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ABSTRACT: The paramagnetic cyano-bridged complex
PhB(tBuIm)3Fe−NC−Mo(NtBuAr)3 (Ar = 3,5-
Me2C6H3) is readily assembled from a new four-
coordinate, high-spin (S = 2) iron(II) monocyanide
complex and the three-coordinate molybdenum(III)
complex Mo(NtBuAr)3. X-ray diffraction and IR spectros-
copy reveal that delocalization of unpaired electron
density into the cyanide π* orbitals leads to a reduction
of the C−N bond order. Direct current (dc) magnetic
susceptibility measurements, supported by electronic
structure calculations, demonstrate the presence of strong
antiferromagnetic exchange between spin centers, with a
coupling constant of J = −122(2) cm−1. To our
knowledge, this value represents the strongest magnetic
exchange coupling ever to be observed through cyanide.
These results demonstrate the ability of low-coordinate
metal fragments to engender extremely strong magnetic
exchange coupling through cyanide by virtue of significant
π-backbonding into the cyanide ligand.

Owing to its strong directionality and predictable binding
modes, the cyanide ligand has found tremendous utility

as a bridging ligand in the directed synthesis of magnetic solids
and clusters.1 For instance, the past several decades have seen
the realization of metal−cyanide-based bulk magnets,2 one-
dimensional single-chain magnets,3 and discrete single-
molecule magnets.4 Nevertheless, despite the exquisite
programmability and adjustability afforded by the cyanide
bridge, a key limitation in the construction of these
compounds is the typically weak magnetic superexchange
interactions mediated through cyanide. Indeed, the max-
imization of coupling strength is paramount in the synthesis of
molecule-based magnetic materials, as the operating temper-
atures of bulk magnets,5 single-chain magnets,3b,6 and single-
molecule magnets are all directly correlated to the strength of
magnetic coupling between paramagnetic centers.7

One strategy toward increasing the exchange coupling
through cyanide involves using complexes of low-valent, early
transition metals, whose relatively diffuse d orbitals facilitate
more efficient overlap with the appropriate orbitals on cyanide.
Along these lines, cyano-bridged complexes with the strongest
magnetic exchange are typically based on electron-rich metal
ions such as vanadium(II) or molybdenum(III).8 In principle,
this effect should be even further enhanced through

incorporation of strongly π-backbonding paramagnetic metal
fragments, which can serve to delocalize unpaired electron
density onto the cyanide ligand,9 consequently enhancing the
magnetic coupling.
Toward this end, we drew inspiration from the well-

developed transition metal chemistry of N2. Despite its
negative electron affinity,10 strongly π-backbonding metal
fragments are able to facilitate N2 reduction to a number of
oxidation states, including S = 1 N2

2−. Notably, this radical
form is able to engage in extremely strong exchange coupling
with paramagnetic metal ions.11 We have therefore begun
targeting the synthesis of complexes in which cyanide connects
two electron-rich, low-coordinate transition metal fragments
that are capable of significant π donation. The strong π-
backbonding abilities of the three-coordinate molybdenum-
(III) complex Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3),

12 which
facilitates both N2 cleavage

13 and CN− activation,9 make this
complex an appropriate metal fragment for this task. In this
work, we report that a new high-spin iron(II) monocyanide
building unit reacts with Mo(NtBuAr)3 to give a bimetallic
complex in which cyanide bridges coordinatively unsaturated
iron and molybdenum fragments. Structural and spectroscopic
methods demonstrate significant activation of the bridging
cyanide ligand in the bimetallic complex, and this activation
gives rise to exceptionally strong antiferromagnetic coupling
between the two metal ions.
The tris(carbene)borate iron(II) fluoride complex PhB-

(tBuIm)3FeF (1) readily and cleanly reacts with equimolar
Me3SiCN to provide the corresponding terminal cyanide
complex PhB(tBuIm)3Fe(CN) (2) in high yield (Figure 1).14

