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Abstract

Material architecture and geometry provide an opportunity to alter the frac-

ture response of materials without changing the composition or bonding.

Here, concepts for using geometry to enhance fracture resistance are estab-

lished through experiments and analysis of the fracture of elastic-brittle,

polymer specimens with pillar-structures along the fracture plane. Specifi-

cally, we investigate the fracture response of double cantilever beam speci-

mens with an array of pillars between the upper and lower beams. In the

absence of pillars, unstable crack growth and rapid catastrophic failure occur

in the double cantilever specimens tested in displacement control. Introduc-

ing pillars at the interface by removing material via laser cutting yields a

discontinuous interface and leads to a more gradual fracture process and an

increase in the work of fracture. The pillar geometry affects the failure load

and, notably, increasing the slenderness of the pillars leads to higher critical

failure loads due to greater load sharing. The effect of pillar geometry on
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fracture is established through experiments and analysis, including analytical

modeling and finite element simulations. An analytical model that includes

the macro-scale response of the beam and the micro-scale response of the pil-

lars is presented and describes the key effects of pillar geometry on fracture

response.

Keywords: Mechanical metamaterials, architected materials, toughness,

heterogeneities, finite element analysis

1. Introduction

High stiffness, strength and toughness are desired properties of mate-

rials in structural applications. While obtaining two of the three proper-

ties simultaneously, e.g. stiffness and toughness (e.g. elastic-ductile ma-

terials) or strength and stiffness (e.g. ceramics) are rather easy, achieving

high strength, toughness and stiffness is challenging [4]. For instance, in-

creasing the strength can lead to brittleness, which reduces toughness and

damage tolerance. Controlling the internal geometry can potentially assist

in achieving all three properties simultaneously by altering the fracture pro-

cess, failure modes, or crack growth paths. Especially, for brittle materi-

als affecting the critical unstable crack growth can enhance damage toler-

ance. Mechanical metamaterial is a class of materials in which mechanical

properties are determined by the internal geometry of the material rather

than by the composition or atomic bonding. Lattice materials are common

examples [34, 40, 25] and have gained attention due to their exceptional

properties, notably high stiffness per weight. The advances in mechanical

metamaterials in recent years have been driven by progress in digital man-
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ufacturing techniques that allow for fabrication of materials with complex

internal geometry via additive, subtractive and selective manufacturing pro-

cesses [46, 45, 10, 42, 48, 53, 35, 39, 18]. Mechanical analysis and simulation

have been equally important providing the ability to design internal geom-

etry and architecture to realize specific properties. The use of geometry

has also received substantial interest from the adhesion community where

geometrical features have been exploited to control toughness of interfaces

[49, 15, 5, 24, 37, 12, 47]. One outcome of the work to design dry adhesives

with high adhesion strength is an adhesion scaling law [8], which suggests

that the critical fracture force is proportional to the square root of the ratio

between system compliance and contact area. This law was recently revisited

and generalized to account for the case of progressive failure [36].

The objective of this work is to understand the fracture behavior of struc-

tured interfaces consisting of an array of pillars. The high-level goal is to

identify strategies to improve the toughness of the material through geomet-

ric control. We fabricated, tested, and analyzed structured double cantilever

beam (DCB) specimens including symmetric geometries where the pillar re-

gion is subjected mainly to the uniaxial loading (i.e. mode I) and asymmetric

geometries with a small contribution of in-plane shear stress (i.e. mixed-

mode I/II) to failure. Through laser cutting of elastic-brittle PlexiglasR© (i.e.

PMMA) sheets the slenderness of the pillars is varied systematically while

their intermediate distances are kept constant. The specimen behavior is ana-

lyzed using comprehensive analytical formulation and finite element analysis.

Good agreement between the analytical model, experimental results, and nu-

merical simulations is reported. More specifically, we detail the relationship
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between the long-range structural response of the specimen and the short-

range micro-mechanical response of the pillar structure. The results indicate

that the pillar-like geometries can be used to increase the critical fracture load

and improve damage tolerance while minimally affecting the stiffness. Due

to the geometrical nature of the enhancements, the conclusions are expected

to remain valid over a range of different length scales and, therefore, be rel-

evant for a number of different applications. Potentially, new or additional

insights can be gained into: fracture in polymers via crazing and fibrillation

phenomena, i.e. slender micro-structures with negligible bending stiffness,

which could benefit from the load sharing mechanism [14, 38, 17]; the role of

geometrical parameters in fracture of composites incorporating fibre bridging

[50, 51]; nature inspired material architectures [13, 26, 21, 1]. The results

may provide insight into more complex, truss-like, structures [44, 28, 29] and

their behavior within confined or constrained zones of multi-materials includ-

ing load transfer in sandwich materials with lattice-like cores. Finally, further

directions toward adhesive bonding toughening can be deduced [32, 33].

2. Materials and methods

2.1. Specimen

DCB specimens with a total length L = 160mm, a load application point

10mm from the end, width b = 3mm, lower beam thickness of h = 20mm,

and top beam thickness of 20 or 30 mm were examined (Fig. 1). The speci-

mens were laser cut (flatbed laser cutter, 10.6�m wavelength, CO2 gas, 40W

laser used at 80% power, 10mmmin−1 speed, Ten High, China) from 3mm

thick, extruded sheets of poly(methyl methacrylate) (PMMA) with a Young’s
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modulus of E∗ ≈ 2.7GPa, Poisson’s ration ν = 0.33 (adopted from product

data sheet) and a fracture energy of Gc ≈ 0.25 Nmm−1 (see Appendix A1

for details on material property determination). Three types of specimens

were tested: 1) reference PMMA DCB specimens; 2) DCB specimens with

a pillar-like pattern along the interface (referred to as symmetric specimens)

and 3) DCB specimens with a thicker top beam and a pillar-like pattern

along the interface (referred as asymmetric specimens).

The reference [used mainly to estimate the fracture energy of PMMA

(see Appendix A1)] and symmetric specimens had h = 20mm for both the

top beams and bottom while the asymmetric specimens had a top beam of

thickness 30mm, yielding a top-to-bottom thickness ratio of α = 30/20 = 1.5.

