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Visualizing High-Dimensional Data:
Advances in the Past Decade
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Abstract—Massive simulations and arrays of sensing devices, in combination with increasing computing resources, have generated
large, complex, high-dimensional datasets used to study phenomena across numerous fields of study. Visualization plays an important
role in exploring such datasets. We provide a comprehensive survey of advances in high-dimensional data visualization that focuses on
the past decade. We aim at providing guidance for data practitioners to navigate through a modular view of the recent advances, inspiring
the creation of new visualizations along the enriched visualization pipeline, and identifying future opportunities for visualization research.

Index Terms—Taxonomy, high-dimensional data, multidimensional data, visualization, data models, computational modeling

1 INTRODUCTION
WITH the ever-increasing amount of available computing
resources and sensing devices, our ability to collect
and generate a wide variety of large, complex datasets contin-
ues to grow. High-dimensional datasets show up in numer-
ous fields of study, such as economics, biology, chemistry,
political science, astronomy, and physics, to name a few. Their
wide availability, increasing size, and complexity have led to
new challenges and opportunities for their effective visualiza-
tion. For example, genomic microarrays in biology [1], [2],
spectrometry data in air quality research [3], simulation
parameters in nuclear safety engineering [4], and chemical
compositions in combustion simulations [5] can all be
mapped to high-dimensional spaces (with a few dozen to sev-
eral hundreds of dimensions) for exploration.

On the other hand, the physical limitations of display devi-
ces and our visual systems prevent the direct display and
rapid recognition of structures with dimensions higher than
two or three. In the past decade, a variety of approaches have
been introduced to visually convey high-dimensional struc-
tural information by utilizing low-dimensional projections or
abstractions: from dimension reduction to visual encoding,
and from quantitative analysis to interactive exploration. A
number of surveys have focused on different aspects of high-
dimensional data visualization, such as parallel coordi-
nates [6], [7], quality measures [8], clutter reduction [9], visual
data mining [10], [11], [12], and interactive techniques [13].
Multivariate scientific datasets have also been investigated
in [14], [15], while other surveys [16], [17], [18] have focused
on the various aspects of visual encoding techniques. These
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papers provide a valuable summary of existing techniques
and inspiring discussions of future directions in their respec-
tive domains. However, few surveys in the past decade have
aimed at providing a general, coherent, and unified picture
that addresses the full spectrum of techniques for visualizing
high-dimensional data.

In this work, we strive to provide a broad survey of advan-
ces in high-dimensional data visualization over the past
decade (even though the focus is on the last decade, the search
extends to more than 15 years), with the following objectives:
providing guidance for data practitioners to navigate through
a modular view of the recent advances, allowing the creation
of new visualizations along the enriched visualization pipe-
line, and identifying opportunities for future visualization
research.

A high-dimensional dataset can be described through the
perspective of the range and domain of a function, which pro-
vides a unified view of several related but different types of
datasets. In this survey, a dataset with more than three
domain or range attributes is considered high-dimensional.

Our contributions are as follows. We propose a categori-
zation of recent advances based on the visualization pipe-
line [19], enriched with customized classifications (Fig. 1,
Section 2) to highlight the common operations in each stage
of the pipeline (Sections 3, 4, and 5). We further assess the
interplay between user interaction and the visualizaiton
pipeline and summarize the prominent interaction patterns
in this context (Fig. 7, Section 6). Finally, we provide a dis-
cussion of emerging research directions in connection with
high-dimensional data visualization (Section 7), as well as a
summary and reflection on our categorization (Section 8).
This paper includes and extends our earlier survey [20] by
enriching existing topics, deliberating about emerging ones
and reflecting on the surveying process.

2 SURVEY METHOD AND CATEGORIZATION

We have conducted a thorough literature review based on rel-
evant works from major visualization venues, namely Vis-
week, EuroVis, PacificVis, and the journal IEEE Transactions
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Fig. 1. Research categorization based on different stages of the visualization pipeline, with subcategories that reflect common approaches.

on Visualization and Computer Graphics (TVCG) from the
period between 2000 and 2015. To ensure the survey covers
the state-of-the-art, we further selectively searched through
references within the initial set of papers. Beyond the visuali-
zation field, we also dedicated special attention to the explor-
atory data analysis techniques in the statistics community.
Through such a rigorous search process, we have identified
more than 200 papers that focus on a wide spectrum of techni-
ques for high-dimensional data visualization. To help orga-
nize the large quantity of papers, we have produced an
interactive survey website' that allows readers to select and
filter papers through various tags. Due to the space limitation,
not all works in the complete list (available through the sur-
vey website) are discussed in this survey.

As illustrated in Fig. 1, we base our main categorization
on the three transformation stages of the visualization pipe-
line [19] (and its minor variation in [8]), namely, data trans-
formation, visual mapping, and view transformation. Each
category is enriched with customized subcategories that
reflect common approaches. Instead of focusing on a com-
plete coverage of relevant research, we strive to provide a
broad overview of advances pertinent to high-dimensional
data visualization while highlighting representative works,
through the carefully designed subcategories, which can act
as guidelines for interested reader to dive into more specific
topics or techniques.

Data transformation (Section 3) corresponds to the
analysis-centric methods such as dimension reduction,
regression, subspace clustering, feature extraction, data
sampling, and abstraction. Visual mapping (Section 4)
emphasizes visual encoding tasks that transform the infor-
mation from the data transformation stage for visual repre-
sentation. This category includes visual encodings based on
axes (e.g., scatterplots and parallel coordinate plots), glyphs,
pixels, and hierarchical representations, together with ani-
mation and perception. View transformation (Section 5) meth-
ods focus on screen space and rendering. Examples from
this stage include illustrative rendering for various visual

1. www.sci.utah.edu/~shusenl /highDimSurvey/website/. The site
is developed based on the SurVis [21] framework.

structures, as well as screen space measures for reducing
clutter or artifacts and highlighting important features.

This design allows us to easily classify the core contribu-
tions of vastly different methods that operate on entirely
different objects, but at the same time, reveal their intercon-
nections through the linked pipeline. Also, the pipeline-
based categorization provides the reader with a modular
view of the recent advances, allowing new systems to be
configured based on possible options provided by the
reviewed methods.

Interactivity is an integral part within each stage of the pipe-
line (Section 6), as illustrated in Fig. 1. Based on the amount of
user interaction, we classify high-dimensional data visualiza-
tion methods into three categories: computation-centric, inter-
active exploration, and model manipulation. The distinction
between the latter two categories is made to emphasize a par-
ticular manipulation paradigm, where the underlying data
model is altered based on interaction to reflect user intention.

Next, we identify two emerging fields of interest in
Section 7. We survey related works in these areas in a context
independent from the visualization pipeline in order to con-
solidate and highlight future directions of exploration.
Finally, Section 8 serves to distill the key points of our survey.

3 DATA TRANSFORMATION

This section discusses in-depth the typical analysis techni-
ques during data transformation, namely, dimension reduc-
tion, subspace clustering and regression analysis, as well as
the emerging topic of topological data analysis. We focus
particularly on their usages in visualization.

3.1 Data Value Type

Data transformation starts with input data. The attribute
value type (e.g.,, nominal versus numerical) can greatly
impact the choice and design of the visualization. In many
applications, the value of the attributes is nominal in nature.
However, most commonly available high-dimensional data
visualization techniques are designed to handle numerical
values only. When utilizing these methods for nominal data,
information overlapping and stacking of visual elements
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usually exist. One way to address this challenge is to map the
nominal values to numerical values [22] (e.g., as imple-
mented in the XmdvTool [23]). Through such a mapping,
each axis is used more efficiently, and the spacing becomes
more meaningful. In the Parallel Sets work [24], the authors
introduce a new visual representation that adapts the notion
of parallel coordinates but replaces the data points with a
frequency-based visual representation that is designed for
nominal data. The Conjunctive Visual Form [25] allows users
to rapidly query nominal values with certain conjunctive
relationships through simple interactions. The Generalized
Plot Matrix (GPLOM) [26] extends the Scatterplot Matrix
(SPLOM) to handle nominal data. In recent work [27], Zhang
et al. introduce the visual correlation analysis for both
numerical and categorical data. In addition to the difference
between nominal and numerical value type, data with a tem-
poral dimension also requires different approaches. In most
situations, the temporal dimension is analyzed separately, as
demonstrated in TimeSpan [28].

3.2 Dimension Reduction

Dimension reduction is one of the fundamental techniques
for analyzing and visualizing high-dimensional datasets.
Dimension reduction techniques can be roughly divided
into two major categories: linear dimension reduction and
nonlinear dimension reduction (manifold learning).

Linear Projection. Linear projection uses linear transfor-
mation to project the data from high-dimensional to low-
dimensional space. It includes many classical methods,
such as Principal Component Analysis (PCA), Multidimen-
sional Scaling (MDS), Linear Discriminant Analysis (LDA),
and various factor analysis methods.

