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Abstract

Contextual information influences how we perceive speech, but it remains unclear at
which level of processing contextual information merges with acoustic information.
Theories differ on whether early stages of speech processing, like sublexical processing
during which articulatory features and portions of speech sounds are identified, are
strictly feed-forward or are influenced by semantic and lexical context. In the current
study, we investigate the time-course of lexical context effects on judgments about the
individual sounds we perceive by recording electroencephalography as an online
measure of speech processing while subjects engage in a lexically biasing phoneme
categorization task. We find that lexical context modulates the amplitude of the N100,
an ERP component linked with sublexical processes in speech perception. We
demonstrate that these results can be modeled in an interactive speech perception
model and are not well fit by any established feed-forward mechanisms of lexical bias.
These results support interactive speech perception theories over feed-forward theories
in which sublexical speech perception processes are only driven by bottom-up
information.
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ERPS OF LEXCAL BIAS 3

1. Introduction
A major question that cuts across different domains in the cognitive sciences is how our
perception of bottom-up sensory inputs is shaped by top-down knowledge about what
we are expecting to perceive (e.g., Rumelhart, 1976; Pylyshyn, 1984; Chater &
Oaksford, 1990; McClelland et al., 2014). The current study looks at this question in the
context of speech perception. There is a clear consensus that both acoustic, bottom-up
information, and top-down knowledge about words and their meanings influence which
speech sounds we perceive. But there is considerable disagreement about the
processing stage at which integration of bottom-up and top-down information occurs.

In speech perception, debate has focused on sublexical stages of speech
perception, in which speech sound representations (e.g., phonemes) are accessed from
the acoustic input. The major question has been whether this sublexical stage is
independent from or influenced by top-down information. Top-down information in
speech perception takes multiple forms, including lexical knowledge about which
speech sound sequences form words, semantic knowledge about which words fit in a
given context, or syntactic knowledge about what fits grammatically into the sentence or
phrase. Interactive speech perception theories argue that, during the course of speech
perception, all levels of processing are informed by and constrained by higher-level
knowledge (e.g., TRACE: McClelland & EIman, 1986; C-Cure: McMurray & Jongman,
2011; and TISK: Hanngan, Magnuson, & Grainger, 2013; see Magnuson, Mirman,
Luthra, Harris & Strauss, 2018, for discussion). In interactive theories, early sublexical
representations are activated both by bottom-up connections from acoustic processing

and by top-down input via feedback connections from lexical and semantic processing
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levels. In contrast, feed-forward speech perception theories argue that speech
perception relies on unbiased encoding of sublexical information (Fuzzy Logic Model of
Perception, Oden & Massaro, 1978; Cohort, Marslen-Wilson, 1987; Cairns et al., 1995,
1997; Norris, 1994; Merge, Norris, McQueen, Cutler, 2000, 2003, 2008; Ideal Listener,
Kleinschmidt & Jaeger, 2015, see Norris, McQueen, & Cutler, 2016 for discussion). In
feed-forward theories, early encoding of the bottom-up sensory information is
independent from top-down information being processed at lexical and semantic levels.
We present an experiment that uses event-related-potentials (ERPs) to measure the
sublexical processing at the heart of the feedback debate in speech perception while
manipulating top-down information, here, the lexical context in which the sound
appears, to test for influences of lexical context on sublexical processing.

Much of the debate around feedback to sublexical levels has centered on shifts
in how a speech sound is perceived as a function of the context in which it appears.
These top-down effects on perception occur when a higher-level context variable
influences speech sound perception. Top-down effects on speech perception have
been found with many different manipulations, for example by replacing speech sounds
with noise in different types of spoken stimuli (e.g., Warren, 1970; Samuel, 1981) or by
varying what is semantically (e.g., Sivonen, Maess, Lattner, & Friederici, 2006; Samuel,
1981; Connine & Clifton, 1987; Groppe et al., 2010) or syntactically (e.g., Fox &
Blumstein, 2016) predicted by the sentence context. Top-down effects have been
observed with many different measures of perception, including judgments about which
speech sounds are perceived, the rate at which phonemes are recognized, or how the

eyes move between competing word candidates.
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Some of the best-studied top-down effects are lexical effects on phoneme
category judgments. Ganong (1980) demonstrated effects of lexical bias on phoneme
identification, specifically that identification is biased towards phonemes which form
familiar words (see also Burton, Baum, & Blumstein 1989; Burton & Blumstein, 1995;
Connine, Clifton, & Cutler, 1987; Gow, Segawha, Alfhors, & Lin, 2008; Gow & Olson,
2015; Kingston, Levy, Rysling, & Staub, 2016; Myers & Blumstein, 2007; Newman,
Sawusch, & Luce, 1997; Pitt, 1995; Pitt & Samuel, 1993, 1995). For example, if a
participant is presented with a sound that is ambiguous between /d/ and /t/, they are
more likely to perceive it as a /d/ with a rime like /e1t/ since date is a word but *tate is
not. But they would be more likely to perceive the exact same sound as a /t/ with a rime
like /e1p/ since tape is a word but *dape is not.

Lexical bias effects are readily fit by interactive models that include feedback
connections (e.g., EIman & McClelland 1988; Mirman, McClelland, & Holt, 2006). In
theories with feedback connections from the lexicon to sublexical levels, top-down
effects such as lexical biases emerge naturally from the architecture because available
information from the lexicon or contextual environment will modulate activation at the
sublexical level and therefore change how incoming acoustic information is encoded
and then subsequently perceived. The compatability of interactive feedback models
with lexical bias has been extensively demonstrated in simulation studies (Elman &
McClelland, 1988, Strauss, Harris, & Magnuson 2007, see also Section 5 of this paper).
However, the necessity of feedback connections to be able to model lexical bias and

other top-down effects has been called into question.
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Norris, Cutler, and McQueen (2000, 2003, 2008, 2016) have demonstrated that
interactivity is not necessary to explain top-down effects on phoneme judgments, such
as the lexical bias observed by Ganong (1980). Specifically, lexical bias effects can be
generated by an architecture without feedback, but which includes a "decision module”
which acts as a late integrator of lexical and sublexical information, merging the two
information sources only after sublexical processing has occurred (see R. Fox, 1984;
but see also, N. Fox & Blumstein 2016). The post-perceptual merger account of lexical
bias demonstrates that feedback is not necessary to explain top-down effects observed
in behavior. Norris et al. (2003, 2008, 2016) have also claimed that feedback results in
non-optimal performance of a speech perception system (e.g., Fraunfelder & Peeters,
1998; though see also McClelland, Mirman, Bolger, & Khaitan, 2014; McClelland,
Mirman, Luthra, Harris, & Strauss, 2018).

Given the equivocal status of debates over efficiency and previous evidence,
more empirical work to determine when top-down and bottom-up information are
integrated during speech sound processing will be necessary. With respect to the
debate around lexical bias effects specifically, the issue with much of the previous
literature is that it has relied on measures with inadequate online temporal resolution to
determine whether lexical bias is due to feedback or due to feed-forward post-
perceptual integration of bottom-up and top-down information (Fox & Blumstein, 2016).
What is needed to distinguish between interactive and feed-forward explanations is a
measure of sublexical processing that can quantify sublexical representation in an
online manner so that bias can be tested for within the time-course of speech sound

processing. Such a measure could valuably contribute to the feedback debate because
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interactive and feed-forward accounts differ in when and at what stages of processing
top-down effects are predicted to occur. If an online measure of sublexical processing
early in the response to speech sounds can be identified and shown to vary as a
function of top-down factors like lexicality, that would provide strong evidence in favor of
interactive activation models. In contrast, if the online measure of sublexical encoding
is not influenced by top-down factors, this would support feed-forward theories.

