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Abstract. In sea-ice-covered areas, the sea ice floe size distribution (FSD) plays an important role in many processes affecting

the coupled sea-ice-ocean-atmosphere system. Observations of the FSD are sparse — traditionally taken via a pain-staking

analysis of ice surface photography — and the seasonal and inter-annual evolution of floe size regionally and globally is largely

unknown. Frequently, measured FSDs are assessed using a single number, the scaling exponent of the closest power law fit

to the observed floe size data, although in the absence of adequate datasets there have been limited tests of this “power-law5

hypothesis". Here we derive and explain a mathematical technique for deriving statistics of the sea ice FSD from polar-orbiting

altimeters, satellites with sub-daily return times to polar regions with high along-track resolutions. Applied to the CryoSat-2

radar altimetric record, covering the period from 2010-2018, and incorporating 11 million individual floe samples, we produce

the first pan-Arctic climatology and seasonal cycle of sea ice floe size statistics. We then perform the first pan-Arctic test of

the power law hypothesis, finding limited support in the range of floe sizes typically analyzed in photographic observational10

studies. We compare the seasonal variability in observed floe size to fully coupled climate model simulations including a

prognostic floe size and thickness distribution and coupled wave model, finding good agreement in regions where modeled

ocean surface waves cause sea ice fracture.

1 Introduction

Earth’s polar oceans are covered with sea ice: a thin, heterogeneous interface that plays an important role in the coupling15

between ocean and atmosphere. Sea ice is a collection of many individual pieces, called floes, which may be characterized in

terms of a horizontal length scale, their “size". On the large scales relevant to global climate modeling, the statistical variability

of floe size is described using the floe size distribution (FSD, Rothrock and Thorndike, 1984).
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The FSD is an important property of the sea ice cover that influences the multiscale temporal and geographic variability of

sea ice, akin to the grain size in sedimentology or particle size distribution in atmospheric chemistry. The scale of individual

floes plays a role in many sea-ice-related processes: sea ice melt rate (Steele, 1992; Horvat et al., 2016; Horvat and Tziperman,

2018), the evolution of the oceanic mixed layer (Manucharyan and Thompson, 2017), atmospheric boundary layer exchange

(Birnbaum and Lüpkes, 2002; Lüpkes and Birnbaum, 2005; Tsamados et al., 2014), the sea ice response to applied stress5

(Feltham, 2008; Wilchinsky and Feltham, 2011), and the propagation of waves into the ice (Squire et al., 1995; Squire, 2007;

Smith and Thomson, 2016). The importance of the sea ice FSD has led to the development of diagnostic FSD models of

varying complexity (Williams et al., 2013; Zhang et al., 2015; Bateson et al., 2019), and a prognostic floe size and thickness

distribution (FSTD) scheme (Horvat and Tziperman, 2015; Roach et al., 2018a).

Despite the potential relevance of sea ice floe size to polar climate evolution, there remain no climate-scale assessments10

of average floe size or the FSD. The observational record of floe statistics derives from visual imagery localized in space

and time (i.e., Rothrock and Thorndike, 1984; Toyota et al., 2006; Steer et al., 2008; Toyota et al., 2011) or from repeat

measurements in the same region over multiple months (Hwang et al., 2017; Stern et al., 2018a), which may subsequently

used to compile a seasonal cycle of the FSD (Perovich and Jones, 2014; Stern et al., 2018a). FSD measurements are obtained

by identifying individual floes within a 2-dimensional image of the sea-ice surface. Because floe sizes span several orders of15

magnitude, accurate representations of the FSD — even in relatively small geographical domains and in perfect lighting and

surface conditions — require high resolution and high observational coverage. Nearly all measurements of the FSD have been

made in accordance with a “power law" scaling hypothesis commonly used to describe multiscale systems (Mandelbrot and

Wheeler, 1983), in which the resulting FSD is fit to a straight line in logarithmic coordinates, whose slope, α, is reported as an

intrinsic property of the floe mosaic. There is large uncertainty in these scaling coefficients, the range they apply over, and their20

applicability and origin (Herman, 2011; Horvat and Tziperman, 2017; Herman et al., 2018; Stern et al., 2018b). Improvements

in the quality and quantity of available FSD data are needed before arriving at consensus derived FSD statistics to guide and

assess model performance.

Here we outline a method that exploits satellite radar altimetry to construct the FSD and its moments across polar regions

with sub-kilometer spatial resolution, sub-daily temporal resolution, and spanning multiple orders of magnitude in size. Al-25

timeters, like the ones carried on the Envisat, ICESat, CryoSat-2, and ICESat-2 satellites, make repeated, frequent passes over

polar oceans, and substantial efforts have been made to process the satellite returns to discriminate between open water, floes,

and leads. The altimetric returns have found many uses, including reconstructing the sea ice thickness field (Laxon et al., 2013;

Tilling et al., 2016, 2018b) and ocean surface circulation under sea ice (Peacock and Laxon, 2004; Armitage et al., 2018).

Fields inferred from altimetry have led to advances in understanding polar systems: from forecast and climate prediction (Day30

et al., 2014) to model validation (Schröder et al., 2018; Allard et al., 2018) to climate change studies (Laxon et al., 2003; Kwok,

2018), and have been evaluated and validated using field campaign data (Skourup et al., 2017; Sandberg Sorensen et al., 2018;

Tilling et al., 2018b).

One-dimensional measurements of sea ice properties, like along-track altimetric measurements of ice open water, have long

been sought to describe the two-dimensional ice surface. Rothrock and Thorndike (1984) originally described a method for35
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reconstructing the sea ice floe size distribution in a region using straight-line measurements over the geometry of floes. Lindsay

and Rothrock (1995) later compiled the statistics of lead and ice spacings in two-dimensional imagery. Other work has taken

place to derive and understanding the width distribution of individual leads in visual imagery and altimetry (Wadhams et al.,

1988; Key and Peckham, 1991; Key, 1993; Wernecke and Kaleschke, 2015), which can be used to estimating heat fluxes and

turbulent transfer between the ocean and atmosphere. To date, however, these studies have not been designed to facilitate a5

comparison with model data, nor have altimetric studies been used to compile floe size statistics. These objectives are the focus

of this work.

We outline the mathematical theory that allows for comparing altimetric datasets and the FSD in Sec. 2. In Sec. 3 we apply

this method to a new dataset of segmented CryoSat-2 sea ice type data from 2010-2018. Using this data we produce the first

climatological maps of mean sea ice floe size and fragmentation for the Arctic Ocean. We then test the power law hypothesis,10

finding limited support for power-law scaling across most of the dataset in Sec. 4. One of the key aims of the paper is to develop

floe size distribution measurements that are useful for model validation and calibration. In Sec. 5, we show a proof-of-concept,

demonstrating how altimetric data can be used to constrain and evaluate new models of the FSD, comparing the CryoSat-2

FSD data to a climate model simulation with a prognostic FSTD model. We conclude in Sec. 6.

