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The ability to selectively functionalize ubiquitous C−H bonds streamlines the construction of 
complex molecular architectures from easily available precursors. Here we report enzyme 
catalysts derived from a cytochrome P450 that use a nitrene transfer mechanism for the 
enantioselective amination of primary, secondary, and tertiary C(sp3)−H bonds. These fully 
genetically encoded enzymes are produced and function in bacteria, where they can be 
optimized by directed evolution for a broad spectrum of enantioselective C(sp3)−H amination 
reactions. These catalysts can aminate a variety of benzylic, allylic, and aliphatic C−H bonds 
in excellent enantioselectivity with access to either antipode of product. Enantioselective 
amination of primary C(sp3)−H bonds in substrates bearing geminal dimethyl substituents 
furnished chiral amines featuring a quaternary stereocentre. Moreover, these enzymes 
enabled the enantioconvergent transformation of racemic substrates possessing a tertiary 
C(sp3)−H bond to afford products bearing a tetrasubstituted stereocentre, a process that has 
eluded small molecule catalysts. Further engineering allowed for the enantioselective 
construction of ‘methyl-ethyl’ stereocentres, which is notoriously challenging in asymmetric 
catalysis. 

 
 
The development of general systems for the highly enantioselective transformation of 

C(sp3)–H bonds lies at the forefront of current efforts to advance transition-metal-catalysed 
C–H functionalization.1-5 In principle, several classes of enantioselective C(sp3)–H 
functionalization can be developed, depending on the topicity and degree of substitution 
(primary, secondary, or tertiary) of the sp3-hybridized carbon atom undergoing 
functionalization (Fig. 1). As depicted in Fig. 1a, effective enantiodiscrimination of the two 
prochiral secondary C(sp3)–H bonds at a methylene unit leads to the formation of a 
trisubstituted stereogenic centre.1 On the other hand, asymmetric primary C(sp3)–H 
functionalization by differentiating the two prochiral methyl substituents can serve as a 
powerful means to access challenging all-carbon quaternary stereocentres (Fig. 1b).1,6,7 As a 
distinct alternative, the enantioselective functionalization of a tertiary C(sp3)–H bond will 
enable the conversion of readily available precursors into valuable products featuring a 
tetrasubstituted stereocentre (Fig. 1c). Due to the presence of a pre-existing stereogenic 
centre at the site of attachment, this process would require the enantioconvergent 
functionalization8 of a tertiary C(sp3)–H bond to convert both enantiomers of the racemic 
substrate into the same major enantiomer, a daunting challenge that so far remains out of the 
reach of small-molecule transition-metal catalysts. In this context, identifying a set of 
structurally related catalysts as a unified platform for the asymmetric functionalization of all 
three types of aliphatic C–H bonds will accelerate further development and application of C–
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H functionalization technologies.  

Enabled by numerous potentially cooperative protein-substrate interactions within the 
elaborate chiral scaffold of the active site, enzymes can exert exquisite control over the 
stereochemical outcome of various catalytic reactions, including C–H functionalization.9 
Among naturally occurring enzymatic C–H functionalization processes, cytochrome P450-
catalysed C(sp3)–H hydroxylation represents a venerable example of outstanding 
stereocontrol.10,11 Over the past six years, our laboratory12,13 and others14-17 have repurposed 
these enzymes and other heme proteins to catalyse synthetically useful reactions that are not 
known to nature. In particular, we have engineered heme proteins for abiological C–H 
functionalization leading to the formation of C–C and C–N bonds via a carbene18 or nitrene19-

21 transfer mechanism. Collectively, these results showcase enzymes’ potential for 
performing abiological asymmetric C–H functionalization reactions, using earth-abundant 
iron in a fully genetically-encodable protein that can be tuned by evolution. The capabilities 
of enzymes to solve key outstanding problems in asymmetric catalysis, however, have not yet 
been tested in these C–H functionalization processes.  

