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Abstract  

Contextual information influences how we perceive speech, but it remains unclear at 

which level of processing contextual information merges with acoustic information.  

Theories differ on whether early stages of speech processing, like sublexical processing 

during which articulatory features and portions of speech sounds are identified, are 

strictly feed-forward or are influenced by semantic and lexical context.  In the current 

study, we investigate the time-course of lexical context effects on judgments about the 

individual sounds we perceive by recording electroencephalography as an online 

measure of speech processing while subjects engage in a lexically biasing phoneme 

categorization task.  We find that lexical context modulates the amplitude of the N100, 

an ERP component linked with sublexical processes in speech perception. We 

demonstrate that these results can be modeled in an interactive speech perception 

model and are not well fit by any established feed-forward mechanisms of lexical bias. 

These results support interactive speech perception theories over feed-forward theories 

in which sublexical speech perception processes are only driven by bottom-up 

information. 

Keywords: speech perception, N100 ERP, Ganong effect, TRACE, feedback 
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1. Introduction 

A major question that cuts across different domains in the cognitive sciences is how our 

perception of bottom-up sensory inputs is shaped by top-down knowledge about what 

we are expecting to perceive (e.g., Rumelhart, 1976; Pylyshyn, 1984; Chater & 

Oaksford, 1990; McClelland et al., 2014).  The current study looks at this question in the 

context of speech perception.  There is a clear consensus that both acoustic, bottom-up 

information, and top-down knowledge about words and their meanings influence which 

speech sounds we perceive.  But there is considerable disagreement about the 

processing stage at which integration of bottom-up and top-down information occurs.   

In speech perception, debate has focused on sublexical stages of speech 

perception, in which speech sound representations (e.g., phonemes) are accessed from 

the acoustic input.  The major question has been whether this sublexical stage is 

independent from or influenced by top-down information.  Top-down information in 

speech perception takes multiple forms, including lexical knowledge about which 

speech sound sequences form words, semantic knowledge about which words fit in a 

given context, or syntactic knowledge about what fits grammatically into the sentence or 

phrase.  Interactive speech perception theories argue that, during the course of speech 

perception, all levels of processing are informed by and constrained by higher-level 

knowledge (e.g., TRACE: McClelland & Elman, 1986; C-Cure: McMurray & Jongman, 

2011; and TISK: Hanngan, Magnuson, & Grainger, 2013; see Magnuson, Mirman, 

Luthra, Harris & Strauss, 2018, for discussion).  In interactive theories, early sublexical 

representations are activated both by bottom-up connections from acoustic processing 

and by top-down input via feedback connections from lexical and semantic processing 



ERPS OF LEXCAL BIAS      		

	
	
	

4 

levels.  In contrast, feed-forward speech perception theories argue that speech 

perception relies on unbiased encoding of sublexical information (Fuzzy Logic Model of 

Perception, Oden & Massaro, 1978; Cohort, Marslen-Wilson, 1987; Cairns et al., 1995, 

1997; Norris, 1994; Merge, Norris, McQueen, Cutler, 2000, 2003, 2008; Ideal Listener, 

Kleinschmidt & Jaeger, 2015, see Norris, McQueen, & Cutler, 2016 for discussion).  In 

feed-forward theories, early encoding of the bottom-up sensory information is 

independent from top-down information being processed at lexical and semantic levels. 

We present an experiment that uses event-related-potentials (ERPs) to measure the 

sublexical processing at the heart of the feedback debate in speech perception while 

manipulating top-down information, here, the lexical context in which the sound 

appears, to test for influences of lexical context on sublexical processing. 

 Much of the debate around feedback to sublexical levels has centered on shifts 

in how a speech sound is perceived as a function of the context in which it appears.  

These top-down effects on perception occur when a higher-level context variable 

influences speech sound perception.  Top-down effects on speech perception have 

been found with many different manipulations, for example by replacing speech sounds 

with noise in different types of spoken stimuli (e.g., Warren, 1970; Samuel, 1981) or by 

varying what is semantically (e.g., Sivonen, Maess, Lattner, & Friederici, 2006; Samuel, 

1981; Connine & Clifton, 1987; Groppe et al., 2010) or syntactically (e.g., Fox & 

Blumstein, 2016) predicted by the sentence context. Top-down effects have been 

observed with many different measures of perception, including judgments about which 

speech sounds are perceived, the rate at which phonemes are recognized, or how the 

eyes move between competing word candidates.  
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Some of the best-studied top-down effects are lexical effects on phoneme 

category judgments.  Ganong (1980) demonstrated effects of lexical bias on phoneme 

identification, specifically that identification is biased towards phonemes which form 

familiar words (see also Burton, Baum, & Blumstein 1989; Burton & Blumstein, 1995; 

Connine, Clifton, & Cutler, 1987; Gow, Segawha, Alfhors, & Lin, 2008; Gow & Olson, 

2015; Kingston, Levy, Rysling, & Staub, 2016; Myers & Blumstein, 2007; Newman, 

Sawusch, & Luce, 1997; Pitt, 1995; Pitt & Samuel, 1993, 1995).  For example, if a 

participant is presented with a sound that is ambiguous between /d/ and /t/, they are 

more likely to perceive it as a /d/ with a rime like /eɪt/ since date is a word but *tate is 

not. But they would be more likely to perceive the exact same sound as a /t/ with a rime 

like /eɪp/ since tape is a word but *dape is not.  

Lexical bias effects are readily fit by interactive models that include feedback 

connections (e.g., Elman & McClelland 1988; Mirman, McClelland, & Holt, 2006). In 

theories with feedback connections from the lexicon to sublexical levels, top-down 

effects such as lexical biases emerge naturally from the architecture because available 

information from the lexicon or contextual environment will modulate activation at the 

sublexical level and therefore change how incoming acoustic information is encoded 

and then subsequently perceived.  The compatability of interactive feedback models 

with lexical bias has been extensively demonstrated in simulation studies (Elman & 

McClelland, 1988, Strauss, Harris, & Magnuson 2007, see also Section 5 of this paper). 

However, the necessity of feedback connections to be able to model lexical bias and 

other top-down effects has been called into question.  



ERPS OF LEXCAL BIAS      		

	
	
	

6 

Norris, Cutler, and McQueen (2000, 2003, 2008, 2016) have demonstrated that 

interactivity is not necessary to explain top-down effects on phoneme judgments, such 

as the lexical bias observed by Ganong (1980).  Specifically, lexical bias effects can be 

generated by an architecture without feedback, but which includes a "decision module” 

which acts as a late integrator of lexical and sublexical information, merging the two 

information sources only after sublexical processing has occurred (see R. Fox, 1984; 

but see also, N. Fox & Blumstein 2016).  The post-perceptual merger account of lexical 

bias demonstrates that feedback is not necessary to explain top-down effects observed 

in behavior.  Norris et al. (2003, 2008, 2016) have also claimed that feedback results in 

non-optimal performance of a speech perception system (e.g., Fraunfelder & Peeters, 

1998; though see also McClelland, Mirman, Bolger, & Khaitan, 2014; McClelland, 

Mirman, Luthra, Harris, & Strauss, 2018).   

Given the equivocal status of debates over efficiency and previous evidence, 

more empirical work to determine when top-down and bottom-up information are 

integrated during speech sound processing will be necessary.  With respect to the 

debate around lexical bias effects specifically, the issue with much of the previous 

literature is that it has relied on measures with inadequate online temporal resolution to 

determine whether lexical bias is due to feedback or due to feed-forward post-

perceptual integration of bottom-up and top-down information (Fox & Blumstein, 2016).  

What is needed to distinguish between interactive and feed-forward explanations is a 

measure of sublexical processing that can quantify sublexical representation in an 

online manner so that bias can be tested for within the time-course of speech sound 

processing.  Such a measure could valuably contribute to the feedback debate because 
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interactive and feed-forward accounts differ in when and at what stages of processing 

top-down effects are predicted to occur.  If an online measure of sublexical processing 

early in the response to speech sounds can be identified and shown to vary as a 

function of top-down factors like lexicality, that would provide strong evidence in favor of 

interactive activation models.  In contrast, if the online measure of sublexical encoding 

is not influenced by top-down factors, this would support feed-forward theories. 