2 Floe Chords and the Floe Size Distribution15

For an individual pass over sea ice by a polar-orbiting satellite altimeter, return waveforms along the satellite orbit track are

assigned a surface type depending on the waveform shape and coincident sea ice concentration (Tilling et al., 2018b). A “floe

chord" of length D is a continuous series of points identified as sea ice, covering a geographic distance D (Tilling et al., 2018a,

2019). Define a floes size, r, as its “effective radius" — the square root of the floe’s area divided by π (Rothrock and Thorndike,

1984; Horvat and Tziperman, 2015)) We use radius instead of diameter, as appears in some other observational studies, for20

comparison with model output in Sec. 5. Because the satellite path is at an unknown angle with respect to the (also unknown)

floe geometry, any individual floe chord measurement is not a floe size measurement. Converting between suitably processed

altimetric floe chord measurements and floe size statistics is therefore the subject of this section. Details on the processing of

the CryoSat-2 waveform, used to produce a dataset of floe chords spanning the period 2010-2018, is outlined in Sec. 3 and

Tilling et al. (2019).25

For a domain of horizontal areaA, and over a period of time ∆T that corresponds to several repeat satellite passes, we bin the

set of recorded floe chords to form a probability distribution S(D), which we term the “floe chord distribution" (FCD), where

S(D)dD is equal to the number fraction of floe chords in A over ∆T with length between D and D+ dD, and is normalized

to one. To collapse all measured chords onto a single independent scalar coordinate (D), we follow the example of turbulence

statistics (Batchelor, 1953) and assume that the floe chord distribution data is homogeneous, isotropic, and stationary within30

the region and time data is collected. In the same region, we define the (non-cumulative) number FSD P (r), where P (r)dr

is the fractional number of floes with a size between r and r+ dr in A, and is also normalized to one. The FSD inherits the
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assumptions of homogeneity, isotropy, and stationarity from the FCD. Our objective is to relate the FCD, S(D), or quantities

derived from the FCD, to the statistics of the FSD, P (r).

Bayes’ theorem relates S(D) and P (r) through conditional probabilities,

F (r;D)S(D) = F̃ (D;r)P (r). (1)

The conditional probability F (r;D) relates given chord lengths to the floe size distribution that could generate them: F (r;D)dr5

is the probability that floes with size in the range from r to r+ dR were sampled given a chord of length D. The conditional

probability F̃ (D;r) relates given floe sizes to the chord length distribution they generate: F̃ (D;r)dD is the probability of

measuring a floe chord of length from D to D+ dD given that a floe of size r was measured.

This second probability distribution F̃ (D;r) can be derived from first principles under a single assumption: that the chord

length distribution that would be sampled from a set of floes of size r is independent of r (equivalently, the floe shape distribu-10

tion is scale-invariant). Formally, this requirement is,

F̃ (D;r)dD =G(ξ)dξ, (2)

where G(ξ) =G(D
2r ) is an unknown function that integrates to 1 over the interval from ξ = 0 to 1. Under this assumption, the

distribution of possible chord lengths measured from floes of size r has the same functional form independent of r. The proba-

bility distribution F (D;r) may be derived by considering the geometric relationship between straight-line satellite passes and15

the geometry of the floes they pass over. Individual floe shapes are highly variable: making an assumption about the distribution

of floe shapes may introduce biases in the statistics derived from the FCD. Yet as we prove in Appendix A, the ability to derive

FSD statistics from the FCD does not depend on the precise form of F̃ (D;r) so long as the homogeneous, isotropic, stationary

and scale-invariance assumptions are retained, and the evaluation of power-law scaling is in fact independent of F̃ (D;r).

To proceed and arrive at a concrete (although not general) realization of these functions, we will assume all floes are perfect20

circles. In assessments of the relationship between major and minor axes of individual floes, the “roundness" parameter for a

floe is typically within 15% of one (Rothrock and Thorndike, 1984; Toyota et al., 2011; Perovich and Jones, 2014; Gherardi

and Lagomarsino, 2015; Alberello et al., 2019), suggesting that this circular assumption, while simplistic, is broadly appro-

priate. Nevertheless, it will likely be necessary to amend the analysis below in the future to account for more realistic shape

distributions and geometries (e.g., diamonds (Wilchinsky and Feltham, 2006)), regional differences in floe shape properties25

(such as in regions where shear stress determines fracture patterns and floe shapes (Schulson and Hibler, 1991)), or to evaluate

the sensitivity of the results that follow to the assumed shape distribution. Solving for F̃ (D;r) is a geometric problem that

relates the possible measured chord lengths to the underlying floe size, and we solve this explicitly for circular floes here.

Similar geometric problems have been identified and solved in other fields (e.g., Pons et al., 2006; Nere et al., 2007), and we

therefore leave refinement of F̃ (D;r) to future work.30

Consider the special case that all floes are perfect circles, illustrated in Fig. 1. Because there is no correlation between the

statistics of local sea ice deformation and pre-determined satellite tracks, an individual recorded floe chord,D, originating from

a floe of radius r, was obtained from a satellite trajectory that crosses the floe at a random interior angle θ, thus the distribution of
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Tziperman, 2017; Roach et al., 2018a),

r ≡

∞
∫

0

r3P (r)dr

∞
∫

0

r2P (r)dr

=
〈r3〉

〈r2〉
=

3π

16

〈D3〉

〈D2〉
. (6)

and the floe perimeter per ice area, a measure of sea ice fragmentation,

P ≡

∞
∫

0

rP (r)dr

∞
∫

0

r2P (r)dr

=
π

2

〈D1〉

〈D2〉
. (7)

These derived quantities are useful because they require no further information about the sea ice (such as its concentration)5

to compare against modeled FSDs. However, both r and P can represent only those floes whose size is larger than rmin =

Dmin/2, the smallest possible floe size sampled. For perfect power-law distributions beginning at a scale of rmin or before,

both metrics are functions of rmin. However, for the real FCDs measured here, a maximum floe size exists, and a power-law

scaling is not found approaching rmin, so the use of such metrics is justified (see Sec. 4). Because of the finite sampling

resolution of the altimeter, chords that would originate from floes with a diameter near the sampling resolution may not be10

observed, and thus 〈Dn〉 ≤An〈r
n〉. We explore this uncertainty in Appendix B. For a known floe size distribution, the error

decreases exponentially as a function of the distributional moment being considered, though it can be large (20% or more) in

pathological cases. For distributional tails characterized by observed scaling exponents (Stern et al., 2018b), and for moments

considered here, this uncertainty can be determined systematically and vanishes for measurement spacings smaller than the

radius of the most common floe size. This resolution error does not affect the analysis of the power-law hypothesis, as that15

analysis is focused on the distributional tail. However, because P is a proportional to a negative moment of the FCD, it is

sensitive to changes in the number of small chord lengths. Because of the measurement uncertainty for smaller chord lengths

we will focus instead on r which is a positive moment of the FCD.