PCA [29] is designed to find an orthogonal linear transfor-
mation that maximizes the variance of the resulting embed-
ding. PCA can be calculated by an eigen decomposition of the
data’s covariance matrix or a singular value decomposition of
the data matrix. The interactive PCA (iPCA) [30] introduces a
system that visualizes the results of PCA using multiple coor-
dinated views. The system allows synchronized exploration
and manipulations among the original data space, the eigen-
space, and the projected space, which aids the user in under-
standing both the PCA process and the dataset. When
visualizing labeled data, class separation is usually desired.
Methods such as LDA aim to provide a linear projection that
maximizes the class separation. The work by Koren et al. [31]
generalizes PCA and LDA by providing a family of flexible
linear projections to cope with different kinds of data.

Nonlinear Dimension Reduction. Nonlinear dimension
reduction can occur in either a metric or nonmetric setting.
The graph-based techniques are designed to handle metric
inputs, such as Isomap [32], Locally Linear Embedding
(LLE) [33], and Laplacian Eigenmap (LE) [34], where a neigh-
borhood graph is used to capture local distance proximities
and build a data-driven model of the space. The other group
of techniques addresses nonmetric problems commonly
referred to as nonmetric MDS or stress-based MDS by captur-
ing nonmetric dissimilarities. The fundamental idea behind
the nonmetric MDS is to minimize the mapping error directly
through iterative optimizations. The well-known Shepard-
Kruskal algorithm [35] begins by finding a monotonic trans-
formation that maps the nonmetric dissimilarities to the
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Fig. 2. A trade-off exists between the interpretablility of the axis and the
intrinsic structure captured by the dimensionality reduction methods.

metric distances, which preserves the rank-order of dissimi-
larity. Then, the resulting embedding is iteratively improved
based on stress. The progressive and iterative nature of these
methods has been exploited recently by Williams et al. [36],
where the user is presented with a coarse approximation
from partial data. The refinement is on-demand based on
user inputs. Others rely on hybrid methods [37], [38] based
upon stochastic sampling and interpolation to approximate
the solution. t-SNE [39] has gained a lot of attention recently
due to its effectiveness for visualizing high-dimensional
data. It utilizes a probability distribution to encode the inter-
point neighborhood information, and a mismatched distri-
bution between high- and low-dimensional spaces is used to
eliminate the unwanted attractive forces, therefore, resolving
the crowding problem [39].

The trade-off among the different type of projections is
illustrated in Fig. 2. The bivariate scatterplot (as in a scatter-
plot matrix) is most easily understood, since its axes directly
correspond to the original dimensions. A linear projec-
tion [29], [31] generates interpretable embeddings (less so
compared to a bivariate scatterplot), and the out-of-samples
points can be easily projected to the same space. The non-
linear projection (manifold learning) approaches [32], [33],
[34], on the other hand, allow the capture of more complex
structures, but the resulting embedding can be extremely
difficult to interpret.

Control Point Based Projection. For handling large and
complex datasets, the traditional linear or nonlinear dimen-
sion reductions are limited by their computational effi-
ciency. Some recent developments, e.g., [40], [41], [42],
utilize a two-phase approach, where a set of control points
(or anchor points) is projected first, followed by the projec-
tion of the rest of the points based on the location of the con-
trol points and preservation of local features. Such designs
lead to a much more scalable system. Furthermore, the con-
trol points allow the user to easily manipulate and modify
the outcome of the dimension reduction computation to
achieve the desired results.

Distance Metric. For a given dimension reduction algo-
rithm, a suitable distance metric is essential for the computa-
tion outcome as it is more likely to reveal important
structural information. Brown et al. [43] introduce the dis-
tance function learning concept, where a new distance metric
is calculated from the manipulation of point layouts by an
expert user. In the Explainers work [44], the author attempts
to associate a linear basis with a certain meaningful concept
constructed based on user-defined examples. Machine learn-
ing techniques can then be employed to find a set of simple
linear bases that achieve an accurate projection according to
the prior examples. The structure-based analysis method [45]
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introduces a data-driven distance metric inspired by the per-
ceptual processes of identifying distance relationships in
parallel coordinates using polylines.

Dimension Reduction Precision Measure. One of the funda-
mental challenges in dimension reduction is assessing and
measuring the quality of the resulting embeddings. Lee
et al. introduce the ranking-based metric [46] that assesses
the ranking discrepancy before and after applying dimen-
sion reduction. This technique is then generalized [47] and
used for visualizing dimension reduction quality.

A projection precision measure is introduced in [48], where
a local precision score is calculated for each point with a cer-
tain neighborhood size. In the distortion-guided exploration
work [49], several distortion measures are proposed for differ-
ent dimension reduction techniques, for which these meas-
ures aid in understanding the cause of highly distorted areas
during interactive manipulation and exploration. For MDS,
the stress can be used as a precision measure. Seifert et al. [50]
further develop this idea by incorporating the analysis and
visualization for better understanding of the localized stress
phenomena. In recent work [51], Stahnke et al. introduce the
notion of probing for examining the dimension reduction
results. This approach not only reveals points with larger
errors but also interactively considers locally correct represen-
tations of these points.

3.3 Subspace Clustering

Clustering is one of the most widely used data-driven anal-
ysis methods. Instead of providing an in-depth discussion
of all clustering techniques, in this survey we focus on sub-
space clustering techniques that have a great impact on
understanding and visualizing high-dimensional datasets.
Compared to dimension reduction, which aims to compute
one single embedding that best describes the structure of
the data, subspace clustering helps identify multiple
embeddings, each capturing a different aspect of the data,
by clustering either the dimensions or the data points.

Dimension Space Exploration. Guided by the user, dimen-
sion space exploration methods interactively group relevant
dimensions into subsets. The grouping allows us to better
understand dimension relationships and to identify shared
patterns among the dimensions. Turkay et al. introduce a dual
visual analysis model [2] where both the dimension embed-
ding and point embedding can be explored simultaneously.
Their later improvement [52] allows for the grouping of a col-
lection of dimensions as a factor, which permits effective
exploration of the heterogeneous relationships among them.
The Projection Matrix/Tree work [53] extends a similar con-
cept to allow a recursive exploration of both the dimension
space and data space. One recent advance [54] bridges the
gap between the dimension space and the data space. By com-
bining the dimension and element relationship and encoding
them into a single matrix, the proposed approach produces a
comprehensive map in which the data points are presented in
the context of the variables. Several visual encoding methods
also rely on the concept of dimension space exploration. These
methods are discussed in Section 4.3.

Subsets of Dimensions. Compared to the dimension
space exploration, where the user is responsible for iden-
tifying patterns and relationships, subspace clustering/
finding methods automatically group related dimensions
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into clusters. Subspace clustering filters out the interfer-
ences introduced by irrelevant dimensions, allowing
lower-dimensional structures to be discovered. These
methods, such as ENCLUS [55], originate from the data
mining and knowledge discovery community. They intro-
duce some very interesting exploration strategies for
high-dimensional datasets that can be particularly effec-
tive when the dimensions are not tightly coupled. The
TripAdvisor™? [56] system employs a sightseeing meta-
phor for high-dimensional space navigation and explora-
tion. It utilizes subspace clustering to identify the sights
for the exploration. The subspace search and visualization
work [57] utilizes the SURFING [58] algorithm to search
the high-dimensional space and automatically identifies a
large candidate set of interesting subspaces. In the work
presented by Ferdosi et al. [59], morphological operators
are applied on the density field generated from the (3D)
PCA projection of the high-dimensional data for identify-
ing subspace clusters.

Non-Axis-Aligned Subspaces. Instead of grouping the
dimensions, which essentially creates axis-aligned linear
subspaces, identifying non-axis-aligned linear subspaces is a
more flexible alternative. Projection Pursuit [60] is one of the
earliest works aimed at automatically identifying the inter-
esting non-axis-aligned subspaces, where the projections are
considered to be more interesting when they deviate more
from a normal distribution. Recently, some advances have
been made in the machine learning community to perform
non-axis-aligned subspace clustering [61]. Instead of finding
(possibly overlapping) clusters in axis-aligned subspaces
defined by different dimensions combinations, the points are
directly clustered together for sharing similar linear subspa-
ces. In particular, this approach assumes the complex struc-
ture of the data can be approximated by a mixture of linear
subspaces (of varying dimensions), and each of the linear
subspaces corresponds to a set of points where their relation-
ships can be approximately captured by the same linear sub-
space. Lehmann et al. [62] have recently introduced an
interesting and different approach for identifying a set of dis-
tinct linear projections. By adopting a dissimilarity measure,
they aim to remove duplicated data patterns by optimizing
the dissimilarity among the selected projections. By utilizing
random projection [63], Anand et al. [64] introduce an effi-
cient subspace finding algorithm for data with thousands of
dimensions. The algorithm generates a set of candidate sub-
spaces through random projections and presents the top-
scoring subspaces in an exploration tool.

