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Abstract

Material architecture and geometry provide an opportunity to alter the frac-
ture response of materials without changing the composition or bonding.
Here, concepts for using geometry to enhance fracture resistance are estab-
lished through experiments and analysis of the fracture of elastic-brittle,
polymer specimens with pillar-structures along the fracture plane. Specifi-
cally, we investigate the fracture response of double cantilever beam speci-
mens with an array of pillars between the upper and lower beams. In the
absence of pillars, unstable crack growth and rapid catastrophic failure occur
in the double cantilever specimens tested in displacement control. Introduc-
ing pillars at the interface by removing material via laser cutting yields a
discontinuous interface and leads to a more gradual fracture process and an
increase in the work of fracture. The pillar geometry affects the failure load
and, notably, increasing the slenderness of the pillars leads to higher critical

failure loads due to greater load sharing. The effect of pillar geometry on
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fracture is established through experiments and analysis, including analytical
modeling and finite element simulations. An analytical model that includes
the macro-scale response of the beam and the micro-scale response of the pil-
lars is presented and describes the key effects of pillar geometry on fracture
response.

Keywords: Mechanical metamaterials, architected materials, toughness,

heterogeneities, finite element analysis

1. Introduction

High stiffness, strength and toughness are desired properties of mate-
rials in structural applications. While obtaining two of the three proper-
ties simultaneously, e.g. stiffness and toughness (e.g. elastic-ductile ma-
terials) or strength and stiffness (e.g. ceramics) are rather easy, achieving
high strength, toughness and stiffness is challenging [4]. For instance, in-
creasing the strength can lead to brittleness, which reduces toughness and
damage tolerance. Controlling the internal geometry can potentially assist
in achieving all three properties simultaneously by altering the fracture pro-
cess, failure modes, or crack growth paths. Especially, for brittle materi-
als affecting the critical unstable crack growth can enhance damage toler-
ance. Mechanical metamaterial is a class of materials in which mechanical
properties are determined by the internal geometry of the material rather
than by the composition or atomic bonding. Lattice materials are common
examples [34, 40, 25] and have gained attention due to their exceptional
properties, notably high stiffness per weight. The advances in mechanical

metamaterials in recent years have been driven by progress in digital man-



ufacturing techniques that allow for fabrication of materials with complex
internal geometry via additive, subtractive and selective manufacturing pro-
cesses [46, 45, 10, 42, 48, 53, 35, 39, 18]. Mechanical analysis and simulation
have been equally important providing the ability to design internal geom-
etry and architecture to realize specific properties. The use of geometry
has also received substantial interest from the adhesion community where
geometrical features have been exploited to control toughness of interfaces
[49, 15, 5, 24, 37, 12, 47]. One outcome of the work to design dry adhesives
with high adhesion strength is an adhesion scaling law [8], which suggests
that the critical fracture force is proportional to the square root of the ratio
between system compliance and contact area. This law was recently revisited
and generalized to account for the case of progressive failure [36].

The objective of this work is to understand the fracture behavior of struc-
tured interfaces consisting of an array of pillars. The high-level goal is to
identify strategies to improve the toughness of the material through geomet-
ric control. We fabricated, tested, and analyzed structured double cantilever
beam (DCB) specimens including symmetric geometries where the pillar re-
gion is subjected mainly to the uniaxial loading (i.e. mode I) and asymmetric
geometries with a small contribution of in-plane shear stress (i.e. mixed-
mode I/II) to failure. Through laser cutting of elastic-brittle Plexiglas® (i.e.
PMMA) sheets the slenderness of the pillars is varied systematically while
their intermediate distances are kept constant. The specimen behavior is ana-
lyzed using comprehensive analytical formulation and finite element analysis.
Good agreement between the analytical model, experimental results, and nu-

merical simulations is reported. More specifically, we detail the relationship



between the long-range structural response of the specimen and the short-
range micro-mechanical response of the pillar structure. The results indicate
that the pillar-like geometries can be used to increase the critical fracture load
and improve damage tolerance while minimally affecting the stiffness. Due
to the geometrical nature of the enhancements, the conclusions are expected
to remain valid over a range of different length scales and, therefore, be rel-
evant for a number of different applications. Potentially, new or additional
insights can be gained into: fracture in polymers via crazing and fibrillation
phenomena, i.e. slender micro-structures with negligible bending stiffness,
which could benefit from the load sharing mechanism [14, 38, 17]; the role of
geometrical parameters in fracture of composites incorporating fibre bridging
[50, 51]; nature inspired material architectures [13, 26, 21, 1]. The results
may provide insight into more complex, truss-like, structures [44, 28, 29] and
their behavior within confined or constrained zones of multi-materials includ-
ing load transfer in sandwich materials with lattice-like cores. Finally, further

directions toward adhesive bonding toughening can be deduced [32, 33].

2. Materials and methods

2.1. Specimen

DCB specimens with a total length L = 160 mm, a load application point
10 mm from the end, width b = 3mm, lower beam thickness of A = 20 mm,
and top beam thickness of 20 or 30 mm were examined (Fig. 1). The speci-
mens were laser cut (flatbed laser cutter, 10.6pm wavelength, CO, gas, 40W
laser used at 80% power, 10mm min~! speed, Ten High, China) from 3 mm

thick, extruded sheets of poly(methyl methacrylate) (PMMA) with a Young’s



modulus of E* &~ 2.7 GPa, Poisson’s ration v = 0.33 (adopted from product
data sheet) and a fracture energy of G, ~ 0.25 Nmm~! (see Appendix A1l
for details on material property determination). Three types of specimens
were tested: 1) reference PMMA DCB specimens; 2) DCB specimens with
a pillar-like pattern along the interface (referred to as symmetric specimens)
and 3) DCB specimens with a thicker top beam and a pillar-like pattern
along the interface (referred as asymmetric specimens).