To this end, we utilize an online electrophysiological signature of the early
perceptual encoding of incoming speech sound features, the N100 event related
potential (ERP) signal (Toscano, McMurray, Dennhardt, & Luck, 2010), to measure top-
down influences on early stages of speech perception with higher temporal resolution.
The N100 ERP response to speech sounds, measured with scalp-recorded
electroencephalography (EEG), has been linked with sublexical processing; Toscano
and colleagues (2010) found that the amplitude of the N100 is linearly related to voice-
onset-time in a voicing continuum (such as a continuum from /d/ to /t/). Voice-onset-
time (VOT) refers to the latency, in milliseconds, relative to a consonant onset that the
vocal cords begin vibrating for the following vowel. VOT is used to distinguish voiced
and unvoiced minimal pairs like /d/ from /t/. The N100-VOT relationship suggests that
the N100 provides a direct window into the neural processing of phonetic features.

Strengthening the argument that the signal we are measuring in the N100
reflects sublexical processing, electrocorticography (ECoG) has also linked neural
activation in the 75-175 msec time range with processing of phonetic features
(Steinschneider, Schroeder, Arezzo & Vaughan, 1991; Steinschneider, Nourski, &

Fishman, 2013; Mesgarani, Cheung, Johnson, & Chang, 2014; Hullet, Hamilton,
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Mesgarani, Schreiner, & Chang, 2016). Taking the ERP and ECoG evidence together,
sublexical encoding of phonetic features is occurring around 100 msec after the onset of
a phoneme and the N100 appears to directly measure some aspects of the encoding of
the sublexical feature of speech sound voicing. If the amplitude of the N100 ERP
component is also sensitive to top-down information, then this suggests top-down
information is influencing early sublexical stages of speech perception.

A recent study by Getz and Toscano (2019) suggests that N100 amplitude is
influenced by another source of top-down influence, predictions generated from strong
lexical associations. For example, in the two-word utterance “Eiffel Tower”, the word
“tower” is strongly predicted after the word “Eiffel” is spoken. When presented with a
stimulus with an ambiguous /dt/ spliced into the onset of “tower”, Getz and Toscano
found that the N100 amplitude was significantly more /t/-like than when the ambiguous
/dt/ was embedded in an opposite experimental condition (e.g., “Barbie Doll”), in which a
/d/ was predicted.

In the present experiment, we use the N100 to distinguish between feed-forward
and interactive accounts of Ganong lexical bias effects. Specifically, we measured the
N100 ERP waveform in the context of a lexically biasing phoneme categorization task.
EEG signals were continuously recorded while participants made a 2-alternative-forced-
choice decision in response to voice-onset-time continua while lexical bias direction was
manipulated by changing the rhyme portion following the initial phoneme. For example,
participants made /d/-/t/ judgments on Date-*Tate and *Dape-Tape continua. We tested

for effects of lexical bias on the amplitude of the N100. Interactive theories predict that
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the N100 should be influenced by both bottom-up and top-down information; feed-
forward theories predict the N100 should not be influenced by top-down information.

2. Materials and Methods
2.1 Participants. Twenty-four participants (13 female, avg. age = 19.54 yrs.) were
recruited from the Rice University student population and participated under the
approval of the Rice University IRB. Participants were given course credit in exchange
for participation. All subjects reported normal hearing, no history of neurological
disorder, no recent drug use, and learning English as a first language. All twenty-four
subjects displayed normal categorization, which we defined based on previous
behavioral pilot experiments as classifying >80% unvoiced at the unvoiced end of the
continuum and <20% unvoiced at the voiced end of the continuum (Newman, Sawusch,
& Luce, 1997). Three subjects were excluded due to a high number of artifact
contaminated trials in the EEG data (>40%). One additional subject was excluded due
to coding errors in the trial labels sent from the stimulus presentation computer to the
EEG computer.

Sample size selection was slightly larger than comparable cognitive linguistic

N100 ERP studies, such as the sample in Toscano et al. (2010) which demonstrated a
VOT effect in 17 subjects and the sample size in Schneider (2017) which demonstrated
talker gender effects on the N100 in 20 subjects. A 24 subject sample exceeded these
previous studies and allowed for even counterbalancing of block order. Similarly, the
sample size exceeded the standard in the neuroscientific N100 literature (Hoonhorst et

al., 2009: 10 subjects; Horev, Most, & Pratt, 2007: 14 subjects; Martin & Boothroyd,
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1999: 10 subjects; Sharma & Dorman, 1999: 16 subjects; Zaehle, Jancke, & Meyer,
2007: 18 subjects).

2.2 Materials. Two pairs of lexically biasing voicing continua were created, yielding a
/d/-1t/ lexical bias pair and /g/-/k/ lexical bias pair: Date-*Tate vs. *Dape-Tape and Gate-
*Cate vs. *Gake-Cake. Continua were created by cross-splicing natural voiced tokens
with natural unvoiced tokens at 5 msec intervals using the Andruski et al. (1994) cross-
splicing method. The voiced and unvoiced endpoint stimuli were recorded at 44,100Hz
in a soundproofed recording studio with a Shure SM-58 microphone at the Rice
University Digital Media Center. The voiced and unvoiced natural endpoints to be
spliced together (e.g., Dape and Tape, which were recorded separately) were matched
on duration, pitch, intensity, formant trajectory and frequency, and envelope shape.
Lexically opposing pairs (e.g., *Dape-Tape vs Date-*Tate) were balanced as closely as
possible for these same acoustic factors. Final continua were selected after verifying
normal categorical perception and then a Ganong effect in a pilot experiment, reported
in Appendix B, with a separate set of participants. Stimuli were 400 msec in length on
average; the stimulus was embedded in a 600 msec sound file, with the plosive burst for
the critical phoneme occurring at 100 msec into the file. Further acoustic details for the
stimuli are listed in Appendix A.

After splicing, each word-non-word pair yielded a 9-step voice-onset-time
continuum with VOT ranging from 5 msec (clearly voiced) to 45 msec (clearly unvoiced)
in 5 msec increments. The VOT step (9) x Bias (2) x Place (2) yielded 36 unique critical
stimuli. Each stimulus was presented 64 times for a total of 2304 critical trials per

subject.
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2.3 Procedure. Subjects entered the testing room and informed consent was obtained.
The 32-channel ActiCap system (BrainVision Systems, Morrisville, NC) was applied with
active electrode gel to an impedance of less than 25 kOhm. Subjects were then fitted
with EEG-compatible headphones for stimulus presentation (ER-3, Etymotic Research,
Elk Grove, IL). Subjects began with a 36-trial practice block to familiarize themselves to
the task and stimuli. On each trial, subjects heard one stimulus from one continuum
and were asked to choose which endpoint of the continuum the token sounded most
like, the voiced endpoint or the unvoiced endpoint. Each trial began with a 750ms
fixation. From 550ms - 750ms the fixation cross was bolded to indicate imminent arrival
of the sound. At 750 msec the stimulus began to play. 600 msec after the onset of the
stimulus, two text strings with critical phonemes at onset (e.g., date and *tate) appeared
on the screen, and participants had to press the f or j button to indicate which of the two
phonemes they perceived, making the 2-alternative forced choice (2-AFC) judgement.
EEG was continuously recorded during the task and the exact timing of the sound onset
was obtained using the StimTrak/TriggerBox (BrainVision Systems) system.