3.4 Regression Analysis
Regression analysis for high-dimensional data is an exten-
sive field of research on its own, and so, we focus only on
the interplay between visualization and regression analysis.
Optimization and Design Steering. Pure optimization prob-
lems often are not the focus in the visualization community.
What is more common are design steering methods for
which, in addition to a multivariate input space, users have
one or several output or response variables they want to
explore (e.g., [65], [66]), where the results require a qualita-
tive examination or are used to inform decisions.
HyperMoVal [67] is a software system used for validat-
ing regression models against actual data. It uses support
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vector regression (SVR) [68] to fit a model to high-dimen-
sional data, highlights discrepancies between the data and
the model, and computes sensitivity information on the
model. The software allows for adding more model parame-
ters to refine the regression to an acceptable level of accu-
racy. Berger et al. [65] utilize two types of regression models
(SVR and nearest neighbor regression) to analyze a trade-
off study in performance car engine design. Utilizing the
predictive power of the regression, they are able to provide
a guided navigation of the high-dimensional space centered
around a user-selected focal point. The user adjusts the focal
point through multiple linked views, and sensitivity and
uncertainty information is encoded around the focal point.

Tuner [66] uses an automated adaptive sampling algo-
rithm where a sparse sampling of the parameter space is
refined by building a Gaussian Process Model (GPM) [69]
and using adaptive sampling to focus additional samples in
areas with either a high goodness of fit or high uncertainty.
The software then relies heavily on user interaction to study
the sensitivities with respect to each input parameter and
steers the computation toward the user-defined optimal
solution. Demir et al. [70] improve the effectiveness of
GPMs by utilizing a block-wise matrix inversion scheme
that can be implemented on the GPU, greatly increasing effi-
ciency. In addition, their method involves progressive
refinement of the GPM and can be halted at any point, if the
improvement becomes insignificant.

Most of these methods convey sensitivity information
through user exploration of the input space. In Section 4.2,
explicit visual encodings for understanding sensitivity
information are also discussed.

Structural Summaries. Researchers have also used regres-
sion to summarize data as in the works by Reddy et al. [71]
and Gerber et al. [5]. Both approaches summarize the struc-
tures of the data via skeleton representations. Reddy
et al. [71] use a clustering algorithm followed by construc-
tion of a minimum spanning tree of the cluster centroids in
order to determine possible trends in the data. These trends
are then fitted with principal curves [72] that go through the
medial-axis of the data. HDViz [5], on the other hand,
approximates a topological segmentation (for more details,
see Section 3.5) and constructs an inverse linear regression
for each segment of the data. In both examples, regression is
used as a postprocessing step of the algorithms in order to
present summaries of the extracted subsets of the data.

3.5 Topological Data Analysis

A crucial step in gaining insights from large, complex, high-
dimensional data involves feature abstraction, extraction,
and evaluation in the spatiotemporal domain for effective
exploration and visualization. Topological data analysis
(see [73], [74], [75], [76], [77], [78], [79] for seminal works
and surveys), has provided efficient and reliable feature-
driven analysis and visualization capabilities.

Topology in visualization covers many techniques dealing
with multivariate data over a low-dimensional (e.g., 2, 3 or
4) spatiotemporal domain. This includes well-established
research topics in vector and tensor field visualizations, and
we defer discussion of such topics to the appropriate sur-
veys [80], [81], [82], [83], [84], [85], [86]. Within this body of
work, a few techniques have stated their applicability to
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Fig. 3. Contour- and gradient-based topological structure of a 2D scalar
function.

arbitrary dimensional domain spaces [85], [87]; however
very few applications exist for visualizing vector or tensor
fields in high-dimensional spaces.

In our context, fopological data analysis (TDA) is an emerg-
ing field of study that combines algebraic topology and other
pure mathematical disciplines with computer science to
describe the shape of data in a quantitative and mathemati-
cally rigorous fashion. Previous work in pure mathematics
has focused on the study of topological spaces under smooth
and continuous settings without computational considera-
tions of noisy and discrete datasets. TDA typically operates
under the discrete setting where combinatorial structures
such as graphs or simplicial complexes are imposed on the
point cloud data to approximate their underlying structure.
TDA, in our opinion, has over the past 15 years, brought a
brand new perspective to topology in visualization.

The main data analysis tools in TDA are rooted in persis-
tent homology [75], that is, the study of homology for point
cloud data across multiple scales, and topological structures
such as contour trees and Morse-Smale complexes. In the
remainder of this section, we will discuss the applications of
TDA for high-dimensional data visualization in the context of
the visualization pipeline. For a complete taxonomy of topo-
logical methods in visualization including vector and tensor
field visualization, see a recent survey by Heine et al. [79].

Many TDA techniques construct topological struc-
tures [88], [89] from scalar functions on point clouds (e.g.,
Morse-Smale complexes, contour trees, and Reeb graphs) as
“summaries” over data. As a result, most TDA related tech-
niques exist in the data transformation stage of the visualiza-
tion pipeline. Among the commonly used TDA approaches,
Reeb graphs/contour trees capture very different structural
information of a real-valued function compared to the
Morse-Smale complexes as the former is contour-based and
the latter is gradient-based (Fig. 3). They both provide mean-
ingful abstractions of high-dimensional data, which reduce
the amount of data needed to be processed or stored; and
they utilize sophisticated hierarchical representations that
capture features at multiple scales, which enable progressive
simplifications of features differentiating small- and large-
scale structures in the data.

Morse-Smale Complex. The Morse-Smale complex (MSC)
[90], [91] describes the topology of a function by clustering
the points in the domain into regions of monotonic gradient
flow, where each region is associated with a sink-source
pair defined by local minima and maxima of the function.
The MSC can be represented using a graph where the
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vertices are critical points, and the edges are the boundaries
of areas with similar gradient behavior. The simplification
of the MSC is obtained by removing pairs of vertices in the
graph and updating connectivities among their neighboring
vertices, thus merging nearby clusters by redirecting the
gradient flow [92], [93], [94].

HDViz [5] employs an approximation of the MSC (in high
dimensions) to analyze scalar functions on point cloud data.
It creates a hierarchical segmentation of the data by cluster-
ing points based on their monotonic flow behavior, and
designs new visual metaphors based on such a segmenta-
tion. This type of visual representation has been employed in
the visual analytics of high-dimensional parameter spaces
originating from simulations in nuclear engineering [4], [95],
[96] and the National Ignition Campaign [97]. Correa and
Lindstrom [98] suggest that by considering a different type
of neighborhood structure, the accuracy in the extracted
topology can be improved compared to those obtained
within HDViz. The topological spine [99] uses the MSC to
build an extremum graph that can more faithfully represent
complex structures such as cycles and fractals occurring in
the topology. Narayanan et al. [100] design a metric for com-
paring such extremum graphs of related data.

Reeb Graphs, Contour Trees, and Merge Trees. The Reeb
graph of a real-valued function describes the connectivity of
its level sets. A contour tree is a special case of the Reeb
graph that arises in simply connected domains. A merge
tree, also known as a barrier tree, is similar to Reeb graphs
and contour trees except that it describes the connectivity of
sublevel sets rather than level sets. The Reeb graph stores
information regarding the number of components at any
function value as well as how these components split and
merge as the function value changes. Such an abstraction
offers a global summary of the topology of the level sets
and enables the development of compact and effective
methods for modeling and visualizing scientific data, espe-
cially in high dimensions (i.e., [101], [102]). Approximating
Reeb graphs from point cloud data are also possible [103].
For a more detailed history of the Reeb graph in computer
graphics, see the survey by Biasotti et al. [104]

Mapper [102] decomposes data into a simplicial complex
resembling a generalized Reeb graph and visualizes the
data using a graph structure with varying node sizes. The
software is shown to extract salient features in a study of
diabetes by correctly classifying normal patients and
patients with two causes of diabetes [105]. It is shown, in a
restrictive sense, that Mapper converges to the Reeb space
(a higher-dimensional generalization of Reeb graph) in the
limit [106]. To this end, there have been some very recent
efforts in understanding Reeb spaces and fiber surfaces via
visualization, although those works have largely focused on
bivariate functions on tetrahedral meshes [107], [108], [109].
Extensions of these works to general dimensionality are an
open and interesting avenue of future research.

In terms of comparing the topologies of related data, the
bottleneck distance between persistence diagrams is a well-
established technique [110], but Beketayev et al. [111] have
recently devised a more robust metric for comparing merge
trees that accounts for the nesting structure of the tree.