Both, symmetric and asymmetric specimens had, if not stated otherwise,

an initial crack length a = 90mm as defined in Fig. 1(a). The pillars

constituting the bondline had a constant width d = 1mm, a constant spacing

of s = 1mm, while their height was varied: t = 1, 3, 5, 9 mm. For each

pillar height, three specimens for a total of twelve were manufactured and

tested. To control the crack and ensure failure at the interface between

the two substrates, the laser cutter (35 % power, 100mms−1) was used to

etch a line of approximately 250 �m depth [measured using a 3D scanning

macroscope (Keyence VR3200, Japan)] along the middle of the specimen

(Fig. 2). To relieve stress concentrations at the base of the pillars, fillets of

R ≈ 200 �m were introduced. Failure originating from the corners was not

observed during the experiments.
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Figure 1: Schematic of the specimens with unbonded region Ω1 and bonded region Ω2. a)

Specimen dimensions comprising length L, width b, initial crack length a, bonded length

Lbond, beam thickness h, pillar height t and top-to-bottom thickness ratio α. b) Close-up

of the pillars at the bondline with, width d and spacing s.
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Figure 2: Image and measured profile of the crack tip of the reference specimen. a)

Region of interest marked on a schematic of the reference specimen. The two close-up

images show, from top to bottom, an optical image of the crack tip region with the etched

line and a topographic measurement of the same area. b) Height profile along the dashed,

blue line in a). The depth of the etched trench is approximately 250 �m.
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2.2. Testing

Each specimen was mounted using custom-made grips in a universal test-

ing machine (Zwick/Roell Z050, Zwick/Roell, Germany). The tests were

performed at a constant displacement rate of 3mmmin−1. Crosshead and

force data were acquired simultaneously at a rate of 50Hz.

3. Finite Element Analyses

A finite element analysis of the specimen geometries was programmed in

Python (v. 2.7.3, Python Software Foundation) and solved using Abaqus

(Abaqus/CAE 18.21.41, Dassault Systèmes, France). The geometry is mod-

eled using four-noded, plane strain elements (plane strain conditions are

assumed, since for most of the cases the relevant non-dimensional group

of parameters: b/d; t/d ≈ 1) with reduced integration and a linear elastic,

isotropic material model. The model and mesh are depicted in Fig. 3.

The top and bottom beams are modeled separately and connected with a

surface-to-surface contact along the interface. The lower loading point is fixed

and a load is applied to the upper loading point. During post-processing, the

displacement at loading point and the stresses σyy and σxy at the middle of

the pillars, as indicated by the thick line in Fig. 3, are obtained. The mesh

density in the pillar region is higher compared to the rest of the model.

A convergence study showed that it is feasible to use a global mesh seed

of 0.5mm and a local mesh seed of 30 �m for the pillars. This provided a

maximum of 732,530 elements in the model and 33 elements across the width

of each each pillar.
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Figure 3: FEA model of a double cantilever beam configuration with an array of pillars at

the interface. The close-up of the first pillar shows details of the mesh. The configuration

is loaded at the end with Δ while the reaction force, P , is acquired at the same point.

Stresses, σyy and σxy, are extracted along the interface denoted by the red line.
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4. Theoretical Framework

4.1. Macro-Mechanical Model

The focus of this section is on developing a relatively simple and intuitive

model for interpretation of the macroscopic behavior of the specimen in terms

of substrate properties and effective interface properties of the pillar region.

This approach neglects the geometrical details of the interface by treating it

as homogeneous with spatially averaged properties.

The model is assumed to be under a prescribed force, P , loading, how-

ever, this is easily changed to a prescribed displacement if required. For the

beams, Timoshenko theory is used while the pillar interface is represented as

a Winkler foundation - recently reviewed [16]. Use of a beam theory frame-

work that includes shear to represent the beam is deemed necessary due to

the beam aspect ratio min(a/h) = 6 for which the internal shear effects can-

not be neglected. The Winkler foundation that describes the interface region

cannot account for shear stresses, however, allows the model to remain simple

and intuitive.

The model (Fig. 1) is then divided into two regions 1) the free/unbonded

region (Ω1) and the interface/bonded region (Ω2), both connected through

continuity conditions.

The equilibrium equations of the Timoshenko beam on the Winkler foun-

dation [43] are:

dM

dx
+ V = 0

dV

dx
− kw = 0 (1)
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with:

M = EIβ
dϕ

dx
V = κGAβ

(
dw

dx
− ϕ

)
with β = t, b (2)

where M,V,w, and k are bending moment, shear force, deflection, and foun-

dation modulus, respectively, and ϕ,E, Iβ, κ, G, and Aβ are rotation, elas-

tic modulus, moment of inertia, shear coefficient, shear modulus, and the

cross-sectional area, respectively. The subscript β either takes t for top or

b for bottom such that It = (αh)3 b/12 and Ib = h3b/12. For a rectangu-

lar, homogeneous and isotropic beam the cross-sectional area, shear coeffi-

cient and shear modulus are Atop = αhb and Abot = hb, κ ≈ 5/6 [52], and

G = E/2(1 + ν) with ν being the Poisson’s ratio.

4.1.1. Interface Region Homogenization

Instead of a discrete formulation of the interface [22], which would lead to

over-complicated derivation, at present this region is regarded as continuous

with a representative unit cell consisting of a pillar with length d and a

spacing of length s. The foundation modulus is taken as the resulting stiffness

of the unit cell:

k =

(
2b

t
Epillar

)
f +

(
2b

t
Espacing

)
(f − 1) =

(
2b

t
E

)
f (3)

Such formulation can be used within a general context, for instance in-

cluding material variability [32, 33]. In the present study Epillar = E,

Espacing = 0 and f = d/(d+ s). Thus, k defines a homogenized stiffness

of the pillar region. Defining E = mE∗ where m is a constant, allows for

adaptation of different stress-strain states [23]. m = 1 for plane stress and
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m = (1 − ν2)−1 for two-dimensional plane strain. Following the FEA, the

latter assumption is used throughout the paper.