The experiment consisted of 32 approximately 2.5-minute blocks. Each block
consisted of 72 samples from one continuum. Each of the nine VOT steps was
sampled eight times to generate one block. Order of trials was random within a block.
Each continuum was used in 8/32 blocks. Order of the blocks was counterbalanced in a
Latin-square design across subjects, so that which block followed which was balanced
across subjects. The task portion of the experiment, not including set-up or take-down

time, was approximately 1.5 hours.
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The use of blocks from one continuum and therefore one biasing direction was
the key contextual manipulation of the experiment. Given that the lexically
disambiguating information in our continua (e.g., for the d-t pairs, the final consonant in
the rimes /e1t/ and /e1p/) did not occur until well after that N100 generating /d/-/t/ or /g/-
/k/ phoneme, the blocking of stimuli from one continua per block allowed subjects to be
aware of the lexicality resulting from each of the two possible percepts (e.g., date and
*tate). In each trial within a block, a subject would know, except for the first trial of the
block, which continuum was being sampled for that block. Blocking allowed tacit
knowledge about which percept would form a word to create lexical support for the word
endpoint. Note that subjects were instructed to ignore the lexicality of the endpoints and
no feedback was ever given, but Ganong lexical bias occurs automatically. Blocking by
continuum also simplified response mappings so that only 2-responses were needed
within a given block; if we had not blocked continua, subjects would have had to map
responses for both endpoints of the four continua, yielding 8 responses to manage on
each trial. Like any methodological choice, this blocked instantiation of bias represents
one of many ways top-down influence can be induced; we consider its strengths and
limitations in the discussion and follow-up analyses.

2.4 EEG Pre-Processing. Standard EEG pre-processing techniques were applied
(Luck, 2014) using the ERPLAB toolbox (Lopez-Calderon & Luck, 2014) in EEGlab
(Delorme & Makeig, 2004). Data were re-referenced to the average of the mastoids.
High Pass (.1 Hz half-power) and Low Pass (40Hz half-power) IIR (slope 12Hz/dB)
filters were applied to the continuous data. Trial onsets were identified using the TTL

pulses generated by the StimTrak marked onto the continuous EEG waveform. 500
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msec trial epochs were extracted plus a 200 msec pre-stimulus period used as a
baseline correction. Each 500 msec epoch began at the onset of the phoneme of
interest. Artifact contaminated epochs were rejected using three automated tools in the
ERPLAB toolbox, moving window threshold, absolute threshold, and covariance blink
detection. Average artifact rejection rates were 15.9%. Epochs not marked as artifacts
were averaged together within each condition to yield within-subject, within-condition
ERP waveforms for plotting, but the mixed models were run on the single epoch
amplitudes (38,491 trials).

The time window and electrode regions were defined in a collapsed localizer
method (Luck & Gaspelin, 2017) — before any experimental effects were examined.
This method, which was selected a priori, is laid out in Luck (2014) and is recognized as
a statistically robust method to select the region and time-window of interest for ERP
experiments with stimuli, paradigms, or populations that do not yet have an established
ERP topology and time-course. The collapsed localizer method specifies that the region
and time-window should be defined by looking at the global average topography and
time-course of the N100 negativity, collapsing across any experimental effects of
interest. The electrode region selected was chosen because it showed a negative peak
at 100 msec when the data was averaged across all conditions. At the time of its
selection, the VOT and bias effects of interest had not yet been examined.

The collapsed localizer identified the left-frontal quadrant (electrodes Fp1, F3,
F7, C3, FC5, and T7) as the largest spatially continuous set of N100-displaying
electrodes, and the average of these six electrodes was computed as the region of

interest. The collapsed localizer identified the time window [60 — 130 ms] as the period
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during which the ERP had a negative value around 100 msec. Accordingly, N100 ERPs
were defined as the average amplitude for each trial in the time window, 60 — 130 msec,
averaged across the six left fronto-central electrodes. This time-window is similar to the
time-window in the previous literature (e.g., Toscano et al., 2010; Getz & Toscano,
2019), and the statistical effects were robust to variations in the time-window as is
visible in Figure 3. The electrode region, though more left lateralized than Toscano et
al., 2010, is similar to previous literature in showing a left lateralized auditory evoked
response for speech sound processing, especially rapid spectrotemporal aspects of
speech such as VOT (e.g., Sanders & Neville, 2003; Obleser, Eulitz, & Lahiri, 2003,
2004; De Fonseca, Giraud, Badier, Chauvel, & Liegeois-Chauvel, 2005; Obleser,
Roskstroth, & Eulitz, 2004; Davis, Kislyuk, Kim & Sams, 2008; Hornickel, Skoe, &
Kraus, 2009; Hutschison, Blumstein, & Myers, 2008). Just as with the time-window,
adding in or removing electrodes did not alter the significance of the experimental
effects.
2.5 Statistical Methods. A mixed effect model approach was taken to evaluate the
lexical bias effects in both the categorization responses and in the N100 data. The only
difference between the modelling method used for behavior and for ERP was the linking
function — with the behavioral data employing a logistic linking function since the 2-AFC
behavioral task generates binary outcomes and the N100 data not requiring a linking
function since the ERP data are continuous.

In both behavior and N100 data, a forward stepwise model comparison approach
was used. The base model contained only the fixed effect of VOT (coded as a linear

variable with nine steps from 5 — 45 msec, untransformed) and the random effect of
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subject, place of articulation and trial number in block. The addition of the effect of Bias
Condition (coded as voiced biasing = -1, unvoiced biasing = 1) and the Bias-VOT
interaction were evaluated. To evaluate whether the bias effect was largest in the mid-
range VOT where the sound is ambiguous and where Ganong (1980) observed the
largest bias effects, a transformation of the VOT was necessary so that the VOT:Bias
interaction term would have its largest value at the mid-range VOTs. We employed a
gaussian transformation where VOT was transformed using the normal distribution to an
inverted U shape (VOT — transform =k x p(VOT~N(u = 25,0 = 5)), and then
multiplied the result of this transformation by a constant, k, so that the value at VOT 25
was equal to 1 (k = 12.533). This procedure generated a value for the VOT-fransform
which maps the Bias:VOT-transform interaction onto the prediction of bias being largest
at the most ambiguous VOTs which can be treated like a linear effect within the model.
Higher order interactions were also evaluated in the model, but none significantly
improved model fit.”

The main research question, whether lexical bias is evident at the N100, was
evaluated by testing the contribution (and direction) of the Bias-VOT interaction term.
We expect a positive value for the slope estimate for the interaction term where positive

implies more negative amplitudes for voiced biasing (coded as -1) stimuli and more

! For the model fitting procedure, in both the behavior and N100 analyses, we included
the maximal random effect structure supported by the data (Barr et al., 2013). Models
that included random slope models did not reliably converge, so, as a result, only the

random intercept models are reported.
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positive for unvoiced biasing (coded as +1) stimuli. Comparison of the interaction term
versus the main effect of bias provides an estimate of how well the N100 bias matches
the VOT sensitivity of the behavioral bias. Contingent on significance of one of the bias
effect terms in the model, several a priori planned follow-ups were performed to better
characterize the bias effect — a difference wave plot and an estimate of the bias effect at
voiced, ambiguous, and unvoiced VOTs. To simplify the estimate of the bias effect by
voicing ambiguity, the nine-VOTs are reduced into three ranges based on how they
were perceived: short VOTs (5, 10, and 15) that for most listeners were judged as
clearly voiced, mid-range VOTs (20, 25, 30) which were ambiguous, and long VOTs
(35, 40, and 45), which were judged as clearly unvoiced.

Following the main experiment results two important follow-up analyses are
presented. Section 4 evaluates a non-interactive alternative explanation for the N100
bias effects, whether N100 bias effects might be explained by perceptual learning.
Section 5 evaluates how well the main experiment results match with the predictions of
an interactive cognitive theory, TRACE (McClelland & Elman, 1986), as instantiated in
the JTRACE model (Strauss, Magnuson, Harris, 2006).