The reference [used mainly to estimate the fracture energy of PMMA
(see Appendix Al)] and symmetric specimens had h = 20mm for both the
top beams and bottom while the asymmetric specimens had a top beam of
thickness 30 mm, yielding a top-to-bottom thickness ratio of & = 30/20 = 1.5.
Both, symmetric and asymmetric specimens had, if not stated otherwise,
an initial crack length @ = 90mm as defined in Fig. 1(a). The pillars
constituting the bondline had a constant width d = 1 mm, a constant spacing
of s = 1mm, while their height was varied: ¢t = 1,3,5,9 mm. For each
pillar height, three specimens for a total of twelve were manufactured and
tested. To control the crack and ensure failure at the interface between
the two substrates, the laser cutter (35 % power, 100mms~') was used to
etch a line of approximately 250 um depth [measured using a 3D scanning
macroscope (Keyence VR3200, Japan)| along the middle of the specimen
(Fig. 2). To relieve stress concentrations at the base of the pillars, fillets of
R =~ 200 pm were introduced. Failure originating from the corners was not

observed during the experiments.
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Figure 1: Schematic of the specimens with unbonded region ©; and bonded region 5. a)
Specimen dimensions comprising length L, width b, initial crack length a, bonded length
Lpond, beam thickness h, pillar height ¢ and top-to-bottom thickness ratio a.. b) Close-up
of the pillars at the bondline with, width d and spacing s.
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Figure 2: Image and measured profile of the crack tip of the reference specimen. a)
Region of interest marked on a schematic of the reference specimen. The two close-up
images show, from top to bottom, an optical image of the crack tip region with the etched
line and a topographic measurement of the same area. b) Height profile along the dashed,

blue line in a). The depth of the etched trench is approximately 250 pm.



2.2. Testing

Each specimen was mounted using custom-made grips in a universal test-
ing machine (Zwick/Roell Z050, Zwick/Roell, Germany). The tests were

1

performed at a constant displacement rate of 3mmmin~". Crosshead and

force data were acquired simultaneously at a rate of 50 Hz.

3. Finite Element Analyses

A finite element analysis of the specimen geometries was programmed in
Python (v. 2.7.3, Python Software Foundation) and solved using Abaqus
(Abaqus/CAE 18.21.41, Dassault Systemes, France). The geometry is mod-
eled using four-noded, plane strain elements (plane strain conditions are
assumed, since for most of the cases the relevant non-dimensional group
of parameters: b/d;t/d ~ 1) with reduced integration and a linear elastic,
isotropic material model. The model and mesh are depicted in Fig. 3.

The top and bottom beams are modeled separately and connected with a
surface-to-surface contact along the interface. The lower loading point is fixed
and a load is applied to the upper loading point. During post-processing, the
displacement at loading point and the stresses oy, and o,, at the middle of
the pillars, as indicated by the thick line in Fig. 3, are obtained. The mesh
density in the pillar region is higher compared to the rest of the model.
A convergence study showed that it is feasible to use a global mesh seed
of 0.5 mm and a local mesh seed of 30 um for the pillars. This provided a
maximum of 732,530 elements in the model and 33 elements across the width

of each each pillar.
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Figure 3: FEA model of a double cantilever beam configuration with an array of pillars at
the interface. The close-up of the first pillar shows details of the mesh. The configuration
is loaded at the end with A while the reaction force, P, is acquired at the same point.

Stresses, oy, and 0,,, are extracted along the interface denoted by the red line.



4. Theoretical Framework

4.1. Macro-Mechanical Model

The focus of this section is on developing a relatively simple and intuitive
model for interpretation of the macroscopic behavior of the specimen in terms
of substrate properties and effective interface properties of the pillar region.
This approach neglects the geometrical details of the interface by treating it
as homogeneous with spatially averaged properties.

The model is assumed to be under a prescribed force, P, loading, how-
ever, this is easily changed to a prescribed displacement if required. For the
beams, Timoshenko theory is used while the pillar interface is represented as
a Winkler foundation - recently reviewed [16]. Use of a beam theory frame-
work that includes shear to represent the beam is deemed necessary due to
the beam aspect ratio min(a/h) = 6 for which the internal shear effects can-
not be neglected. The Winkler foundation that describes the interface region
cannot account for shear stresses, however, allows the model to remain simple
and intuitive.

The model (Fig. 1) is then divided into two regions 1) the free/unbonded
region (£21) and the interface/bonded region (£23), both connected through
continuity conditions.

The equilibrium equations of the Timoshenko beam on the Winkler foun-

dation [43] are:

dM dV
dx +V =0 dx v (1)
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with:

d d
M = E@;% V = kGA (% - gp) with 8 =t,b 2)

where M,V w, and k are bending moment, shear force, deflection, and foun-
dation modulus, respectively, and ¢, I, I3, k, G, and Ag are rotation, elas-
tic modulus, moment of inertia, shear coefficient, shear modulus, and the
cross-sectional area, respectively. The subscript (3 either takes t for top or
b for bottom such that I, = (wh)®b/12 and I, = h3b/12. For a rectangu-
lar, homogeneous and isotropic beam the cross-sectional area, shear coeffi-
cient and shear modulus are A;,, = ahb and A,y = hb, k = 5/6 [52], and
G = E/2(1 + v) with v being the Poisson’s ratio.

4.1.1. Interface Region Homogenization

Instead of a discrete formulation of the interface [22], which would lead to
over-complicated derivation, at present this region is regarded as continuous
with a representative unit cell consisting of a pillar with length d and a
spacing of length s. The foundation modulus is taken as the resulting stiffness

of the unit cell:

b b b
k= <27Epillar> f + (%Espacmg> (f - 1) = <2?E) f (3>

Such formulation can be used within a general context, for instance in-
cluding material variability [32, 33]. In the present study Eji., = E,
Espacing = 0 and f = d/(d+s). Thus, k defines a homogenized stiffness
of the pillar region. Defining £ = mFE* where m is a constant, allows for

adaptation of different stress-strain states [23]. m = 1 for plane stress and
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m = (1 — v?)~! for two-dimensional plane strain. Following the FEA, the

latter assumption is used throughout the paper.