4.1.2. Unbonded Domain

The unbonded domain spans from the load application point (x = 0)

to the crack tip (x = a), with subscript ( )1 referring to quantities in this

domain. Within the domain k = 0. With bending moment, M = −Px and

shear force, V = −P , integration of eq. (2) yields:

ϕ1 =

∫
− P

EIβ
xdx = − P

2EIβ
x2 + A1 (4)

where A1 is a constant of integration. Combining eqs. (2) and (4) and

integrating leads to:

w1 =

∫
P

κGAβ

+
P

2EIβ
x2 +A1dx =

P

6EIβ
x3 +

P

κGAβ

x+A1x+B1 (5)

where B1 is an additional constant of integration. Both constants are found

by imposing deflection and rotation continuity at the crack tip.

4.1.3. Intact Domain

The intact domain representing the interface region spans from the crack

tip (x = a) to the end of the specimen (x = L) with k �= 0.

The governing equation for a Timoshenko beam on an elastic foundation

is:

d4w

dx4
− k

κGAβ

dw2

dx2
+

k

EIβ
w = 0 (6)
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with a solution of the form:

w2 = A2 e
−γ1x +B2 e

γ1x + C2 e
−γ2x +D2 e

γ2x (7)

A2, B2, C2 and D2 are unknown constants. γ1 and γ2 are the roots of the

eigenvalue problem eq. (6) given by:

γ1 = λ

√
2
(
ε+

√
ε2 − 1

)
γ2 = λ

√
2
(
ε−

√
ε2 − 1

)
(8)

with λ and ε being phenomenological parameters related to the elastic pro-

cess zone of the foundation’s damping of the beam deflection [22] and to

the modulation of the damping to either periodic or monotonic decay [43],

respectively. They are expressed as:

λ = 4

√
k

4EIβ
ε =

√
k EIβ

2κGAβ

(9)

The rotation, obtained by combining eqs. (2) and (7) and integrating, gives:

ϕ2 = −ψ1A2 e
−γ1x + ψ1B2 e

γ1x − ψ2C2 e
−γ2x + ψ2D2 e

γ2x (10)

where ψ1 and ψ2 are constants depending on the geometry and the material

of the specimen:

ψ1 =
κGAβγ

2
1 − k

κGAβγ1
ψ2 =

κGAβγ
2
2 − k

κGAβγ2
(11)

Constants A2 and C2 are determined through rotation and shear angle con-

tinuity between the two domains. The remaining constants, B2 = D2 = 0,

are found by assuming the far field as intact (w2 = 0, φ2 = 0 as x→ ∞).
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4.1.4. Strain Energy Release Rate

The compliance is calculated as ratio of the total displacement of the top

and bottom beams to the applied force:

C =
w1(β = t) + w1(β = b)

P

∣∣∣∣
x=0

(12)

The strain energy release rate (SERR) for the macro-mechanical configu-

ration is obtained by combining eq. (12) and the Irwin-Kies equation, which

states

G =
P 2

2b

dC

da
(13)

Assuming that the crack grows once the Griffith fracture criterion [20] is

satisfied, eq. (13) is set equal to the critical strain energy release rate, Gc,

and an expression for the critical force, Pc, i.e. force necessary for crack

onset, is obtained:

Pc =
√
2bGc

√
da

dC
(14)

Note, that the adhesion scaling law [8], in a generalized form [36], i.e. Pc ∝√
dA
dC

with dA = bda, is recovered. Griffith’s criterion requires the material to

behave in an elastic-brittle manner, though small scale yielding is also allowed

[30]. With the relatively small dimensions of the pillars (t, d) this can be

questioned. The critical material length scale can be associated with the size

of the crack tip plastic zone calculated as: rp = cGIcE
σ2
y

where c ∈ ( 1
2π
; π
8
) [41]
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depending on the assumed stress-strain conditions. For PMMA it equates to

rp ≈ 101 �m. From dimensional analysis following non-dimensional groups

are recognized: rp
t
; rp

d
; rp
R
. Here, rp

R
is the largest with a magnitude on the

order of 10−1. The others are on the order of 10−2 or lower. We conclude,

that in the present case the material can be regarded as brittle.

4.2. Micro-Mechanical Concepts

In the previous section, the pillar region was treated as homogeneous, thus

a dependence on pillar geometry was not obtained from the analysis. The

geometrical realization of the concept of tunable toughness must be related

to the distance between the pillars and the pillar aspect ratio. Additional,

independent, non-dimensional groups could appear as important: t
d
; s
d
. The

presence of a gap between the pillars alters the load transfer and introduces

new mechanisms of failure. Fig. 4 shows a schematic view of the kinematic

field experienced by pillars at the interface. Only the top adherend and the

region near the adherend/first pillar is considered. In the general case, the

adherends are of different bending rigidities, thus the top and bottom sections

of the specimen will experience different rotations and displacements. The

following assumptions are made: 1
2
(δ − t)/d = (φt − φb)t and λ · d 	 1.

With the notation of Fig. 4, the loading distributed over the pillars can

be separated into two distinct cases: 1) tension/compression of the pillars

following (δ − t) = (wt + wb) (for the geometries studied compressive failure

was not observed, however, for completeness analysis of the associated failure

mode can be found in Appendix A2) and 2) shear through u = (φt − φb)t.

With the proposed load decomposition it is assumed that the failure mech-

anism of a single pillar is representative for the overall failure of the specimen.
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Figure 4: Schematic representation of the kinematic field of the first pillar. Only the top

pillar-beam transition is shown for clarity (denoted with index t).