3. Results
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3.1 Behavior: Categorization Task Responses. Every subject showed a lexical bias
effect in categorization, reporting the percept that formed a word more often than the
percept that did not. The response data are presented in categorical perception curves
in Figure 1 depicting the rate at which subjects perceived the unvoiced percept as a

function of voice onset time for each continuum.
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Figure 1. Results from categorical perception task. Lines depict the average proportion
unvoiced response for each continuum at each VOT step. Unvoiced biasing continua
are depicted with dashed lines. Voiced biasing continua are depicted with solid lines.
Error bars depict the standard error of the mean. Note that the Ganong lexical bias
effect is especially prominent at the mid-range VOTs 20, 25 and 30.
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Table 1
Best Fitting Model for Subject Response Data
Fixed Effects Beta SE t-statistic 95% CI
Intercept -6.428*** 0.367 -17.53 [-7.146, -5.709]
VOT 0.259*** 0.003 97.69 [0.253, 0.264]
Bias 0.316*** 0.036 8.86 [0.246, 0.386]
VOT-transform -0.076 0.052 -1.49 [-0.178, 0.024]
Bias:VOT-transform 0.271*** 0.053 5.17 [0.168, 0.374]
Random Intercepts: N Variance SD
Subject 20 0.172 0.415
PlaceofArticulation 2 0.196 0.492
TriallnBlock 72 0.014 0.120

Notes. N = 38,491 trials. SE = Standard Error, SD = Standard Deviation. See
Methods section for effect term codings. Responses were coded as 0 = voiced
response, 1 = unvoiced response.
***p < .001

The best fitting model for the behavioral response data (responses coded as 0 =
voiced response, 1 = unvoiced response) is reported in Table 1. In the data, effects of
VOT, of Bias, and a Bias:VOT-transform interaction were evident. The positive estimate
for the interaction of Bias with VOT-fransform, i.e., stimulus ambiguity, indicates that the
effects of lexical bias are largest for mid-range VOT stimuli. The main effect of VOT-
transform was not significant but was included in the model since the interaction with
Bias was significant. These results match the lexical bias effect in Ganong (1980), both

that there is an effect of lexical bias on categorization in the predicted direction and that

the effect of bias is greatest for the most ambiguous stimuli.
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3.2 Omnibus Mixed Effect Model Results, N100. Before discussing the VOT and bias
effect on the N100, we report the results of the forward stepwise model fitting procedure
for N100 amplitude. This omnibus best fitting model is shown below in Table 2. In
Section 3.3 and 3.4, we discuss the specific VOT and Bias effects of interest. Note that
in the best fit N100 amplitude model reported above, Bias and VOT-transform main
effects were maintained in the model despite not contributing significantly to the fit, in
order to separately calculate the variance attributable to the interaction rather than

having the interaction potentially convoluted by main effect variance.

Table 2
Best Fitting Model for N100 Amplitude
Fixed Effects: Beta SE t-value 95% CI
Intercept -0.79*** 0.154 -5.15 [-1.09, -0.488]
VOT 0.0045** 0.0015 3.02 [0.0016, 0.0074]
Bias -0.0018 0.0246 -0.08 [-0.050, 0.046]
VOT-transform 0.043 0.055 0.76 [-0.065, 0.152]
Bias:VOT-transform 0.124* 0.055 2.24 [0.016, 0.233]

Notes. N = 38,491 trials. SE = Standard Error. Variables were minimally recoded,
see the Methods section for details. Random Effects for Subject, Place of
Articulation, and Trial In Block were also included in the best fitting N100 model.

***p <.001, **p <.01, *p < .05

3.3 N100: VOT Encoding in N100. The N100 amplitude was sensitive to the VOT of
the incoming sound. As shown in Figure 2, we observe a similar N100 - VOT
relationship to that observed by Toscano et al. (2010). The mixed model indicated a

significant linear relationship between stimulus VOT and N100 amplitude in the direction

expected (Byor = 0.0045,p = .003). As reflected in the positive slope, speech sounds
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with earlier onset of voicing, i.e., shorter VOTSs, generated a larger N100 amplitude, i.e.,
more negative, than speech sounds with later onset of voicing. As discussed in depth in
Toscano et al. (2010), this linear relationship indicates that the neural processes
indexed in the N100 have not yet been warped by categorical aspects of perception
such as phoneme classification.

The N100-VOT relationship evidenced by the significant VOT main effect shows
that even in this paradigm with a slightly different sound stimulus set and task the N100
amplitude continues to show sensitivity to sublexical aspects of speech sound encoding.
Further, the replication of the directionality of the VOT-N100 relationship yields
directional hypotheses about the effects of bias. Since shorter voicing onset times

corresponds to larger N100 amplitude, interactive theories predict that at the same VOT
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Figure 2. The ERP response to each VOT, averaging across all continua and
Ganong Bias conditions is shown in each curve. The shorter the VOT, the
more negative the N100 peak, as estimated by average amplitude from 60-130
msec. 0 ms = stimulus onset. Grey bar at bottom depicts the 60-130 msec
time window.
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level, continua that bias towards perception of a voiced consonant should have larger
N100 amplitudes than continua that bias towards perception of an unvoiced consonant.
3.4 N100: Lexical Bias Effect.

Lexical bias effects were observed in N100 amplitude as shown in Figure 3. Lexical bias
effects in the N100 were tested by evaluating the addition of a Bias term and a
Bias:VOT-transform interaction term to the model. The significant Bias:VOT-transform
(Bgias:vorer = 0.124, p = .025) interaction term indicated that bias was observed in the
direction specified a priori — more negative for voiced biasing than unvoiced biasing
continua, and the bias effect interacted significantly with the transformed VOT. Recall
that, in the interaction, VOT was transformed to correspond to the prediction of the
largest bias effect at mid-range VOTSs, just as it was in the behavioral analysis. Because
of this transformation, the significant positive weight of the Bias:VOT-transform
interaction suggests a bias in the correct direction and with the correct VOT specificity.
The Bias:VOT-transform term did not interact with place of articulation, indicating a
consistent effect across both places of articulation used in the experiment. The Bias
main effect was non-significant reflecting that the majority of variance explained by the
lexical bias was captured by the interaction term.

The N100 lexical bias matches the pattern in the observations of Ganong (1980)
and the patterns in the behavioral data in this experiment (reported in Section 3.1) that
lexical bias exerts an influence on sublexical judgments only at ambiguous VOTs. As
we test in Section 5, this VOT ambiguity dependence is also predicted by interactive

feedback models of speech perception.
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Figure 3. (top) N100 response amplitude for the voiced biasing and unvoiced biasing
conditions to stimuli with ambiguous VOTs, 20, 25, and 30. Statistical analysis of bias
effect focused on the 60 — 130 ms time window, depicted by the horizontal grey bar.
(bottom) The difference wave estimate compares the voltage in the unvoiced and voiced
biasing conditions in response to mid-range VOT stimuli.
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3.5 N100: Bias:VOT-transform Interaction, Simple Effects Tests.