Efficient algorithms for computing the contour tree [112],
[113], [114], merge tree [115], and Reeb graph [116] in
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arbitrary dimensions have been developed. The latest state-
of-the-art regarding contour trees have been parallel or dis-
tributed implementations, however these have focused spe-
cifically on tetrahedral meshes or regular grids in low
dimensions [117], [118], [119], [120]. The visual representa-
tions of these topological structures are discussed in Section
4.4. For a more detailed reference of these methods in the
time-varying setting, refer to the survey by Mascarenhas
and Snoeyink [121].

Multi-Field Analysis. The methods mentioned above deal
primarily with scalar field data (except for those regarding
Reeb spaces [106], [107], [108], [109]), but more recently
techniques have been developed to also deal with multi-
field data. Jacobi sets [122] have been used to locate the criti-
cal points of one scalar field restricted to the level sets of
another scalar field, allowing for the simultaneous compari-
son of two variables of interest. However, most applications
of Jacobi sets have been to low-dimensional examples and
are restricted to comparing only two outputs of interest.

A more recent and general technique is the development of
the Joint Contour Net (JCN), a generalization of the Reeb
graph introduced by Carr et al. [123], [124] that allows for the
analysis of multi-field data. Duke and Hosseini [125] have
subsequently improved the performance with a parallel
implementation of the JCN, and Geng et al. have improved
the interactivity by enabling brushing and linking and dem-
onstrated its effectiveness in finding periodic patterns in oce-
anic data [126]. Chattopadhyay et al. [127], [128] have focused
on bridging the gap between approximation and theory and
produced an algorithm for performing simplification on the
JCN among several other theoretical advancements.

The notion of Pareto optimality has also been explored.
Pareto optimality is the trade-off analysis dealt with in
multi-target optimization where a maximum implies
increasing one target function value cannot be done without
reducing another, and vice versa for a Pareto minimum. The
simplicial Pareto set [129] builds off the technique proposed
by Stadler and Flamm [130] to the piecewise linear setting in
order to visualize the so-called Pareto sets of a sampled mul-
tivariate dataset. This work has been extended to deal with
noisy data by using a reachability graph to perform topologi-
cal simplification [131]. Huettenberger et al. [132] compare
the JCN with the Pareto set and conclude that the JCN can be
seen as a good and fast approximation of the Pareto set under
specific conditions.

Other Topological Features. TDA also applies to nonfunc-
tional data such as the focus of persistent homology
where the connected components, circles, and voids in
the data are studied. Carlsson [77] and Ghrist [78] both
offer several applications of TDA and in particular high-
light the topological theory used in a study of statistics of
natural images [133]. Wang et al. [134] utilize TDA techni-
ques developed by Silva et al. [135] to recover important
structures in high-dimensional data containing nontrivial
(high-dimensional branching and circular structures)
topology. Rieck et al. utilize persistent homology to struc-
turally compare high-dimensional datasets [136], [137]
and to compare dimensionality reduction algorithms [138].
Bubenik [139] introduces a visualization called the persis-
tence landscape as an alternative to the persistence dia-
grams and barcodes used by both Carlsson and Ghrist.
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Fig. 4. Scagnostics introduced by Wilkinson et al. [140]

4 VISUAL MAPPING

Visual mapping plays an essential role in converting the
analysis result from the data transformation stage or
the original dataset into visual structures for rendering in
the view transformation stage. Based on differences in
their structural patterns and visual compositions, we
divide these approaches into axis-based, glyphs, pixel-
oriented, hierarchy-based, and animation. Axis-based
methods contain axes corresponding to the original data
dimensions, projected dimensions, or combinations
thereof. Glyphs encode information into the size, color,
shape, and arrangement of small graphical symbols. Pixel-
oriented techniques encode individual data values as pix-
els and focus on arranging the pixels in meaningful ways.
Hierarchy-based mappings visualize nesting relationships
in multiresolution and tree-like data. Animations include
a temporal element to convey information in the changing
of visual elements. In addition, the methods that evaluate
the effectiveness of visual encodings are also discussed.

4.1 Axis-Based Methods

Axis-based methods refer to visual mappings where ele-
ment relationships are expressed through axes representing
the data dimensions. These methods include the most ubig-
uitous visual mapping approaches, such as scatterplot
matrices (SPLOMs) and parallel coordinate plots (PCPs).

Scatterplot Matrix. A scatterplot matrix, or SPLOM, is a
collection of bivariate scatterplots that allows users to view
multiple bivariate relationships simultaneously. One of the
primary drawbacks of SPLOMs is the scalability. The num-
ber of bivariate scatterplots increases quadratically with
respect to the dataset’s dimensionality. Numerous studies
have introduced methods for improving the scalability of
SPLOMSs by automatically or semiautomatically identifying
more interesting plots.

Originally introduced by John W. Tukey, Scagnostics are a
set of measures designed for identifying interesting plots in a
SPLOM. The recent works of Wilkinson et al. [140] extend the
concept to include nine measures (illustrated in Fig. 4) cap-
turing properties such as outliers, shape, trend, and density.
In addition, they improve the computational efficiency by
using graph-theoretic measures. Scagnostics have also been
extended to handle time series data [141]. Guo [142] introdu-
ces an interactive feature selection method for finding
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interesting plots by evaluating the maximum conditional
entropy of all possible axis-parallel scatterplots. The rank-by-
feature framework [143] allows users to choose a ranking cri-
terion, such as histogram distribution properties and correla-
tion coefficients between axes, for scatterplots in SPLOMs.

Data class labels can play an important role in identifying
interesting plots and selecting a meaningful ranking order.
Sips et al. utilize class consistency [144] as a quality metric
for 2D scatterplots. The class consistency measure is defined
by the distance to the center of the class or entropies of the
spatial distributions of classes. Tatu et al. [145] introduce
different metrics for ranking the “interestingness” of scatter-
plots and PCPs for both classified and unclassified datasets.
For data with labels, a class density measure and a histo-
gram density measure are adopted as ranking functions for
the scatterplots.

The ranking order provides only an indirect way to
assess the scatterplots. Lehmann et al. [146] introduce a sys-
tem for visually exploring all the plots as a whole. By reor-
dering the rows and columns in the SPLOMs, this method
groups relevant plots in the spatial vicinity of one another.
In addition, an abstraction can be obtained from the reor-
dered SPLOM to provide a global view.

Parallel Coordinates. Compared to a SPLOM, for which
only bivariate relationships can be directly expressed, the
parallel coordinate plot (PCP) [6], [7], [147] allows patterns
that highlight multivariate relations to be revealed by
showing all the axes at once. For a given n-dimensional
dataset, theoretically, there are n! permutations of the
ordering of the axes. With different axes order, vastly
different information may be presented. Therefore, one of
the fundamental challenges when dealing with PCPs is
determining the appropriate orders of the axes [7]. Since a
user typically can only interpret the visual patterns among
nearby axes, the search space can be drastically reduced
by focusing on localized axes orders, such as consecutive
dimension triples (an axes and its immediate neighbors)
or pairwise dimensions. For these scenarios, finding the
minimum number of permutations needed to display all
dimension triples or pairwise dimension combinations is
the goal. Hurley et al. [148] adopt Eulerian tours and Ham-
iltonian decompositions of complete graphs to generate
axis order permutations ( O(n/2) ) covering all bivariate
patterns between dimensions. Inselberg has posed the
problem of finding permutations that display all adjacent
triples [6], which may be considered as a future visualiza-
tion challenge in PCPs.

A few other methods utilize quality metrics and sub-
space finding methods to automatically identify interesting
axes orders. The PCP ranking methods developed by Tatu
et al. [145] work for both classified and unclassified datasets.
For unlabeled data, the Hough space measure is used, and
for labeled data, a similarity measure and overlap measures
are adopted. Ferdosi et al. introduce a dimension ordering
method [149] that is applicable for both PCPs and SPLOMs
utilizing the subspace analysis method from their earlier
work [59] discussed in Section 3.3. Johansson and Johans-
son [150] propose an interactive system adopting a
weighted combination of quality metrics for dimension
selection and automatic ordering of the axes to enhance
visual patterns such as clustering and correlation.
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In addition, as the number of data points increases, the line
density in the PCP increases dramatically, which can lead to
visual clutter [7] thus hindering the discovery of patterns
(e.g., density variation, dimension correlation). As a result,
clutter reduction through filtering, aggregation, visual encod-
ing, and dimension reordering, is another important chal-
lenge for PCPs. Interactive filtering of data, such as brushing
linked axes, is essential for alleviating visual clutter. Chapter
10 of Inselberg’s book [6] provides a great discussion on how
to exploit interactivity in PCPs to understand large and com-
plex data. A set of query operations, which can be combined
to construct more complex queries, is identified as the basis
for the exploration.