2.1 Evaluating the Floe Size Power-law Hypothesis with Floe Chord Data

Suppose the FSD P (r) has a power-law tail that begins at some specified value r1. Then for r > r1, P (r)≡ P (r;α,C) =20

Cr−α, for an unknown coefficient C and power-law slope α. Integrating Eq. 1 over all r,

S(D) =

∞
∫

0

F̃ (D;r)P (r)dr, (8)

where the integral of the left-hand side of Eq. 1 is equal to S(D) as
∫

F (r;D)dr = 1. Under the assumption of Eq. 2, if P is a

power law, so is S(D) (Appendix A). For circular floes,

S(D) =
2C

π

∞
∫

r1

r−α

√

(2r)2 −D2
dr. (9)25
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Because of the sampling resolution of the altimeter there is a minimum resolved chord scale Dmin. If Dmin �D∗ ≡ 2 · r1,

there is an explicit solution for S(D), a power-law distribution over the range (D∗,∞)

S(D) = C ·B

(

1

2
,
α

2

)

2α−1

π
D−α ≡ CαD

−α. (10)

where B is the beta function. The coefficient Cα is a multiplicative factor independent of size, and the power-law exponent for

a FCD is the same as the exponent for FSD, where the two are related by Eq. 1.5

Moments of a power-law tail can be evaluated explicitly (for α > n+1),

〈rn〉= C

∞
∫

r1

rn−αdr = C
rn+1−α
1

n+1−α
. (11)

Then for both the FCD and FSD, the ratio of two moments is independent of the unknown coefficient C, i.e.,

Rn,ε ≡
〈Dn+ε−1〉

〈Dn−1〉
=Dε

min

n−α

n+ ε−α
, (12)

valid for n+ ε < α. The power-law coefficient can be obtained for any n, ε as,10

αn,ε = n+ ε
Rn,ε

Rn,ε −Dε
min

= constant. (13)

In the analysis below we will arbitrarily select only n= 0.5, ε= 1 for comparison (for scaling coefficients α > 1.5, the bulk of

reported power-law coefficients are in this range: Stern et al., 2018b). Because the observations will not be perfect power-law

distributions, we will use α0.5,1 ≡ α∗ as an estimator. A second estimate of the power-law scaling coefficient, α̂, is com-

puted via the maximum likelihood estimator (Muniruzzaman, 1957; Clauset et al., 2009; Virkar and Clauset, 2014) (details in15

Appendix C) as,

α̂= 1+
N

N
∑

i=1

ln Di

Dmin

. (14)

whereN is the number of chords. If the power law hypothesis holds, then the two estimates of α agree, although the agreement

of α̂ and αn,ε is not sufficient to confirm the power-law hypothesis. In the Supporting Information (Text S1 and File S1), we

compare these two estimates when they are evaluated against synthetic datasets drawn from a true power-law distribution. The20

two agree even when the size of the data is relatively small (N < 25). While in practice Eq 13 is easy to apply, it only holds

when αn,ε > n+1, and unlike the method of Clauset et al. (2009), it does not allow for a robust statistical analysis of the

power-law fit, and should only be used when the data is assumed to follow a power-law already.

3 Climatology and Trends in Floe Properties Derived from CryoSat-2 Altimetry

We apply the analytic technique described in Sec. 2 to a floe chord data set constructed from the CryoSat-2 radar altimeter25

processed by the Center for Polar Observation and Modelling (CPOM) over the period from October 2010-present (CPOM data

7



Figure 2. Constructing a FCD from altimetry. (a) Base 10 logarithm of the number of floe chords identified, binned into the CESM grid,

across all CryoSat returns in the Arctic from 2010-2018. Black line is a single satellite track on January 21, 2014. (b) Subsection of the track

centered on the blue dot in (a). Blue line is freeboard of sea ice in radar echoes defined as “floes" along the track. Black lines are chords

identified from the freeboard retrieval. (c) Total number of chords measured in each month in the Arctic. Plot is centered on January 1. (d)

FCD for the satellite track depicted in (a). Black marks on x-axis are the logarithmically spaced chord length bins.

products are available at http://www.cpom.ucl.ac.uk/csopr/seaice.html). CryoSat-2 radar echo returns are defined as “lead”,

“floe”, “open ocean” or “ambiguous” according to waveform shape and sea ice concentration (Tilling et al., 2016, 2018b), at

an approximately constant along-track spacing Dmin =300 m. Floe chords are defined as a continuous sequence of one or

more “floe echoes”, with a gap of one ambiguous echo permitted within a floe sequence to allow for anomalous returns. A

chord length is taken from the midpoint of the first to the midpoint of the last radar echo. Individual chord lengths can be5

underestimated when continuous floes are separated artificially by producing two or more ambiguous echoes in sequence, or

when highly reflective leads dominate the waveform return close to the floe edge and cause measurement dropout (Tilling et al.,

2019). Lead contamination, or “snagging” (Armitage and Davidson, 2014) is more likely when the altimeter cuts of a small

section of a floe, i.e. for small values of θ. Overestimates of chord length can also occur when ice floes are in close contact

with neighboring floes. Therefore, floe chord lengths should be considered a satellite-derived product, not a true measurement10

of floe size. The minimum chord length retrieval Dmin is limited to the CryoSat-2 footprint ( 300 meters along-track) (see the

discussion in Appendix B). However, surface discrimination via altimetry is highly accurate in months without melt ponds,

(Peacock and Laxon, 2004; Guerreiro et al., 2017; Quartly et al., 2019), giving confidence that floe echos represent a coherent

length of ice. More details on the details of chord identification may be found in Tilling et al. (2019). Indeed, this raw floe chord

data has been used successfully to reduce biases in altimeter-observed satellite sea ice thickness estimates from altimeters with15

different footprint sizes (Tilling et al., 2019). Here we analyze the sea ice floe size distribution using that floe chord product.
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Figure 2 shows an example of floe chord data for a single CryoSat-2 track over the Arctic on January 21, 2014. Freeboard

values for echoes discriminated as “floe" are plotted in Fig. 2b as a function of the along-track distance in km, and correspond

to the blue circle in Fig. 2a. Floe chords are identified as black segments in Fig. 2b. The histogram of all 741 identified chords

for this single satellite pass is shown in log-log space in Fig. 2d.