The positive slope of the Bias:VOT-transform interaction term in the omnibus mixed
effects model indicated that the bias effect was largest at the mid-range VOTs. To
better characterize this interaction, we wanted to estimate the size of the bias effect at
the ambiguous VOTs as compared with the short VOTs (unambiguous voiced) and the
long VOTs (unambiguous unvoiced). To obtain this estimate, mixed effect models were
fit separately to the data from short VOT trials, mid-range VOT trials, and long VOT
trials. In these restricted VOT ranges, the Bias main effect rather than the Bias:VOT-

transform interaction is the term of interest, because we expect a roughly consistent
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Figure 4. Average amplitude from 60-130 msec by VOT range and biasing direction.
Error Bars depict Cousineau (2005) adjusted standard error of the mean. The bias
effect is only significant for mid-range VOT trials.
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bias effect size within each VOT range. The simple effect model was estimated with
only the fixed effect of VOT and bias and the random effects from the best fitting model.
This approach is analogous to simple effect tests following the interaction in an ANOVA.
These simple effect models are presented as a follow-up to help interpret the results
from the main analysis. As is visible in Figure 4, and as was suggested by the positive
interaction in the omnibus model, the Bias effect was only significant at mid-range VOTs
and no trace of a bias effect was present at short or long VOTs. The results for the Bias
effect estimate at each VOT range are shown below in Table 3. The absence of the
bias effect at the unambiguous VOTs is striking compared to the large bias effect at
mid-range VOTs. This pattern makes clear why only the interaction term in the omnibus

model reached significance.

Table 3
“Simple Effects” Model of Bias in Each VOT Range
VOT Range Betagias 95% ClI N Model Intercept
short VOTs 0.0049 [-0.059, 0.069] 12,762 -0.727
mid-range VOTs 0.081* [0.015, 0.15] 12,863 -0.642
long VOTs 0.012 [-0.053, 0.077] 12,866 -.0621

Notes. N = number of trials in each VOT range. SE = Standard Error. Simpe effects
model included only fixed effect of Bias and random effects for Subject, Place of
Articulation, and Trial In Block.

*p <.05

3.6 Interim Summary. In the N100 Ganong experiment reported in Section 3, we
found effects of voice onset time and of lexical bias on the N100 waveform amplitude,

providing evidence that as the sound is processed top-down information is interacting

with incoming acoustic information to modulate the aggregate responses of the neural
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populations encoding voicing. The N100 lexical bias effect provides a clear measure of
when lexical bias effects occur in speech sound processing. The N100 lexical bias
demonstrates, more clearly than behavior alone could, that the lexical bias effect is
early, online, and sublexical rather than late and at a response selection stage. The
top-down modulation of N100 amplitude is strongest when the bottom-up signal is
ambiguous — i.e., the bias effect is sensitive to the ambiguity of the incoming voice
onset time (see Figure 4 and Table 3). The VOT sensitivity of the bias effect, as well as
the apparent growth of the bias effect size visible in the difference wave (Figure 3),
indicates that bias is occurring during the trial and is not reflective of a preparatory
activation of the favored sublexical units. Instead, it appears to reflect online feedback.
Following the logic of Ganong (1980) though applying it here to neural data, the VOT
sensitivity of the N100 bias effect confirms online versus preparatory activation because
the information about the ambiguity of voicing of the incoming sound is not available
until the sound itself is partially processed.

This pattern of results supports interactive theories of speech perception, which
predict that sublexical processing should be influenced by top-down factors like
lexicality and that this influence should be evident in online measures of sublexical
processing such as the N100. These results contradict the predictions of feed-forward
theories which have previously explained Ganong lexical bias effects in behavior by a
post-perceptual merger of lexical and sublexical information (e.g., Fox, 1984; Norris,
1991; Norris et al., 2003, 2008, 2016) which therefore predict no lexical bias effect at
this at this level of representation, at the level of phonetic feature encoding, or at this

early time-point well before response selection. We view the body of results presented
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here as favoring an interactive account of Ganong bias. However, as Norris and
colleagues (2003, 2008, 2016) point out, results that are consistent with interactive
theories may occur because of other mechanisms in a feed-forward architecture, for
example because of perceptual learning effects that are occurring between trials. In
Section 4 we test this perceptual learning account, to determine whether it can explain
the results of lexical bias on the N100, without assumptions of interactivity.

4. Follow-Up 1: Evaluating Perceptual Learning as an Alternative Explanation for
N100 Bias. In this section, we anticipate an important alternative explanation for N100
lexical biasing — perceptual learning. Perceptual learning is a mechanism of speech
perception by which listeners adapt to and learn specific pronunciations for a speaker or
listening environment. A perceptual learning explanation of lexical bias hypothesizes
that by presenting participants with lexically biasing continua, participants may be
learning or adjusting sublexical category boundaries to favor the lexically supported
percept in each block. Perceptual learning is compatible with feed-forward models of
speech perception, and accordingly must be ruled out for N100 bias effects to provide
strongest evidence against feed-forward models of speech perception. At face value, a
perceptual learning account may be particularly plausible given the design of our
experiment. Trials were blocked by continua, meaning that over the course of
approximately two minutes, participants hear 72 tokens all taken from one continuum.
The ambiguous tokens in a dape-tape block, for example, are all lexically biased
towards /t/, and therefore, over the course of these short blocks, participants might
modify their phonemic categories by perceptual learning, such that the ambiguous

sounds are remapped to be categorized as more /t/-like. If perceptual learning modifies
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the same sub-lexical networks indexed by the N100, then perceptual learning is an
alternative explanation for N100 bias effects. However, to anticipate the results, we
observed no evidence for perceptual learning in the N100 lexical bias effect.

Critically, perceptual learning does not make identical predictions to online
feedback; online feedback differs from perceptual learning in how the biasing
accumulates with exposures (i.e., in perceptual learning it takes time and exposures to
learn) and in the stability of the changes to the sublexical network (i.e., perceptually
learned adjustments are stable across time and should generalize to other voicing
continua). Contrastingly, in online feedback lexical activation is essentially
instantaneous once the lexical target is known and can be similarly extinguished by
reducing the activation of the lexical unit once a block is over.

We exploit these differences between perceptual learning and online feedback to
test which is a better explanation for N100 bias in this experiment. Specifically, if the
N100 bias effect we are observing in the experiment is due to perceptual learning, we
expect that the size of the lexical bias should grow over the course of the 72 trials which
comprise each block. Furthermore, since perceptual learning has been shown to be
stable over short intervals and to generalize to similar acoustic contexts (Kraljic &
Samuel, 2006, 2007; Bradlow & Bent, 2008), adjustments to voiced/unvoiced
boundaries learned over one block should generalize to the next block. Because the
experiment was built such that sometimes the previous block had the same bias and
sometimes it had the opposing bias, a perceptual learning account would predict

influences of the bias from the previous block on the current block lexical bias effect, at
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least in the first portions of the following block. We empirically evaluated these two
predictions of the perceptual learning account.
4.1 Approach. The significance of the learning build-up and carryover effects were
tested within the mixed model by evaluating the addition of fixed effect terms reflecting
each of these predictions. Specifically, we tested if the bias effect in the N100
amplitude model interacted with a term indexing the number of exposures to trials in the
current block (learning build-up), and we tested if the previous block’s bias could be
detected in trials of the following block (carryover). For learning build-up, we tested if a
model that included an interaction of bias with a count of exposures to trials in the
current block improved model fit, relative to a base model, that did not contain the
learning interaction®. A similar comparison approach was taken to test if a fixed effect
term reflecting the previous block bias altered the N100 amplitude in the current block.
If the N100 bias effect reflects perceptual learning, then growth of the bias effect by
exposures in a block and carryover from the previous block should be evident in the
N100 data. We also carried out a parallel analysis, looking at learning and carry-over in
the behavioral responses.
4.2 Results. The full set of results of the perceptual learning model comparisons are
reported in the Supplemental Material. A brief summary is provided here.