Herein, we describe the development of general cytochrome P450-based biocatalysts 
for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds in the 
synthesis of chiral diamines, a key pharmacophore in numerous antiviral and antibacterial 
agents (Fig. 1d and Supplementary Information Fig. 1).22,23 Inspired by the pioneering work 
of other groups in the area of transition-metal-catalysed intramolecular C(sp3)–H 
amination4,5,24-30 as well as our own studies19-21, we envisioned a unified enzymatic strategy 
for the catalytic asymmetric assembly of diverse 1,2- and 1,3-diamines from abundant amine 
precursors. As outlined in Fig. 1d, using a previously established one-step procedure,23 the 
aliphatic amine (I) can be readily converted to the corresponding sulfamoyl azide (II) in 
excellent yield. Our proposed biocatalytic C(sp3)–H amination would lead to the formation of 
the enantioenriched cyclic sulfamide (III). Subsequent excision of the sulfonyl unit using 
known procedures23 would then furnish the desired chiral diamine (IV, see the 
Supplementary Information for details of converting sulfamides to diamines). In addition to 
its synthetic utility, we postulated that this chiral diamine synthesis could serve as an ideal 
platform to identify and evolve heme proteins for the asymmetric amination of all three types 
of C(sp3)–H bonds (Fig.1a-c), especially those that have not succumbed to small molecule-
catalysed asymmetric C–H functionalizations. 

Results and discussion 
We commenced our study by evaluating a panel of heme proteins including variants 

of cytochromes P450, cytochromes P411 (P450 with the iron coordinating cysteine residue 
replaced by a serine), cytochromes c and globins in intact Escherichia coli cells for 
enantioselective diamine synthesis (Fig. 2a). We focused our initial investigation on the 
asymmetric synthesis of 1,2-diamine derivatives due to the lack of highly enantioselective C–
H amination methods for synthesizing these compounds.31 Among the heme proteins we 
tested, a few variants from the cytochrome P450 superfamily showed low levels of C–H 
amination activity (see Supplementary Information for details). In particular, a truncated 
P411 variant lacking the FAD domain (P411Diane1, P411 diamine synthase), which we 
developed during an earlier study on Fe-catalysed carbene insertion into C(sp3)–H bonds,18 
was over 10 times more active than other heme proteins, providing a total turnover number 
(TTN) of 450 and an enantiomeric excess (ee) of 94% for the 1,2-diamine product (2a). This 
demonstrates that the reductase domain of cytochrome P450 is not needed for C–H 
amination. Finally, the absolute stereochemistry of 2a was ascertained by single crystal X-ray 
diffraction analysis. 
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    We used P411Diane1 as the starting template for directed evolution of 1,2-diamine 
synthase (Fig. 2a). In an effort to further improve the enzyme’s activity and enantioselectivity 
for this C–H amination process, we performed iterative rounds of site-saturation mutagenesis 
(SSM) and screening, targeting amino acid residues close to the heme cofactor.  For each 
round of engineering, enzyme libraries were expressed and screened in 96-well plates in the 
form of whole E. coli cells. Beneficial mutations I327P, Y263W and Q437F were introduced 
in three rounds, furnishing a 10-fold improvement in activity as well as further enhancements 
in enantioselectivity. Notably, undesired nitrenoid reduction was also effectively suppressed. 
Using final variant P411Diane2, the C(sp3)–H amination product formed in 3490 TTN and 
99.9% ee as determined by chiral gas chromatography (GC). Moreover, by further lowering 
the cell density in whole-cell biotransformations, this enzymatic C–H amination provided the 
diamine product in 72,000 TTN and 99.9% ee, thereby demonstrating the excellent catalytic 
efficiency of the engineered P411 enzyme relative to previously developed transition-metal 
catalysts.  

 Using E. coli whole cells harbouring P411Diane2, we surveyed the substrate scope of 
this C(sp3)–H amination process for 1,2-diamine synthesis (Fig. 2b). Electron-donating and 
electron-withdrawing substituents on the aromatic ring were compatible with this process 
(2a–2g), affording 1,2-diamines with uniformly high levels of enantioselectivity. 
Additionally, substrates bearing a halogen functional group handle for further derivatization 
were accepted by the enzyme (2e and 2f). Steric hindrance at the ortho position was also 
compatible (2h), although lower activity was observed. Structural perturbations such as 
replacement of the aryl ring by thiophene (2i) and variance of the N-substituent (2j) were 
well-tolerated by this biocatalytic C(sp3)–H amination. Moreover, we found that the starting 
variant P411Diane1 could be employed for the asymmetric synthesis of 1,3-diamine derivatives 
using C(sp3)–H amination. In addition to the asymmetric amination of benzylic C(sp3)–H 
bonds (2k–2n), allylic C(sp3)–H bonds (2o) were also effectively aminated with excellent 
enantioselectivity. In contrast to Rh(OAc)2-based systems,24 competing aziridination product 
was not observed, highlighting the chemoselectivity of these iron-based biocatalysts. 

