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Abstract

Background: Gene is a key step in genome annotation. Ab initio gene prediction enables gene annotation of new

genomes regardless of availability of homologous sequences. There exist a number of ab initio gene prediction tools

and they have been widely used for gene annotation for various species. However, existing tools are not optimized for

identifying genes with highly variable GC content. In addition, some genes in grass genomes exhibit a sharp 5′-3′

decreasing GC content gradient, which is not carefully modeled by available gene prediction tools. Thus, there is still

room to improve the sensitivity and accuracy for predicting genes with GC gradients.

Results: In this work, we designed and implemented a new hidden Markov model (HMM)-based ab initio gene

prediction tool, which is optimized for finding genes with highly variable GC contents, such as the genes with negative

GC gradients in grass genomes. We tested the tool on three datasets from Arabidopsis thaliana and Oryza sativa. The

results showed that our tool can identify genes missed by existing tools due to the highly variable GC contents.

Conclusions: GPRED-GC can effectively predict genes with highly variable GC contents without manual intervention.

It provides a useful complementary tool to existing ones such as Augustus for more sensitive gene discovery. The

source code is freely available at https://sourceforge.net/projects/gpred-gc/.
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Background
Identification and annotation of genes in genomic

sequences is a key step for functional analysis of a genome.

The goal of gene annotation is to identify the loca-

tion and structure of protein-coding genes in genomic

sequences. Computational gene prediction methods can

be broadly divided into two main categories: ab initio

methods and homology-based methods. Ab initio gene

prediction tools can predict genes in the query sequence

without relying on the availability of homologs. Amajority

of ab initio gene prediction tools rely on hidden Markov

models (HMMs), which describe different gene struc-

tural elements such as UTRs, exons, introns, etc. Given a

sequence, we can use HMMs to infer the most probable
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path corresponding to an annotation of gene structure.

Gene prediction tools such as GENSCAN [1, 2], GENEID

[3], HMMGene [4], GeneMark.hmm [5], GlimmerHMM

[6], FGENESH [7], SNAP [8], and AUGUSTUS [9] belong

to the first category. The second category contains com-

parative gene prediction tools, which compare a query

sequence with homologous sequences of related species

and employ their sequence similarity for gene annotation.

The examples of the second group include GENEWISE

[10], GENOMESCAN [11], AGenDA [12, 13], TWIN-

SCAN [14], SGP2 [15], DOUBLESCAN [16], CEM [17],

SLAM [18], etc. There are also some machine learn-

ing based gene prediction programs [19–21], which are

usually designed for prokaryotes such as metagenomic

data rather than complicated gene structures containing

introns.

Using more information such as homologous sequences

has potential to produce better results. However, as a large
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number of new genomes are being sequenced using next-

generation sequencing platforms, closely-related species

are not always available. Thus, ab initio gene predic-

tion tools play a significant role to find novel genes in

the sequences without a priori known homologs. Note

that some tools incorporate both HMMs and homologous

sequences for boosting gene prediction performance. If

a tool can conduct gene prediction without homologous

sequences, it is classified into the first category.

GC content-dependent gene prediction

As the base composition and the exon length distribu-

tions can differ significantly for genes with different GC

contents, some gene prediction tools employ GC content-

dependent training [1, 2, 9, 22, 23]. In animals, genome

isochores are regions of the genome with different GC

contents, and it has been shown that the GC content of

animal genes closely matches the GC content of the iso-

chore in which the gene is found [24]. The AUGUSTUS

gene prediction program has a mode that creates inde-

pendent HMMs based on the GC content of the genomic

region that is being processed [9]. Both theoretical anal-

ysis and empirical results have shown that GC content-

dependent training greatly improves the gene prediction

accuracy and sensitivity.

In plants, isochores do not exist, and it has been shown

that the GC content of plant genes is not correlated with

the GC content of the genomic region in which the gene is

found. Furthermore, in grasses such asOryza sativa (rice),

genes can be characterized as having either a high GC or

low GC content whereas most non-grass species such as

the model species Arabidopsis thaliana (thale cress) have

genes with a narrow gene GC content distribution. Using

a single HMM to predict these two classes of genes in O.

sativa was shown to be less accurate than using a gene

prediction protocol that was aware of the high and low

GC genes in grasses. Bowman et al. [24] trained three

HMM programs on low, medium and high GC genes. All

HMMs were used to make gene predictions, but only the

best prediction that was most congruent with available

evidence was retained. This method improved gene pre-

dictions compared to a gene prediction protocol that was

not GC aware.