In the critical test of perceptual learning for explaining N100 bias, we found no

evidence of perceptual learning from either prediction in the ERP data; that is there was

*To avoid the interaction capturing variance relating only to a main effect of trial number
in block —i.e., how N100 amplitude changes over a block, systematically getting smaller
in amplitude as neural responses do with repetitive inputs (e.g., Rabovsky, Hansen, &
McClelland, 2018) — a main effect of TrialNumberinBlock was added alongside the
interactions.
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evidence for growth of the lexical bias with exposures to a block, nor an effect of the
previous block bias carrying over. Perceptual learning terms decreased the fit of the
model relative to models without these terms, and perceptual learning effect slope
estimates never reached significance. The lack of fit of perceptual learning was evident
even when non-linear learning rate functions were evaluated in the model (e.g., square
root of exposure count). Even when we restricted our analyses to the first trials of each
block where learning of the current block bias might be most evident and previous block
carryover should be strongest, the predictions of perceptual learning were not supported
in the data. Comparing the bias estimate from the first quarter of each block, on
average just the first 6 ambiguous trials, the block bias effect estimate from these trials
(i.e., the bias estimate from trials only in the first quarter of each block), is larger than
the bias estimate for the trials which appeared later in the block (i.e., quartiles 2 - 4).

In the behavioral response data, we find a similar lack of support for perceptual
learning. The perceptual learning effect terms never reached significance in the
behavioral response model, and there was no evidence from the quartile models that
the bias effect changed size with exposure count. While the behavioral response data
are not as informative as the N100 data for whether N100 lexical bias is attributable to
perceptual learning, they provide converging evidence that perceptual learning did not
play a major role in shaping the behavioral responses, and therefore support the notion
from the N100 perceptual learning tests that subjects’ responses were better
characterized as reflecting online feedback than perceptual learning.

4.3. Discussion of Perceptual Learning. Based on the failure of the perceptual

learning predictions — learning with exposures and carryover — to fit the N100 lexical
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bias data, we are unable to support perceptual learning as an alternative to online
feedback for the N100 bias effect results of the main experiment. The pattern of lexical
bias in the N100 data are much more compatible with the predictions of an interactive
feedback account of Ganong bias than a perceptual learning account because an
interactive account can easily accommodate an instantaneous activation of the current
block’s lexical bias and no carryover between blocks. Perceptual learning certainly plays
a critical role in normal perception where we encounter multiple acoustic environments
with multiple speakers with varying pronunciations (e.g., Bent & Bradlow, 2008).
However, in the context of this N100 Ganong paradigm in which we have repeated
exposure to the same speaker in multiple directions switching rapidly between blocks,
perceptual learning seems to have not played a major role in determining subjects’
neural and behavioral responses.

5. Follow-Up 2: TRACE simulation of ambiguous VOT locus of Ganong Bias

In this section, we ask how well the N100 bias effects in this experiment match lexical
bias effects predicted in an interactive theory of speech perception, TRACE (McClelland
& Elman, 1986), as instantiated in the JTRACE model (Strauss, Harris & Magnuson,
2007). Specifically, we examine whether such a theory predicts that the effect of lexical
bias on a sublexical level is greatest for the most ambiguous sounds.

5.1 Modeling Methods and Stimuli. The standard implementation of JTRACE (Strauss
et al., 2007) was accessed via GitHub, and was run using the default lexicon (BigLex)
and standard parameter settings. We selected /d/-initial and /t/-initial words which
formed word-nonword and nonword-word pairs as defined by which words exist in the

TRACE lexicon and which did not. The final modelling continua selected were Dal-Tal
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(/d/-baising since Doll is a word in the TRACE lexicon and Tall is not) and Dar-Tar (/t/-
biasing since Tar is a word in the TRACE lexicon and Dar is not). They were chosen
over other pairs of this type because they have similarly dense cohorts on each side of
the d-t continuum and because the coda position phoneme in both is a liquid, to
minimize accidental activation of the /d/ or /t/ units by the coda phoneme. /d/-/t/ voicing
continuum inputs to the model were prepared using the ambiguous phoneme tool in
JTRACE to create inputs that model the VOT manipulation of the ERP experiment.
Activation of the /d/ and /t/ phoneme units in response to these inputs were measured
from processing steps 1-75, with activation values time-locked to the specified input
step.

5.2 Analysis Methods for Modeling Results. Lexical bias effects were examined in
the phoneme layer of the TRACE model. The phoneme layer is the best candidate to
model the sublexical level indexed by the N100. Although the feature layer of TRACE
might more closely correspond to the feature encoding evident in the N100, in TRACE
there are not feedback connections down to that level, so feedback cannot be modeled
at that level of the model. Within the phoneme layer, we quantified lexical bias as the
difference in activation of the /t/ and /d/ units in response to /d/-/t/ inputs embedded in
the lexically biasing pairs. Since lexical bias in our experiment is defined by comparison
with a lexical environment of opposite bias, a similar estimation of lexical bias was
calculated for the model. That is, lexical bias was estimated by comparing the /d/ vs. /t/
activation to each lexical bias direction. Thus, model bias was calculated in a two-step

procedure for each VOT step, /, on the /d/-/t/ continua:

Biasstepi = (/t/_/d/ aCtivatiOndar—tarstep i) - (/t/_/d/ aCtivationdal—talstep i) (1 )
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First, the /t/-/d/ phoneme activation difference was calculated for each VOT step, i, for
each bias direction continuum. In the second step, the /t/-/d/ activation difference for
dal-tal, /d/ biasing, was subtracted from dar-tar, /t/ biasing. A positive value for the bias
effect indicates that the /t/-/d/ activation difference was larger when the lexicon was /t/-
biasing than when the lexicon was /d/-biasing. Phoneme activations were calculated
using the specified alignment method in jJTRACE.

5.3 Modeling Results.
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Figure 5. (top) Model phoneme activations for each input ambiguity range and biasing
condition. (bottom) Lexical Bias effect, as defined in Equation 1, comparing d and t
activation difference by biasing condition. Note that the bias effect is only evident in the
ambiguous input to the model. The model lexical bias effect emerges around timeslice 30,
and then continues to grow as processing moves forward. Specified alignment activations
in JTRACE were used. Note that TRACE does not allow manipulation of VOT or sound file
inputs; thus, VOT equivalent model inputs were created using the ambiguous phoneme tool

in JTRACE.
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A lexical bias on phoneme level activations was observed. The bias on phoneme
activations was in the direction expected. As a more fine-grained test of whether
TRACE can model N100 lexical bias effects, we found that the lexical bias effects in
TRACE match the patterns in the N100 data — namely that lexical bias develops during
processing and that lexical bias is largest when the input is ambiguous. Figure 5,
bottom, demonstrates both phenomena in that the lexical bias effect grows as model
processing moves forward in time, and that the model lexical bias effect is only present
in a significant manner at ambiguous inputs. This pattern of lexical bias only at
ambiguous model inputs exactly matches the results obtained in the ambiguous VOT
locus of the N100 bias. The growth of the lexical bias effect in the model as processing
progresses also matches that the N100 lexical bias effect grew rapidly from 75-175
msec. While it is difficult to exactly map time-slices in the model onto neural processing
times, it suggests compatibility of the N100 bias with the dynamics of how feedback
alters lower level representations in interactive models.
5.4 Modeling Summary. The modeling results demonstrate how an interactive speech
perception framework (TRACE) can model Ganong bias at the phoneme level. The
model results closely match several aspects of the N100 bias results. First, the largest
bias effect in both the model and in behavior was in the case of ambiguous inputs and
lexical bias was essentially nonexistent if the model input was unambiguous. Second,
the bias effect within the sublexical units grows over the course of processing.
General Discussion

In the current study, we collected electrophysiological responses to voice onset

time continua while participants took part in a lexically biasing categorical perception
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experiment. We discovered an effect of lexical bias within the N100 ERP component, a
signal associated with encoding of the phonetic feature of voicing. Lexical bias on the
N100 amplitude and on categorization was strongest only when the incoming sounds
were ambiguous, near the boundary between voiced and unvoiced, matching the
predictions of interactive theories. The sensitivity of bias effects to the ambiguity of the
bottom-up acoustic information suggest that the bias effect is online, rather than
reflecting pre-activation of the lexically favored sublexical unit. This follows from the fact
that ambiguity of the incoming stimulus is not available until processing of the acoustic
information is partially completed.