Furthermore, directed evolution of P411Diane1 furnished a complementary set of 
enzymatic catalysts allowing for the enantiodivergent amination of unactivated secondary 
aliphatic C(sp3)–H bonds (Fig. 3). Amino acid residue 87 located in a loop in the active site 
and known for its importance in substrate recognition in P450-catalysed oxidation and 
carbene transfer reactions32,33 was found to play a dominant role in determining the sense of 
absolute stereochemistry of the C–H amination product. Specifically, a single A87I mutation 
inverted the absolute configuration of the newly formed stereocentre. With this initial result, 
additional rounds of SSM and screening led to P411Diane1 L82M A87I Y263W I327S, 
delivering the C(sp3)–H amination product in 96% ee (R enantiomer). On the other hand, 
leaving A87 unchanged, a single mutation I327T resulted in a significant enhancement in 
enantioselectivity (32% ee to 71% ee). This is a rare example of enantiodivergent C(sp3)–H 
amination reactions catalysed by engineered heme proteins. 

Having engineered a set of enzymes for the asymmetric amination of secondary 
C(sp3)–H bonds, we questioned whether this enantioselective amination could be extended to 
the conversion of unactivated primary aliphatic C(sp3)–H bonds, a thermodynamically more 
challenging process.26 Examination of our P411Diane collection revealed that the P411Diane1 

I327P variant already displayed excellent activity and enantioselectivity for the aminative 
desymmetrization of geminal dimethyl substituents, providing the desired 1,3-diamine 
possessing an all-carbon quaternary stereocentre at the β position in 99% ee (Fig. 4a). In the 
realm of asymmetric catalysis, the desymmetrization of geminal dimethyl groups has been 
recognized as a promising solution to bypass the long-standing problem of enantioselective 
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methylation.34 In this context, our biocatalytic desymmetrization represents a valuable 
example of C–N bond formation for the construction of methyl-substituted stereocentres. 
Subsequent examination of substrate scope revealed that this desymmetrization is also 
applicable to other substrates bearing various aryl groups (4a–4d). The absolute 
configuration of 4a was determined by X-ray diffraction analysis. 

The enantioselective functionalization of tertiary C(sp3)–H bonds found in racemic 
substrates represents an unsolved problem for small molecule catalysts. In particular, 
enantioconvergent protocols to transform both antipodes of the racemic C–H substrate into 
the same major enantiomer of the product remain elusive, although conceptually similar 
enantioconvergent transformations of tertiary alkyl halides have recently received 
considerable attention.35-37 Previous studies indicated that iron nitrene-mediated C–H 
amination may involve a radical mechanism,38,39 thus suggesting the possibility of achieving 
stereochemical convergence in the enzymatic tertiary C(sp3)–H functionalization. 
Nonetheless, such enzymatic enantioconvergent transformations would require the same 
heme protein to accommodate both antipodes of the racemic substrate, a process rarely found 
in nature’s biochemical repertoire. To our delight, we found that P411Diane1 could effect the 
enantioconvergent C(sp3)–H amination to provide diamine product 5a featuring a 
tetrasubstituted stereocentre (99% ee). Iterative SSM and screening generated improved 
variant P411Diane3. Bearing beneficial mutations L78A, A87G, Q437G and I327V, P411Diane3 

provided the diamine product in 76% yield, 1910 TTN and 99% ee (Fig. 4b). More 
importantly, P411Diane3 was found to be effective in the enantioconvergent amination of other 
substrates (5a–5f). Electron-donating (5b), electron-withdrawing (5c) and ortho-substituents 
(5d) were effectively tolerated under these conditions. Substrates bearing heterocycles (5e) 
and other branching alkyl groups (5f) could also be transformed with excellent 
enantioselectivity.  

The effective discrimination between two minimally differentiated methyl- (Me-) and 
ethyl- (Et-) groups to construct ‘methyl-ethyl’ stereocentres is a notoriously difficult problem 
in asymmetric catalysis.40,41 We envisioned that engineered heme proteins could provide a 
powerful platform to address this challenge (Fig. 4c). Indeed, directed evolution of P411Diane1 

led to P411Diane4 bearing five additional mutations (L82C, L181V, I327T, A330M and 
Q437G), culminating in the enantioconvergent formation of ‘methyl-ethyl’ stereocentre (5g) 
in 82% yield, 2120 TTN and 87% ee. This result represents a rare example of solving the 
‘methyl-ethyl’ problem using a C(sp3)–H functionalization strategy. 