4.2.1. Pillars Under Mode I Loading

Tension of the pillar results in uniaxial force Pp and produces a moment

Mp (with subscript p referring to the pillar). The mechanism of energy

dissipation is through fracture caused by loads Pp and Mp. The change in

elastic energy stored in the first pillar from Pp reads as:

ΔUp =
1

2
σ(x = a) εΔV =

1

2

σ2

E
ΔV (15)

where we define σ =
Pp

Ap

and ε =
σ

E
assuming average values of both stress

and strain. Here Ap = b d is the cross sectional area of the pillar while ΔV

is the volumetric change of the pillar between the loaded and the unloaded

stages, i.e. ΔV = Ap Δδ. Combining previous equations we obtain:
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ΔUp =
1

2

P 2
p

ApE
(16)

The displacement Δδ is eliminated using the axial stiffness of the pillar (kp =

EAp/t), resulting in:

ΔUp =
1

2

P 3
p t

A2
pE

2
Δδ (17)

Following a similar approach the stored elastic energy due to the moment is:

ΔUm =

∫ b

0

∫ d/2

−d/2

1

2

σ2

E
dxdyΔδ =

6M2
pΔδ

Ed3b
(18)

where we define σ = x
Mp

Ip
with Ip = d3b/12. Again, Δδ is eliminated using

the stiffness of the pillar and eq. (18) is rewritten as:

ΔUm =
6M2

pPpt

d3bE2Ap

(19)

With the elastic energy defined, the energy release rate is given as the change

of elastic energy with the change of crack area:

Gtens =
(ΔUp +ΔUm)

ΔAp

(20)

Assuming that there exists a crack ap such that Ap = b(d− ap) leads to:

Gtens =
1

4

P 3
p t

(d− ap)3b3E2
+

3M2
pPpt

d3b3E2 (d− ap)
2 = Gp + Gm (21)
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Within the limit of ap → 0, which sets up P = Pc we obtain:

Gctens =
1

4

P 3
p t

d3b3E2
+

3M2
pPpt

d5b3E2
(22)

Moreover, taking Pp = σbd and Mp ≈ Pp(d+ s) yields:

Gctens =

[
1

4

(
1 +

s

d

)3

+ 3
(
1 +

s

d

)5
](

t

d

)(
σ3d

E2

)
(23)

A complex relation between the pillars hight, the width, the spacing and the

SERR is revealed. The spacing-to-width ratio s/d increases the SERR while

the aspect ratio t/d decreases the SERR.

4.2.2. Shear Loading of Pillars

Under the shear loading applied to the specimen, a single pillar can be

treated as a cantilever beam under loading of the force Pτ =

∫ d

0

τ(x)b dx.

Using Timoshenko beam theory, the compliance is:

Cp =
u

Pτ

=
t3

3EIp
+

2t

κApG
(24)

where Ip = 1
12
bd3. As in the previous case, consider a crack of length ap

inside a pillar so that: Ip = 1
12
b(d − ap)

3 and Ap = b(d − ap). Using Irwin-

Kies equation, eq. (13), differentiating with respect to ap results in:

Gsb = 6
P 2
τ

b2
t3

E
(d− ap)

−4 + 2
P 2
τ t

κGb2
(d− ap)

−2 (25)
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which contains both the bending (the first term on the right hand side) and

the shear part (second term) of the SERR. At the onset of the failure, i.e.

ap → 0, we write:

Gsb = Gcsb = 6
P 2
τ

b2
t3

E
d−4 + 2

P 2
τ t

κGb2
d−2 (26)

Under the assumption Pτ = τbd yields bending:

Gcb = 6
τ 2

E

t3

d2
(27)

and shear:

Gcs = 2
τ 2

κG
t (28)

parts of the energy release rate. Interestingly, in ref. [2] within a slightly

different context and using calculations including coarse grained atomistic

simulations, the existence of a critical length scale parameter agreeing per-

fectly with t, which controls failure of friction adhesive junction, was discov-

ered. Eqs. (23), (27) and (28) summarize the results of the micro-mechanical

analysis and will serve as a basis for the experimental and numerical investi-

gations.

4.2.3. Coupling Between Micro- and Macro-mechanical Models

A micro- and a macro-mechanical approach to describe the failure process

of the configuration were developed in previous sections. In this section a

coupling between them relating the macroscopic loading P to the resulting
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microscopic loading Pp andMp is established. The pillars are assumed to act

as linear springs with stiffness of the unit cell k. The traction, which acts on

a pillar and is transferred to the beams, is equated as the extension of the

pillar times the stiffness:

q(x) = k · (wt + wb) (29)

In the macro-mechanical configuration the single pillars are disregarded and

a continuous, unit cell-based bondline is constructed. When shifting from the

macroscopic to the microscopic configuration it is assumed that each pillar

carries the loading of the corresponding unit cell. Furthermore, it is assumed

that the overall failure of the structure is governed by the failure of the first

pillar. Hence, the analysis is restricted to the first pillar only. The average

stress acting on the first pillar is:

σp(x) =
k

(s+ d) b

∫ a+d+s

a

(wt + wb) dx (30)

Assuming that the adherend thickness remains unchanged, the local pillar

extension can be found from the global deflection as:

wt = w2 (β = t) and wb = w2 (β = b) (31)

When combining eqs. (30) and (31) the pillar stress becomes a function of

the global loading P , hence, when inserted into eq. (23) a coupling between

the macroscopic loading and the microscopic failure is realized.

5. Results and Discussion

5.1. Load Response

Fig. 5 shows representative force-displacement curves for: a) the refer-

ence specimen, and b) the symmetric DCB with a pillar interface. Both
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specimens exhibit the same initial, linear loading up to crack onset, which is

indicated by circular markers in the plots. For the reference specimens, Fig.

5(a), the initial linear loading path was replaced by another, almost linear,

monotonically increasing in the present case. The deviation from the initial

slope was caused by onset and propagation of the crack out from the initial

plane defined by the pre-crack. In the experiments it was observed that the

crack kinked out of the etched line and followed the shear band direction,

resulting in catastrophic failure of the specimen.
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Figure 5: Experimental force-displacement curves. a) Reference specimen where the

dashed, red line showing the initial linear, loading path. b) Asymmetric specimen with

pillars of t/d = 9. Red, dashed lines correspond to the compliance at specific crack lengths.