The full CryoSat-2 dataset examined here spans the time period from October 2010 to November 2018, and floe chords5

measured using the above technique are binned into the CICE sea ice model’s two-dimensional sea ice grid for each month

and year to facilitate comparison with model products. This implies that we invoke the principles of isotropy, homogeneity and

stationarity of the FCD, required to produce such a distribution, on the length scale of the CICE model grid (O(25 km)) and

time scale of a month. For every grid cell i, month m, and year y, we have a vector of floe chords {Di,m,y} from which we

build a FCD. The base 10 logarithm of the total number of floe chords recorded in each grid cell per month is shown in Fig. 2a.10

Because the satellite passes are densest near the pole, the measurement density is highest near the pole as well. Fig. 2c shows

the number of Arctic measurements in each month. Sea ice type from CryoSat-2 is not available during summer months, as

melt ponds make it difficult to discriminate between leads and ponded floe surfaces, and we do not include measurements from

May to September. Across the entire set of satellite tracks included here, 11 million chord lengths are recorded in the Arctic.

Figure 3a shows the seasonal cycle of Arctic representative radius over the CryoSat-2 period obtained by applying Eq. 6 to15

the binned CryoSat-2 floe chord product. Individual years are plotted as thin lines, and the climatological average is shown

in red. Details on how temporal and spatial average statistics are computed is included in Appendix D. During the months of

October-December, the climatological representative radius is roughly 35% larger (7.06 km vs 5.18 km) than February-April.

This seasonal cycle is broadly consistent across years. A possible interpretation of this seasonal cycle is that large first-year

ice pans form in October and are later fractured into smaller floes throughout the winter months. This concept is supported by20

observations that large-scale fracturing of sea ice in the Beaufort Sea is dominated by coastal processes and therefore only can

occur once sea ice freezes to the coast in mid-winter (Richter-Menge, 2002), although such an interpretation is speculative and

must be evaluated further as this method is refined. Fig. 3b shows annual-average representative radius in red for each full year

from 2011-2017, with thin lines corresponding to the individual months within that year. Seasonal variability is significantly

larger than inter-annual variability. There is no statistically significant linear trend at the p=0.05 level.25

The geographic variability of representative radius over the “early winter" (October-December) and “late winter" (February-

April) periods are shown in Fig. 3c-d, for all grid areas. We display only those areas with at least 25 recorded floe lengths in

each month during the averaging period. In Supporting Information Text S2 and Fig S1, we examine the sensitivity of bulk

FSD statistics to this threshold, finding similar seasonal cycles and climatologies. The largest representative radii in the Arctic

lie in the interior Arctic near the pole, with a tongue of large floes that extends along the Canadian Arctic in late winter. There30

is a notable increase of representative radius with latitude. In the Supporting Info Fig. S2, we show that this relationship cannot

be explained as a result of the increasing density of measurements near the pole and may therefore be a geophysical signal.

The smallest representative radii (below 1 km) lie in Bering Strait and the Russian Arctic in early winter, and in the Laptev Sea

in late winter. The difference in representative radius between fall and spring is accounted for by the reduction of floe sizes in

regions near the Arctic interior (see Fig. 6).35
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Figure 3. Top row: Temporal and geographic variability of Arctic representative radius. (a) Climatology of Arctic-average representative ra-

dius in units of km (red line). Thin lines are individual CryoSat-2 years. (b) Annual-average Arctic representative radius (red line). Thin lines

are average in individual months. (c) Climatological representative radius in months October-December. (d) Same as (c) but for February-

April.

4 Evaluating the Power-law Hypothesis Using Floe Size Statistics Derived from CryoSat-2

Given a collection of chord lengths, we would like to examine whether it is distributed according to a power law. Under the

assumptions of Sec. 2, the scaling behavior of the FSD is the same as of the FCD (see Appendix A). We use the statistical

methodology outlined in (Clauset et al., 2007, 2009; Virkar and Clauset, 2014) (which we term the MLE method) to evaluate

shape parameters of the most likely power law fit and to test its plausibility. This method has been used to evaluate power-law5

behavior in recent FSD model (Horvat and Tziperman, 2017) and observational studies (Hwang et al., 2017; Stern et al., 2018b)

and proceeds as follows:

1. Lower-truncate the FCD. First identify a minimum chord scale, D∗, above which we hypothesize a power law tail, and

analyze only those floe chord measurements. We either (a) choose D∗ to be 900 m (to reduce the impact of small-size

sampling errors discussed in Sec. 2) or (b) use the scheme described in Clauset et al. (2007) to evaluate the most likely10

value of D∗ for a power law tail. The length of this lower-truncated distribution is N . In the descriptions that follow, we

use the subscript all to describe case (a) and tail to describe case (b).
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Figure 4. Examining the power-law hypothesis. (a) Histogram of all chord lengths recorded in the Arctic for the months November-April

(black). Bin centers indicated by hashes and are logarithmically spaced. Blue line is power-law fit to all observed sizes according to eq. 14.

Red line is power-law fit to the tail. Dashed red lines are fit lines using the ± 1 standard deviation values of α̂. Red vertical line is the most

likely beginning of the power law tail, D∗, with shaded region ± 1 standard deviation in D∗. (b) Same as (a), but for measurements in April.

(c) Maximum likelihood estimate of the beginning of the power law tail, D∗ (in km) for all measurements at each geographic location over

the observational period. Only locations with N > 1000 are plotted. (d) Maximum likelihood estimate of power law tail exponent, α̂tail, for

the same points. Colored values have more than 200 chord lengths in the tail and p > 0.1. Zero values are those locations plotted in (c) but

where either p < 0.1 or there are less than 200 measurements in the tail. (e) Number of chord lengths in the tail (above D∗) at each location.

2. Compute power-law scaling estimates and parameter uncertainty. We obtain two estimates of the FCD scaling

estimate: either computing α∗ via Eq. 13, or computing α̂, and uncertainty estimates in both α̂ and D∗ via the MLE

method (Eq. 14). That the two estimates of α agree is a necessary condition for the FCD (and thus FSD) to be power-law

distributed.

3. Examine the plausibility of the power law fit. We generate M FCDs of size N (the same number of synthetic chords5

as observed chords), with each synthetic FCD drawn from the hypothesized power law distribution P (α̂,D∗). For each

of these synthetic FCDs, we compute the Kolmogorov-Smirnov distance between it and the hypothesized power law

model that generated it, P (α̂,D∗). We also compute the distance between the observed FCD and P (α̂,D∗). A p-value,

p, is equal to the fraction of those M synthetic FCDs that are “further away" from the hypothesized power law model

than is the observed FCD. We use M = 10,000, which permits computation of p within 0.005 (Clauset et al., 2009), and10

rule out the power-law hypothesis under the condition p < 0.1 (Virkar and Clauset, 2014).
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We note that a “power law" describes the scaling of a distribution’s tail. Previous observational studies have discussed

“double power laws" (i.e., Toyota et al., 2011), i.e. two power-law distributions of different exponent joined at a specified

scale. The methods employed here would capably capture the large-size power law scaling but not the small-scale scaling.