Strengthening the claim that the N100 bias reflects a lexical bias effect within the
sublexical network is the fact that the biased N100 responses match the directionality of
the normal responses to voiced and unvoiced endpoints. For example, in a /t/-biased
continuum, an ambiguous /dt/ was shifted towards the response to a normal /t/. That
the /t/-biased response to an ambiguous phoneme resembles the response to a normal
It/ phoneme suggests that lexical biasing of perception is accomplished by activation
changes within the normal sublexical processing regions. The same was true for /d/
biased ambiguous stimuli.

Further supporting interactive feedback accounts of lexical bias, two attributes of
the empirical N100 data — that the bias effect is limited to ambiguous tokens and that
the bias effect grows during the course of sublexical processing— match the predictions
of an interactive feedback model of speech perception (Elman & McClelland, 1988).
These aspects of the N100 data were also fit well in our own modelling experimentation,

reported in Section 5. Using the standard parameters and lexicon (Strauss, Magnuson,
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& Harris, 2007) and taking phoneme activation as a proxy for N100 level processing,
both aspects of the N100 lexical bias emerged naturally from TRACE (McClelland &
Elman, 1986) when inputting a word-initial, acoustically ambiguous (in model voicing
feature-space) lexically biased continuum.

The N100 lexical bias results are difficult to reconcile with previous feed-forward
accounts of lexical bias in behavior. We find clear evidence against the established
feed-forward explanation for Ganong lexical bias effects, that lexical bias reflects lexical
influence at a post-perceptual response selection stage in which lexical knowledge and
bottom-up information are merged late in speech sound processing. This post-
perceptual account of Ganong lexical bias is incompatible with at least three aspects of
the N100. First, the time-course of lexical bias effects is early (approximately 75-
175ms). Previous research has suggested that this is the time course of processing
acoustic and phonological information (Cibelli et al., 2015; Hullet et al., 2016; Yi,
Leonard, & Chang 2019; Mesgarani et al., 2014; Pasley et al., 2012). Second, lexical
bias effects appear with the same topography and polarity as normal N100 responses to
speech sounds, suggesting that it is the same neural populations that show the lexical
bias that are also responsible for the basic representation of the speech sound phonetic
features (see Myers & Blumstein, 2007, for a similar argument using fMRI). As a result,
it is unlikely that the N100 is indexing activation of the lexicon directly, but instead is
revealing the influence of lexical activation on the sublexical level. Third, the bias effect
grows during processing, which are the dynamics predicted by interactive theories but

not feed-forward accounts with a post-perceptual merger.
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All this is to say, the N100 evidence is inconsistent with a post-perceptual
explanation of Ganong lexical bias. The N100 bias effect demonstrates that lexical bias
effects are due to changes in the early processing of speech sounds, specifically in
changes to the very same networks involved in encoding phonetic features of the
unbiased phonemes. This result can be viewed as evidence against the feed-forward
principle at the core of the post-perceptual hypothesis, that early sublexical encoding is
isolated from top-down information. This independence of early processing principle is
contradicted by the neural response data from the current study and that of Getz &
Toscano (2019). Instead, there is every indication that lexical knowledge is influencing
the earliest measurable aspects of sublexical encoding in exactly the ways predicted by
interactive models of speech perception with feedback.

Of course, there are some ways that feed-forward theories allow for sublexical
encoding to be modified by the lexicon, specifically by perceptual learning. As such, in
Section 4, we also evaluated perceptual learning as an alternative mechanism for
Ganong lexical bias. Under this account, listeners are constantly and dynamically
changing their representations of speech sound categories, based on numerous factors
including information about lexicality (Norris, McQueen & Cutler, 2003). However, in a
series of mixed effects models, we failed to find support for any of the predictions of a
perceptual learning account for the lexical bias effects in this experiment, demonstrating
again that the results of our study are inconsistent with feed-forward theories of speech
perception, even when multiple possible feed-forward explanations are considered.

Therefore, the theoretical contribution of this study is clear. By looking at an

early electrophysiological correlate of sublexical speech perception, we have been able
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to demonstrate that lexical context exerts a direct influence on sublexical processing, as
would be predicted by interactive models of speech perception, in direct contrast to
feed-forward only models of speech perception. This study provides clear evidence
sublexical encoding is not independent as feed-forward theories predict. Feed-forward
theories have previously argued that interactivity of lexical knowledge with bottom-up
acoustic information may result in loss of veridical information about the true acoustics
of the input, and that optimal Bayesian use of information, from a theoretical information
analysis perspective, is achieved by a feed-forward architecture (Norris et al., 2016,
though see McClelland, Mirman, Luthra, Strauss, & Harris, 2018 for a
counterargument). Norris and colleagues (2000, 2003, 2008, 2016) have also argued
that feed-forward architectures are simpler than interactive ones. However, optimality
and debates of theoretical simplicity must yield to empirical evidence. At least on the
scale of neural activity that we can index with ERP N100 amplitudes, we found
modulation of the sublexical level of representation by lexical information. The N100
evidence is clear that there are at least some neural populations, with dipoles that align
with VOT encoding populations, that are responding to top-down information. The claim
that early, sublexical speech sound processing is independent from contextual
information is not compatible with this evidence.

This study is not alone in using electrophysiology to investigate sublexical
contextual effects. There are several other recently published studies that have
measured the electrophysiological signature of sublexical processing and shown
evidence of feedback from contextual information (e.g., Getz & Toscano, 2019;

Leonard, Baud, Sjerps, & Chang, 2016). These interactions follow exactly the patterns



ERPS OF LEXCAL BIAS 39

predicted by interactive theories of speech perception (McClelland & Elman, 1986), with
greater activations observed for the contextually favored sublexical component. While
there have been several recent studies that have demonstrated similar effects to what
we report here, it is worth noting how our paradigm and results complement, rather than
simply replicate, these other studies. Leonard and colleagues (2016) played
participants pairs of spoken words that were acoustically identical except for a critical
phoneme that differentiated their meaning (e.g., “factor” vs. “faster”), as well as an
ambiguous token that replaced that critical phoneme with broadband noise.
Approximately 100 msec following the onset of the ambiguous speech sound, the
pattern of ECoG data in bilateral auditory cortex predicted which of the two possible
words the participant would report hearing, identifying the time course of phoneme
restoration effects. Getz and Toscano (2019), instead, relied on lexical prediction,
looking at the response at the N100 to an ambiguous speech sound between /d/ and /t/
in cases in which a /t/ would be predicted (“Eiffel Tower”) and cases in which a /d/ would
be predicted (“Barbie Doll”). They found that the N100 amplitude to this ambiguous
sound was significantly more /t/-like when primed with “Eiffel” than when primed with
“Barbie”.