4.1.2. Unbonded Domain

The unbonded domain spans from the load application point (x = 0)
to the crack tip (z = a), with subscript (), referring to quantities in this
domain. Within the domain &£ = 0. With bending moment, M = — Pz and

shear force, V' = — P, integration of eq. (2) yields:

P P
71 / BT Tapnt T )

where A; is a constant of integration. Combining eqs. (2) and (4) and

integrating leads to:

P P, P P
b / K,GAﬁ + 2E[5$ T AeE 6E[5m + /{GAﬁx ATt B ( )

where B; is an additional constant of integration. Both constants are found

by imposing deflection and rotation continuity at the crack tip.

4.1.3. Intact Domain
The intact domain representing the interface region spans from the crack
tip (x = a) to the end of the specimen (z = L) with k # 0.
The governing equation for a Timoshenko beam on an elastic foundation
is:
d*w ko dw? k

dit  kGAg da? * Elgw =0 (©)
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with a solution of the form:
We = Age T 4 By e"* + Chye™ 2% + Dy e’ (7)

Ag, By, Cy and D, are unknown constants. ~; and 7, are the roots of the

eigenvalue problem eq. (6) given by:

wenL(vETT) e (evESY)

with A and € being phenomenological parameters related to the elastic pro-
cess zone of the foundation’s damping of the beam deflection [22] and to
the modulation of the damping to either periodic or monotonic decay [43],

respectively. They are expressed as:

ik EI
Y g= Y5 (9)
4E]5 ZHGA/B

The rotation, obtained by combining eqs. (2) and (7) and integrating, gives:

P2 = =1 Age™ T + 9y Boe™" — by Cae™ " + 9hy Dy e™* (10)

where 1 and 15 are constants depending on the geometry and the material

of the specimen:

kGAgY: — k
kG Agy

kGAgys — k
kG Az,

Constants As and Cy are determined through rotation and shear angle con-

¢1 = ¢2 = (11>

tinuity between the two domains. The remaining constants, By = Dy = 0,

are found by assuming the far field as intact (ws = 0, ¢y = 0 as z — o00).
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4.1.4. Strain Energy Release Rate
The compliance is calculated as ratio of the total displacement of the top

and bottom beams to the applied force:

¢= P

(12)

The strain energy release rate (SERR) for the macro-mechanical configu-
ration is obtained by combining eq. (12) and the Irwin-Kies equation, which

states

_ PrdC

g= 2% da (13)

Assuming that the crack grows once the Griffith fracture criterion [20] is
satisfied, eq. (13) is set equal to the critical strain energy release rate, G.,
and an expression for the critical force, P., i.e. force necessary for crack

onset, is obtained:

da
P. = \/2bG\/ I (14)

Note, that the adhesion scaling law [8], in a generalized form [36], i.e. P. o

% with dA = bda, is recovered. Griffith’s criterion requires the material to
behave in an elastic-brittle manner, though small scale yielding is also allowed
[30]. With the relatively small dimensions of the pillars (¢, d) this can be

questioned. The critical material length scale can be associated with the size

of the crack tip plastic zone calculated as: r, = cgggE where ¢ € (%, 2) [41]
Yy
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depending on the assumed stress-strain conditions. For PMMA it equates to
r, &~ 10" pm. From dimensional analysis following non-dimensional groups
are recognized: 2;%2: 2. Here, 2 is the largest with a magnitude on the
order of 107!, The others are on the order of 1072 or lower. We conclude,

that in the present case the material can be regarded as brittle.

4.2. Micro-Mechanical Concepts

In the previous section, the pillar region was treated as homogeneous, thus
a dependence on pillar geometry was not obtained from the analysis. The
geometrical realization of the concept of tunable toughness must be related
to the distance between the pillars and the pillar aspect ratio. Additional,
independent, non-dimensional groups could appear as important: %15 2. The
presence of a gap between the pillars alters the load transfer and introduces
new mechanisms of failure. Fig. 4 shows a schematic view of the kinematic
field experienced by pillars at the interface. Only the top adherend and the
region near the adherend/first pillar is considered. In the general case, the
adherends are of different bending rigidities, thus the top and bottom sections
of the specimen will experience different rotations and displacements. The
following assumptions are made: (0 —¢)/d = (¢ — ¢p)t and X - d < 1.
With the notation of Fig. 4, the loading distributed over the pillars can
be separated into two distinct cases: 1) tension/compression of the pillars
following (6 —t) = (wy + wy) (for the geometries studied compressive failure
was not observed, however, for completeness analysis of the associated failure
mode can be found in Appendix A2) and 2) shear through u = (¢; — ¢p)t.

With the proposed load decomposition it is assumed that the failure mech-

anism of a single pillar is representative for the overall failure of the specimen.
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Figure 4: Schematic representation of the kinematic field of the first pillar. Only the top

pillar-beam transition is shown for clarity (denoted with index t).