Such “double power laws" are necessarily scale-variant, and require at least 3 parameters to describe. The conceptual and

mathematical simplicity of the “power law hypothesis" does not apply in such a case, and we do not consider them here.5

The MLE method is a rigorous test of the power-law hypothesis that eliminates potential human bias when interpreting

observational data. To illustrate why this is important, we first consider the entire set of 11 million chord lengths recorded

in the Arctic in all months (October-April), spanning a length range from 300 m to 100 km. The histogram of these floe

chords is the black line in Fig. 4a (hashes on black line are the logarithmically spaced bin centers). Beginning from D∗ =

Dmin = 900m, α̂all = 1.97 (blue line) and α∗

all = 2.05 (not shown). The observations are further away from synthetic data10

drawn from P (α̂all,D
∗) in each of the M = 1,000 random draws (pall = 0/1000) and we reject the power law hypothesis

for these measurements. We note that if the resolution bias explored in Appendix B proves to be larger than expected, the

under-representation of small floe lengths may affect the analysis of the full distribution.

Examining the tail of the distribution in Fig. 4a, the maximum likelihood estimate of D∗ is ≈ 15.0 km (red vertical line,

vertical shaded region is the range of uncertainty for D∗), above which there are ∼40,000 chord length measurements between15

24.7 km and 99 km (0.4% of the dataset). On the truncated FCD, α̂tail = 4.65 (red line, dashed lines are uncertainty ranges

for α̂tail), and α∗

tail = 4.67 (not shown), similar to the large-scale roll-off reported in observations (Toyota et al., 2016). Even

when restricted to the FCD tail, ptail = 0/1000.

Finding no statistical basis for a power-law fit to the tail in Fig. 4a underscores the challenge in using the human eye to

observe power law scaling. While the black and red lines in Fig. 4a appear similar across much of the range of sizes above 24.720

km, examining the misfit between the power law estimates and the data show that the two curves in fact differ significantly

across the entire fit range. A misfit error can be defined as,

E =

〈

|P (xi, α̂tail,D
∗)−P (xi)|

P (xi, α̂tail,D∗)

〉

(15)

where the xi are the bin locations, angle brackets denote an average over the relevant bins, andP (xi) are the observed histogram

values. Over the range from 24.7 km to 100 km, the misfit error is 33%. The visual agreement, misfit error, and apparent slope25

and shape of the distribution depend sensitively on the bin spacing and the logarithmic plotting.

Sea ice parameterizations that assume a power law distribution may significantly bias sea ice statistics. The imposition

of any fixed distributional shape, when FSD dynamics are scale-variant, leads to implicit non-local redistribution of sea ice

between floe size categories (Horvat and Tziperman, 2017). To see this in practice we compare the difference in Arctic-wide

representative radius, r, which is used in parameterizations of wave attenuation and ice thermodynamics, between the most-30

likely power-law fit to the data and the “true" value obtained via Eq. 6. The observations yield r =10.2 km, versus 34.5 km for

the power-law fit. Examining only the tail of the distribution (chord lengths above 24.7 km) yields better agreement: 23.7 km

for the observations and 24.4 for the fit line. Yet this tail constitutes just 1% of all measured chord lengths, corresponding to

just 18% of total ice area and 4.5% of the perimeter per square meter (Eq. 7).
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Scaling coefficients can provide useful information about the distributional shape. In Fig. 5(a-d) we show the seasonal and

inter-annual variability of power-law estimates in the Arctic. Figure 5a plots the climatology of the power law scaling estimates

when including all measured chord lengths in dark red (using Eq. 13) or blue (using 14). Individual years are thin red or blue

lines. The two estimates disagree. Because agreement between the two estimates is necessary for the power law hypothesis

to be true (see Sec. 4, SI Text S1), this alone is sufficient to rule it out. There is a seasonal cycle in the power-law fitting5

to the full distribution, with αall increasing (steepening) from September to January and remaining flat until April, and no

significant linear trend at the p=0.05 level for the annual-average value of αall. Fig. 5(c-d) repeats this analysis on the tail of

those monthly distributions. In this case, the two estimates agree well. There is a different seasonal cycle in the steepness of

the distributional tail: shallowest in early winter and steeper in late winter. This indicates that the changes across the winter

months may be due to a reduction of the largest floes and a steepening of the distributional tail, although there is significant10

inter-annual variability among these estimates. A similar seasonal cycle to that found in Fig. 6(a,c), with an FSD that steepens

from September to April, was found in image analysis of floes in the Beaufort and Chukchi Seas (Stern et al., 2018b), with

α≈ 2.5, although the distribution steepened monotonically over that period. There is no significant linear trend at the p=0.05

level in the annual-averaged FSD tail slope (Fig. 5d).

5 An Example Model-observation Comparison of Floe Size Variability15

A principal aim of this work is to allow model-data comparisons and facilitate testing rapidly-developing FSD/FSTD models.

Here we demonstrate how such a comparison can be made and provide useful information to modelers, even in the presence

of the high uncertainties in this nascent FSD reconstruction technique. With the gridded data provided above, we may now

directly compare development-stage sea ice models that incorporate FSD effects to observations. To do so, we use the Roach

et al. (2018a) prognostic model for the FSD/FSTD, based on the Horvat and Tziperman (2015) theoretical FSTD framework,20

implemented into CICE 5.1.2 (Hunke et al., 2015) sea ice model. The FSTD is a sea ice state variable, subject to interaction of

five key physical processes: lateral growth, lateral melt, fracture by ocean surface waves, welding of floes in freezing conditions

and wave-dependent new ice growth (Horvat and Tziperman, 2015, 2017; Roach et al., 2018a, b). Previously published model

runs (Roach et al., 2018a) focused on the impact of the FSD on lateral melt, which is largely driven by small floes (Steele,

1992), and so floe sizes above 1 km were not considered. As a larger range of scales is resolved in the CryoSat-2 observational25

product, we conducted a model run that extended the floe size categories to scales larger than 1 km, using 24 logarithmically-

spaced floe size categories from 0.5 m to 33 km.