These three studies look at different types of contextual effects, which may tell
us different things about the nature of sublexical processing. In the Leonard et al.
(2016) study, lexical information is restoring missing acoustic information in the neural
response patterns 100msec after the missing phoneme. In the current study and Getz
& Toscano (2019), contextual information modulates the behavioral responses and

show similar effects in N100 amplitudes, shifting perception to the contextually favored
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state. The difference between our study and the Getz and Toscano (2019) study can
be conceived of in terms of short-term vs. long-term contextual effects. In Getz and
Toscano (2019), the reason that participants are biased to hear an ambiguous /dt/ as /t/
is because of a specific prediction about which upcoming word is expected, based on
long-term associations between words within the lexicon. In the current study, lexical
expectations were created online through the use of the blocked Ganong design, but
these context effects were generated only over the short-term and would change
between blocks. The lexical effects in this experiment also occur automatically, and do
not involve prediction, per se. These different types of contextual effects may occur
because of different computational properties of the speech perception system and
therefore it is not obvious that each of these manipulations would lead to similar
electrophysiological effects. This growing literature supports the idea that multiple types
of contextual effects have an impact on the sublexical processes being indexed by the
N100.

One direction for future research, therefore, is to use the N100 to determine if all
types of contextual effects occur with the same time-course and at the same processing
level. Behaviorally, there are many ways that context has been shown to influence our
perception of speech sounds, whether it be at a lexical (Ganong, 1980), semantic
(Samuel, 1981; Connine & Clifton, 1987; Groppe, Choi, Huang, Schilz, Topkins, Urbach,
& Kutas, 2010), syntactic (Fox & Blumstein, 2016), or through indexical information,
such as gender (Johnson, Strand, & D’Imperio, 1996) or accent (Bent & Bradlow, 2008;
Sidaras, Alexander, & Nygaard, 2009). By using electrophysiology, we can measure

the time-course and processing stage at which contextual effects are occurring, thus
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gaining greater traction on questions about interactivity. Our study shows that at least
one of these top-down effects, lexical biasing via the Ganong paradigm, is best
understood by an interactive theory of speech perception. Getz & Toscano (2019) test
another top-down effect and show a similar top-down effect on the N100 response. But
for the myriad other top-down effects, electrophysiological work will be necessary to
characterize the time-course and neural signature of each effect.

Of course, our ability to interpret what top-down effects in the N100 mean in
terms of cognitive architectures depends deeply on our confidence in the relationship
between the neuroimaged variable used in the study with the cognitive processing step
it measures. This problem is common to most cognitive neuroscientific studies. With
respect to the N100, it is clear that the N100 is indexing some aspect of sublexical
encoding associated with the encoding of voice onset time. However, sublexical
encoding is a multi-step process that may involve a gradual and parallel activation of
spectral, spectrotemporal, featural, and phoneme representations. Here we interpret
the N100 as indexing pre-categorical featural processing, as is suggested by Toscano
et al. (2010) and electrocorticographic studies (Hullet et al., 2012; Mesgarani et al.,
2014; Leonard et al., 2016) One alternative view could be that the N100 indexes
acoustic (not language specific) levels of spectrotemporal processing that feed into our
ability to recognize speech sounds but which precede linguistic processing. Effects of
voice onset time on amplitude might be expected at an acoustic level of processing as
well, because voicing is both a low-level acoustic feature as well as a linguistic property.
Similarly, the N100 may reflect acoustic or sublexical linguistic processing. But if the

N100 is prelinguistic, effects of lexical bias are even more surprising because this is an
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earlier stage of processing. Therefore, this would make N100 bias even more
contradictory with the feed-forward view that initial stages of bottom-up processing are
independent from top-down influences.

Testing the precise cognitive correlate of the N100 is important for interpreting
what the results of this and similar studies mean for cognitive architectures. Indeed, the
claims made above depend on the assumption that the processes being indexed by
N100 are sublexical and therefore not compatible with post-perceptual merger accounts
of lexical bias. But it may not be so straightforward to map between specific time
windows from the EEG signal and specific cognitive processes because in an
interactive theory like TRACE, activation spreads from one level to another well before
the computations at the first level are complete. As a result, all levels of representation
are activated in parallel, meaning that there is processing of information simultaneously
at acoustic, sublexical, and lexical and semantic levels.

That all levels are activated in parallel does not mean they cannot be
distinguished electrophysiologically. The fact that the N100 response to voice onset
time is similar in a wide array of lexical settings (e.g., the words used in this study, differ
from those of Toscano et al., 2010 and from Getz & Toscano, 2019), suggests that the
N100 does not reflect activation of a particular word, but rather a common acoustic or
featural aspect of the speech sound. This distinction is important because it rules out
the possibility that N100 lexical bias might simply reflect parallel lexical activation.
Similarly, distinguishing between acoustic and featural levels and the contribution of
each to the N100 will inform how evidence from N100 ERP components constrain

theory.
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One other area for further investigation involves increasing spatiotemporal
resolution of the lexical bias effect. In our data, and in the modelling results, there is the
suggestion that lexical bias grows as processing moves forward in time (from 75-175
msec after the generating phoneme). An intriguing way to interpret this data would be
to say that the informational representations in a single network or a single population of
neurons evolves over time, specifically that the neural response of the N100 generating
region is initially determined by the bottom-up input in response to voice onset time but
gradually shows a greater response to top-down information. To be able to evaluate
this claim more precisely, one would need to test with greater spatial resolution that the
same populations are changing which sources information they are responding to or
how they are weighting multiple inputs over time (see Hirshorn and colleagues, 2016 for
a demonstration of a similar phenomenon in the reading system). Techniques with
better spatial resolution such as ECoG may be able to answer these questions by using
the same experimental design to test if specific regions become more sensitive to top-
down contextual information as the trial progresses.

To conclude, the benefits that the EEG/ERP experiments provide to the study of
early perceptual processing are clear. They provide high temporal resolution measures
that can track cognitive processes as they unfold over time, providing a new window
into resolving old questions about when top-down and bottom-up information are
integrated. Using EEG/ERP, specifically by analyzing the N100 response to voice onset
time, we found that lexical information influences how we are processing speech
sounds as early as 100ms after the onset of the stimulus. That an early neural

response is influenced by lexical bias contradicts the idea that early processing of
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speech sounds is independent from higher-level knowledge. Instead, we find support
for interactive theories of speech perception, and interactive theories of neural and

cognitive processing more generally.
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Appendix A

Stimulus Properties

All stimuli were embedded within a 600 msec .wav sound file. 100 msec of silence
preceded the plosive burst. Across each opposing pair of continua, Gate-Cate/Gake-

Cake and Date-Tate/Dape-Tape, endpoints were carefully matched.

Table A1. Stimulus Acoustic Properties

Burst — Frequency of
Burst — Closure Pitch

Release offset CV Ratio  Lexical
Continuum  of Vowel (ms) (Hz)

(ms) Endpoint
Gate-Cate 210 430 220 12 3
Gake-Cake 212 400 221 A2 2
Date-Tate 180 397 190 14 11
Dape-Tape 186 376 212 13 11

Note. Pitch was averaged across the vowel length; CV Ratio was averaged across all
VOTs, effectively the CV ratio for VOT-25; Brown Verbal Frequency was used as
frequency estimate.
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Appendix B
Stimuli Pilot Study

One critical test necessary before running the full electrophysiological study was
ensuring that the stimuli yielded clean categorical responses on both the voiced and
unvoiced endpoints and ensuring that they yielded lexical bias effects on categorization.
The stimuli were piloted in a separate set of subjects (N = 5). The results of this pilot
study are plotted below in categorical perception curves. As is visible, categorization

was good and lexical bias effects were evident.
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Figure A1. Proportion Unvoiced Response to each stimulus in a behavioral
pilot experiment (N = 5). Subject pool was separate from the eventual full
electrophysiological experiment.