4.2.1. Pillars Under Mode I Loading

Tension of the pillar results in uniaxial force P, and produces a moment
M, (with subscript p referring to the pillar). The mechanism of energy
dissipation is through fracture caused by loads P, and M,. The change in

elastic energy stored in the first pillar from F, reads as:

1 102

P, o .
where we define o = 1 and € = I assuming average values of both stress
14

and strain. Here A, = bd is the cross sectional area of the pillar while AV
is the volumetric change of the pillar between the loaded and the unloaded

stages, i.e. AV = A, Aj. Combining previous equations we obtain:
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1 P?
AU, = =2
P 2AE

(16)

The displacement A¢ is eliminated using the axial stiffness of the pillar (k, =
EA,/t), resulting in:

1 P3t
AU, = A2E2A6 (17)

Following a similar approach the stored elastic energy due to the moment is:

AU, " dxdyA\d = 6M§A5 18
//d/J_ YA = "B (18)

M
where we define o = x]—p with [, = d®b/12. Again, A4 is eliminated using

P
the stiffness of the pillar and eq. (18) is rewritten as:

6M2 Pyt

AU, — P P
Un = Boeea,

(19)

With the elastic energy defined, the energy release rate is given as the change

of elastic energy with the change of crack area:

(AU, + AU,,)

gtens - AA

(20)

P

Assuming that there exists a crack a, such that A, = b(d — a,) leads to:

Pt 3M}P,t

1
gtens - Z (d . ap)3b3E2 33 E2 (d p)

=Gy +Gnm (21)
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Within the limit of a, — 0, which sets up P = F. we obtain:

1 P3t 3M2P,t
- 4 + p-P
AdBVBE?2 P E?

gctens = (22)

Moreover, taking P, = obd and M, ~ P,(d + s) yields:

1 5\3 s\5] [t\ [c3d
s = {z (1+3) +3(1+3) } <a) <E_> (23]
A complex relation between the pillars hight, the width, the spacing and the

SERR is revealed. The spacing-to-width ratio s/d increases the SERR while
the aspect ratio t/d decreases the SERR.

4.2.2. Shear Loading of Pillars
Under the shear loading applied to the specimen, a single pillar can be
d
treated as a cantilever beam under loading of the force P, = / T(x)bdx.
0

Using Timoshenko beam theory, the compliance is:

L t? L2
PP 3EL, kAG

(24)

where [, = %bd‘g. As in the previous case, consider a crack of length a,
inside a pillar so that: I, = b(d — a,)* and A, = b(d — a,). Using Irwin-

Kies equation, eq. (13), differentiating with respect to a, results in:

P23 _ P?t _
Gop =697 5 (d—a,) " + 2T (d—a,) ™" (25)

18



which contains both the bending (the first term on the right hand side) and
the shear part (second term) of the SERR. At the onset of the failure, i.e.

a, — 0, we write:

P23 P2t
Gsp = Gesp = 6b—;Ed_4 + Q@d—2 (26)

Under the assumption P, = 7bd yields bending:

,7_2 t3
Gop = 6@@ (27)
and shear:
2
.

parts of the energy release rate. Interestingly, in ref. [2] within a slightly
different context and using calculations including coarse grained atomistic
simulations, the existence of a critical length scale parameter agreeing per-
fectly with ¢, which controls failure of friction adhesive junction, was discov-
ered. Egs. (23), (27) and (28) summarize the results of the micro-mechanical
analysis and will serve as a basis for the experimental and numerical investi-

gations.

4.2.3. Coupling Between Micro- and Macro-mechanical Models
A micro- and a macro-mechanical approach to describe the failure process
of the configuration were developed in previous sections. In this section a

coupling between them relating the macroscopic loading P to the resulting
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microscopic loading P, and M,, is established. The pillars are assumed to act
as linear springs with stiffness of the unit cell k. The traction, which acts on
a pillar and is transferred to the beams, is equated as the extension of the

pillar times the stiffness:
q(z) = k- (wr + wy) (29)

In the macro-mechanical configuration the single pillars are disregarded and
a continuous, unit cell-based bondline is constructed. When shifting from the
macroscopic to the microscopic configuration it is assumed that each pillar
carries the loading of the corresponding unit cell. Furthermore, it is assumed
that the overall failure of the structure is governed by the failure of the first
pillar. Hence, the analysis is restricted to the first pillar only. The average

stress acting on the first pillar is:

]{I a+d+s
e = gy [ e (30)

Assuming that the adherend thickness remains unchanged, the local pillar

extension can be found from the global deflection as:
wy=wo (f=1) and w, =wy (6 =0) (31)

When combining egs. (30) and (31) the pillar stress becomes a function of
the global loading P, hence, when inserted into eq. (23) a coupling between

the macroscopic loading and the microscopic failure is realized.

5. Results and Discussion

5.1. Load Response
Fig. 5 shows representative force-displacement curves for: a) the refer-

ence specimen, and b) the symmetric DCB with a pillar interface. Both

20



specimens exhibit the same initial, linear loading up to crack onset, which is
indicated by circular markers in the plots. For the reference specimens, Fig.
5(a), the initial linear loading path was replaced by another, almost linear,
monotonically increasing in the present case. The deviation from the initial
slope was caused by onset and propagation of the crack out from the initial
plane defined by the pre-crack. In the experiments it was observed that the
crack kinked out of the etched line and followed the shear band direction,

resulting in catastrophic failure of the specimen.

IZN) 35
_______ Cl 4 30
.l i 251
Z201 E 2 20-
Al 151 i ;:: 154
= l 10+
3 W:/PdA 5]

00 > 4 6 00 3 :
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(a) (b)

Figure 5: Experimental force-displacement curves. a) Reference specimen where the
dashed, red line showing the initial linear, loading path. b) Asymmetric specimen with
pillars of t/d = 9. Red, dashed lines correspond to the compliance at specific crack lengths.
The theoretical predictions agree very well with the positions of the pillars (2mm sepa-
ration). The cyan areas indicate the area use to evaluate the work of fracture - W, ;=

0.067J and Wyqr = 0.106 J.

A significantly different behavior is observed for the specimens with the
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pillar interface. In Fig. 5(b) a representative curve for the symmetric spec-
imen is seen (specimen with aspect ratio t/d = 9). The initial loading per-
sisted until the crack onset of the first pillar (marked by a circle). The failure
of it led to a load drop (the second circle), however, load increased again af-
ter the crack reached the second pillar. Instead of catastrophic failure a new
loading path is followed until the critical force for the next pillar is reached
leading to its failure and a load drop, which is then recovered by the third
pillar, and the process is repeated until the crack reached the last of the pil-
lars. A non-steady state (effectively, the stick-slip) propagation is observed
and is comprised of crack onsets and crack arrests. No kinking of the crack
from the interface was observed in any of the experiments.