This FSTD model simulation is coupled to a slab ocean model and the WAVEWATCH III ocean surface wave model (Tolman,

2009), forced by the JRA55 atmospheric reanalysis (JRA-55, 2013) over the period from 2000-2016. These wave-coupled runs

are branched at year 2000 from a standalone sea ice run from 1975-2000, spun-up using repeated 1975 atmospheric forcing.30

Additional model physics beyond those processes outlined in Roach et al. (2018a), have been added to determine the initial

size of newly formed sea ice floes as a function of the ocean surface wave field. Details on this new parameterization, model

initialization, and spin-up, are described in Roach et al. (2019). Recalling the finite measurement resolution of the CryoSat-2
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Figure 6. Geographic and climatological comparison of modeled and observed representative radii. (a-b) Average representative radius from

November-December in (a) the CryoSat-2 observational dataset and (b) the FSTD model. Grey shaded regions in (b) are the interior of

contours in (a), which represent “pack ice" unaffected by waves in the model simulations. (c) Climatology of Arctic-average representative

radius in units of km for the MIZ in observations (red) and modeled (blue). Green line is the annual average for the “pack", the excluded

regions in (b). Thin lines are averages in individual years from 2011-2016 in the MIZ. (d-e) same as (a-b), but for the months of February-

April. (f) Annual-average Arctic representative radius for wave-affected regions in MIZ observations (red), MIZ model (blue), and pack ice

observations. Thin lines are average in individual months in the MIZ observations.
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dataset, the modeled representative radius is calculated only including floe size categories from 150 m (as floe sizes are radii,

this corresponds to a radius equal to the minimum chord length) and larger. We include all FCD measurements here (chord

lengths above 300 m) to make the broadest comparison, but note that the potential under-representation of floes with diameters

near the sampling resolution may lead to inaccurate values of r in regions mainly consisting of such floes.

Fig. 6(a-b,d-e) compares modeled and observed climatologies of Arctic representative radius (for floe diameters 300 m and5

larger) averaged over 2011-2016 and the months of October-December (a,b) and February-May (c,d). Geographic variability of

representative radius is broadly similar between model and observation: the largest floes lie in the Arctic interior, with regions

of smaller floes in the straits and continental margins. Across the interior Arctic, simulated representative radii are significantly

larger than are found in the observations, as the Roach et al. (2018a) FSTD model does not include processes that break up

large floes in the absence of ocean surface waves. To compare seasonality between model and observations, we compare only10

those regions that experience wave fracture in the model runs, areas we collectively term the marginal ice zone (MIZ). The

MIZ is defined by excluding categories that do not experience wave fracture in a given month (see Appendix D), shown as the

contoured regions in Fig. 6(a-b,d-f) and greyed out in Fig. 6(b,e)). All excluded “pack ice" regions have modeled representative

radii greater than 18 km. The MIZ region accounts for 37% of grid areas with at least 25 chord measurements in months from

October-December and 35% of such areas for the period February-March. Note that the month of October is absent from15

these plots, because no well-sampled regions are classified as MIZ across all model years according to the criteria outlined in

Appendix D.

Fig. 6(c) compares the observed (red) and modeled (blue) Arctic-average representative radii for the MIZ across over the

period 2011-2016 as in Fig. 3(a). The seasonal cycle of representative radius in the MIZ is different in the observations (red

line, thin orange lines are individual months) than when all geographic regions are included (Fig. 3a). The seasonal cycle20

of representative radius in the “pack ice" region (i.e. not the MIZ) is shown as a green line in Fig. 6c. In the MIZ, average

representative radii are smaller (on average 4.17 km vs vs. 6.49 km in the pack ice region). In contrast to the seasonal variation

across all geographic regions (Fig. 3a) as well as in the pack ice, floes are larger in February-April than in November-December

(5.40 km vs 3.15 km). In both the MIZ and pack ice regions, however, average representative radius is similar in late winter.

The largest difference between the two regions is from November-December, where representative radii are more than twice25

as large in the pack ice than the MIZ.

Fig. 6(f) shows the annual average representative radius in the MIZ (red), pack ice (green) and modeled MIZ regions (blue).

Modeled MIZ representative radii have a similar magnitude compared to the MIZ observations, though these regions have

smaller floes than the interior. To address the scale mismatch between the too-high modeled floe sizes and observed represen-

tative radii in the interior Arctic, as well as the strong and different seasonal cycle in representative radius in both regions,30

modeling efforts must include additional mechanisms for reducing floe size in the Arctic interior away from waves, such as

mechanical fragmentation (Toyota et al., 2006; Rynders et al., 2016) or ridge dynamics (Roberts et al., 2019), to obtain realistic

representative radii across the entire Arctic, as these processes are not present in the model used to make this comparison.
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6 Conclusions

Here we developed and demonstrated a method for deriving the statistics of the sea ice FSD from satellite radar altimeter

measurements of chord length. This method provides the first pan-Arctic accounting of climate-relevant quantities derived

from the FSD, permits testing of existing scaling laws previously used to characterize distributions of floe size, and allows for

gridded comparisons between FSD models and observations. Using this new technique we produced climatological, annual-5

average, and geographic mean moments of the Arctic FSD across a range of resolved length scales from 300 m to 100 km.

With the combination of satellite altimetry and mathematical theory, we were able to rigorously examine the “power-law

hypothesis" related to the FSD under simple assumptions about the underlying floe chord data and the fidelity of CryoSat-

2 satellite retrievals. Segmenting measurements by geographic location, by month, and by year, we find limited statistical

basis for a power-law scaling beginning below about 6.5 kilometers. In a limited number of geographic locations, we find the10

observational data cannot rule out power-law scaling, but for typical sizes above about 6.5 kilometers. Assuming a power-

law floe size distribution can bias sea ice model output and conceptual understanding. The geographic variability and lack of

consistent multi-scale behavior reinforces the need for sea ice models to account for floe-scale processes rather than diagnose

a distributional shape.

Observations that span the polar regions and different years and seasons are valuable for future refinement of process-based15

models of the FSD. In Sec. 5, we demonstrated how such model-observation comparisons can be made and can provide useful

insights for model developers. At present, some general features of floe size evolution (in particular the magnitude and seasonal

cycle of the representative radius) are broadly similar between model and observation in the marginal ice zone. Yet there is a

significant scale mismatch in the interior Arctic between the presented simulations and this observational product, because of

missing fragmentation physics in the absence of ocean surface waves. Floe size modeling efforts have focused on marginal ice20

zone processes (Horvat and Tziperman, 2015; Zhang et al., 2015), and particularly floe sizes below about 1 km because these

small floes play an important role in sea ice thermodynamics for floe sizes. The CryoSat-2 observations, however, are best

suited to resolving floe chords of several hundred meters and above. New satellite altimeters like ICESat-2 have the potential

to increase the chord length resolution to scales of 20-100 m and provide insight at smaller scales.