Aggregation and visual encoding can also be used in com-
bination with interactive exploration to reduce visual clutter.
In the work by Novotny and Hauser [151], a focus+context
visualization scheme is adopted for reducing the clutter by
aggregation. In this approach, the outliers are indicated by
single lines and the trends that capture the overall relation-
ship between axes are approximated by polygon strips. Zhou
et al. introduce a line bundling scheme [152] for enhancing
the visual clusters. The authors exploit the curved edges and
arrange the edges by minimizing the curvature while maxi-
mizing the parallelism of the adjacent ones. The progressive
parallel coordinate (PPC) [153] work introduces several
LOD-hierarchy based visual encoding approaches to address
the challenges of large datasets and overplotting. In the work
introduced by Dang et al. [154], density is expressed by stack-
ing overlapping elements. For the PCP case, a 3D visualiza-
tion is presented, where either the edges are stacked as
curves or the points on the axes are stacked vertically as dots
to alleviate the clutter with an additional dimension. Finally,
as dimension ordering can greatly affect the PCPs’ expres-
siveness, Peng et al. [155] introduce a clutter reduction
method for PCPs by reordering the axes. Clutter reduction
methods that employ screen space measures are discussed in
detail in Section 5.4.

Radial Layout. The star coordinate plot [156], also referred
to as a bi-plot [157], is a generalization of the axis-aligned
bivariate scatterplot. The star coordinate axes represent the
unit basis vectors of an affine projection. The user is allowed
to modify the orientation and the length of the axes as a way
of altering the projection. However, due to the unbounded
manipulation, star coordinates may produce affine projec-
tions in which substantial distortion occurs. Lehmann et al.
extend the star coordinate concept with an orthographic
constraint [158], which better preserves the structure of the
original dataset in the projection.

Radviz [157], similar to the star coordinates, adopts a cir-
cular pattern. The difference is that Radviz does not define an
explicit projection matrix. In Radviz, n-dimensional anchors
are placed along the perimeter of a circle, each representing
one of the dimensions of an n-dimensional dataset. A spring
model is constructed for each point, where one end of a
spring is attached to a dimensional anchor and the other is
attached to the data point. The point is then displayed where
the sum of the spring forces equals zero. Albuquerque et al.
[159] devise a RadViz quality measure allowing automatic
optimization of the dimensional anchor layout.

DataMeadow [160] introduces a radial visual encoding
named DataRoses, which is represented as a PCP laid out
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Fig. 5. Scattering points in parallel coordinates by Yuan et al. [162].

radially as opposed to linearly. Lastly, PolarEyez [161]
introduces a focus+context visualization in which the high-
dimensional function parameter space is encoded in a radial
fashion around a user-controlled focal point. Data near the
focal point is represented with more precision, and the focal
point can be altered to focus on different parts of the data.

Hybrid Construction. The axis-based methods can also be
combined to create new visualizations. The scattering points
in parallel coordinate work [162] (Fig. 5) embeds an MDS
plot between a pair of PCP axes. The flexible linked axes
work [163] is a generalization of the PCP and the SPLOM.
The tool gives the user the ability to create new configura-
tions by drawing and linking axes in either scatterplot or
PCP style. Proposed by Fanea et al., the integration of paral-
lel coordinate and star glyphs [164] provides a way to
“unfold” the overlapped values in the PCP axis in 3D space.
In this work, each axis in the PCP is replaced by a star glyph
that represents the values of the corresponding dimension
across all points, and then each high-dimensional point is
described as a set of line segments in 3D connecting the
individual values in the star glyphs.

In addition, a number of visual representations derive
from the well-known visual encodings. Angular histo-
grams [165] introduced a novel visual representation that
improves the scalability of PCPs by summarizing the trend
of the line segments between the axes. The tiled PCP [166]
adopts a row-column 2D configuration instead of the 1D lin-
ear layout of the traditional PCP for simultaneous visualiza-
tion of multiple time steps and variables.

4.2 Glyphs

By rendering “small graphical symbols”, the glyphs-based
approaches utilize shape, color, opacity, size, location, etc.
to encode high-dimensional information.

Chernoff faces [167] are one of the first attempts to
map a high-dimensional data point into a single glyph.
The system works by mapping different facial features
to separate dimensions. In a few recent works, glyphs
have been utilized to provide statistical and sensitivity
information in order to present trends in the data. By
utilizing local linear regression to compute partial deriv-
atives around sampled data points and representing
the information in terms of glyph shape, sensitivity
information (uncertainty related topics are discussed in
Section 7.1) can be visually encoded into scatter-
plots [168], [169], [170], [171].

The methods described above deal with encoding per
data point information into glyphs. Other usages of glyphs
attempt to show the trends in parts of the data. DICON [172]
uses dynamic icons based on treemap visualization to
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encode clusters of data into separate glyphs, and allows the
user to interactively merge, split, filter, regroup, and high-
light information within clusters. Lehmann et al. [173] intro-
duce visualnostics, in which various 2D representations of
high-dimensional data such as parallel coordinates, scatter-
plots, RadViz, and star coordinates are summarized by pic-
tograms to aid visual search tasks.

Finally, Ward [174] gives a thorough, practical treatment
for generating and organizing effective glyphs for multivar-
iate data, paying particular attention to the common pitfalls
involving the use of glyphs.

4.3 Pixel-Oriented Approaches

In an effort to encode the maximal amount of information,
several works have targeted dense pixel displays. Research-
ers have focused on encoding data values as individual pix-
els and creating separate displays, or subwindows, for each
dimension.

Some of the earliest works in this area date back to the
mid 1990s [175], [176]. VisDB [175] visualizes database
queries by creating a 2D image for each dimension involved
in the query and mapping individual values of a dimension
to pixels. The mapped data is sorted and colored by rele-
vance such that the data most related to the query appears
in the center of the image, and the data spirals outward as it
loses relevance to the query. Circle segments [176] arrange
multidimensional data in a radial fashion with equal size
sectors being carved out for each dimension.

The pixel concept can be applied to bar charts to create
pixel bar charts [177]. Pixel bar charts first separate data into
separate bars based on one dimension or attribute, and they
can also split the data along the orthogonal direction using
another dimension, although most results are reported using
only one direction for splitting data. Once split, the data
points are sorted along the horizontal axis within the bars
using one dimension and ordered along the vertical axis using
another dimension. Wattenberg introduces the jigsaw
map [178], which again maps data points to pixels and uses
discrete space-filling curves in order to fill a 2D plane in a
more sensible fashion than a comparative treemap layout.

The Value and Relation (VaR) displays [179] combine the
recursive pattern displays [180] with MDS in order to lay
out the separate subwindows such that similar dimensions
are placed closer together. A latter iteration [181] enhances
the work by providing alternative dimension representa-
tions and their layout schemes.

4.4 Hierarchy-Based Approaches

Hierarchical structures can be used to capture dimensional
relationships and to provide summaries for representing
high-dimensional datasets.

Dimension Hierarchies. Large numbers of dimensions hin-
der our ability to navigate the data space and cause scalability
issues for visual mapping. A hierarchical organization of
dimensions explicitly reveals the dimension relationships,
helping to alleviate the complexity of the dataset. Yang et al.
propose an interactive hierarchical dimension ordering, spac-
ing, and filtering approach [182] based on dimension similar-
ity. The dimension hierarchy is represented and navigated by
a multiple ring structure (InterRing [183]), where the inner-
most ring represents the coarsest level in the hierarchy.
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Topological Hierarchies. In the previous section, we have
discussed topological structures, which can provide a rank-
ing of features with the help of persistence simplification
and thus be treated as a hierarchy.

The contour tree that summarizes the structure of (poten-
tially) high-dimensional data has been the subject of many
visual manifestations with a focus on its 2D graph drawing;
Heine et al. establish a set of constraints to produce aesthetic
and interpretable visualizations of this nature [184]. More
abstract visual metaphors have been introduced, such as
orreries [185], cacti [186], and landscapes [187], [188], [189],
[190], [191], [192]. These visual metaphors can be and have
been used to support high-dimensional data visualization
by abstracting the structures in high dimensions as a low-
dimensional representation, where its layout is used to con-
vey the hierarchy and proximity of features. In particular,
Weber et al. [192] have presented such a metaphor for visu-
ally mapping the contour tree of high-dimensional func-
tions to a 2D terrain. The metaphor preserves the relative
size, volume, and nesting of the topological features.
Harvey and Wang [189] have extended this work by com-
puting all possible planar landscapes. They are able to pre-
serve exactly the volumes of the high-dimensional features
in the areas of the terrain. In addition, the works of Oester-
ling et al. [190], [191] have used this same metaphor to visu-
alize a related structure, the join tree. They use a novel high-
dimensional interpolation scheme in order to estimate the
density from the raw data points and visually map the den-
sity as points on top of their generated terrains. Oesterling
et al. [193] have continued this line of work by creating a
linked view software system including user interactions in
the analysis by allowing users to brush and link with PCPs
and PCA projections of the data. In addition, they have pre-
sented a new method of sorting the features based on per-
sistence, cluster size, or cluster stability, thus adjusting the
placement of features in the topological landscape. The level
set tree proposed by Klemela [194] is a similar data structure
to the contour tree used in understanding multivariate den-
sity distributions as piecewise constant functions. Klemela
provides three visualizations for understanding the statisti-
cal and shape properties of the distributions: a tree drawing,
a barycenter plot, and a volume plot.