Together with the experimental data are depicted the theoretical loading
paths (marked with dashed, red lines) obtained using eq. (12). Each loading
path was calculated with an initial crack length corresponding to a well
defined pillar position. For example, the first loading path corresponds to
a crack length of a;1 = ap = 90mm, the second path is calculated with
a2 = ap + (d + s) = 92mm, and so on. The theoretical predictions of the
loading paths correspond very well with those of the experimental data. This
supports the idea of each pillar failing individually followed by crack arrest
at the next pillar. Furthermore, this result shows that crack propagation is
the main source of energy dissipation and it gives confidence that the use of
the Irwin-Kies assumption [eq. (13)] is justified.

The crack propagation facilitated by multiple crack onsets and arrests

gave the specimen a much larger extension range and associated work done

1 n
ie. W = /PdA = §Z(POiA,~—PM-Ai) x n where W, P, P, A;,n
i=1
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denote the work done by structured interface, force at crack onset in pillar
1, force at crack arrest position of pillar i, displacement at pillar ¢ and the
number of pillars, respectively, compared to the kinking crack, which in the

present study always led to critical failure soon after onset.

t/d=1 (asym) 2 t/d=9 (asym)
304 30
2w e
i34y A 25
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Figure 6: Experimental force-displacement curves. a) Asymmetric DCB with a top ad-
herend 1.5 times thicker than the bottom adherend. The pillars had an aspect ratio of
t/d = 1. b) Asymmetric DCB with pillars of aspect ratio t/d = 9. The different marks
indicate 1) initial loading path, 2) crack onset / loss of linearity, 3) point of crack arrest
and beginning of new loading path. The cyan areas depict the work of W;,4—; =0.090J
and Wy 43— = 0.080J

For comparison, Fig. 6(a) and (b) show the exemplary load response
for asymmetric specimens with the pillars of aspect ratios of t/d = 1 and
t/d = 9, respectively. The same main features of the force-displacement
curves are revealed viz. crack onset-arrest behavior visible from the charac-

teristic jagged form (in Fig. 6 the numbers 7-3 denotes linear loading, crack
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onset and crack arrest stages respectively). It is noticed that introducing
asymmetry to the configuration did not affect the load response significantly.
Comparing the responses for different pillar heights, they are very similar in

terms of qualitative behavior.

5.1.1. Compliance

Figure 7 shows the compliance (normalized by the theoretical compliance
of the reference geometry) as a function of the aspect ratio of the pillars
obtained from the experiments, the analytical prediction in eq. (12), and
from the FEA. The three approaches can be found in very good agreement.
As anticipated, the thicker substrate (higher bending and shear rigidities)
shifted the compliance to a lower state not affecting the overall trend of
the curve. The compliance was expected to increase with increasing pillar
aspect ratio as indicated by eq. (3). This is also seen in Fig. 7. Both the
analytical model and the FEA predict the compliances for both configuration
in the tested range of pillar aspect ratios. However, the analytical model for
the asymmetric configuration slightly underestimates the compliance of the
specimen. It should be noticed that for the limiting case, where the aspect
ratio tends toward zero the analytical model converges to the reference model.
For a pillar aspect ratio of t/d = 9, the compliance is around 13 % higher
than for the reference DCB specimen. The good agreement between the FEA,
which accounted for the structure of each pillars, and the analytical model,
which homogenized the pillars and interface, supports the assumptions made

for the latter.
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Figure 7: Specimen compliance normalized with the theoretical reference geometry against
aspect ratio of the interfacial pillars. The squares and circles show the mean values and
accompanying standard deviations of the experimental compliances from the symmetric
and asymmetric configuration, respectively. The red lines (dashed for symmetric and
dashed-dotted for asymmetric) are the analytical model showing a very good agreement
with the experimental data. The asymmetric configuration is slightly overestimated in
terms of stiffness. The symmetrical configuration converges to the reference model in the
limiting case where ¢t/d — 0. The FEA, depicted with blue lines (dotted for symmetric
and dashed-dotted-dotted for asymmetric), also shows a very good agreement with both

the analytical model and the experimental data.
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5.1.2. Finite Element Analysis of Load Transfer

In Fig. 8(a-d) the normal stress, 0,,, along the centreline of the interface
region (as depicted in Fig. 3) of symmetric specimens with four different
aspect ratios are shown. All of the four cases are presented as per unit of
applied force.

The red and blue regions depict the axial stress (tension and compression,
respectively) in the pillars. For the lowest of the aspect ratios the stress
distribution takes on a parabolic shape with largest magnitude in the middle
of the pillar. This specific shape is due to the finite height of the pillar
for which the center, y = 0, remains affected by the corner stress effects at
y = t/2. The overall stress distribution resembles the shape predicted by
the homogenized version of the elastic foundation model [eq. (7)] plotted as
a continuous black line. The peak stress, at the first pillar, i.e. governing
failure load, is found to decrease significantly with increasing pillar aspect
ratio. Increasing the aspect ratio from ¢/d = 1 to t/d = 10 reduces the peak
stress on the first pillar by half.