Mechanistic and computational investigations provided further insight into this 
enantioconvergent C(sp3)–H amination process. First, we prepared sulfamoyl azide substrates 
bearing a stereochemically well-defined olefin moiety ((Z)-1d and (E)-1d) and subjected 
them to the enzymatic reactions (Fig. 5a). Partial scrambling of the olefin geometry was 
observed in both the (E)- and (Z)-substrates, with the (Z)-substrate providing a substantial 
amount of the scrambled product bearing a thermodynamically more stable (E)-olefin. The 
erosion of C=C double bond stereochemistry is consistent with the formation of a carbon-
centred radical at the allylic position and does not agree with a concerted C–H insertion 
mechanism. Consistent with literature reports on related iron-based catalyst systems,38,39,42 
these findings support a radical mechanism for this cytochrome P450-catalysed C(sp3)–H 
amination process.  

Thus, we postulate that this enantioconvergent amination comprises a stereoablative 
hydrogen atom transfer (HAT) and an enantioselective C–N bond formation. As described in 
Fig. 5b, reaction of the ferrous heme cofactor with the racemic azide substrate leads to an 
open-shell Fe-nitrenoid intermediate. Subsequent stereoablative HAT results in the formation 
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of a carbon-centred radical, which then undergoes the final radical rebound step with high 
levels of enantioselectivity. This mechanistic proposal is further corroborated by our DFT 
calculations (Fig. 6). Computational studies on an iron porphyrin model system showed that 
the triplet state of the key Fe-nitrenoid intermediate 7 is 3.0 kcal/mol more stable than the 
open-shell singlet state and 11.6 kcal/mol more stable than the quintet state (see the 
Supplementary Information for the comparison between open-shell singlet, triplet, and 
quintet free energy profiles). The calculated Mulliken spin density of 7 revealed a spin 
density of 0.84 on the N atom and 1.16 on the Fe atom, demonstrating significant radical 
characters on both the nitrogen and the iron centre. In addition, our computations suggest that 
the hydrogen atom transfer is irreversible and occurs through triplet transition state TS1 with 
an energy barrier of 15.7 kcal/mol. Furthermore, the subsequent radical rebound step 
proceeding through quintet transition state TS2 requires an activation energy of 18.4 
kcal/mol, suggesting sufficient lifetime of the carbon-centred radical to allow for 
stereoablation and the subsequent enantioselective C–N bond formation observed in the 
enzymatic reaction. 

In conclusion, we have developed a biocatalytic platform for the asymmetric 
amination of a variety of C(sp3)–H bonds, permitting a diverse range of synthetically useful 
chiral diamines to be prepared with excellent enantioselectivity. These biocatalysts are fully 
genetically encoded, and thus can be easily tuned and reconfigured through DNA 
manipulation. Empowered by directed evolution, this genetically encoded platform allowed 
for the rapid development of highly active biocatalysts for the enantioselective amination of 
primary, secondary, and tertiary aliphatic C–H bonds. Notably, some of these processes, such 
as the enantioconvergent tertiary C(sp3)–H amination, have not been successfully 
implemented with small molecule catalysts. We anticipate that this biocatalytic platform can 
be further leveraged to tackle other challenges in enantioselective C–H functionalization and 
asymmetric catalysis in general. 

Methods 
Expression of P411 variants. E. coli (E. cloni BL21(DE3)) cells carrying plasmid encoding 
the appropriate P411 variant were grown overnight in 4 mL LBamp. Preculture (3 mL) was 
used to inoculate 27 mL of HBamp in a 125 mL Erlenmeyer flask. This culture was incubated 
at 37 °C, 230 rpm for 2.5 h. The culture was then cooled on ice for 20 min and induced with 
0.5 mM IPTG and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was 
conducted at 20 °C, 130 rpm, for 16–18 h. E. coli cells were then pelleted by centrifugation 
(4500 g, 3 min, 4 °C). Media was removed and the resulting cell pellet was resuspended in 
M9-N buffer to OD600 = 30–40. An aliquot of this cell suspension (2 mL) was taken to 
determine P411 concentration using the hemochrome assay after lysis by sonication. When 
applicable, the remaining cell suspension was further diluted with M9-N buffer to the OD600 