The solid-state structure of 2, as determined by single crystal
X-ray diffraction, confirms the presence of a single terminal
cyanide ligand bound to a four-coordinate iron center. To the
best of our knowledge, this four-coordinate geometry is unique
for mononuclear iron cyanide complexes.15 The Fe−CCN
distance of 2.058(4) Å is remarkably long for a metal−cyanide
complex,16 which is likely a consequence of the unusual high-
spin, S = 2 ground state (see below). In contrast, the C−N
bond length of 1.140(6) Å and Fe−C−N bond angle of
177.0(4)° are unremarkable, and the IR spectrum obtained for
a solution of 2 (νCN = 2056 cm−1) is consistent with a terminal
cyanide ligand.1 The bond distances between iron and the
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tris(carbene)borate ligand of 2.070(4)−2.101(3) Å are
consistent with the high-spin iron(II) formulation.17 The
oxidation state and spin state of Fe in 2 are further
corroborated by Mössbauer spectroscopy. At 80 K, the
spectrum for a solid-state sample of 2 exhibits a symmetric
quadrupole doublet (Figure S14), with a fit of the data
providing an isomer shift of δ = 0.527(2) mm s−1 and a
quadrupole splitting of ΔEQ = 1.335(3) mm s−1, in accord with
other high-spin iron(II) tris(carbene)borate complexes.17a,18

Taken together, these data establish 2 as a rare example of a
high-spin iron(II) cyanide complex.19,20

As an initial demonstration of its utility as a building unit, 2
reacts with Mo(NtBuAr)3 to yield the cyano-bridged bimetallic
complex PhB(tBuIm)3Fe(NC)Mo(NtBuAr)3 (3) (Figure 1).
Inspection of the X-ray structure of 3 suggests that the cyanide
ligand undergoes a linkage isomerism during the course of the
reaction to give a Fe−N−C−Mo configuration. The relatively
short Fe−N distance of 1.943(2) Å compares favorably with
those observed in PhB(MesIm)3Fe−NR2 complexes21 but is
significantly longer than that observed in the Fe(I) complex,
PhB(AdIm)3Fe−N2.

22 This suggests an Fe(II) oxidation state,
which is supported by the spectroscopic, magnetic, and
computational analysis (see below). The short Mo−C distance
of 1.960(2) Å is slightly longer than that observed in tBuN
CMo(NtBuAr)3.

23 In addition, the C−N distance of
1.195(3) Å represents a slight elongation relative to that of
1.177(4) Å for uncoordinated cyanide.24 These observations
suggest that the cyanide ligand in 3 is activated with a formal
bond order of less than three. This activation is more clearly
observed in the cyanide stretching frequency, which is
observed at an unusually low energy of νCN = 1793 cm−1 in
the IR spectrum for 3 collected in THF (Figure S8). This low
frequency is to be contrasted with the typical stretching
frequencies of ca. 2000−2100 cm−1 observed for bridging
cyanides.1

Spectroscopic methods were employed to provide further
insight into the oxidation states of the two metal ions in 3. The
Mössbauer spectrum collected for a solid-state sample of 3 at
80 K (Figure 2) exhibits an asymmetric doublet with an isomer
shift of δ = 0.663(2) mm s−1 and a quadrupole splitting of ΔEQ

= 1.476(2) mm s−1. The isomer shift and quadrupole splitting
are both consistent with a high-spin iron(II) formulation. The
asymmetry of the quadrupole doublet for 3 likely arises from
slow magnetic relaxation at low temperatures, as is often
observed for mononuclear iron complexes.25 This hypothesis is
supported by the observation of a more symmetric doublet in
the spectrum collected at 200 K (Figure S15). In addition, the
Fe 2p X-ray photoelectron spectrum (XPS) for 3 is also
consistent with high-spin iron(II), giving binding energies for
the Fe 2p3/2 line (709.62 eV) and shakeup satellite (714.05
eV) similar to those observed for other iron(II) tris(carbene)-
borate complexes (Figure S16).26 While the binding energy in
the Mo 3d XPS (231.62 eV) suggests that molybdenum is in a
higher oxidation state than +3 (Figure S17), a definitive
assignment is difficult, likely due to the highly covalent
bonding in the complex.27