In terms of visual mapping for Morse-Smale complexes,
skeletons are often used to convey their topology; however,
these may not be the best visualization technique, particu-
larly in the face of uncertainty. An alternative is to apply a
graph-based layout (i.e., [195], [196], [197]) to the MSC, and
combine such a layout with dimension reduction and statis-
tical techniques such as regression to produce content-rich
visual representations, e.g., HDViz [5].

Other Hierarchical Structures. In the structure-based brushes
work [198], a data hierarchy is constructed to be visualized by
both a PCP and a treemap [199], allowing users to navigate
among different levels-of-detail and select the feature(s) of
interest. The structure decomposition tree [200] presents a
novel technique that embeds a cluster hierarchy in a dimen-
sional anchor-based visualization using a weighted linear
dimension reduction technique. It provides a detail plus over-
view structural representation and conveys coordinate value
information in the same construction. The system supports
user-guided pruning, optimization of the decision tree, and
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encoding the tree structure in an explorable visual hierarchy.
Kreuseler et al. present a novel visualization technique [201]
for visualizing complex hierarchical graphs in a focus+context
manner for visual data mining tasks.

4.5 Animation

As stated in Heer et al.’s work [202], animation, when used
appropriately, can significantly improve graphical percep-
tion. Many techniques for visualizing high-dimensional
data utilize animated transitions to enhance the perception
of point and structure correspondences among multiple rel-
evant plots.

The GGobi system [203] provides a mechanism for calcu-
lating a continuous linear projection transition between a
pair of linear projections based on the principal angles
between them. In the Rolling the Dice work [204], a transi-
tion between any pair of scatterplots in a SPLOM is made
possible by connecting a series of 3D transitions between
scatterplots that share an axis. RnavGraph [205] constructs a
graph connecting a number of interesting scatterplots. A
smooth animation is generated between all scatterplots that
are connected by an edge. The TripAdvisor™P [56] system
allows users to explore the neighborhood of a subspace by
tilting the projection plane using a polygonal touchpad
interface.

4.6 Perception Evaluation

The design goal of visual mapping and encoding is to directly
convey the information to the user through visual perception.
The evaluation of this mapping is vitally important in deter-
mining the effectiveness of the overall visualization.

Sedlmair et al. have carried out an extensive investiga-
tion of the effectiveness of visual encoding choices [206],
including 2D scatterplots, interactive 3D scatterplots, and
SPLOMs. Their findings reveal that the 2D scatterplot is
often decent, and certain dimension reduction techniques
provide a good alternative. In addition, SPLOMs sometimes
add additional value, and the interactive 3D scatterplot
rarely helps and often hurts the perception of class separa-
tion. A perception-based evaluation [207] of various projec-
tion methods that generate 2D linear or nonlinear
scatterplot is presented by Etemadpour et al. In this work,
the authors identify eight typical tasks that relate to the
properties of projection methods and results in terms of seg-
regation capability, projection precision, and incurred
visual cluttering. The evaluation demonstrates that the pro-
jection performance is task dependent and heavily depends
on the nature of the data. In addition, certain projections
perform better on specific types of tasks.

The efficacy of several PCP variants for cluster identifica-
tion has been studied in [208]. A comparison is performed
among nine PCP variations based on existing methods and
combinations of them. The evaluation reveals that, aside
from the scatterplots embedded into parallel coordinates, a
number of seemingly valid improvements do not result in
significant performance gains for cluster identification
tasks. A comparative study between two popular radial vis-
ualizations, the RadViz and star coordinates, can be found
in [209]. As pointed out in the study, RadViz is useful for
analyzing sparse data, but the nonlinear nature of its nor-
malization step impedes its application and accuracy
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Fig. 6. llluminated 3D scatterplot by Sanftmann et al. [211].

compared to the flexible and linear star coordinates. An
evaluation of radial visualization solutions for composite
indicators (a measuring and benchmark tool used to capture
multidimensional concepts) is presented by Albo et al. [210].
Heer et al. investigate the animated transition effectiveness
between statistical graphs [202], such as bar charts, pie
charts, and scatterplots. Their results reveal that animated
transitions, when used appropriately, can significantly
improve graphical perception.

5 VIEW TRANSFORMATION

View transformations dictate what we ultimately see on the
screen. As pointed out by Bertini et al. [8], the view transfor-
mation can also be described as the rendering process that
generates images in the screen space.

5.1 lllustrative Rendering

Mlustrative rendering describes methods aimed at achieving
a specific visual style by applying custom rendering algo-
rithms. The illustrative PCPs work [212] provides a set of
artistic rendering techniques for enhancing visual patterns
(e.g., line density) in PCPs. Illuminated scatterplots [211]
(Fig. 6) classify points based on the eigenanalysis of the
covariance matrix and give the user the opportunity to see
effects such as planarity and linearity when visualizing
dense scatterplots. Johansson et al. [213] reveal structures in
PCPs by adopting the transfer function concept commonly
used in volume rendering. Based on user input, the transfer
function maps the line densities into different opacities to
highlight different features.

Iustrative renderings are also used for highlighting focal
areas, such as the well-known TableLens approach [214] for
visualizing large tables. Such a magic lens based approach
permits fast exploration of an area of interest without pre-
senting all the details and, therefore, reduces clutter in the
view. MoleView [215], for visualizing scatterplots and
graphs, adopts a semantic lens for allowing users to focus on
the area of interest and keep the in-focused data unchanged
while simplifying or deforming the rest of the data to main-
tain context. A survey on early distortion-oriented magic
lens techniques is presented by Leung and Apperley [216].

5.2 Continuous Visual Representation
For most high-dimensional visualization techniques, a dis-
crete visual representation is assumed since each element
usually corresponds to a single data point. However, due to
limitations such as visual clutter and computational cost,
many applications prefer a continuous representation.

The work of Bachthaler and Weiskopf [217] presents
a mathematical model for constructing a continuous
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scatterplot. The follow-up work [218] introduces an adap-
tive rendering extension for continuous scatterplots, thereby
increasing the rendering efficiency. This concept is extended
to create continuous PCPs [219] based on the point-line
duality between scatterplots and parallel coordinates. In
addition, Lehmann et al. introduce a feature detection algo-
rithm designed for continuous PCPs [220].

Clutter in PCPs and scatterplots leads to occlusion of
data distribution patterns. In the splatterplot work [221], the
authors introduce a hybrid representation for scatterplots to
overcome the overdraw issue when scaling to very large
datasets. The proposed abstraction automatically groups
dense regions into an abstract contour and renders the rest
of the area using selected representatives, thus preserving
the visual cue for outliers. A splatting framework for
extracting clusters in PCPs is presented in [222], where a
polyline splatter is introduced for cluster detection, and a seg-
ment splatter is used for clutter reduction.

5.3 Accurate Color Blending

When rendering semitransparent objects, color blending
methods have a significant impact on the perception of
order and structure. As stated in the hue-preserving color-
blending work [223], the commonly adopted alpha-
compositing can result in false colors that may lead to a
deceiving visualization. The authors propose a data-driven
machine learning model for optimizing and predicting hue-
preserving blending. This model can be applied to high-
dimensional visualization techniques such as illustrative
PCPs [212], where a depth ordering clue is better preserved.
In the Weaving versus Blending work [224], the authors
investigate the effectiveness of two color mixing schemes:
color blending and color weaving (interleaved pattern). The
results indicate that color weaving allows users to better
infer the value of individual components; however, as the
number of components increases, the advantage of color
weaving diminishes.

5.4 Image Space Metrics

As discussed in Section 4.1, a number of quality measures
have been proposed to analyze the visual structure and
automatically identify interesting patterns in PCPs or scat-
terplots. In this section, we discuss the image space based
quality measures that are applied in the screen space.

Arterode et al. propose a method [225] for uncovering
clusters and reducing clutter by analyzing the density or
frequency of the plot. Image processing based techniques
such as grayscale manipulation and thresholding are used
to achieve the desired visualization. Johansson et al. intro-
duce a screen space quality measure for clutter reduc-
tion [226]. The metric is based on distance transformation,
and the computation is carried out on the GPU for interac-
tive performance.

Pargnostics [227], a portmanteau for parallel coordinates
and diagnostics (similar to Scagnostics [140]), is a set of
screen space measures for identifying distinct patterns
among pairs of axes in PCPs. The metrics include line cross-
ings, crossing angles, convergence, and overplotting. For
each metric, the system provides ranked views for pairs of
axes, allowing the user to guide exploration and visualiza-
tion. Pixnostic [228] is an image space based quality metric
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Fig. 7. The three types of user interaction paradigms with varying degrees
of user involvement. Since each paradigm can interact with each process-
ing stage in the visualization pipeline, the diagram highlights the most gen-
eral patterns.

for ranking interestingness for pixel-based (Section 4.3)
visualization such as Pixel Bar Chars [177].