To this end, we utilize an online electrophysiological signature of the early 

perceptual encoding of incoming speech sound features, the N100 event related 

potential (ERP) signal (Toscano, McMurray, Dennhardt, & Luck, 2010), to measure top-

down influences on early stages of speech perception with higher temporal resolution.  

The N100 ERP response to speech sounds, measured with scalp-recorded 

electroencephalography (EEG), has been linked with sublexical processing; Toscano 

and colleagues (2010) found that the amplitude of the N100 is linearly related to voice-

onset-time in a voicing continuum (such as a continuum from /d/ to /t/).  Voice-onset-

time (VOT) refers to the latency, in milliseconds, relative to a consonant onset that the 

vocal cords begin vibrating for the following vowel.  VOT is used to distinguish voiced 

and unvoiced minimal pairs like /d/ from /t/.  The N100-VOT relationship suggests that 

the N100 provides a direct window into the neural processing of phonetic features.   

Strengthening the argument that the signal we are measuring in the N100 

reflects sublexical processing, electrocorticography (ECoG) has also linked neural 

activation in the 75-175 msec time range with processing of phonetic features 

(Steinschneider, Schroeder, Arezzo & Vaughan, 1991; Steinschneider, Nourski, & 

Fishman, 2013; Mesgarani, Cheung, Johnson, & Chang, 2014; Hullet, Hamilton, 
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Mesgarani, Schreiner, & Chang, 2016).  Taking the ERP and ECoG evidence together, 

sublexical encoding of phonetic features is occurring around 100 msec after the onset of 

a phoneme and the N100 appears to directly measure some aspects of the encoding of 

the sublexical feature of speech sound voicing.  If the amplitude of the N100 ERP 

component is also sensitive to top-down information, then this suggests top-down 

information is influencing early sublexical stages of speech perception.  

A recent study by Getz and Toscano (2019) suggests that N100 amplitude is 

influenced by another source of top-down influence, predictions generated from strong 

lexical associations. For example, in the two-word utterance “Eiffel Tower”, the word 

“tower” is strongly predicted after the word “Eiffel” is spoken. When presented with a 

stimulus with an ambiguous /dt/ spliced into the onset of “tower”, Getz and Toscano 

found that the N100 amplitude was significantly more /t/-like than when the ambiguous 

/dt/ was embedded in an opposite experimental condition (e.g., “Barbie Doll”), in which a 

/d/ was predicted.   

In the present experiment, we use the N100 to distinguish between feed-forward 

and interactive accounts of Ganong lexical bias effects.  Specifically, we measured the 

N100 ERP waveform in the context of a lexically biasing phoneme categorization task.  

EEG signals were continuously recorded while participants made a 2-alternative-forced-

choice decision in response to voice-onset-time continua while lexical bias direction was 

manipulated by changing the rhyme portion following the initial phoneme.  For example, 

participants made /d/-/t/ judgments on Date-*Tate and *Dape-Tape continua.  We tested 

for effects of lexical bias on the amplitude of the N100.  Interactive theories predict that 
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the N100 should be influenced by both bottom-up and top-down information; feed-

forward theories predict the N100 should not be influenced by top-down information.   

2. Materials and Methods  

2.1 Participants. Twenty-four participants (13 female, avg. age = 19.54 yrs.) were 

recruited from the Rice University student population and participated under the 

approval of the Rice University IRB.  Participants were given course credit in exchange 

for participation. All subjects reported normal hearing, no history of neurological 

disorder, no recent drug use, and learning English as a first language. All twenty-four 

subjects displayed normal categorization, which we defined based on previous 

behavioral pilot experiments as classifying >80% unvoiced at the unvoiced end of the 

continuum and <20% unvoiced at the voiced end of the continuum (Newman, Sawusch, 

& Luce, 1997).  Three subjects were excluded due to a high number of artifact 

contaminated trials in the EEG data (>40%).  One additional subject was excluded due 

to coding errors in the trial labels sent from the stimulus presentation computer to the 

EEG computer.   

Sample size selection was slightly larger than comparable cognitive linguistic 

N100 ERP studies, such as the sample in Toscano et al. (2010) which demonstrated a 

VOT effect in 17 subjects and the sample size in Schneider (2017) which demonstrated 

talker gender effects on the N100 in 20 subjects.  A 24 subject sample exceeded these 

previous studies and allowed for even counterbalancing of block order.  Similarly, the 

sample size exceeded the standard in the neuroscientific N100 literature (Hoonhorst et 

al., 2009: 10 subjects; Horev, Most, & Pratt, 2007: 14 subjects; Martin & Boothroyd, 



ERPS OF LEXCAL BIAS      		

	
	
	

10 

1999: 10 subjects; Sharma & Dorman, 1999: 16 subjects; Zaehle, Jancke, & Meyer, 

2007: 18 subjects).  

2.2 Materials. Two pairs of lexically biasing voicing continua were created, yielding a 

/d/-/t/ lexical bias pair and /g/-/k/ lexical bias pair: Date-*Tate vs. *Dape-Tape and Gate-

*Cate vs. *Gake-Cake.  Continua were created by cross-splicing natural voiced tokens 

with natural unvoiced tokens at 5 msec intervals using the Andruski et al. (1994) cross-

splicing method. The voiced and unvoiced endpoint stimuli were recorded at 44,100Hz 

in a soundproofed recording studio with a Shure SM-58 microphone at the Rice 

University Digital Media Center.  The voiced and unvoiced natural endpoints to be 

spliced together (e.g., Dape and Tape, which were recorded separately) were matched 

on duration, pitch, intensity, formant trajectory and frequency, and envelope shape.  

Lexically opposing pairs (e.g., *Dape-Tape vs Date-*Tate) were balanced as closely as 

possible for these same acoustic factors.  Final continua were selected after verifying 

normal categorical perception and then a Ganong effect in a pilot experiment, reported 

in Appendix B, with a separate set of participants.  Stimuli were 400 msec in length on 

average; the stimulus was embedded in a 600 msec sound file, with the plosive burst for 

the critical phoneme occurring at 100 msec into the file.  Further acoustic details for the 

stimuli are listed in Appendix A.   

After splicing, each word-non-word pair yielded a 9-step voice-onset-time 

continuum with VOT ranging from 5 msec (clearly voiced) to 45 msec (clearly unvoiced) 

in 5 msec increments.  The VOT step (9) x Bias (2) x Place (2) yielded 36 unique critical 

stimuli.  Each stimulus was presented 64 times for a total of 2304 critical trials per 

subject. 
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2.3 Procedure. Subjects entered the testing room and informed consent was obtained.  

The 32-channel ActiCap system (BrainVision Systems, Morrisville, NC) was applied with 

active electrode gel to an impedance of less than 25 kOhm.  Subjects were then fitted 

with EEG-compatible headphones for stimulus presentation (ER-3, Etymotic Research, 

Elk Grove, IL).  Subjects began with a 36-trial practice block to familiarize themselves to 

the task and stimuli.  On each trial, subjects heard one stimulus from one continuum 

and were asked to choose which endpoint of the continuum the token sounded most 

like, the voiced endpoint or the unvoiced endpoint.  Each trial began with a 750ms 

fixation.  From 550ms - 750ms the fixation cross was bolded to indicate imminent arrival 

of the sound.  At 750 msec the stimulus began to play.  600 msec after the onset of the 

stimulus, two text strings with critical phonemes at onset (e.g., date and *tate) appeared 

on the screen, and participants had to press the f or j button to indicate which of the two 

phonemes they perceived, making the 2-alternative forced choice (2-AFC) judgement.  

EEG was continuously recorded during the task and the exact timing of the sound onset 

was obtained using the StimTrak/TriggerBox (BrainVision Systems) system.  

The experiment consisted of 32 approximately 2.5-minute blocks.  Each block 

consisted of 72 samples from one continuum.  Each of the nine VOT steps was 

sampled eight times to generate one block.  Order of trials was random within a block.  

