To help

improve the summer data recovery, we apply the post-

processing step described in Algorithm 1.
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Fig. 7 and Fig. 8 plot respectively the ground-truth

load profile and the recovered L̂ using both the solution

from (7) and Algorithm 1. Although the two estimates of

L̂ look very similar, the post-processing step has shown

to improve the recovery of solar irradiance profile. With-

out the post-processing step, there are some large, peri-

odic transients present in the estimated L̂, as shown by

Fig. 8(a). The transients are mainly due to the peri-

odic HVAC activities and the penalty on the magnitude

of D̂ in the objective of (7). After re-estimating L̂ and

D̂ using (8), Algorithm 1 is able to improve the recovery

of the magnitude of the entries in the estimated support

set M. Accordingly, Fig. 8(b) shows that the large tran-

sients have been reduced in L̂. To better show the recov-

ery improvement in the PV profiles, Fig. 9 compares the

the first right singular vector of the post-processed L̂ to

the ground-truth PV output data. The parabolic trend

in the residential PV output data is well recovered by

the low-rank component. Compared to the winter data

results, the recovered L̂ here is affected by the periodic

HVAC activities, and, therefore, exhibits some oscilla-

tion patterns of around 30-minute intervals as opposed

to the smoother trend in the actual PV profiles.

Fig. 10 shows the recovered residential load pro-

files for three selected houses. The recovered load pro-

files captures the trend in the actual profiles. However,

they are unable to match most of the fast HVAC events.

Upon closer observation, we find out that the estimated

profiles follow the smart meter data more often in the

presence of periodic changes, as shown in Fig. 10(b)-

(c). Nonetheless, the proposed method can well cap-

ture the significant amount of change in the load pro-

files, such as EV charging as shown in Fig. 10(c). Intu-

itively speaking, the performance degradation in recov-

ering the summer time data is fundamentally due to the

lack of observability in our system set-up. As there are

increasing amount of transient events in the underlying

load matrix, we need to use more measurements to be

able to keep up with the unknown information. In other

words, a single aggregated load profile provides insuf-

ficient amount of spatial diversity that is present in the

unknown load data. Therefore, we should explore var-

ious types of data (voltage/current/reactive power) that

D-PMUs can provide in addition to increasing the num-

ber of D-PMUs. This would require the incorporation of

distribution feeder modeling and it is currently pursued

to generalize the proposed load recovery framework.

5. Conclusions

This paper presents a matrix recovery algorithm to

enhance the spatio-temporal observability of residential

loads by jointly utilizing both the smart meter and D-

PMU data. Using the appropriate norm regularization,

this problem is cast as a convex optimization one to pro-

mote the underlying low-rank and sparse change charac-

teristics of the unknown load matrix. A post-processing

procedure is developed as well to mitigate the estimation

bias due to the regularization penalty. Numerical test

results using real residential load data demonstrate that

the recovery algorithm can effectively recover appliance

activities and the PV output profiles. However, the pres-

ence of periodic HVAC loads would lead to some per-

formance degradation in correctly identifying the sparse

changes.

We are currently exploring the use of various types

of D-PMU data, in addition to increased number of D-

PMUs, for improved recovery performance. Further-

more, we plan to investigate accelerated and online solu-

tion methods that can be implemented efficiently and in

real-time.
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