The collective structural and spectroscopic data for 3 suggest
that strong π-backbonding from the highly reducing
molybdenum tris(anilido) fragment leads to reduction of the
bridging cyanide, with significant delocalization of unpaired
electron density onto the ligand. The reduction of the C−N
bond order in cyanide is rare and has previously only been
proposed for the [Co(CN)3]

6− anion, where the cyanide

Figure 1. Upper: Synthesis of complexes 1−3. Lower: Crystal structures of 2 and 3, as determined by single crystal X-ray diffraction. Thermal
ellipsoids are shown at 50% probability. Teal, orange, blue, black, and pink ellipsoids represent Mo, Fe, N, C, and B atoms, respectively; H atoms
are omitted for clarity.

Figure 2. Zero-field 57Fe Mössbauer spectrum for 3, collected at 80 K.
Black crosses correspond to experimental data, and the blue line
corresponds to a fit of the data.
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stretching frequencies are in a range (νCN = 1600−1700 cm−1)
that suggests a CN1.67− formulation.28,29 While not explicitly
stated, the IR spectral data for the homobimetallic complex
(ArtBuN)3MoNCMo(NtBuAr)3 (νCN = 1575 cm−1) is
also consistent with reduction of the cyanide bond order.
Finally, some chemical transformations have been proposed to
occur via the intermediacy of a reduced cyanide ligand.30,31

We observe no spectroscopic evidence for dissociation of the
bimetallic structure of 3, as ascertained by variable-concen-
tration 1H NMR spectroscopy and supported by cyclic
voltammetry (Figures S10 and S11). This finding is in contrast
to many other cyanide clusters, which undergo dissociation or
solvolysis reactions in solution. The high solution stability of 3
may provide evidence for the strong bonding interactions, and
thus robustness, of the Mo−CN−Fe linkage resulting from
strong π-backbonding.

Variable-temperature direct current (dc) magnetic suscept-
ibility data were collected for a solid-state sample of 3 under an
applied field of 1 T (Figure 3). At 350 K, χMT = 2.79 cm3 K
mol−1, much lower than the value expected for magnetically
isolated S = 2 iron(II) and S = 1/2 molybdenum(III) centers.
With decreasing temperature, χMT undergoes a gradual
decline, reaching a plateau at ca. 160 K of 2.4 cm3 K mol−1,
consistent with strong antiferromagnetic coupling between the
spin centers to give an S = 3/2 ground state. As the temperature
is further decreased, χMT drops sharply to a value of 1.36 cm3

K mol−1 at 2.0 K, likely the result of Zeeman splitting,
magnetic anisotropy, and potentially weak intermolecular
interactions. To estimate this antiferromagnetic exchange
interaction, the data were fit in the temperature range of
40−350 K to a spin-only Hamiltonian, giving an exchange
constant of J = −122(2) cm−1, with g = 2.3(1) and D =
−22(2) cm−1.32 To our knowledge, this value of J corresponds
to the strongest magnetic coupling yet observed through a
cyanide bridge, slightly eclipsing the previous record of J =
−114 cm−1 observed for a V3Mo2 cluster.

8c

Low-temperature magnetization measurements for 3 show a
saturation of isofield curves well below the expected M = 3 μB
for S = 3/2, demonstrating the presence of strong magnetic
anisotropy (Figure S22). Accordingly, variable-frequency
alternating current (ac) magnetic susceptibility data reveal
slow magnetic relaxation upon application of a 1200 Oe dc
field (Figures S23−S25). A fit to the corresponding Arrhenius

plot of relaxation time33 gives a relaxation barrier of Ueff =
25(1) cm−1 with τ0 = 3.4(4) × 10−6 s (Figure S26).
Density functional theory calculations were carried out to