Each continuum was used in 8/32 blocks.  Order of the blocks was counterbalanced in a 

Latin-square design across subjects, so that which block followed which was balanced 

across subjects.  The task portion of the experiment, not including set-up or take-down 

time, was approximately 1.5 hours.   
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The use of blocks from one continuum and therefore one biasing direction was 

the key contextual manipulation of the experiment.  Given that the lexically 

disambiguating information in our continua (e.g., for the d-t pairs, the final consonant in 

the rimes /eɪt/ and /eɪp/) did not occur until well after that N100 generating /d/-/t/ or /g/-

/k/ phoneme, the blocking of stimuli from one continua per block allowed subjects to be 

aware of the lexicality resulting from each of the two possible percepts (e.g., date and 

*tate).  In each trial within a block, a subject would know, except for the first trial of the 

block, which continuum was being sampled for that block.  Blocking allowed tacit 

knowledge about which percept would form a word to create lexical support for the word 

endpoint.  Note that subjects were instructed to ignore the lexicality of the endpoints and 

no feedback was ever given, but Ganong lexical bias occurs automatically.  Blocking by 

continuum also simplified response mappings so that only 2-responses were needed 

within a given block; if we had not blocked continua, subjects would have had to map 

responses for both endpoints of the four continua, yielding 8 responses to manage on 

each trial.  Like any methodological choice, this blocked instantiation of bias represents 

one of many ways top-down influence can be induced; we consider its strengths and 

limitations in the discussion and follow-up analyses. 

2.4 EEG Pre-Processing. Standard EEG pre-processing techniques were applied 

(Luck, 2014) using the ERPLAB toolbox (Lopez-Calderon & Luck, 2014) in EEGlab 

(Delorme & Makeig, 2004).  Data were re-referenced to the average of the mastoids.  

High Pass (.1 Hz half-power) and Low Pass (40Hz half-power) IIR (slope 12Hz/dB) 

filters were applied to the continuous data.  Trial onsets were identified using the TTL 

pulses generated by the StimTrak marked onto the continuous EEG waveform.  500 
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msec trial epochs were extracted plus a 200 msec pre-stimulus period used as a 

baseline correction.  Each 500 msec epoch began at the onset of the phoneme of 

interest.  Artifact contaminated epochs were rejected using three automated tools in the 

ERPLAB toolbox, moving window threshold, absolute threshold, and covariance blink 

detection.  Average artifact rejection rates were 15.9%.  Epochs not marked as artifacts 

were averaged together within each condition to yield within-subject, within-condition 

ERP waveforms for plotting, but the mixed models were run on the single epoch 

amplitudes (38,491 trials). 

The time window and electrode regions were defined in a collapsed localizer 

method (Luck & Gaspelin, 2017) – before any experimental effects were examined.  

This method, which was selected a priori, is laid out in Luck (2014) and is recognized as 

a statistically robust method to select the region and time-window of interest for ERP 

experiments with stimuli, paradigms, or populations that do not yet have an established 

ERP topology and time-course. The collapsed localizer method specifies that the region 

and time-window should be defined by looking at the global average topography and 

time-course of the N100 negativity, collapsing across any experimental effects of 

interest. The electrode region selected was chosen because it showed a negative peak 

at 100 msec when the data was averaged across all conditions.  At the time of its 

selection, the VOT and bias effects of interest had not yet been examined.   

The collapsed localizer identified the left-frontal quadrant (electrodes Fp1, F3, 

F7, C3, FC5, and T7) as the largest spatially continuous set of N100-displaying 

electrodes, and the average of these six electrodes was computed as the region of 

interest.  The collapsed localizer identified the time window [60 – 130 ms] as the period 
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during which the ERP had a negative value around 100 msec.  Accordingly, N100 ERPs 

were defined as the average amplitude for each trial in the time window, 60 – 130 msec, 

averaged across the six left fronto-central electrodes.  This time-window is similar to the 

time-window in the previous literature (e.g., Toscano et al., 2010; Getz & Toscano, 

2019), and the statistical effects were robust to variations in the time-window as is 

visible in Figure 3.   The electrode region, though more left lateralized than Toscano et 

al., 2010, is similar to previous literature in showing a left lateralized auditory evoked 

response for speech sound processing, especially rapid spectrotemporal aspects of 

speech such as VOT (e.g., Sanders & Neville, 2003; Obleser, Eulitz, & Lahiri, 2003, 

2004; De Fonseca, Giraud, Badier, Chauvel, & Liegeois-Chauvel, 2005; Obleser, 

Roskstroth, & Eulitz, 2004; Davis, Kislyuk, Kim & Sams, 2008; Hornickel, Skoe, & 

Kraus, 2009; Hutschison, Blumstein, & Myers, 2008).  Just as with the time-window, 

adding in or removing electrodes did not alter the significance of the experimental 

effects. 

2.5 Statistical Methods. A mixed effect model approach was taken to evaluate the 

lexical bias effects in both the categorization responses and in the N100 data.  The only 

difference between the modelling method used for behavior and for ERP was the linking 

function – with the behavioral data employing a logistic linking function since the 2-AFC 

behavioral task generates binary outcomes and the N100 data not requiring a linking 

function since the ERP data are continuous.  

In both behavior and N100 data, a forward stepwise model comparison approach 

was used.  The base model contained only the fixed effect of VOT (coded as a linear 

variable with nine steps from 5 – 45 msec, untransformed) and the random effect of 
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subject, place of articulation and trial number in block.  The addition of the effect of Bias 

Condition (coded as voiced biasing = -1, unvoiced biasing = 1) and the Bias-VOT 

interaction were evaluated. To evaluate whether the bias effect was largest in the mid-

range VOT where the sound is ambiguous and where Ganong (1980) observed the 

largest bias effects, a transformation of the VOT was necessary so that the VOT:Bias 

interaction term would have its largest value at the mid-range VOTs.  We employed a 

gaussian transformation where VOT was transformed using the normal distribution to an 

inverted U shape (𝑉𝑂𝑇 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 = 𝑘 ∗  𝑝(𝑉𝑂𝑇~𝑁 𝜇 =  25,𝜎 = 5 ), and then 

multiplied the result of this transformation by a constant, k,  so that the value at VOT 25 

was equal to 1 (𝑘 =  12.533). This procedure generated a value for the VOT-transform 

which maps the Bias:VOT-transform interaction onto the prediction of bias being largest 

at the most ambiguous VOTs which can be treated like a linear effect within the model.  

Higher order interactions were also evaluated in the model, but none significantly 

improved model fit.1 

The main research question, whether lexical bias is evident at the N100, was 

evaluated by testing the contribution (and direction) of the Bias-VOT interaction term.  

We expect a positive value for the slope estimate for the interaction term where positive 

implies more negative amplitudes for voiced biasing (coded as -1) stimuli and more 
																																																								
1	For the model fitting procedure, in both the behavior and N100 analyses, we included 

the maximal random effect structure supported by the data (Barr et al., 2013). Models 

that included random slope models did not reliably converge, so, as a result, only the 

random intercept models are reported.   
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positive for unvoiced biasing (coded as +1) stimuli.  Comparison of the interaction term 

versus the main effect of bias provides an estimate of how well the N100 bias matches 

the VOT sensitivity of the behavioral bias.  Contingent on significance of one of the bias 

effect terms in the model, several a priori planned follow-ups were performed to better 

characterize the bias effect – a difference wave plot and an estimate of the bias effect at 

voiced, ambiguous, and unvoiced VOTs. To simplify the estimate of the bias effect by 

voicing ambiguity, the nine-VOTs are reduced into three ranges based on how they 

were perceived: short VOTs (5, 10, and 15) that for most listeners were judged as 

clearly voiced, mid-range VOTs (20, 25, 30) which were ambiguous, and long VOTs 

(35, 40, and 45), which were judged as clearly unvoiced. 

Following the main experiment results two important follow-up analyses are 

presented. Section 4 evaluates a non-interactive alternative explanation for the N100 

bias effects, whether N100 bias effects might be explained by perceptual learning. 