used for the biotransformation and the concentration of P411 protein in the biotransformation 
was calculated accordingly. 
C–H amination reactions using whole E. coli cells harbouring P411. Suspensions of E. 
coli cells expressing the appropriate heme protein variant in M9-N buffer (typically OD600 = 
30) were kept on ice. In another centrifuge tube, a solution of D-glucose (250 mM in M9-N) 
was prepared. All solutions were then transferred into an anaerobic chamber for reaction set 
up. To a 2 mL vial were added a GOx oxygen depletion solution (20 μL of stock solution 
containing 14,000 U/mL catalase and 1,000 U/mL glucose oxidase in M9-N buffer), D-
glucose (40 μL of 250 mM stock solution in M9-N buffer), the suspension of E. coli 
expressing P411 (320 μL), and the sulfamoyl azide substrate (20 μL, typically 400 mM stock 
solution in EtOH) in succession. The vials were sealed and shaken at room temperature and 
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500 rpm for 12-20 h and then analyzed by GC-MS or LC-MS. 
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Fig. 1. Three major types of asymmetric C(sp3)–H functionalization and our envisioned 
biocatalytic C(sp3)–H amination. a, Enantioselective functionalization of secondary C(sp3)–
H bonds. b, Enantioselective functionalization of primary C(sp3)–H bonds (i.e., 
desymmetrization of gem-dimethyl substituents). c, Enantioconvergent functionalization of 
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tertiary C(sp3)–H bonds. d, Enzymatic synthesis of chiral diamines using C(sp3)–H 
amination. FG = functional group. 
 

Fig. 2. Enantioselective amination of secondary C(sp3)–H bonds. a, Directed evolution of 
P411ΔFAD for the enantioselective synthesis of 1,2-diamines. Crystal structure of a variant 
closely related to P411Diane1 is shown (Protein Data Bank ID: 5UCW); b, Substrate scope of 
1,2-diamine and 1,3-diamine synthesis. Experiments were performed using E. coli expressing 
cytochrome P411Diane2 or P411Diane1 (OD600 = 30) with 10 mM substrate at room temperature 
under anaerobic conditions for 12–24 h. †Performed using E. coli expressing cytochrome 
P411Diane2 or P411Diane1 (OD600 = 1.9) with 20 mM substrate at room temperature under 
anaerobic conditions for 24 h. 

 
Fig. 3. Fig. 3. Enantiodivergent amination of unactivated secondary C(sp3)–H bonds to 
access either the (R)- or the (S)-product using engineered P411Diane variants. 
 
 

Fig. 4. Engineered P411Diane variants for the enantioselective amination of primary and 
tertiary C(sp3)–H bonds. a. asymmetric amination of primary C(sp3)–H bonds (i.e., 
desymmetrization of geminal dimethyl substituents); b. Enantioconvergent amination of 
tertiary C(sp3)–H bonds; c. Enantioconvergent construction of ‘methyl-ethyl’ stereocentre 
using tertiary C(sp3)–H amination. Experiments were performed using E. coli expressing 
cytochrome P411Diane1 I327P, P411Diane1 L78A A87G I327V Q437G, and or P411Diane1 L82C 
L181V I327T A330M Q437G (OD600 = 30–40) with 10 mM substrate at room temperature 
under anaerobic conditions for 12–24 h. 

 

Fig. 5. Mechanistic insight. a. Scrambling of olefin stereochemistry during the allylic 
C(sp3)–H amination of (E)- and (Z)-1d using P411 biocatalyst (P411Diane1 I327P). b. Proposed 
mechanism for the enantioconvergent amination of tertiary C(sp3)–H bonds. 

 
Fig. 6. Free energy profile of the iron porphyrin-catalysed C(sp3)–H amination. Density 
functional theory (DFT) calculations were performed at the B3LYP-D3(BJ)/6-311+G(d,p)–
LANL2TZ(f)/SMD(chlorobenzene)//B3LYP-D3(BJ)/6-31+G(d)–LANL2DZ level of theory. 
Triplet structures are shown in black and quintet structures are shown in blue. Mulliken spin 
densities of Fe and N of the key iron nitrenoid 7 are shown in italic (blue). 
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