The theoretical predictions agree very well with the positions of the pillars (2mm sepa-

ration). The cyan areas indicate the area use to evaluate the work of fracture - Wref =

0.067 J and Wpillar = 0.106 J.

A significantly different behavior is observed for the specimens with the
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pillar interface. In Fig. 5(b) a representative curve for the symmetric spec-

imen is seen (specimen with aspect ratio t/d = 9). The initial loading per-

sisted until the crack onset of the first pillar (marked by a circle). The failure

of it led to a load drop (the second circle), however, load increased again af-

ter the crack reached the second pillar. Instead of catastrophic failure a new

loading path is followed until the critical force for the next pillar is reached

leading to its failure and a load drop, which is then recovered by the third

pillar, and the process is repeated until the crack reached the last of the pil-

lars. A non-steady state (effectively, the stick-slip) propagation is observed

and is comprised of crack onsets and crack arrests. No kinking of the crack

from the interface was observed in any of the experiments.

Together with the experimental data are depicted the theoretical loading

paths (marked with dashed, red lines) obtained using eq. (12). Each loading

path was calculated with an initial crack length corresponding to a well

defined pillar position. For example, the first loading path corresponds to

a crack length of alp1 = a0 = 90mm, the second path is calculated with

alp2 = a0 + (d + s) = 92mm, and so on. The theoretical predictions of the

loading paths correspond very well with those of the experimental data. This

supports the idea of each pillar failing individually followed by crack arrest

at the next pillar. Furthermore, this result shows that crack propagation is

the main source of energy dissipation and it gives confidence that the use of

the Irwin-Kies assumption [eq. (13)] is justified.

The crack propagation facilitated by multiple crack onsets and arrests

gave the specimen a much larger extension range and associated work done

i.e. W =

∫
PdΔ =

1

2

n∑
i=1

(PoiΔi − PaiΔi) ∝ n where W , Poi, Pai,Δi, n
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denote the work done by structured interface, force at crack onset in pillar

i, force at crack arrest position of pillar i, displacement at pillar i and the

number of pillars, respectively, compared to the kinking crack, which in the

present study always led to critical failure soon after onset.

(a)
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(b)

Figure 6: Experimental force-displacement curves. a) Asymmetric DCB with a top ad-

herend 1.5 times thicker than the bottom adherend. The pillars had an aspect ratio of

t/d = 1. b) Asymmetric DCB with pillars of aspect ratio t/d = 9. The different marks

indicate 1) initial loading path, 2) crack onset / loss of linearity, 3) point of crack arrest

and beginning of new loading path. The cyan areas depict the work of Wt/d=1 =0.090 J

and Wt/d=9 = 0.080 J

For comparison, Fig. 6(a) and (b) show the exemplary load response

for asymmetric specimens with the pillars of aspect ratios of t/d = 1 and

t/d = 9, respectively. The same main features of the force-displacement

curves are revealed viz. crack onset-arrest behavior visible from the charac-

teristic jagged form (in Fig. 6 the numbers 1 -3 denotes linear loading, crack
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onset and crack arrest stages respectively). It is noticed that introducing

asymmetry to the configuration did not affect the load response significantly.

Comparing the responses for different pillar heights, they are very similar in

terms of qualitative behavior.

5.1.1. Compliance

Figure 7 shows the compliance (normalized by the theoretical compliance

of the reference geometry) as a function of the aspect ratio of the pillars

obtained from the experiments, the analytical prediction in eq. (12), and

from the FEA. The three approaches can be found in very good agreement.

As anticipated, the thicker substrate (higher bending and shear rigidities)

shifted the compliance to a lower state not affecting the overall trend of

the curve. The compliance was expected to increase with increasing pillar

aspect ratio as indicated by eq. (3). This is also seen in Fig. 7. Both the

analytical model and the FEA predict the compliances for both configuration

in the tested range of pillar aspect ratios. However, the analytical model for

the asymmetric configuration slightly underestimates the compliance of the

specimen. It should be noticed that for the limiting case, where the aspect

ratio tends toward zero the analytical model converges to the reference model.

For a pillar aspect ratio of t/d = 9, the compliance is around 13 % higher

than for the reference DCB specimen. The good agreement between the FEA,

which accounted for the structure of each pillars, and the analytical model,

which homogenized the pillars and interface, supports the assumptions made

for the latter.
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Figure 7: Specimen compliance normalized with the theoretical reference geometry against

aspect ratio of the interfacial pillars. The squares and circles show the mean values and

accompanying standard deviations of the experimental compliances from the symmetric

and asymmetric configuration, respectively. The red lines (dashed for symmetric and

dashed-dotted for asymmetric) are the analytical model showing a very good agreement

with the experimental data. The asymmetric configuration is slightly overestimated in

terms of stiffness. The symmetrical configuration converges to the reference model in the

limiting case where t/d → 0. The FEA, depicted with blue lines (dotted for symmetric

and dashed-dotted-dotted for asymmetric), also shows a very good agreement with both

the analytical model and the experimental data.
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5.1.2. Finite Element Analysis of Load Transfer

In Fig. 8(a-d) the normal stress, σyy, along the centreline of the interface

region (as depicted in Fig. 3) of symmetric specimens with four different

aspect ratios are shown. All of the four cases are presented as per unit of

applied force.

The red and blue regions depict the axial stress (tension and compression,

respectively) in the pillars. For the lowest of the aspect ratios the stress

distribution takes on a parabolic shape with largest magnitude in the middle

of the pillar. This specific shape is due to the finite height of the pillar

for which the center, y = 0, remains affected by the corner stress effects at

y = t/2. The overall stress distribution resembles the shape predicted by

the homogenized version of the elastic foundation model [eq. (7)] plotted as

a continuous black line. The peak stress, at the first pillar, i.e. governing

failure load, is found to decrease significantly with increasing pillar aspect

ratio. Increasing the aspect ratio from t/d = 1 to t/d = 10 reduces the peak

stress on the first pillar by half.