Section 5 evaluates how well the main experiment results match with the predictions of 

an interactive cognitive theory, TRACE (McClelland & Elman, 1986), as instantiated in 

the jTRACE model (Strauss, Magnuson, Harris, 2006).   

3. Results  
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3.1 Behavior: Categorization Task Responses.  Every subject showed a lexical bias 

effect in categorization, reporting the percept that formed a word more often than the 

percept that did not.  The response data are presented in categorical perception curves 

in Figure 1 depicting the rate at which subjects perceived the unvoiced percept as a 

function of voice onset time for each continuum.   

 

 

Figure 1. Results from categorical perception task.  Lines depict the average proportion 
unvoiced response for each continuum at each VOT step.  Unvoiced biasing continua 
are depicted with dashed lines.  Voiced biasing continua are depicted with solid lines.  
Error bars depict the standard error of the mean.  Note that the Ganong lexical bias 
effect is especially prominent at the mid-range VOTs 20, 25 and 30.  
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Table 1 
Best Fitting Model for Subject Response Data 

Fixed Effects Beta SE t-statistic 95% CI 

Intercept -6.428*** 0.367 -17.53 [-7.146, -5.709]  

VOT 0.259*** 0.003 97.69 [0.253, 0.264] 

Bias 0.316*** 0.036 8.86 [0.246, 0.386] 

VOT-transform -0.076 0.052 -1.49 [-0.178, 0.024] 

Bias:VOT-transform 0.271*** 0.053 5.17 [0.168, 0.374] 

Random Intercepts: N Variance SD  

Subject 20 0.172 0.415  

PlaceofArticulation 2 0.196 0.492  

TrialInBlock 72 0.014 0.120  

Notes. N = 38,491 trials.  SE  = Standard Error, SD = Standard Deviation. See 
Methods section for effect term codings.  Responses were coded as 0 = voiced 
response, 1 = unvoiced response. 
***p < .001 
 
 

The best fitting model for the behavioral response data (responses coded as 0 = 

voiced response, 1 = unvoiced response) is reported in Table 1.  In the data, effects of 

VOT, of Bias, and a Bias:VOT-transform interaction were evident.  The positive estimate 

for the interaction of Bias with VOT-transform, i.e., stimulus ambiguity, indicates that the 

effects of lexical bias are largest for mid-range VOT stimuli.  The main effect of VOT-

transform was not significant but was included in the model since the interaction with 

Bias was significant.  These results match the lexical bias effect in Ganong (1980), both 

that there is an effect of lexical bias on categorization in the predicted direction and that 

the effect of bias is greatest for the most ambiguous stimuli.  
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3.2 Omnibus Mixed Effect Model Results, N100.  Before discussing the VOT and bias 

effect on the N100, we report the results of the forward stepwise model fitting procedure 

for N100 amplitude.  This omnibus best fitting model is shown below in Table 2.  In 

Section 3.3 and 3.4, we discuss the specific VOT and Bias effects of interest.  Note that 

in the best fit N100 amplitude model reported above, Bias and VOT-transform main 

effects were maintained in the model despite not contributing significantly to the fit, in 

order to separately calculate the variance attributable to the interaction rather than 

having the interaction potentially convoluted by main effect variance. 

Table 2  
Best Fitting Model for N100 Amplitude 

Fixed Effects: Beta SE t-value 95% CI 
Intercept -0.79*** 0.154 -5.15 [-1.09, -0.488] 

VOT 0.0045** 0.0015 3.02 [0.0016, 0.0074] 

Bias -0.0018 0.0246 -0.08 [-0.050, 0.046] 

VOT-transform 0.043 0.055 0.76 [-0.065, 0.152] 

Bias:VOT-transform 0.124* 0.055 2.24 [0.016, 0.233] 

Notes. N = 38,491 trials.  SE  = Standard Error.  Variables were minimally recoded, 
see the Methods section for details.  Random Effects for Subject, Place of 
Articulation, and Trial In Block were also included in the best fitting N100 model.  
***p < .001, **p < .01, *p < .05 
 

3.3 N100: VOT Encoding in N100.  The N100 amplitude was sensitive to the VOT of 

the incoming sound.  As shown in Figure 2, we observe a similar N100 - VOT 

relationship to that observed by Toscano et al. (2010).  The mixed model indicated a 

significant linear relationship between stimulus VOT and N100 amplitude in the direction 

expected (𝛽!"# =  0.0045,𝑝 =  .003).  As reflected in the positive slope, speech sounds 
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with earlier onset of voicing, i.e., shorter VOTs, generated a larger N100 amplitude, i.e., 

more negative, than speech sounds with later onset of voicing.  As discussed in depth in 

Toscano et al. (2010), this linear relationship indicates that the neural processes 

indexed in the N100 have not yet been warped by categorical aspects of perception 

such as phoneme classification. 

 The N100-VOT relationship evidenced by the significant VOT main effect shows 

that even in this paradigm with a slightly different sound stimulus set and task the N100 

amplitude continues to show sensitivity to sublexical aspects of speech sound encoding.  

Further, the replication of the directionality of the VOT-N100 relationship yields 

directional hypotheses about the effects of bias. Since shorter voicing onset times 

corresponds to larger N100 amplitude, interactive theories predict that at the same VOT 

Figure 2. The ERP response to each VOT, averaging across all continua and 
Ganong Bias conditions is shown in each curve.  The shorter the VOT, the 
more negative the N100 peak, as estimated by average amplitude from 60-130 
msec. 0 ms = stimulus onset.  Grey bar at bottom depicts the 60-130 msec 
time window.  
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level, continua that bias towards perception of a voiced consonant should have larger 

N100 amplitudes than continua that bias towards perception of an unvoiced consonant.   

3.4 N100: Lexical Bias Effect.   

Lexical bias effects were observed in N100 amplitude as shown in Figure 3. Lexical bias 

effects in the N100 were tested by evaluating the addition of a Bias term and a 

Bias:VOT-transform interaction term to the model.  The significant Bias:VOT-transform 

(𝛽!"#$:!"#$% =  0.124, 𝑝 =  .025) interaction term indicated that bias was observed in the 

direction specified a priori – more negative for voiced biasing than unvoiced biasing 

continua, and the bias effect interacted significantly with the transformed VOT.  Recall 

that, in the interaction, VOT was transformed to correspond to the prediction of the 

largest bias effect at mid-range VOTs, just as it was in the behavioral analysis. Because 

of this transformation, the significant positive weight of the Bias:VOT-transform 

interaction suggests a bias in the correct direction and with the correct VOT specificity.  

The Bias:VOT-transform term did not interact with place of articulation, indicating a 

consistent effect across both places of articulation used in the experiment.  The Bias 

main effect was non-significant reflecting that the majority of variance explained by the 

lexical bias was captured by the interaction term. 

The N100 lexical bias matches the pattern in the observations of Ganong (1980) 

and the patterns in the behavioral data in this experiment (reported in Section 3.1) that 

lexical bias exerts an influence on sublexical judgments only at ambiguous VOTs.  As 

we test in Section 5, this VOT ambiguity dependence is also predicted by interactive 

feedback models of speech perception.   
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Figure 3. (top) N100 response amplitude for the voiced biasing and unvoiced biasing 
conditions to stimuli with ambiguous VOTs, 20, 25, and 30.   Statistical analysis of bias 
effect focused on the 60 – 130 ms time window, depicted by the horizontal grey bar. 
(bottom) The difference wave estimate compares the voltage in the unvoiced and voiced 
biasing conditions in response to mid-range VOT stimuli.  
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3.5 N100: Bias:VOT-transform Interaction, Simple Effects Tests.   