6 USER INTERACTION

As illustrated in Fig. 1, interaction is integrated with each
processing stage. In this section, we identify three types of
user interaction (computation-centric approaches, interac-
tive exploration, and model manipulation) based on the
amount and type of user involvement and illustrate how
they interact with the different stages of the visualization
pipeline (see Fig. 7). In both recent surveys [229], [230] on
user interaction in visualization applications, the level of
integration between the computation and visualization
(including user interaction) is used for classifying the meth-
ods. In many ways, their classifications are aligned with the
proposed approach, with the distinction that our discussion
is directly linked to the visualization pipeline. In the follow-
ing sections, we will discuss each paradigm in detail.

6.1 Computation-Centric Approaches
Computation-centric (see Fig. 7a) approaches require only
limited user input such as setting initial parameters. These
methods center around algorithms designed for well-
defined computational problems such as dimension reduc-
tion [31], [33], [36], [37], subspace clustering [55], [57], [59],
[64], regression analysis [65], [68], quality metric based
ranking [140], [145], etc. Computation-centric approaches
are most concentrated in the data transformation stage (as
illustrated in Fig. 7a).

6.2 Interactive Exploration

Interactive exploration (see Fig. 7b) approaches navigate,
query, and filter the existing model interactively for more
effective visual communication. They mostly exist in the
visual mapping stage, where the visual structure is
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interactively modified by user interaction. The distinction
between interactive exploration and model manipulation
(see Fig. 7c) is made to highlight the fact that users do not
alter the underlying computation model in the interactive
exploration.

In the data transformation stage, the interactive explora-
tion scheme allows users to guide progressive dimension
reduction, where a partial result is presented upon
request [36]. In the works by Turkay et al. [2], [52] and Yuan
et al. [53], a subset of dimensions is interactively selected
and explored in dimension space. In the visual mapping
stage, a large number of methods focus on interactive visual
exploration through filtering, zooming, distorting, linking,
and brushing of visual representations. For example, recent
works [231], [232] by Gratzl et al. introduce interesting inter-
active methods for ranking multiple attributes and explor-
ing subsets of tabular datasets. Interactive exploration
methods also play an important role in the Knowledge Dis-
covery in Databases (KDD) and data mining process, where
the term visual data mining [11], [12], [233] is introduced (see
Section 7.2). In the view transformation stage, interactivity
mostly originates from the changing of rendering parame-
ters and configurations, which appears in both the magic
lens based methods [215], [216] and the illuminated 3D scat-
terplots [211] (discussed in Section 5.1).

6.3 Model Manipulation

Model manipulation (see Fig. 7c) techniques represent a
class of methods that integrate user manipulation as part of
the algorithm and update the underlying model to reflect
the user input to obtain new insights.

Take the distance function learning work [43], for
example. The initial embedding is created using a default
distance measure. Through interaction, the initial point
layout is modified based on the expert user's domain
knowledge. The system then adjusts the underlying dis-
tance model to reflect the user input. Such a process is
illustrated in Fig. 7c. Hu et al. present a method [234] for
improving the translation of user interaction to algorithm
input (visual to parameter interaction) for distance learn-
ing scenarios. Explainers [44] are projection functions cre-
ated from a set of user-defined annotations. Similarly, in
recent work [235], Kim et al. introduce an approach for
steering axis-aligned linear projections by dragging points
into x or y axes to generate new linear projections that
reflect the combination of data attributes bound to the
axes. The control point based projection methods [40],
[41], [42] update the overall projection result based on
user manipulation of the control points. Liu et al. [49]
introduce a projection manipulation scheme facilitates the
understanding of high-dimensional data via direct modi-
fication of its 2D embedding. Distortion metrics are used
for feedback during the manipulation.

7 EMERGING AREAS

In this section, we identify a couple of emerging areas that
could inspire future research in high-dimensional data visu-
alization. However, due the subjective nature of such a dis-
cussion, our intention is not to give a comprehensive review
of all possible future directions, but rather to describe spe-
cific directions with adequate details.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.23, NO.3, MARCH 2017

7.1 Uncertainty in High Dimensional Data
Visualization

Along with the large scale and high dimensionality of the
data, information pertaining to uncertainty is becoming
increasingly available and important.

Uncertainty visualization has been deemed a top
research problem in scientific visualization [236], due to the
increasing availability of uncertainty information from sim-
ulation and the importance of understanding data quality,
confidence, and error issues when interpreting scientific
results. Visualizing the uncertainty in data and the examina-
tion of uncertainty in the visualization pipeline are also
essential for high-dimensional data visualization.

Similar to surveys on the topic [237], [238], [239], [240], we
make a distinction about the source of uncertainty. In the first
case, the process of acquiring the data imposes uncertainty
that must be communicated to the user. In the second case,
the transformations the data undergoes before appearing
onscreen can also add uncertainty. We denote the prior case
as data uncertainty and the latter case as algorithmic uncertainty.

Data Uncertainty.When the data is encoded with its own
inherent uncertainty or the goal is to summarize an ensemble
of data, this extra information must be visually encoded. Typi-
cal techniques include blurring of visual marks [241], [242],
[243], glyphs [244], or colormaps and noise [245], [246] to indi-
cate ranges of uncertainty. However, such a simplistic
treatment of uncertainty often causes problems in data under-
standing. By increasing the illegibility or complexity of an
image corresponding to the amount of trustworthiness of the
data, the amount of coherent information from that image
decreases, which leads to less usable information within a
visualization. In contrast, more recent works attempt to
express a more visually quantifiable encoding of uncertainty
by using summaries of the data to reduce the visual clut-
ter [247], [248], [249]. For example, Chen et al. [247] perform
uncertainty-aware dimensionality reduction on ensemble
data by accounting for the distribution of the ensemble. In the
numerical weather model ensemble visualization work [249],
Sanyal et al. replace the traditional spaghetti plots (line plot
representation for each element in the ensemble) with a com-
bination of visual elements, including ribbons and glyphs,
that quantify the uncertainty by summarizing individual
ensemble member’s standard deviation, interquartile range,
and the confidence interval. Limited work exists that specifi-
cally targets high-dimensional data, which is why we believe
the extensions and generalizations of existing uncertainty
visualization capabilities (e.g., [246], [248], [249]) to high-
dimensional data are important future directions.

Algorithmic  Uncertainty.Another interesting aspect of
uncertainty quantification is based on uncertainty introduced
in the visualization pipeline (shown in Fig. 1). The concept of
uncertainty-aware visual analytics is first discussed by Correa
et al. [168]. In this work [168], the authors measure the uncer-
tainty introduced by three common data transformation tech-
niques, namely regression, principal component analysis, and
k-mean clustering. Similar concepts are further explored by
other works [48], [49], [51], [250], where the uncertainty (e.g.,
bias and distortions) stemming from the dimension reduction
is quantified and visualized. In addition, other examples tar-
geting high-dimensional data visualization have focused on
analyzing the uncertainty with respect to the accuracy of a
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fitted model (see Section 3.4 and [251] for more details). These
methods mostly focus on the uncertainty stemming from the
data transformation stage. However, more work can be done
to define measures of uncertainty associated with the two lat-
ter processing stages in the visualization pipeline: visual map-
ping and view transformation.

7.2 The Interplay Between Data Science and High
Dimensional Data Visualization

Data science is an interdisciplinary area where multiple sub-
jects are brought together. By relying on solid foundations in
mathematics and statistics, and the effective tools from com-
puter science, data science aims at transferring data into
knowledge for solving real world problems. Visualization as
an integral part of data science plays an important role in the
data analysis process. In the following sections, we will look
into several aspects of data science and discuss their connec-
tion with high-dimensional data visualization and possible
emerging research directions.

Data Management.In the visualization literature, data man-
agement is often considered as an optional subsystem, which
is rarely the focus of the study. However, the increasing com-
plexity and size of the data and demands for data-centric
analysis call for robust and flexible data management sys-
tems. An interesting integration of data management and
visualization system can be found in the VisTrails frame-
work [252]. VisTrails manages the data and metadata of visu-
alization results, and provides the ability to trace and
compare the history of different visualization pipeline con-
figurations, which allows for fast exploration and discovery.
A relational database is usually adopted for managing data
for visualization. However, its limited query efficiency for
high-dimensional data leads to the introduction of more
efficient index schemes such as the X-tree [253], which is
designed for high-dimensional data.