A red, dashed line tracing the upper envelope of the stress in each pillar

for the aspect ratio t/d = 1 in the first Fig. 8(a). The same dashed line

is then plotted in the three, subsequent figures to visualize the effect of the

pillar aspect ratio on the stress. This reveals an interesting trend where the

stress in the first few pillars decrease as the aspect ratio goes up while more

and more pillars are affected. Hence, larger aspect ratios prompt better stress

distribution with the stress spread across more pillars. The distance from the

crack tip to the end of the tensile zone (the process zone length) as obtained

from the FE calculations is shown on the graphs as λ−1
fe . This characteristic
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Figure 8: FEA predictions of the stress σyy distribution in the pillars for the symmetric

configuration. The red and blue regions depict the axial stress (tension and compression,

respectively) in the pillars. The dashed, red lines show the upper envelope of the pillars

with aspect ratios t/d = 1. The process zone λ−1
fe spanning from the crack tip to the

beginning of the compression zone is marked as well. The black lines show the analytical

solution given by eq. (7).
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length increases by 1.5 times between t/d = 1 and t/d = 10 cases, resulting in

two additional pillars carrying the load in the t/d = 10. This is in agreement

with eq. (9), which reveals that the elastic process zone increases with the

aspect ratio of pillars. The failure of the specimen is assumed to be governed

by the failure of the first pillar and the peak stress in it decreases with

increasing aspect ratios, thus slender pillars should promote larger critical

failure loads. Moreover, the product of λ−1λfe → 1 as t
d

→ ∞, which

indicates that the homogenized model may form a reference, asymptotic,

solution. However, we expect the other non-dimensional interface parameter

s/d to play an important role, which suggests a possible extension of the

present work.

Let us briefly discuss consequences of the load distribution on the crack

growth process by starting out with the unloaded configuration: P = Δ = 0

in Fig. 5. Upon load application the stresses along the interface are dis-

tributed along λ−1 and the number of load sharing pillars is established.

The stress level on the first pillar is below the critical value (recognized as

critical force Pc). Once the critical stress on the first pillar is reached, the

pillar breaks instantaneously. As reported for the homogeneous geometry

(Appendix A1), due to the brittleness of the material and the finite (and

small) width of the pillar, stable crack growth cannot be expected. The en-

ergy is released and the crack front position moves to the next pillar (i.e.

a0 → a0 + d + s). The process zone is re-established with the same number

of pillars carrying the load as before, but the peak stress value (for the dis-

placement controlled boundary conditions) is below the critical. Additional

energy needs to be supplied to overcome the threshold value and propagate
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the crack further. The entire process is iterative as seen from Figs. 5 and

6. Due to the finite size of the pillars and the distance between them, the

process is dominated by deterministic effects and can be related to lattice

fracture models [31]. However, by increasing the number of pillars in the

width direction or by reducing the gap s between the pillars, such that the

stresses shared by two neighboring pillars will be of similar magnitude [13], it

can turn into a more stochastic process. Further analysis of such transition

is beyond the scope of the present study.

To complete this section, in Fig. 9 the axial stress in the pillars for

the asymmetric configurations are shown. The asymmetric specimen has

a very similar trend to the symmetric specimen for both the stress distri-

bution across a single pillar and the overall distribution across the interface.

Both configurations stays in good agreement qualitatively and quantitatively,

hence asymmetry, in the present case, does not seem to significantly affect

the long-range distribution of the tensile component of the stress.

The asymmetric configuration results in additional shearing of the inter-

face. In Fig. 10 the shear stress σxy distribution is shown. Common for all

aspect ratios is that the shearing is largest in the middle of the pillars while

it is zero near the edges (shear stress free). Like the axial stresses, the shear

stresses decrease with increasing aspect ratio, however, the shear stresses are

an order of magnitude smaller than the axial stresses. Recall, that peak axial

stress decreased by a factor of 2 when the aspect ratio went from t/d = 1

to t/d = 10. The peak shear stress decreases by almost a factor of 30 for

the same aspect ratio range. As expected from the macro-mechanical model,

eq. (26), the increased aspect ratio allows accommodation of the effects of
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Figure 9: FEA predictions of the distribution of axial stress σyy in the pillars for the

asymmetric configuration. The red and blue pillars depict the tension and compression,

respectively, in the pillars. The dashed, red lines are the upper envelope of the pillars with

aspect ratio t/d = 1.
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Figure 10: Shear stress across the pillars in the asymmetric configuration. The red and

blue pillars show the positive and negative shear stresses, respectively, obtained from FEA

normalized with the shear modulus G. The dashed, red line is the upper envelope of the

t/d = 1 specimen.
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specimen asymmetry, turning the shear dominated, stubby, geometry of the

pillars (t/d < 1) to a more slender one (t/d > 1) in which bending prevails.

While, in the present study the axial loading of the pillars is dominant and

the shear stresses can be neglected from here on, the work also encourages

further investigation of t/d < 1 cases under mixed mode conditions.

5.2. Micro-mechanics vs. Macro-mechanics

In the following, the difference between the macroscopic and the micro-

scopic approaches is described including the relation to the experimental

observations.

5.2.1. Critical Fracture Force

As mentioned before, variations in the critical force, i.e. the force at

crack onset, were determined for different specimen types and different pillar

aspect ratios. The critical force for the symmetric and asymmetric specimens

are shown by squares and circles, respectively, in Fig. 11. For comparison

the critical forces are normalized with that of the reference specimens, Pc,ref .

The results show that the onset force Pc decreases by around 20% relative to

the reference specimen for aspect ratios up to t/d = 1. However, the critical

force monotonically increases with increasing aspect ratios once t/d > 1.

This supports the idea from the previous section of slender pillars aiding the

stress distribution.