The positive slope of the Bias:VOT-transform interaction term in the omnibus mixed 

effects model indicated that the bias effect was largest at the mid-range VOTs.  To 

better characterize this interaction, we wanted to estimate the size of the bias effect at 

the ambiguous VOTs as compared with the short VOTs (unambiguous voiced) and the 

long VOTs (unambiguous unvoiced).  To obtain this estimate, mixed effect models were 

fit separately to the data from short VOT trials, mid-range VOT trials, and long VOT 

trials.  In these restricted VOT ranges, the Bias main effect rather than the Bias:VOT-

transform interaction is the term of interest, because we expect a roughly consistent 

Figure 4. Average amplitude from 60-130 msec by VOT range and biasing direction.  
Error Bars depict Cousineau (2005) adjusted standard error of the mean.  The bias 
effect is only significant for mid-range VOT trials.  
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bias effect size within each VOT range.  The simple effect model was estimated with 

only the fixed effect of VOT and bias and the random effects from the best fitting model.  

This approach is analogous to simple effect tests following the interaction in an ANOVA.  

These simple effect models are presented as a follow-up to help interpret the results 

from the main analysis.  As is visible in Figure 4, and as was suggested by the positive 

interaction in the omnibus model, the Bias effect was only significant at mid-range VOTs 

and no trace of a bias effect was present at short or long VOTs.  The results for the Bias 

effect estimate at each VOT range are shown below in Table 3.  The absence of the 

bias effect at the unambiguous VOTs is striking compared to the large bias effect at 

mid-range VOTs.  This pattern makes clear why only the interaction term in the omnibus 

model reached significance.   

Table 3  
“Simple Effects” Model of Bias in Each VOT Range 

VOT Range BetaBias 95% CI N Model Intercept 

short VOTs 0.0049 [-0.059, 0.069] 12,762 -0.727 

mid-range VOTs 0.081* [0.015, 0.15] 12,863 -0.642 

long VOTs 0.012 [-0.053, 0.077] 12,866 -.0621 

Notes. N = number of trials in each VOT range.  SE  = Standard Error. Simpe effects 
model included only fixed effect of Bias and random effects for Subject, Place of 
Articulation, and Trial In Block.  
*p < .05 
 

3.6 Interim Summary.  In the N100 Ganong experiment reported in Section 3, we 

found effects of voice onset time and of lexical bias on the N100 waveform amplitude, 

providing evidence that as the sound is processed top-down information is interacting 

with incoming acoustic information to modulate the aggregate responses of the neural 
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populations encoding voicing.  The N100 lexical bias effect provides a clear measure of 

when lexical bias effects occur in speech sound processing.  The N100 lexical bias 

demonstrates, more clearly than behavior alone could, that the lexical bias effect is 

early, online, and sublexical rather than late and at a response selection stage.  The 

top-down modulation of N100 amplitude is strongest when the bottom-up signal is 

ambiguous – i.e., the bias effect is sensitive to the ambiguity of the incoming voice 

onset time (see Figure 4 and Table 3).  The VOT sensitivity of the bias effect, as well as 

the apparent growth of the bias effect size visible in the difference wave (Figure 3), 

indicates that bias is occurring during the trial and is not reflective of a preparatory 

activation of the favored sublexical units.  Instead, it appears to reflect online feedback.  

Following the logic of Ganong (1980) though applying it here to neural data, the VOT 

sensitivity of the N100 bias effect confirms online versus preparatory activation because 

the information about the ambiguity of voicing of the incoming sound is not available 

until the sound itself is partially processed.   

This pattern of results supports interactive theories of speech perception, which 

predict that sublexical processing should be influenced by top-down factors like 

lexicality and that this influence should be evident in online measures of sublexical 

processing such as the N100.  These results contradict the predictions of feed-forward 

theories which have previously explained Ganong lexical bias effects in behavior by a 

post-perceptual merger of lexical and sublexical information (e.g., Fox, 1984; Norris, 

1991; Norris et al., 2003, 2008, 2016) which therefore predict no lexical bias effect at 

this at this level of representation, at the level of phonetic feature encoding, or at this 

early time-point well before response selection.  We view the body of results presented 
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here as favoring an interactive account of Ganong bias. However, as Norris and 

colleagues (2003, 2008, 2016) point out, results that are consistent with interactive 

theories may occur because of other mechanisms in a feed-forward architecture, for 

example because of perceptual learning effects that are occurring between trials. In 

Section 4 we test this perceptual learning account, to determine whether it can explain 

the results of lexical bias on the N100, without assumptions of interactivity.    

4.  Follow-Up 1: Evaluating Perceptual Learning as an Alternative Explanation for 

N100 Bias.  In this section, we anticipate an important alternative explanation for N100 

lexical biasing – perceptual learning.  Perceptual learning is a mechanism of speech 

perception by which listeners adapt to and learn specific pronunciations for a speaker or 

listening environment.  A perceptual learning explanation of lexical bias hypothesizes 

that by presenting participants with lexically biasing continua, participants may be 

learning or adjusting sublexical category boundaries to favor the lexically supported 

percept in each block.  Perceptual learning is compatible with feed-forward models of 

speech perception, and accordingly must be ruled out for N100 bias effects to provide 

strongest evidence against feed-forward models of speech perception. At face value, a 

perceptual learning account may be particularly plausible given the design of our 

experiment. Trials were blocked by continua, meaning that over the course of 

approximately two minutes, participants hear 72 tokens all taken from one continuum. 

The ambiguous tokens in a dape-tape block, for example, are all lexically biased 

towards /t/, and therefore, over the course of these short blocks, participants might 

modify their phonemic categories by perceptual learning, such that the ambiguous 

sounds are remapped to be categorized as more /t/-like.  If perceptual learning modifies 
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the same sub-lexical networks indexed by the N100, then perceptual learning is an 

alternative explanation for N100 bias effects.  However, to anticipate the results, we 

observed no evidence for perceptual learning in the N100 lexical bias effect. 

Critically, perceptual learning does not make identical predictions to online 

feedback; online feedback differs from perceptual learning in how the biasing 

accumulates with exposures (i.e., in perceptual learning it takes time and exposures to 

learn) and in the stability of the changes to the sublexical network (i.e., perceptually 

learned adjustments are stable across time and should generalize to other voicing 

continua).  Contrastingly, in online feedback lexical activation is essentially 

instantaneous once the lexical target is known and can be similarly extinguished by 

reducing the activation of the lexical unit once a block is over. 

We exploit these differences between perceptual learning and online feedback to 

test which is a better explanation for N100 bias in this experiment.  Specifically, if the 

N100 bias effect we are observing in the experiment is due to perceptual learning, we 

expect that the size of the lexical bias should grow over the course of the 72 trials which 

comprise each block.  Furthermore, since perceptual learning has been shown to be 

stable over short intervals and to generalize to similar acoustic contexts (Kraljic & 

Samuel, 2006, 2007; Bradlow & Bent, 2008), adjustments to voiced/unvoiced 

boundaries learned over one block should generalize to the next block.  Because the 

experiment was built such that sometimes the previous block had the same bias and 

sometimes it had the opposing bias, a perceptual learning account would predict 

influences of the bias from the previous block on the current block lexical bias effect, at 
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least in the first portions of the following block. We empirically evaluated these two 

predictions of the perceptual learning account. 

4.1 Approach.  The significance of the learning build-up and carryover effects were 

tested within the mixed model by evaluating the addition of fixed effect terms reflecting 

each of these predictions.  Specifically, we tested if the bias effect in the N100 

amplitude model interacted with a term indexing the number of exposures to trials in the 

current block (learning build-up), and we tested if the previous block’s bias could be 

detected in trials of the following block (carryover).  For learning build-up, we tested if a 

model that included an interaction of bias with a count of exposures to trials in the 

current block improved model fit, relative to a base model, that did not contain the 

learning interaction2. A similar comparison approach was taken to test if a fixed effect 

term reflecting the previous block bias altered the N100 amplitude in the current block.  

If the N100 bias effect reflects perceptual learning, then growth of the bias effect by 

exposures in a block and carryover from the previous block should be evident in the 

N100 data.  We also carried out a parallel analysis, looking at learning and carry-over in 

the behavioral responses. 

4.2 Results.  The full set of results of the perceptual learning model comparisons are 

reported in the Supplemental Material.  A brief summary is provided here.   