provide greater insight into the origin of the strong magnetic
coupling in 3 (Figure 4). The magnetic orbitals, as determined
by DFT methods (B3LYP-D3/def2-TZVP/def2-SVP), show
that the α-spin density is primarily localized on iron, where the
Mulliken spin density is 3.745 (Figure 4a). The β-spin density
is localized on both molybdenum, where the Mulliken spin
density is −0.580, and the N atom of the cyanide ligand, where
it is −0.208 (Figure 4b). The overlap of the magnetic pair
(Figure 4c) is consistent with strong antiferromagnetic
coupling, and the calculated exchange coupling constant of J
= −85 cm−1 (Yamaguchi formalism34) is in reasonable
agreement with the experimental value.
The above results are in accord with a bonding model in

which strong π-backbonding from molybdenum to the cyanide
π* orbitals delocalizes unpaired electron density onto the N
atom of the cyanide ligand. In this model, the negligible β-spin
density on the C atom (Mulliken spin density is −0.071) is a
natural consequence of symmetry-allowed mixing with the

Figure 3. Variable-temperature dc magnetic susceptibility data for 3,
collected under an applied field of 1 T. Blue circles correspond to
experimental data, and the black line corresponds to a fit of the data.

Figure 4. Magnetic pair of the (a) α and (b) β space for the S = 3/2
broken symmetry surface, showing delocalization of β-spin density
into the cyanide π* orbital. Corresponding orbitals are shown at 0.05
isovalue; H atoms are omitted for clarity. (c) Spin density shown at a
0.005 isovalue with α-spin in blue and β-spin in yellow.
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cyanide π orbitals (Figure 5a).35 This mechanism of
delocalizing spin density onto the cyanide N atom leads to a
stronger antiferromagnetic interaction with the unpaired
electrons on iron. This bonding can also be considered using
the Enemark−Feltham notation commonly employed to
describe the highly covalent bonding of metal nitrosyl
complexes.36 Here, the {MoCN}3 fragment37 is considered
as a single unit and can best be viewed as a resonance hybrid of
the two limiting structures [MoIII−CN]2+ ↔ [MoIVC
N·]2+ (Figure 5b), giving a formal C−N bond order
intermediate between 2.5 and 3.
This work demonstrates that the combination of strong π-

backbonding and low-coordinate metal fragments can serve to
significantly delocalize unpaired spin density onto a bridging
cyanide ligand through reductive activation, resulting in
unprecedented strong magnetic exchange coupling. We expect
that this result exemplifies a general strategy for the synthesis
of cyano-bridged clusters, and potentially solids, with unusually
strong magnetic exchange coupling. Efforts are underway to
employ 2 and related complexes as building units in the
construction of novel metal−cyanide compounds.
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9, 341−351. (b) Böttcher, C. J. F. Theory of Electric Polarisation;
Elsevier: Amsterdam, 1952. (c) Aubin, S. M. J.; Sun, Z.; Pardi, L.;
Krzystek, J.; Folting, K.; Brunel, L.-C.; Rheingold, A. L.; Christou, G.;
Hendrickson, D. N. Reduced Anionic Mn12 Molecules with Half-
Integer Ground States as Single-Molecule Magnets. Inorg. Chem.
1999, 38, 5329−5340.
(34) Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.;
Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Ab Initio Computations of
Effective Exchange Integrals for H−H, H−He−H and Mn2O2
Complex: Comparison of Broken-Symmetry Approaches. Chem.
Phys. Lett. 2000, 319, 223−230.
(35) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital
Interactions in Chemistry, 2nd ed.; John Wiley & Sons: Hoboken, 2013.
(36) Enemark, J. H.; Feltham, R. D. Principles of Structure, Bonding,
and Reactivity for Metal Nitrosyl Complexes. Coord. Chem. Rev. 1974,
13, 339−406.
(37) In {MoCN}n, the value of n is the sum of metal-based d
electrons and cyanide-based π* electrons; in this case, n = 3. See ref
36.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b09445
J. Am. Chem. Soc. 2019, 141, 17092−17097

17097

http://dx.doi.org/10.1021/jacs.9b09445