A red, dashed line tracing the upper envelope of the stress in each pillar
for the aspect ratio t/d = 1 in the first Fig. 8(a). The same dashed line
is then plotted in the three, subsequent figures to visualize the effect of the
pillar aspect ratio on the stress. This reveals an interesting trend where the
stress in the first few pillars decrease as the aspect ratio goes up while more
and more pillars are affected. Hence, larger aspect ratios prompt better stress
distribution with the stress spread across more pillars. The distance from the
crack tip to the end of the tensile zone (the process zone length) as obtained

from the FE calculations is shown on the graphs as )\;el. This characteristic
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Figure 8: FEA predictions of the stress oy, distribution in the pillars for the symmetric
configuration. The red and blue regions depict the axial stress (tension and compression,
respectively) in the pillars. The dashed, red lines show the upper envelope of the pillars
with aspect ratios t/d = 1. The process zone /\]781 spanning from the crack tip to the
beginning of the compression zone is marked as well. The black lines show the analytical

solution given by eq. (7).
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length increases by 1.5 times between ¢/d = 1 and t/d = 10 cases, resulting in
two additional pillars carrying the load in the ¢/d = 10. This is in agreement
with eq. (9), which reveals that the elastic process zone increases with the
aspect ratio of pillars. The failure of the specimen is assumed to be governed
by the failure of the first pillar and the peak stress in it decreases with
increasing aspect ratios, thus slender pillars should promote larger critical

failure loads. Moreover, the product of A™'Af. — 1 as £ — oo, which

i
indicates that the homogenized model may form a reference, asymptotic,
solution. However, we expect the other non-dimensional interface parameter
s/d to play an important role, which suggests a possible extension of the
present work.

Let us briefly discuss consequences of the load distribution on the crack
growth process by starting out with the unloaded configuration: P = A =0
in Fig. 5. Upon load application the stresses along the interface are dis-
tributed along A~! and the number of load sharing pillars is established.
The stress level on the first pillar is below the critical value (recognized as
critical force P.). Once the critical stress on the first pillar is reached, the
pillar breaks instantaneously. As reported for the homogeneous geometry
(Appendix Al), due to the brittleness of the material and the finite (and
small) width of the pillar, stable crack growth cannot be expected. The en-
ergy is released and the crack front position moves to the next pillar (i.e.
ap — ag + d + s). The process zone is re-established with the same number
of pillars carrying the load as before, but the peak stress value (for the dis-
placement controlled boundary conditions) is below the critical. Additional

energy needs to be supplied to overcome the threshold value and propagate

28



the crack further. The entire process is iterative as seen from Figs. 5 and
6. Due to the finite size of the pillars and the distance between them, the
process is dominated by deterministic effects and can be related to lattice
fracture models [31]. However, by increasing the number of pillars in the
width direction or by reducing the gap s between the pillars, such that the
stresses shared by two neighboring pillars will be of similar magnitude [13], it
can turn into a more stochastic process. Further analysis of such transition
is beyond the scope of the present study.

To complete this section, in Fig. 9 the axial stress in the pillars for
the asymmetric configurations are shown. The asymmetric specimen has
a very similar trend to the symmetric specimen for both the stress distri-
bution across a single pillar and the overall distribution across the interface.
Both configurations stays in good agreement qualitatively and quantitatively,
hence asymmetry, in the present case, does not seem to significantly affect
the long-range distribution of the tensile component of the stress.

The asymmetric configuration results in additional shearing of the inter-
face. In Fig. 10 the shear stress o,, distribution is shown. Common for all
aspect ratios is that the shearing is largest in the middle of the pillars while
it is zero near the edges (shear stress free). Like the axial stresses, the shear
stresses decrease with increasing aspect ratio, however, the shear stresses are
an order of magnitude smaller than the axial stresses. Recall, that peak axial
stress decreased by a factor of 2 when the aspect ratio went from ¢/d = 1
to t/d = 10. The peak shear stress decreases by almost a factor of 30 for
the same aspect ratio range. As expected from the macro-mechanical model,

eq. (26), the increased aspect ratio allows accommodation of the effects of
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Figure 9: FEA predictions of the distribution of axial stress oy, in the pillars for the
asymmetric configuration. The red and blue pillars depict the tension and compression,
respectively, in the pillars. The dashed, red lines are the upper envelope of the pillars with

aspect ratio t/d = 1.
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Figure 10: Shear stress across the pillars in the asymmetric configuration. The red and
blue pillars show the positive and negative shear stresses, respectively, obtained from FEA
normalized with the shear modulus G. The dashed, red line is the upper envelope of the

t/d = 1 specimen.
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specimen asymmetry, turning the shear dominated, stubby, geometry of the
pillars (¢/d < 1) to a more slender one (t/d > 1) in which bending prevails.
While, in the present study the axial loading of the pillars is dominant and
the shear stresses can be neglected from here on, the work also encourages

further investigation of £/d < 1 cases under mixed mode conditions.

5.2. Micro-mechanics vs. Macro-mechanics

In the following, the difference between the macroscopic and the micro-
scopic approaches is described including the relation to the experimental

observations.

5.2.1. Critical Fracture Force

As mentioned before, variations in the critical force, i.e. the force at
crack onset, were determined for different specimen types and different pillar
aspect ratios. The critical force for the symmetric and asymmetric specimens
are shown by squares and circles, respectively, in Fig. 11. For comparison
the critical forces are normalized with that of the reference specimens, P, ;.
The results show that the onset force P. decreases by around 20% relative to
the reference specimen for aspect ratios up to t/d = 1. However, the critical
force monotonically increases with increasing aspect ratios once t/d > 1.
This supports the idea from the previous section of slender pillars aiding the
stress distribution.