In the critical test of perceptual learning for explaining N100 bias, we found no 

evidence of perceptual learning from either prediction in the ERP data; that is there was 
																																																								
2To avoid the interaction capturing variance relating only to a main effect of trial number 
in block – i.e., how N100 amplitude changes over a block, systematically getting smaller 
in amplitude as neural responses do with repetitive inputs (e.g., Rabovsky, Hansen, & 
McClelland, 2018) – a main effect of TrialNumberinBlock was added alongside the 
interactions.  	
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evidence for growth of the lexical bias with exposures to a block, nor an effect of the 

previous block bias carrying over.  Perceptual learning terms decreased the fit of the 

model relative to models without these terms, and perceptual learning effect slope 

estimates never reached significance.  The lack of fit of perceptual learning was evident 

even when non-linear learning rate functions were evaluated in the model (e.g., square 

root of exposure count).  Even when we restricted our analyses to the first trials of each 

block where learning of the current block bias might be most evident and previous block 

carryover should be strongest, the predictions of perceptual learning were not supported 

in the data.  Comparing the bias estimate from the first quarter of each block, on 

average just the first 6 ambiguous trials, the block bias effect estimate from these trials 

(i.e., the bias estimate from trials only in the first quarter of each block), is larger than 

the bias estimate for the trials which appeared later in the block (i.e., quartiles 2 - 4). 

 In the behavioral response data, we find a similar lack of support for perceptual 

learning.  The perceptual learning effect terms never reached significance in the 

behavioral response model, and there was no evidence from the quartile models that 

the bias effect changed size with exposure count.  While the behavioral response data 

are not as informative as the N100 data for whether N100 lexical bias is attributable to 

perceptual learning, they provide converging evidence that perceptual learning did not 

play a major role in shaping the behavioral responses, and therefore support the notion 

from the N100 perceptual learning tests that subjects’ responses were better 

characterized as reflecting online feedback than perceptual learning. 

4.3. Discussion of Perceptual Learning.  Based on the failure of the perceptual 

learning predictions – learning with exposures and carryover – to fit the N100 lexical 
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bias data, we are unable to support perceptual learning as an alternative to online 

feedback for the N100 bias effect results of the main experiment.  The pattern of lexical 

bias in the N100 data are much more compatible with the predictions of an interactive 

feedback account of Ganong bias than a perceptual learning account because an 

interactive account can easily accommodate an instantaneous activation of the current 

block’s lexical bias and no carryover between blocks. Perceptual learning certainly plays 

a critical role in normal perception where we encounter multiple acoustic environments 

with multiple speakers with varying pronunciations (e.g., Bent & Bradlow, 2008).  

However, in the context of this N100 Ganong paradigm in which we have repeated 

exposure to the same speaker in multiple directions switching rapidly between blocks, 

perceptual learning seems to have not played a major role in determining subjects’ 

neural and behavioral responses.  

5. Follow-Up 2: TRACE simulation of ambiguous VOT locus of Ganong Bias  

In this section, we ask how well the N100 bias effects in this experiment match lexical 

bias effects predicted in an interactive theory of speech perception, TRACE (McClelland 

& Elman, 1986), as instantiated in the jTRACE model (Strauss, Harris & Magnuson, 

2007).  Specifically, we examine whether such a theory predicts that the effect of lexical 

bias on a sublexical level is greatest for the most ambiguous sounds. 

5.1 Modeling Methods and Stimuli.  The standard implementation of jTRACE (Strauss 

et al., 2007) was accessed via GitHub, and was run using the default lexicon (BigLex) 

and standard parameter settings. We selected /d/-initial and /t/-initial words which 

formed word-nonword and nonword-word pairs as defined by which words exist in the 

TRACE lexicon and which did not.  The final modelling continua selected were Dal-Tal 
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(/d/-baising since Doll is a word in the TRACE lexicon and Tall is not) and Dar-Tar (/t/-

biasing since Tar is a word in the TRACE lexicon and Dar is not).  They were chosen 

over other pairs of this type because they have similarly dense cohorts on each side of 

the d-t continuum and because the coda position phoneme in both is a liquid, to 

minimize accidental activation of the /d/ or /t/ units by the coda phoneme.  /d/-/t/ voicing 

continuum inputs to the model were prepared using the ambiguous phoneme tool in 

jTRACE to create inputs that model the VOT manipulation of the ERP experiment.  

Activation of the /d/ and /t/ phoneme units in response to these inputs were measured 

from processing steps 1-75, with activation values time-locked to the specified input 

step.  

5.2 Analysis Methods for Modeling Results.  Lexical bias effects were examined in 

the phoneme layer of the TRACE model.  The phoneme layer is the best candidate to 

model the sublexical level indexed by the N100.  Although the feature layer of TRACE 

might more closely correspond to the feature encoding evident in the N100, in TRACE 

there are not feedback connections down to that level, so feedback cannot be modeled 

at that level of the model.  Within the phoneme layer, we quantified lexical bias as the 

difference in activation of the /t/ and /d/ units in response to /d/-/t/ inputs embedded in 

the lexically biasing pairs.  Since lexical bias in our experiment is defined by comparison 

with a lexical environment of opposite bias, a similar estimation of lexical bias was 

calculated for the model.  That is, lexical bias was estimated by comparing the /d/ vs. /t/ 

activation to each lexical bias direction.  Thus, model bias was calculated in a two-step 

procedure for each VOT step, i, on the /d/-/t/ continua:  

Bias!"#$ ! = (/t/−/d/ activation!"#!!"#!"#$ !)− (/t/−/d/ activation!"#!!"#!"#$ !)     (1). 
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First, the /t/-/d/ phoneme activation difference was calculated for each VOT step, i, for 

each bias direction continuum.  In the second step, the /t/-/d/ activation difference for 

dal-tal, /d/ biasing, was subtracted from dar-tar, /t/ biasing.  A positive value for the bias 

effect indicates that the /t/-/d/ activation difference was larger when the lexicon was /t/-

biasing than when the lexicon was /d/-biasing.  Phoneme activations were calculated 

using the specified alignment method in jTRACE. 

5.3 Modeling Results.  
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Figure	5.	(top)	Model	phoneme	activations	for	each	input	ambiguity	range	and	biasing	
condition.		(bottom)	Lexical	Bias	effect,	as	defined	in	Equation	1,	comparing	d	and	t	
activation	difference	by	biasing	condition.		Note	that	the	bias	effect	is	only	evident	in	the	
ambiguous	input	to	the	model.		The	model	lexical	bias	effect	emerges	around	timeslice	30,	
and	then	continues	to	grow	as	processing	moves	forward.		Specified	alignment	activations	
in	jTRACE	were	used.		Note	that	TRACE	does	not	allow	manipulation	of	VOT	or	sound	file	
inputs;	thus,	VOT	equivalent	model	inputs	were	created	using	the	ambiguous	phoneme	tool	
in	jTRACE.	
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A lexical bias on phoneme level activations was observed.  The bias on phoneme 

activations was in the direction expected. As a more fine-grained test of whether 

TRACE can model N100 lexical bias effects, we found that the lexical bias effects in 

TRACE match the patterns in the N100 data – namely that lexical bias develops during 

processing and that lexical bias is largest when the input is ambiguous.   Figure 5, 

bottom, demonstrates both phenomena in that the lexical bias effect grows as model 

processing moves forward in time, and that the model lexical bias effect is only present 

in a significant manner at ambiguous inputs.  This pattern of lexical bias only at 

ambiguous model inputs exactly matches the results obtained in the ambiguous VOT 

locus of the N100 bias.  The growth of the lexical bias effect in the model as processing 

progresses also matches that the N100 lexical bias effect grew rapidly from 75-175 

msec.  While it is difficult to exactly map time-slices in the model onto neural processing 

times, it suggests compatibility of the N100 bias with the dynamics of how feedback 

alters lower level representations in interactive models. 

5.4 Modeling Summary.  The modeling results demonstrate how an interactive speech 

perception framework (TRACE) can model Ganong bias at the phoneme level. The 

model results closely match several aspects of the N100 bias results.  First, the largest 

bias effect in both the model and in behavior was in the case of ambiguous inputs and 

lexical bias was essentially nonexistent if the model input was unambiguous.  Second, 

the bias effect within the sublexical units grows over the course of processing.  