Recall, that within the present study the reference specimen broke abruptly,

while the pillared specimen promoted crack propagation with multiple onsets

and arrests. Introducing pillars at the interface increased work of fracture at

the cost of a slightly lower onset force compared to the reference geometry, at
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least for the aspect ratios treated in this work. The trend of the data predicts

that at certain aspect ratios t/d > 9 the critical force could be similar, even

higher, than for the reference configuration. This observation suggests using

fibril geometries t/d 
 1, in agreement with the load sharing phenomena

observed in fibrillar adhesives [7, 27, 3].
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Figure 11: Critical onset force normalized by the onset force of the reference specimen

as function of the pillar aspect ratio. The squares and the circles show the experimental

mean critical force and standard deviation for the symmetric and asymmetric configura-

tion, respectively. The dotted and dashed-dotted-dotted lines show the predictions of the

macro-mechanical approach and the dashed and dashed-dotted lines represent the micro-

mechanical approach with red and blue lines for the symmetric and asymmetric configu-

ration, respectively. Increasing critical force with increasing aspect ratio is observed. This

was captured by the micro-mechanical approach while the macroscale approach fails to

capture this trend.
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In Fig. 11 the predictions of the micro-mechanical and the macro-mechanical

approaches are shown with dashed and dashed-dotted, and, dotted and dashed-

dotted-dotted lines, respectively, with red color used for the symmetric and

blue for the asymmetric specimens. Recall, that the macroscopic approach

was based on the Irwin-Kies equation, eq. (38), and the formulation treating

the interface as homogeneous and continuous. The microscopic approach,

eq. (23), was based on an energetic analysis of the pillar taking its geom-

etry into account. Importantly, even though the macro-mechanical model

successfully captured the compliance of the configurations it failed to pre-

dict the critical force accurately. It underestimates the onset force while

predicting a decreasing trend with increasing aspect ratio - the opposite of

what is observed. The micro-mechanical approach, however, is in very good

agreement with the experimental data both qualitatively and quantitatively.

This supports the concept of failure being governed by the micro-mechanical

mechanisms and, thus, the macroscopic approach alone is insufficient.

Importantly, the macroscopic response of the material to applied load can

be fully controlled through smaller scale geometrical manipulations being the

core of mechanical metamaterials.

5.3. Interface Material Failure Scaling Law

The scaling law derived in [8] suggests that the critical force of a bonded

system is governed by the fracture energy Gc, the contact area A, and, the

compliance of the system C, i.e.:

Pc ∼
√

Gc

√
A

C
(32)
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Figure 12: Relation between the compliance and the critical force for the symmetric

configuration. The global approach (dashed line) follows an inversely proportional relation

that agrees with the scaling law proposed by [8] when the surface area is kept constant.

The experimental (circles) and the micro-mechanical approach (solid line), however, show

proportionality between the critical force and the compliance.

In the present work, the area created during a single failure event is

b · d = const. However, Fig. 7 indicates that the compliance increased with

the aspect ratio d/t such that the ratio RAC :=
√
A/C → 0 as t/d → ∞.

Thus, the critical force was expected to decrease.

5.3.1. The Effective Load Carrying Area

In Fig. 12 the macro-mechanical and micro-mechanical approaches depict

the relation between the normalized critical force and the compliance. The

data are compared with experimental results. Both, the micro-mechanical

approach and the experimental data display similar trend. Except at the very

beginning, the critical force increased with increasing compliance, thereby

contradicting the scaling in eq. (32).
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Assuming that the region responsible for load transfer ahead of the crack

front is related to the elastic process zone of length λ−1, the affected area

can be defined by combining eqs. (3) and (9):

Ã := λ−1 b f =
(
2 Iβ b

3
)1/4 [ d4

(d+ s)3

]1/4 (
t

d

)1/4

(33)

The first term on the right-hand side represents the effect of the geometry

of the substrates defining the ’long range interactions’ length scale of the

material. The second term expresses the characteristic, in-plane structure of

the interface and is responsible for the efficiency of the load transfer between

the long and short ranges. The third term reflects the smallest geometrical

feature of the material, which in the present case is the pillar aspect ratio.

Increasing either the dimensions of the substrate, the volume fraction of the

pillars, or the pillar aspect ratio increases the load carrying area by extending

the process zone. Since the compliance, eq. (12), is proportional to the aspect

ratio, the ratio
√
A/C also decreases with the aspect ratio when the area is

fixed.

5.3.2. The Surface Area-Compliance Ratio

If the area increases, it is the competition between the growth of the area

and that of the compliance, which determines if the ratio and, hereby, the

critical force increases or decreases. The ratios RAC for the experimental

data and the analytical model are obtained using eq. (32), the critical force

and the fracture energy, hence:
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Figure 13: Relation between the pillar aspect ratio t/d and normalized the surface area-

compliance ratios R̃AC and RAC . The dashed line shows the relation when only the load

carrying surface area as stated in eq. (33) is taken into account. The solid line represents

the micro-mechanical model and the squares depict the experimental data. Both of them

are calculated based on the scaling law eq. (32) using the critical forces. An acceptable

agreement between the different approaches and the experimental data is seen, especially

for higher aspect ratios.
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RAC :=
RAC1

RAC2

=
Pc1

Pc2

=

√Gc

(√
A

C

)
1

√Gc

(√
A

C

)
2

(34)

referred to as the ’force approach’. For comparison, a similar normalization

is applied to R̃AC =
√
Ã/C, referred to as the ’affected area’ approach. In

both cases t/d = 5 is used as reference (regarded as intermediate case). In

Fig. 13 the three ratios are shown as functions of the pillar aspect ratio.

A good agreement between the different approaches and the experimental

data is observed. However, in the limit t
d
→ 0, the interface region geometry

translates to (flat) spots and both approaches diverge rapidly. Quantitatively

minor discrepancies are revealed between the critical force approach and the

affected area approach while qualitative resemblance is good. The dashed

line representing the affected area approach increases with the aspect ratio,

which means that the affected area grows faster than the compliance of the

system. Both methods stay in good agreement with the experimental data.

This indicates that the critical force scales with the load carrying interface

area ahead of the crack, as stated by eq. (33), and not the surface area of the

pillar alone. This has two implications. Firstly, the scaling law is still valid

for this configuration, however, instead of the geometrical interface area A,

the load carrying area Ã should be included:

Pc ∼
√

Gc

√
Ã

C
(35)
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Secondly, the critical force can be tuned without changing the geometrical

interface area as shown in this study. From eq. (33) it is seen that both

the geometry, the composition of pillars and their spacing, and, the pillar as-

pect ratio influence the affected surface area and through it the critical force.