Recall, that within the present study the reference specimen broke abruptly,
while the pillared specimen promoted crack propagation with multiple onsets
and arrests. Introducing pillars at the interface increased work of fracture at

the cost of a slightly lower onset force compared to the reference geometry, at
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least for the aspect ratios treated in this work. The trend of the data predicts
that at certain aspect ratios t/d > 9 the critical force could be similar, even
higher, than for the reference configuration. This observation suggests using
fibril geometries t/d > 1, in agreement with the load sharing phenomena

observed in fibrillar adhesives [7, 27, 3].
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Figure 11: Critical onset force normalized by the onset force of the reference specimen
as function of the pillar aspect ratio. The squares and the circles show the experimental
mean critical force and standard deviation for the symmetric and asymmetric configura-
tion, respectively. The dotted and dashed-dotted-dotted lines show the predictions of the
macro-mechanical approach and the dashed and dashed-dotted lines represent the micro-
mechanical approach with red and blue lines for the symmetric and asymmetric configu-
ration, respectively. Increasing critical force with increasing aspect ratio is observed. This
was captured by the micro-mechanical approach while the macroscale approach fails to

capture this trend.
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In Fig. 11 the predictions of the micro-mechanical and the macro-mechanical
approaches are shown with dashed and dashed-dotted, and, dotted and dashed-
dotted-dotted lines, respectively, with red color used for the symmetric and
blue for the asymmetric specimens. Recall, that the macroscopic approach
was based on the Irwin-Kies equation, eq. (38), and the formulation treating
the interface as homogeneous and continuous. The microscopic approach,
eq. (23), was based on an energetic analysis of the pillar taking its geom-
etry into account. Importantly, even though the macro-mechanical model
successfully captured the compliance of the configurations it failed to pre-
dict the critical force accurately. It underestimates the onset force while
predicting a decreasing trend with increasing aspect ratio - the opposite of
what is observed. The micro-mechanical approach, however, is in very good
agreement with the experimental data both qualitatively and quantitatively.
This supports the concept of failure being governed by the micro-mechanical
mechanisms and, thus, the macroscopic approach alone is insufficient.

Importantly, the macroscopic response of the material to applied load can
be fully controlled through smaller scale geometrical manipulations being the

core of mechanical metamaterials.

5.8. Interface Material Failure Scaling Law

The scaling law derived in [8] suggests that the critical force of a bonded
system is governed by the fracture energy G., the contact area A, and, the

compliance of the system C| i.e.:

P, ~ \/g_c\/g (32)
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Figure 12: Relation between the compliance and the critical force for the symmetric
configuration. The global approach (dashed line) follows an inversely proportional relation
that agrees with the scaling law proposed by [8] when the surface area is kept constant.
The experimental (circles) and the micro-mechanical approach (solid line), however, show

proportionality between the critical force and the compliance.

In the present work, the area created during a single failure event is
b-d = const. However, Fig. 7 indicates that the compliance increased with
the aspect ratio d/t such that the ratio Rac := /A/C — 0 as t/d — .

Thus, the critical force was expected to decrease.

5.3.1. The Effective Load Carrying Area

In Fig. 12 the macro-mechanical and micro-mechanical approaches depict
the relation between the normalized critical force and the compliance. The
data are compared with experimental results. Both, the micro-mechanical
approach and the experimental data display similar trend. Except at the very
beginning, the critical force increased with increasing compliance, thereby

contradicting the scaling in eq. (32).

35



Assuming that the region responsible for load transfer ahead of the crack
front is related to the elastic process zone of length A\~!, the affected area

can be defined by combining egs. (3) and (9):

A=A f = (21,6°)" {ﬁ} " (2)1/4 (33)

The first term on the right-hand side represents the effect of the geometry
of the substrates defining the ’long range interactions’ length scale of the
material. The second term expresses the characteristic, in-plane structure of
the interface and is responsible for the efficiency of the load transfer between
the long and short ranges. The third term reflects the smallest geometrical
feature of the material, which in the present case is the pillar aspect ratio.
Increasing either the dimensions of the substrate, the volume fraction of the
pillars, or the pillar aspect ratio increases the load carrying area by extending
the process zone. Since the compliance, eq. (12), is proportional to the aspect
ratio, the ratio \/A/—C’ also decreases with the aspect ratio when the area is
fixed.

5.8.2. The Surface Area-Compliance Ratio

If the area increases, it is the competition between the growth of the area
and that of the compliance, which determines if the ratio and, hereby, the
critical force increases or decreases. The ratios Rsc for the experimental
data and the analytical model are obtained using eq. (32), the critical force

and the fracture energy, hence:
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Figure 13: Relation between the pillar aspect ratio ¢/d and normalized the surface area-
compliance ratios Rac and Rac. The dashed line shows the relation when only the load
carrying surface area as stated in eq. (33) is taken into account. The solid line represents
the micro-mechanical model and the squares depict the experimental data. Both of them
are calculated based on the scaling law eq. (32) using the critical forces. An acceptable

agreement between the different approaches and the experimental data is seen, especially

for higher aspect ratios.
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referred to as the ’force approach’. For comparison, a similar normalization

is applied to Rac = \/ fl/ C, referred to as the ’affected area’ approach. In

both cases t/d = 5 is used as reference (regarded as intermediate case). In
Fig. 13 the three ratios are shown as functions of the pillar aspect ratio.
A good agreement between the different approaches and the experimental
data is observed. However, in the limit 3 — 0, the interface region geometry
translates to (flat) spots and both approaches diverge rapidly. Quantitatively
minor discrepancies are revealed between the critical force approach and the
affected area approach while qualitative resemblance is good. The dashed
line representing the affected area approach increases with the aspect ratio,
which means that the affected area grows faster than the compliance of the
system. Both methods stay in good agreement with the experimental data.
This indicates that the critical force scales with the load carrying interface
area ahead of the crack, as stated by eq. (33), and not the surface area of the
pillar alone. This has two implications. Firstly, the scaling law is still valid
for this configuration, however, instead of the geometrical interface area A,

the load carrying area A should be included:

RSNV )
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Secondly, the critical force can be tuned without changing the geometrical
interface area as shown in this study. From eq. (33) it is seen that both
the geometry, the composition of pillars and their spacing, and, the pillar as-
pect ratio influence the affected surface area and through it the critical force.
This provides a powerful tool for understanding and designing materials with
structured interfaces since these terms also affect the overall compliance al-

lowing for tougher and more compliant structures.