We emphasize strongly that refinement may be necessary to apply this method for operational purposes, trend analysis,25

and further model validation. This paper has focused on the framework for making altimetric measurements of the FSD and

comparison to model output, but the obtained chord lengths and distributions have not been carefully validated against other

observational methods, and this will be necessary before further application of this method. Before doing so, we have tried to

outline the most significant uncertainties in the method. The typical assumptions of homogeneity, isotropy, and stationarity are

invoked here at the length scale of the CICE model grid (O(25) km on each side) and time scale of one month. These statistical30

assumptions may not be satisfied if, for example, the number of measurements in a given region in one month is insufficient

to sample the known anisotropy of the sea ice floe field, and additional passes change the mean chord length significantly (see

Supporting Information Text S2 and Fig S1). While we found little evidence for power-law scaling throughout most areas of

the Arctic, this may be sensitive to the geographic (here the CICE model grid of approximately 25 km x 25 km) and temporal
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(here all measurements from 2010-2018) windows we use to collect and evaluate chord length measurements for a power law.

The assumption of scale-invariant sampling, observational uncertainty because of the finite sampling resolution, analysis of

ambiguous returns, and the accuracy of retrievals in regions of thin sea ice may also affect the inferred size of sea ice floes.

This in turn may affect the climatologies described in this study.

While processed CryoSat-2 data has been validated against both visual imagery and ground-based observations, it was not5

designed with this application in mind — additional quality control may be necessary for climate studies of changing floe

properties. The positive comparison between model and observation in Section 5 could also be due to a compensation between

these measurement uncertainties and will need to be re-examined in future validation work. Yet observational uncertainties

regarding, for example, the floe shape distribution can be roughly estimated at the order of the error in "effective radius"

obtained for circular floes (r =
√

A/π) or a square (r =
√

A/4), a relative error of 25%. To constrain model results beyond10

this scale of error will require further refinement. However, as shown in Fig. 6, at present the model-data mismatch in the

interior Arctic can exceed a factor of 3. Even with expected levels of error in the present derived FCD/FSD product, some

constraints on the model can be considered at present with this method. A future comparison of results from the the Ice-

Sat2 and CryoSat-2 altimeters will provide insights into the relevance of measurement and statistical uncertainties, as will

comparison of altimetrically derived floe chords measurements with visual imagery.15

Even accounting for important caveats that arise from making satellite measurements, remotely sensing the sea ice FSD from

altimeters at sub-daily resolutions can provide a significant increase in data for comparison and analysis of new sea ice models

that parameterize the FSD. Previously the difficulty of making measurements of the FSD at relevant spatial and temporal scales

has inhibited the wide-spread adoption of such floe-sensitive sea ice models. Understanding sea ice variability at the floe scale

is also an important aspect of sea ice forceasting, and the ability to remotely assess the sea ice FSD at near-real-time will allow20

for further improvement of operational forecasting networks.

Data availability. CPOM sea ice data, including raw floe length data, are available on the CPOM data portal at http://www.cpom.ucl.ac.uk/csopr/seaice.html.

The processed FCD/FSD statistics are available at https://github.com/chhorvat/CRYOSAT-FLOES/. The Roach et al. (2018a) FSTD model

is publicly developed and available at https://github.com/lettie-roach/.

Appendix A: Proof that the FCD and FSD have the same statistical properties25

For generic probability distributions S(D) and P (r), and a probability function F̃ (D;r), via equation 4 we have the relation-

ship,

〈Dn〉=

∞
∫

0

drP (r)

r
∫

0

DnF̃ (D;r)dD. (A1)
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Where we restrict the upper bounds on the second integral because F̃ (D;r) is zero for D > r. Under the scale-invariant

sampling assumption F̃ (D;r)dD =G(ξ)dξ, where ξ = D
2r for D < 2r (ξ < 1). Therefore,

〈Dn〉=

∞
∫

0

drP (r)

1
∫

0

rnξnG(ξ)dξ (A2)

=

∞
∫

0

drP (r)rn
1

∫

0

ξnG(ξ)dξ (A3)

=An · 〈r
n〉, (A4)5

where An is the nth moment of G(ξ), a constant that depends on the functional form of G. For any such probability function

(for example that derived in Sec. 2 for circular floes), the moments of the FSD and the moments of the FCD are proportional.

Most of the hypothetical statistical distributions we would consider (for example, power laws) can be fully determined in terms

of their moments, and thus the relationship between moments of the FSD and FCD is typically sufficient to reconstruct the

underlying FSD.10

Supposing P (r) was a power-law function, converting Eq. 8 to an integral over ξ from 0 to 1, we have,

S(D) =

∞
∫

0

F̃ (D;r)P (r)dr =

1
∫

0

P (D/2ξ)G(ξ)

ξ
dξ. (A5)

For a power-law function, P (D/(2ξ))∝
(

D
ξ

)

−α

and

S(D)∝ ·D−α

1
∫

0

ξα−1G(ξ)dξ =Aα−1D
−α. (A6)

From Equations A4 and A6, and under the assumptions of Sec. 2, all moments of the FSD and FCD are related by a computable15

function of the moment only, and power-law FSDs are derived from power-law FCDs with the same scaling law. While the

proportionality of moments and Eq. A6 prove that an observed power-law FCD must reflect an underlying power-law FSD, the

same analysis used to arrive at Eq. A6 can be repeated to find P (r) given a power-law distributed S(D) as well.

Appendix B: Bounds on the Relationship between Chord Length and Floe Size Moments

The real altimetric data product has a finite sampling resolution Dmin which can bias the computed FSD moments and power-20

law decay profile. For example, applied to real data with a finite sampling resolution , the integrals in equations 4 to 5 are taken

beginning at the minimum observed chord lengths Dmin and floe sizes rmin =Dmin/2. Moments of the distributions S and

P reflect only statistics for floes larger than Dmin and rmin, respectively. All other aspects of this derivation remain the same,
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as F̃ (D;r) is zero for any r < D/2. However, the relationship expressed in Eq. 4 becomes:

〈Dn〉=

∞
∫

rmin

drP (r)
2n+1

π
rn

π

2
∫

Y (r)

sin(x)ndx (B1)

=An〈r
n〉











1−

∞
∫

rmin

drP (r) 2
n+1

π
rnSn(Y (r))

An〈rn〉











(B2)

≡An〈r
n〉 [1−E(P (r);n)] . (B3)

where Y (r)≡ sin−1(Dmin

2r ), Sn(y) =
∫ y

0
sinn(x)dx, and E is the error in relating the nth moments of S(D) and P (r). Since5

P (r) is unknown, E cannot be computed a priori. The function Sn(Y (r)) expresses the percentage of chords formed from

floes of size r that would be smaller than Dmin, although it is not readily expressed as a function of n. The most pathological

distributio is when P (r) is a delta function at rmin, P (r) = δ(r−rmin), Y (rmin) = π/2 and E = 1 as no chord lengths would

be measured.