This provides a powerful tool for understanding and designing materials with

structured interfaces since these terms also affect the overall compliance al-

lowing for tougher and more compliant structures.

6. Conclusions

We have investigated the use of geometry to engineer the fracture re-

sponse of double cantilever beam specimens. Double cantilever beam refer-

ence specimens were laser cut from thin sheets of elastic-brittle PMMA and

tested under mode I loading. Unstable crack growth and rapid catastrophic

failure due to crack kinking were recorded in unstructured specimens. The

introduction of geometrical features in the form of an array of pillars signifi-

cantly altered the fracture response of the specimen. Thus, a new ”material”

is produced with properties depending on the intertwined length scales in-

troduced by ’long range’ beam and ’short range’ pillar geometries. This led

to a significant alteration of the load response of both quantitative and qual-

itative nature. The pillars caused a change from the single loading-critical

failure event to a multiple failure event postponing the catastrophic failure,

thus, significantly increasing the energy dissipated in fracture of the spec-

imens. For displacement-controlled experiments multiple failure events are

guaranteed and independent of the pillar geometry. Importantly, the model

provided can be used for designing interfaces maintaining such behavior un-
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der force controlled (unstable) loading. This can be achieved through the

indicated parameters: thickness and width of the pillar, distance between the

pillars, and the process zone size. The compliance and the critical fracture

load were found to be affected by the geometrical features as well. Specif-

ically, the compliance and failure load both increased with increasing pillar

aspect ratio. Moreover we noted that the structured pillar interface, i.e. the

micro-scale in our problem, were capable of absorbing a certain degree of

imperfection, e.g. asymmetry. This provides a tool for increasing energy

dissipation through interfaces but also for tuning structural properties.

While in this work the simplest geometrical modifications have been

made, the observed phenomena and gains displayed a significant potential

for geometric manipulation to achieve tougher or tuned properties.
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Appendix A1: Reference specimens

To estimate the fracture toughness, Gc, without the steady-state crack

propagation (usually, after the crack onset, the crack kinked out of the path

that was predesigned by etching) and the apparent bending rigidity EI, refer-

ence specimens with different initial crack lengths a = 80, 100, 120 mm were

prepared. Two specimens for each of the crack lengths were manufactured

and tested. The laser cutting process used for manufacturing the specimens

including the pre-crack yielded a crack of approximately 300�m in width.

Apparent Bending Rigidity

Treating the specimens as cantilever beams, the compliance can be ex-

pressed with simple beam theory (ignoring the lower order Timoshenko beam

effect, thus reflecting the apparent nature of estimated quantity), as:

C =
a3

3EI
(36)

From the experiments, the compliance of the specimens are measured as the

tip displacement over the tip force Cexp = Δ/2P . From eq. (36) the apparent

bending rigidity of the specimens are obtained as:

EI =
a3

3Cexp

=
2Pa3

3Δ
(37)

Fig. 14 shows the measured force-displacement curves for specimens with

three different crack lengths. By analyzing the initial, linear loading part of

this data, the bending rigidity was found to be approximately EI ≈ 5.35

Nm2 as an average value from all the experiments conducted.
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Figure 14: Experimental load response for the reference DCB specimens. Where the

gray, red and blue lines represent an initial crack length of 80mm, 100mm and 120mm,

respectively.

Fracture Energy

To determine the fracture toughness of the material, the Irwin-Kies [11]

method is used together with eq. (36) to obtain an expression for the energy

release rate:

G =
P 2

2b

dC

da
(38)
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Figure 15: The experimental compliance plotted against initial crack length. The red line

is a fit, presenting eq. (36), to the experimental data.

Two parameters, namely, the critical force at the crack onset Pc and the

rate at which compliance changes with respect to growing crack, dC/da, are

required for obtaining the fracture energy. The critical force is determined

as the point where the linearity of the initial loading is lost. The reported,

average, values are: Pc80 = 36.1 N, Pc100 = 27.6 N, Pc120 = 19.8 N. The

second parameter is obtained by plotting the mean compliance for each of the

crack lengths and fitting eq. (36) as C = a3 ·a3. In Fig. 15, the experimental

data and the cubic fit are seen with the pre-factor a3 = 5.4787 · 10−8. Note,
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that the intersection point with the ordinate axis yields a positive value;

this is due to the finite stiffness of the loading system and tested specimens

(e.g. due to the process zone, root rotation effects or similar.) Finally,
dC

da
= 3 a3 · a2 which together with eq. (38) and the critical forces yields a

fracture energy Gc ≈ 0.25 Nmm−1, which is found in a very good agreement

with available literature, e.g. [19, 6].

Appendix A2: Failure Due to Pillar Compression

While failure due to pillar compression was not observed in this work,

the macro-mechanical solution implies existence of a compressive zone ahead

the crack. For specific geometries and materials, the compressive loading

may lead to collapse of the pillar by exceeding the compression strength

or critical buckling load. To keep the analysis relatively short we assume

that a single pillar can be treated as a beam under fixed-fixed boundary

conditions at z = ± t
2
. For such case, the boundary conditions reads as

u(± t
2
) = 0 ∧ du

dz
(± t

2
) = 0. Assuming the pillar behaves as a slender beam,

the buckling solution [9], leads to the critical (Euler) load:

Pc = 4EIp

(π
t

)2

(39)

Assuming:

σcomp =
Pc

bd
= 4E

Ip
bd

(π
t

)2

(40)

with the radius of gyration r =
√

Ip
bd

one obtains:

52



σcomp =
1

4
Eπ2

(
t

r

)−2

(41)

Taking, to the first approximation, eq. (23) we find:

σp =
3

√
4
GcE2

t
(42)

which together with eq. (40) readily equates to the following non-dimensional

criterion for compressive failure:

(
d

t

)2

= c1
3

√
Gc

tE
(43)

with the non-dimensional constant c1 =
3
√
4

3π

(
σccomp

σcp

)
- index c corresponds

to the failure stress. The structure fails in compression once the left hand

side is greater than the right hand side. The buckling scenario could most

likely take place once using brittle fibres and/or hair like structures. Such

were not investigated here leaving place for the future exploration.
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