General Discussion 

In the current study, we collected electrophysiological responses to voice onset 

time continua while participants took part in a lexically biasing categorical perception 
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experiment. We discovered an effect of lexical bias within the N100 ERP component, a 

signal associated with encoding of the phonetic feature of voicing.  Lexical bias on the 

N100 amplitude and on categorization was strongest only when the incoming sounds 

were ambiguous, near the boundary between voiced and unvoiced, matching the 

predictions of interactive theories.  The sensitivity of bias effects to the ambiguity of the 

bottom-up acoustic information suggest that the bias effect is online, rather than 

reflecting pre-activation of the lexically favored sublexical unit.  This follows from the fact 

that ambiguity of the incoming stimulus is not available until processing of the acoustic 

information is partially completed.   

Strengthening the claim that the N100 bias reflects a lexical bias effect within the 

sublexical network is the fact that the biased N100 responses match the directionality of 

the normal responses to voiced and unvoiced endpoints.  For example, in a /t/-biased 

continuum, an ambiguous /dt/ was shifted towards the response to a normal /t/.  That 

the /t/-biased response to an ambiguous phoneme resembles the response to a normal 

/t/ phoneme suggests that lexical biasing of perception is accomplished by activation 

changes within the normal sublexical processing regions.  The same was true for /d/ 

biased ambiguous stimuli.   

Further supporting interactive feedback accounts of lexical bias, two attributes of 

the empirical N100 data – that the bias effect is limited to ambiguous tokens and that 

the bias effect grows during the course of sublexical processing– match the predictions 

of an interactive feedback model of speech perception (Elman & McClelland, 1988).  

These aspects of the N100 data were also fit well in our own modelling experimentation, 

reported in Section 5.  Using the standard parameters and lexicon (Strauss, Magnuson, 
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& Harris, 2007) and taking phoneme activation as a proxy for N100 level processing, 

both aspects of the N100 lexical bias emerged naturally from TRACE (McClelland & 

Elman, 1986) when inputting a word-initial, acoustically ambiguous (in model voicing 

feature-space) lexically biased continuum. 

The N100 lexical bias results are difficult to reconcile with previous feed-forward 

accounts of lexical bias in behavior.  We find clear evidence against the established 

feed-forward explanation for Ganong lexical bias effects, that lexical bias reflects lexical 

influence at a post-perceptual response selection stage in which lexical knowledge and 

bottom-up information are merged late in speech sound processing.  This post-

perceptual account of Ganong lexical bias is incompatible with at least three aspects of 

the N100.  First, the time-course of lexical bias effects is early (approximately 75-

175ms).  Previous research has suggested that this is the time course of processing 

acoustic and phonological information (Cibelli et al., 2015; Hullet et al., 2016; Yi, 

Leonard, & Chang 2019; Mesgarani et al., 2014; Pasley et al., 2012). Second, lexical 

bias effects appear with the same topography and polarity as normal N100 responses to 

speech sounds, suggesting that it is the same neural populations that show the lexical 

bias that are also responsible for the basic representation of the speech sound phonetic 

features (see Myers & Blumstein, 2007, for a similar argument using fMRI). As a result, 

it is unlikely that the N100 is indexing activation of the lexicon directly, but instead is 

revealing the influence of lexical activation on the sublexical level. Third, the bias effect 

grows during processing, which are the dynamics predicted by interactive theories but 

not feed-forward accounts with a post-perceptual merger.  
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All this is to say, the N100 evidence is inconsistent with a post-perceptual 

explanation of Ganong lexical bias.  The N100 bias effect demonstrates that lexical bias 

effects are due to changes in the early processing of speech sounds, specifically in 

changes to the very same networks involved in encoding phonetic features of the 

unbiased phonemes.  This result can be viewed as evidence against the feed-forward 

principle at the core of the post-perceptual hypothesis, that early sublexical encoding is 

isolated from top-down information.  This independence of early processing principle is 

contradicted by the neural response data from the current study and that of Getz & 

Toscano (2019).  Instead, there is every indication that lexical knowledge is influencing 

the earliest measurable aspects of sublexical encoding in exactly the ways predicted by 

interactive models of speech perception with feedback.  

Of course, there are some ways that feed-forward theories allow for sublexical 

encoding to be modified by the lexicon, specifically by perceptual learning.  As such, in 

Section 4, we also evaluated perceptual learning as an alternative mechanism for 

Ganong lexical bias.  Under this account, listeners are constantly and dynamically 

changing their representations of speech sound categories, based on numerous factors 

including information about lexicality (Norris, McQueen & Cutler, 2003). However, in a 

series of mixed effects models, we failed to find support for any of the predictions of a 

perceptual learning account for the lexical bias effects in this experiment, demonstrating 

again that the results of our study are inconsistent with feed-forward theories of speech 

perception, even when multiple possible feed-forward explanations are considered.   

Therefore, the theoretical contribution of this study is clear.  By looking at an 

early electrophysiological correlate of sublexical speech perception, we have been able 
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to demonstrate that lexical context exerts a direct influence on sublexical processing, as 

would be predicted by interactive models of speech perception, in direct contrast to 

feed-forward only models of speech perception.  This study provides clear evidence 

sublexical encoding is not independent as feed-forward theories predict.  Feed-forward 

theories have previously argued that interactivity of lexical knowledge with bottom-up 

acoustic information may result in loss of veridical information about the true acoustics 

of the input, and that optimal Bayesian use of information, from a theoretical information 

analysis perspective, is achieved by a feed-forward architecture (Norris et al., 2016, 

though see McClelland, Mirman, Luthra, Strauss, & Harris, 2018 for a 

counterargument).  Norris and colleagues (2000, 2003, 2008, 2016) have also argued 

that feed-forward architectures are simpler than interactive ones.  However, optimality 

and debates of theoretical simplicity must yield to empirical evidence.  At least on the 

scale of neural activity that we can index with ERP N100 amplitudes, we found 

modulation of the sublexical level of representation by lexical information.  The N100 

evidence is clear that there are at least some neural populations, with dipoles that align 

with VOT encoding populations, that are responding to top-down information.  The claim 

that early, sublexical speech sound processing is independent from contextual 

information is not compatible with this evidence. 

This study is not alone in using electrophysiology to investigate sublexical 

contextual effects.  There are several other recently published studies that have 

measured the electrophysiological signature of sublexical processing and shown 

evidence of feedback from contextual information (e.g., Getz & Toscano, 2019; 

Leonard, Baud, Sjerps, & Chang, 2016). These interactions follow exactly the patterns 
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predicted by interactive theories of speech perception (McClelland & Elman, 1986), with 

greater activations observed for the contextually favored sublexical component.  While 

there have been several recent studies that have demonstrated similar effects to what 

we report here, it is worth noting how our paradigm and results complement, rather than 

simply replicate, these other studies.  Leonard and colleagues (2016) played 

participants pairs of spoken words that were acoustically identical except for a critical 

phoneme that differentiated their meaning (e.g., “factor” vs. “faster”), as well as an 

ambiguous token that replaced that critical phoneme with broadband noise. 

Approximately 100 msec following the onset of the ambiguous speech sound, the 

pattern of ECoG data in bilateral auditory cortex predicted which of the two possible 

words the participant would report hearing, identifying the time course of phoneme 

restoration effects.  Getz and Toscano (2019), instead, relied on lexical prediction, 

looking at the response at the N100 to an ambiguous speech sound between /d/ and /t/ 

in cases in which a /t/ would be predicted (“Eiffel Tower”) and cases in which a /d/ would 

be predicted (“Barbie Doll”).  They found that the N100 amplitude to this ambiguous 

sound was significantly more /t/-like when primed with “Eiffel” than when primed with 

“Barbie”. 

 These three studies look at different types of contextual effects, which may tell 

us different things about the nature of sublexical processing.  In the Leonard et al. 