We can compute the error function for any delta function distribution as,10

E(δ(r− r∗);n) =
Sn(Y (r∗))

Sn(
π
2 )

, (B4)

and the misfit is the proportion of the integral of sinn(x) betweeen 0 and Y (r∗). Because sin(x) is monotonically increasing

from x= 0 to π/2, the integral of Sn is bounded above:

Sn(Y (r∗))≤ Y (r∗)sinn(Y (r∗)) = Y (r∗)

(

Dmin

2r∗

)n

, (B5)

and the misfit error is bounded above by,15

E(δ(r− r∗;n))≤

(

Dmin

2r∗

)n
Y (r∗)

B(n+1
2 , 12 )

. (B6)

The reciprocal of B is equal to π at n= 0 and decreases sub-linearly, and so away from rmin the error term decays expo-

nentially with n and is small even for nearly-pathological distributions (for n=1, r∗ =Dmin, for example, E ≤ π/24≈ 14%.

Knowing the distribution of errors behaves in this way allows us to establish upper bounds by integrating P as a sum of δ

functions.20

We note that increasing resolution of floe chords will result in tighter bounds on this error. When Y (r)∗ ≤ 1, which occurs

when r∗ ≥ Dmin

2sin(1) ≈ 0.59Dmin, we can exploit a tighter bound using the fact that sinn(x)≤ xn,

Sn(Y (r∗))≤
Y (r∗)n+1

n+1
≤ Y (r∗)

(

Dmin

2r∗

)n

. (B7)

Using the same example as above (n= 1, r∗ =Dmin) bounds the error E ≤ π2/144≈ 7%. A real-world distribution of floe

sizes must have a peak value above zero, thus by increasing the sampling resolution (say, for example, to near the size of25

20



pancakes, i.e. Dmin ≈ 20 meters or less, approached by the ICESAT-2 altimeter), this bound takes over and errors are reduced

substantially.

We can explicitly solve Eq. B3 for distributions with power-law tails. These distributions are peaked at the minimum floe

size, and so will have high moment error. For power laws with α=−1, −2, −3, or −4, E(P (r;α,rmin),1) is 1, 4, 16, or 25

percent. For n= 2,E(P (r;α,rmin),2) is .003, .04, 2, or 9.6 percent: the increase in error with decreasing α is because sharper5

power law slopes concentrate most of the distribution towards the smallest scale.

Appendix C: Maximum Likelihood Estimation for Chord Length Distributions

Given a set of floe chords {D}i and an estimate of the beginning of a power-law tail D∗, we would like to find the most likely

power-law floe size distribution P (r;α,rmin) that generated them. As discussed in Appendix A, moments of the FSD and

FCD are related by a multiplicative factor, and the distributions themselves will share the same power-law exponent. Thus we10

may test the power-law hypothesis directly on the FCD S(D). The power-law hypothesis means that S(D) is of the form,

S(D) =
(α− 1)

D∗

(

D

D∗

)

−α

. (C1)

Following (Muniruzzaman, 1957; Clauset et al., 2009) (see also the derivation in Stern et al. (2018a)), we compute the log-

likelihood of the observations for a given α (eq. 10),

L ≡ ln

N
∏

i=1

S(Di) = ln

[

(

α− 1

D∗

)N N
∏

i=1

(

Di

D∗

)

−α
]

(C2)15

=N ln(α− 1)+N(α− 1) lnD∗ −α

N
∑

i

lnDi. (C3)

As the natural log is monotonically increasing in its argument, to find the most likely α, denoted α̂, we take the derivative with

respect to α and set to zero,

1

α− 1
+ ln(D∗) =

1

N

N
∑

i=1

ln
Di

D∗
, (C4)

which resolves as a solution for the most likely α:20

α̂= 1+
N

N
∑

i=1

ln Di

D∗

. (C5)

The above analysis concerns the most likely α that explains the FCD. We may ask a separate question: what is the most-

likely α, which we define as αP , that would explain the FSD, given the explicit relationship that can be derived between S(D)

and a power-law distributed P (r) examined in Eq. 10:

S(D) = C ·B

(

1

2
,
α

2

)

2α−1

π
D−α (C6)25
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where C is unknown. Repeating the above analysis,

L ≡ ln

N
∏

i=1

S(Di) = ln

[

CNB

(

1

2
,
αP

2

)N (

2(αP−1)

π

)N N
∏

i=1

D−αP

i

]

(C7)

=N lnC +N lnB

(

1

2
,
αP

2

)

+N(αP − 1) ln2−N lnπ−αP

N
∑

i

lnDi. (C8)

Next we take the derivative of L with respect to αP and setting to zero. We use the fact that B(x,y) =B(y,x), and
∂B(x,y)

∂x
=

B(x,y)(ψ(x)−ψ(x+ y)) where ψ is the digamma function, to find,5

∂ lnB
(

1
2 ,

αP

2

)

∂αP

=
1

2

(

ψ
(αP

2

)

−ψ

(

αP +1

2

))

. (C9)

The maximum likelihood αP is the solution to the transcendental equation,

1

2

[

ψ
(αP

2

)

−ψ

(

αP +1

2

)]

+ ln2 =
1

N

N
∑

i=1

lnDi. (C10)

which is an alternative method for obtaining the FSD scaling.

Appendix D: Averaging and Segmenting FSD Statistics10

Due to limitations in the number of floe chords recorded at any particular location over time, we do not include all geographic

locations when computing hemispheric means. Averaging is performed by including only geographic regions where there are

at least 25 recorded floe chords. The area being averaged over is thus not fixed in time. For seasonal cycle plots, we only

include months which have enough measurements for all fully-sampled CryoSat-2 years (2011-2018). For annual averages, we

include only those years where all CryoSat-2 months (excluding June-September) have enough measurements.15

When masking additional regions to perform the model/observation comparisons in Fig. 6, we note that because the Roach

et al. (2018a) model does not include processes that fragment larger floes into smaller floes in the absence of ocean surface

waves, regions in the interior Arctic without wave activity have nearly all sea ice area belonging to the highest floe size

categories. Nearly all regions where wave fracture is an active process also have representative radii below about 10 km (Roach

et al., 2019). We define regions that do not experience wave fracture as those with an abnormally high simulated representative20

radius, which we choose to be the 22nd floe size category (r = 18.6 km) or above. The mask and comparisons in Fig. 6 are

made by excluding all such areas.
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