Besides aiding the visualization process with the integra-
tion of databases, visualization can also be adopted as an
intuitive interface for querying databases. Such an interface
can translate the user intention into database queries and
then present the results in visual forms. The increasingly
sophisticated interplay between visualization and database
querying tasks leads to the introduction of visual data min-
ing and related techniques discussed below.

Data Mining. Data mining studies the process of extracting
meaningful patterns or relationships from data by utilizing
various statistical or machine learning algorithms and effi-
cient data management infrastructures. Many purely auto-
matic, analytical approaches have been introduced and
produce reasonable results. However, especially in the recent
years, our ability to generate, collect, and store data has
quickly outweighed our ability to analyze it. One important
paradigm shift in addressing challenges comes from the reali-
zation that for resolving a complex analytical problem, the
involvement of humans in the early stage of the analysis pro-
cess is crucial. Instead of relying solely on confirmatory data
analysis, exploratory data analysis [254] and visual data
exploration [12] have proven to be extremely valuable and
effective. Visual data mining [11], [233] is one outcome of
such development. It bridges the gap between visual data
exploration and data mining tasks. It not only provides a
more intuitive interface for communicating the underlying
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computational model to the user, but also exploits the human
vision system for pattern searching to deal with the ever-
increasing size and complexity of data. Such a paradigm is
currently recognized as part of the emerging visual analyt-
ics [255], [256] field, which is described as the science of ana-
lytical reasoning supported by interactive visual interfaces.

Inspired by these new techniques, many high-dimen-
sional data visualization techniques combine automatic anal-
ysis with user-driven visual exploration. Stolte et al.
introduce Polaris [257], which is a visual query and analysis
system designed for relational databases. In this system, rela-
tional queries can be defined by visual specifications that
allow fast incremental development and intuitive under-
standing of the data. The authors later extend their work for
hierarchically structured data cubes [258]. In their last install-
ment [259], a multiscale visualization system utilizing
Polaris and the data cubes extension is introduced. The
Polaris system was later developed into the well-known
commercial visualization system Tableau. Hao et al. intro-
duce the Intelligent Visual Analytics Queries [260]. Their
approach utilizes correlation and similarity measurements
that are then encoded by summary visualization for mining
localized data relationships. Detailed surveys and discus-
sions on the topic of visual data mining can be found in [10],
[11], [12]. We believe new research can stem from the further
development and interaction among data mining tasks,
visual encoding and exploration, and in-depth user interac-
tions with the full spectrum of the analysis process.

Machine Learning. Machine learning introduces the tools
to build models from data for predicting or summarizing
unknown data. It provides building blocks for constructing
higher-level tasks commonly found in data mining and arti-
ficial intelligence. Machine learning algorithms such as
manifold learning [32] and subspace clustering [61], [261]
have been adopted for visualizing high-dimensional data.

On the other hand, the high-dimensional visualization
methods also aid intuitive understanding of the algorithm
and the parameter tuning process. The fundamental tasks of
machine learning involve the study of the feature space and
the learned models from the data, which are high-dimen-
sional in nature. However, intuitive understanding and
exploration of these high-dimensional models are extremely
difficult. To resolve such a challenge, several visualization
approaches have been introduced to provide visual aids.
Tzeng et al. present a visualization system that helps users
design neural networks more efficiently [262]. The works of
Teoh and Ma [263] and van den Elzen and van Wijk [264]
investigate visualization methods for interactively construct-
ing and analyzing decision trees. Visualization has also been
used to aid model validation [265], [266] (regression model
related validation and tuning is discussed in more detail in
Section 3.4). Garg et al. use Hidden Markov Models as an
example to illustrate the effectiveness of their visualization
approach [267]. It achieves a balance between manual opera-
tion and a fully automatic approach for tasks such as data tag-
ging by involving the user in the decision-making process.

Numerous challenges for understanding machine learn-
ing algorithms coincide with the goal of high-dimensional
visualization. We believe high-dimensional visualization
will play an increasingly important role in designing, tun-
ing, and validating machine learning algorithms. At the
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same time, more machine learning algorithms will also find
their way into visualization methods.

8 SUMMARY AND REFLECTIONS

In this survey, we aim to provide a structured overview of
distinct subfields, in which new methods can be inspired
based upon combinations and extensions of existing
approaches. To better achieve this goal, in this section, we
summarize and reflect on each stage of the visualization
pipeline and focus on the scenarios in which various meth-
ods can be effectively applied.

Starting from the data transformation stage, the methods
in this stage of the pipeline are computation-centric and
mostly focus on obtaining quantitative results. Dimension
reduction methods are commonly used for capturing the
overall structure of a dataset. Since these methods are
designed for reducing the dimension while preserving
the important structures, dimension reduction approaches
are more suitable for handling data with a large number of
dimensions compared to many visual mapping approaches
(e.g., scatterplot matrix). The scalability of dimension reduc-
tion methods as visualization tools is addressed partly by
the development of the control point based projection
approaches [40], [41], [42] and partly by approxima-
tions [36], [37], [38]. Various precision measures [46], [47],
[49] have been introduced to provide a per-point assess-
ment of the accuracy in terms of information preservation,
which is essential for interpreting the results.

Due to the complexity of high-dimensional data, it is
unlikely a single embedding (produced by dimension reduc-
tion) is sufficient for understanding every dataset. Instead,
identifying multiple informative 2D projections automatically
or semiautomatically is essential for exploring different
aspects of the data. The subspace clustering methods either
find clusters in subset of the dimensions (originated from data
mining [58]) or cluster points that share a low-dimensional
linear subspace (originated from machine learning [61]).
These methods not only help in identifying multiple interest-
ing projections but also address the challenges of the ever-
increasing complexity of the data (e.g., number of dimen-
sions) by dividing them into lower dimensional subsets.

Besides the approaches focusing on generating one or mul-
tiple low-dimensional embeddings, regression analysis pro-
vides a class of methods designed to capture the quantitative
relationship among individual dimensions. Interactive visu-
alization has been integrated with the regression analysis pro-
cess for more effective parameter exploration and tuning [65],
[66]. Finally, topological data analysis (Section 3.5) provides a
unique approach for summarizing high-dimensional struc-
ture, which we believe will play an increasingly important
role in high-dimensional data visualization.

The next stage of the pipeline is visual mapping. The
most common visual representations for high-dimensional
data, such as SPLOMs and PCPs, are built around the differ-
ent arrangements of data axes. A SPLOM helps capture the
complete bivariate relationship by permuting all possible
pairs of the axis whereas a PCP [6], [147] provides a single
view of the multivariate relationship by showing all the
axes vertically. The major drawback of both approaches is
that the number of possible 2D configurations increases
drastically as the dimensionality increases. As a result,
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various quality metrics [140], [145], [268] that help automati-
cally filter for the interesting configurations are at the center
of recent developments. Other axis configurations, such as
radial layouts, are also gaining popularity [159], [160], [161].
In addition, recent advances have introduced new visual
representations by coupling existing approaches to combine
the advantages of different visual representations [162],
[163], [164].

Glyph-based approaches [167], [168], [170], [172] are
among the earliest methods for visualizing high-dimensional
data. They either encode and highlight certain per-point infor-
mation or combine multiple points to express summary infor-
mation. The pixel-oriented representations [176], [177], [178],
[181] are closely related to the glyphs, but instead of encoding
individual data points, they mostly provide a compact repre-
sentation of dimensions that are packed as pixels. Hierarchy-
based representations [182], [200] are usually a natural trans-
lation of a structure that is tree-like or multiresolution in
nature, such as encoding the dimension hierarchy [182] and
the hierarchical topological segmentation [185], [187]. In the
past decades, many works have focused on evaluating the
effectiveness of various visual encodings, such as PCPs [202]
and SPLOMs [206]. The perception of visual effects such as
animation [56], [202], [204] has also been studied. Such devel-
opment highlights the important trend where rigorous evalu-
ation is an integral part of any effective visualizations.

The last stage of the pipeline is the view transformation,
which describes the process of generating rendered images
from visual structures. Many innovative methods in this
stage focus on enhancing the existing rendering techniques
to address their limitations or highlight the regions of inter-
est. The illustrative rendering works [212] aim at emphasiz-
ing certain aspects of the data through visual exaggeration
while discarding other less important visual properties. The
continuous visual representations [217], [218] are designed
to address overplotting issues through analytical modeling
and splattering approximations. The techniques [212], [223]
that address color blending have a similar goal. Instead of
the general overplotting issue, they focus on resolving the
challenge of misleading overlapping colors. In addition, the
image space metrics [225], [226], [227] are a natural exten-
sion from the quality metrics of visual structures (discussed
in Section 4), for which evaluating the metric is more effi-
cient in the image space (usually for dealing with a large
number of points).

Finally, we discuss the emerging areas in high dimen-
sional data visualization, namely uncertainty quantification
(Section 7.1) and data science (Section 7.2). We believe the
interaction between these topics and high-dimensional data
visualization will lead to many interesting future research
and applications.
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