(2016) study, lexical information is restoring missing acoustic information in the neural 

response patterns 100msec after the missing phoneme.  In the current study and Getz 

& Toscano (2019), contextual information modulates the behavioral responses and 

show similar effects in N100 amplitudes, shifting perception to the contextually favored 
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state.  The difference between our study and the Getz and Toscano (2019) study can 

be conceived of in terms of short-term vs. long-term contextual effects.  In Getz and 

Toscano (2019), the reason that participants are biased to hear an ambiguous /dt/ as /t/ 

is because of a specific prediction about which upcoming word is expected, based on 

long-term associations between words within the lexicon. In the current study, lexical 

expectations were created online through the use of the blocked Ganong design, but 

these context effects were generated only over the short-term and would change 

between blocks.  The lexical effects in this experiment also occur automatically, and do 

not involve prediction, per se.  These different types of contextual effects may occur 

because of different computational properties of the speech perception system and 

therefore it is not obvious that each of these manipulations would lead to similar 

electrophysiological effects.  This growing literature supports the idea that multiple types 

of contextual effects have an impact on the sublexical processes being indexed by the 

N100. 

One direction for future research, therefore, is to use the N100 to determine if all 

types of contextual effects occur with the same time-course and at the same processing 

level.  Behaviorally, there are many ways that context has been shown to influence our 

perception of speech sounds, whether it be at a lexical (Ganong, 1980), semantic 

(Samuel, 1981; Connine & Clifton, 1987; Groppe, Choi, Huang, Schilz, Topkins, Urbach, 

& Kutas, 2010), syntactic (Fox & Blumstein, 2016), or through indexical information, 

such as gender (Johnson, Strand, & D’Imperio, 1996) or accent (Bent & Bradlow, 2008; 

Sidaras, Alexander, & Nygaard, 2009).  By using electrophysiology, we can measure 

the time-course and processing stage at which contextual effects are occurring, thus 
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gaining greater traction on questions about interactivity. Our study shows that at least 

one of these top-down effects, lexical biasing via the Ganong paradigm, is best 

understood by an interactive theory of speech perception. Getz & Toscano (2019) test 

another top-down effect and show a similar top-down effect on the N100 response.  But 

for the myriad other top-down effects, electrophysiological work will be necessary to 

characterize the time-course and neural signature of each effect. 

Of course, our ability to interpret what top-down effects in the N100 mean in 

terms of cognitive architectures depends deeply on our confidence in the relationship 

between the neuroimaged variable used in the study with the cognitive processing step 

it measures.  This problem is common to most cognitive neuroscientific studies.  With 

respect to the N100, it is clear that the N100 is indexing some aspect of sublexical 

encoding associated with the encoding of voice onset time.  However, sublexical 

encoding is a multi-step process that may involve a gradual and parallel activation of 

spectral, spectrotemporal, featural, and phoneme representations.  Here we interpret 

the N100 as indexing pre-categorical featural processing, as is suggested by Toscano 

et al. (2010) and electrocorticographic studies (Hullet et al., 2012; Mesgarani et al., 

2014; Leonard et al., 2016)  One alternative view could be that the N100 indexes 

acoustic (not language specific) levels of spectrotemporal processing that feed into our 

ability to recognize speech sounds but which precede linguistic processing.  Effects of 

voice onset time on amplitude might be expected at an acoustic level of processing as 

well, because voicing is both a low-level acoustic feature as well as a linguistic property.  

Similarly, the N100 may reflect acoustic or sublexical linguistic processing.  But if the 

N100 is prelinguistic, effects of lexical bias are even more surprising because this is an 
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earlier stage of processing.  Therefore, this would make N100 bias even more 

contradictory with the feed-forward view that initial stages of bottom-up processing are 

independent from top-down influences.  

Testing the precise cognitive correlate of the N100 is important for interpreting 

what the results of this and similar studies mean for cognitive architectures. Indeed, the 

claims made above depend on the assumption that the processes being indexed by 

N100 are sublexical and therefore not compatible with post-perceptual merger accounts 

of lexical bias.  But it may not be so straightforward to map between specific time 

windows from the EEG signal and specific cognitive processes because in an 

interactive theory like TRACE, activation spreads from one level to another well before 

the computations at the first level are complete. As a result, all levels of representation 

are activated in parallel, meaning that there is processing of information simultaneously 

at acoustic, sublexical, and lexical and semantic levels.   

That all levels are activated in parallel does not mean they cannot be 

distinguished electrophysiologically.  The fact that the N100 response to voice onset 

time is similar in a wide array of lexical settings (e.g., the words used in this study, differ 

from those of Toscano et al., 2010 and from Getz & Toscano, 2019), suggests that the 

N100 does not reflect activation of a particular word, but rather a common acoustic or 

featural aspect of the speech sound. This distinction is important because it rules out 

the possibility that N100 lexical bias might simply reflect parallel lexical activation.  

Similarly, distinguishing between acoustic and featural levels and the contribution of 

each to the N100 will inform how evidence from N100 ERP components constrain 

theory. 
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One other area for further investigation involves increasing spatiotemporal 

resolution of the lexical bias effect.  In our data, and in the modelling results, there is the 

suggestion that lexical bias grows as processing moves forward in time (from 75-175 

msec after the generating phoneme).  An intriguing way to interpret this data would be 

to say that the informational representations in a single network or a single population of 

neurons evolves over time, specifically that the neural response of the N100 generating 

region is initially determined by the bottom-up input in response to voice onset time but 

gradually shows a greater response to top-down information.  To be able to evaluate 

this claim more precisely, one would need to test with greater spatial resolution that the 

same populations are changing which sources information they are responding to or 

how they are weighting multiple inputs over time (see Hirshorn and colleagues, 2016 for 

a demonstration of a similar phenomenon in the reading system).  Techniques with 

better spatial resolution such as ECoG may be able to answer these questions by using 

the same experimental design to test if specific regions become more sensitive to top-

down contextual information as the trial progresses. 

To conclude, the benefits that the EEG/ERP experiments provide to the study of 

early perceptual processing are clear.  They provide high temporal resolution measures 

that can track cognitive processes as they unfold over time, providing a new window 

into resolving old questions about when top-down and bottom-up information are 

integrated.  Using EEG/ERP, specifically by analyzing the N100 response to voice onset 

time, we found that lexical information influences how we are processing speech 

sounds as early as 100ms after the onset of the stimulus.  That an early neural 

response is influenced by lexical bias contradicts the idea that early processing of 



ERPS OF LEXCAL BIAS      		

	
	
	

44 

speech sounds is independent from higher-level knowledge.  Instead, we find support 

for interactive theories of speech perception, and interactive theories of neural and 

cognitive processing more generally.  
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Appendix A 

Stimulus Properties  

All stimuli were embedded within a 600 msec .wav sound file.  100 msec of silence 

preceded the plosive burst.  Across each opposing pair of continua, Gate-Cate/Gake-

Cake and Date-Tate/Dape-Tape, endpoints were carefully matched.   

 

Table A1. Stimulus Acoustic Properties 

 

Continuum 

Burst – Closure 

of Vowel (ms) 

Burst – 

Release offset 

(ms) 

Pitch  

(Hz) 
CV Ratio 

Frequency of 

Lexical 

Endpoint 

Gate-Cate 210 430 220 .12 3 

Gake-Cake 212 400 221 .12 2 

Date-Tate 180 397 190 .14 11 

Dape-Tape 186 376 212 .13 11 

Note.  Pitch was averaged across the vowel length; CV Ratio was averaged across all 
VOTs, effectively the CV ratio for VOT-25; Brown Verbal Frequency was used as 
frequency estimate. 
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Appendix B 

Stimuli Pilot Study  

One critical test necessary before running the full electrophysiological study was 

ensuring that the stimuli yielded clean categorical responses on both the voiced and 

unvoiced endpoints and ensuring that they yielded lexical bias effects on categorization.  

The stimuli were piloted in a separate set of subjects (N = 5).  The results of this pilot 

study are plotted below in categorical perception curves.  As is visible, categorization 

was good and lexical bias effects were evident.  
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Figure A1.  Proportion Unvoiced Response to each stimulus in a behavioral 
pilot experiment (N = 5).  Subject pool was separate from the eventual full 
electrophysiological experiment.   