6. Conclusions

We have investigated the use of geometry to engineer the fracture re-
sponse of double cantilever beam specimens. Double cantilever beam refer-
ence specimens were laser cut from thin sheets of elastic-brittle PMMA and
tested under mode I loading. Unstable crack growth and rapid catastrophic
failure due to crack kinking were recorded in unstructured specimens. The
introduction of geometrical features in the form of an array of pillars signifi-
cantly altered the fracture response of the specimen. Thus, a new "material”
is produced with properties depending on the intertwined length scales in-
troduced by ’long range’ beam and ’short range’ pillar geometries. This led
to a significant alteration of the load response of both quantitative and qual-
itative nature. The pillars caused a change from the single loading-critical
failure event to a multiple failure event postponing the catastrophic failure,
thus, significantly increasing the energy dissipated in fracture of the spec-
imens. For displacement-controlled experiments multiple failure events are
guaranteed and independent of the pillar geometry. Importantly, the model

provided can be used for designing interfaces maintaining such behavior un-
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der force controlled (unstable) loading. This can be achieved through the
indicated parameters: thickness and width of the pillar, distance between the
pillars, and the process zone size. The compliance and the critical fracture
load were found to be affected by the geometrical features as well. Specif-
ically, the compliance and failure load both increased with increasing pillar
aspect ratio. Moreover we noted that the structured pillar interface, i.e. the
micro-scale in our problem, were capable of absorbing a certain degree of
imperfection, e.g. asymmetry. This provides a tool for increasing energy
dissipation through interfaces but also for tuning structural properties.
While in this work the simplest geometrical modifications have been
made, the observed phenomena and gains displayed a significant potential

for geometric manipulation to achieve tougher or tuned properties.
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Appendix A1l: Reference specimens

To estimate the fracture toughness, G., without the steady-state crack
propagation (usually, after the crack onset, the crack kinked out of the path
that was predesigned by etching) and the apparent bending rigidity EI, refer-
ence specimens with different initial crack lengths a = 80, 100, 120 mm were
prepared. Two specimens for each of the crack lengths were manufactured
and tested. The laser cutting process used for manufacturing the specimens

including the pre-crack yielded a crack of approximately 300 pm in width.

Apparent Bending Rigidity

Treating the specimens as cantilever beams, the compliance can be ex-
pressed with simple beam theory (ignoring the lower order Timoshenko beam
effect, thus reflecting the apparent nature of estimated quantity), as:

a3

_ 36
3ET (36)

From the experiments, the compliance of the specimens are measured as the

tip displacement over the tip force Ce,p, = A/2P. From eq. (36) the apparent

bending rigidity of the specimens are obtained as:

a’ 2Pa3

EFlI = =
3Cay  3A

(37)

Fig. 14 shows the measured force-displacement curves for specimens with
three different crack lengths. By analyzing the initial, linear loading part of
this data, the bending rigidity was found to be approximately EI ~ 5.35

Nm? as an average value from all the experiments conducted.
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Figure 14: Experimental load response for the reference DCB specimens. Where the
gray, red and blue lines represent an initial crack length of 80 mm, 100 mm and 120 mm,

respectively.

Fracture Energy

To determine the fracture toughness of the material, the Irwin-Kies [11]
method is used together with eq. (36) to obtain an expression for the energy

release rate:

_ prdC

g = b da (38)
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Figure 15: The experimental compliance plotted against initial crack length. The red line

is a fit, presenting eq. (36), to the experimental data.

Two parameters, namely, the critical force at the crack onset P. and the
rate at which compliance changes with respect to growing crack, dC'/da, are
required for obtaining the fracture energy. The critical force is determined
as the point where the linearity of the initial loading is lost. The reported,
average, values are: Py = 36.1 N, P.jg0 = 27.6 N, P.150 = 19.8 N. The
second parameter is obtained by plotting the mean compliance for each of the
crack lengths and fitting eq. (36) as C' = az-a3. In Fig. 15, the experimental
data and the cubic fit are seen with the pre-factor as = 5.4787 - 1078, Note,
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that the intersection point with the ordinate axis yields a positive value;
this is due to the finite stiffness of the loading system and tested specimens
(e.g. due to the process zone, root rotation effects or similar.) Finally,
% = 3 a3 - a® which together with eq. (38) and the critical forces yields a

fracture energy G. ~ 0.25 Nmm™!, which is found in a very good agreement

with available literature, e.g. [19, 6].

Appendix A2: Failure Due to Pillar Compression

While failure due to pillar compression was not observed in this work,
the macro-mechanical solution implies existence of a compressive zone ahead
the crack. For specific geometries and materials, the compressive loading
may lead to collapse of the pillar by exceeding the compression strength
or critical buckling load. To keep the analysis relatively short we assume

that a single pillar can be treated as a beam under fixed-fixed boundary

conditions at z = j:%. For such case, the boundary conditions reads as
u(+i) =0 A 2(+L) = 0. Assuming the pillar behaves as a slender beam,

the buckling solution [9], leads to the critical (Euler) load:

T 2
P. = 4EI, (?> (39)
Assuming:
P L, rm\?2
comy = & =ap2 (T 40
Teomp =34 bd (t) (40)

with the radius of gyration r = \/2—2 one obtains:
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1 AN
Ocomp = ZE’ZTz (;) (41)
Taking, to the first approximation, eq. (23) we find:

G E?
t

o, = 1\/4 (42)

which together with eq. (40) readily equates to the following non-dimensional

criterion for compressive failure:

(g)Q _ 61\3/% (43)

3

4 (o

with the non-dimensional constant ¢; = £ <M
3m Ocp

to the failure stress. The structure fails in compression once the left hand

) - index ¢ corresponds
side is greater than the right hand side. The buckling scenario could most

likely take place once using brittle fibres and/or hair like structures. Such

were not investigated here leaving place for the future exploration.
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