While the method of Bowman et al. [24] is an improve-

ment over other gene prediction programs, it is a heuristic

that can be improved upon by an modification of the

basic structure of the underlying gene prediction HMM.

Furthermore, many grass genes exhibit a sharp 5′-3′

decreasing GC content gradient [25], [26], which is not

carefully modeled by existing gene prediction tools and

Bowman’smethod. As a result, these tools have unsatisfac-

tory sensitivity and accuracy for predicting genes with GC

gradients. Figure 1 illustrates an example of a gene with

descending slope of GC content in Oryza sativa data set.

To address these limitations, we propose a new gene

prediction model with two advantages: 1) our model can

predict genes with GC gradient with higher sensitivity

and accuracy without manual intervention; 2) our unified

model is optimized for genes of variant GC content and

5′-3′ changing patterns.

Fig. 1 A gene LOC_Os03g44820.1 with GC content gradient from Oryza sativa data set. X-axis represents each exon inside the gene. Y-axis

represents the GC content
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Methods
In this section, we describe GPRED-GC, a tool that pre-

dicts genes with 5′-3′ GC gradient. The flowchart for

training and annotating genes is shown in Fig. 2. The

main novelty of our method is a modified hidden Markov

model (HMM) that distinguishes exons of different GC

content. The HMM has a similar topology to the one used

in AUGUSTUS [22, 23] and many other de novo gene

prediction tools [1, 4]. The major difference is that our

model is designed to handle various GC contents and 5′-3′

changing patterns inside coding regions.

The hidden Markov model of GPRED-GC

An HMM is a probabilistic sequence model with suc-

cessful application for gene prediction. It models the key

sequence features such as exons and introns in a gene and

can be trained using annotated gene sets. Once the model

is built, it can be applied to search for genes and annotate

the gene structures using existing algorithms designed

for HMMs, such as the Viterbi algorithm. Essentially, an

optimal state path in an HMM that can maximize the like-

lihood or posterior probability of a query being produced

by the model can be used to label each base in the query

sequence.

As AUGUSTUS is a popular plant gene prediction

tool, we use the generalized Hidden Markov Model from

AUGUSTUS [22] as the base model. The essential differ-

ence is that instead of using one state to represent an exon,

we have three states to model exons of high, medium,

and low GC contents. Figure 3 illustrates the major dif-

ference for an exon state in a standard HMM and our

HMM, which incorporates changes of GC contents across

the genes.

Here, we make an assumption that the GC content

change inside exons is relatively small. Although we can

use a window-based model inside each exon to further

refine the representation of GC gradient, it will signif-

icantly increase the model complexity. By only distin-

guishing exons of different GC contents, we have a better

tradeoff between the model complexity and the model

resolution.

Forsingleexon genes, three states
(

EHsingle , E
M
single, E

L
single

)

are created. For the initial exon, three states
(

E0init H,

E0init M , E0init L
)

are used to model exons of high, medium,

and low GC content. Moreover, the initial exons of other

phases, the internal exons of all phases, and the terminal

exon all have three states for high, medium, and low GC

content. Genes of variant GC changing patterns can be

represented by the new exon states.

The added exon states allow the HMM to predict

genes of various GC gradients with higher accuracy. For

example, genes of negative GC gradient tend to be rep-

resented by a path starting with EH and ending with EL.

Genes with high GC content and moderate gradient tend

to be produced by a path mainly consisting of EH.

The states in the HMM

In total, the model of GPRED-GC has the following 79

states in set Q:

{IR,EHsingle,E
M
single,E

L
single,E

H
term,E

M
term,E

L
term}

⋃
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M
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⋃
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⋃
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i, I ishort, I
i
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i
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⋃

Fig. 2 An overview of the training and predicting genes. (a) Training. (b) Prediction
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Fig. 3 For each internal exon, three states (E+,H0 , E+,M0 , E+,L0 ) are used to

model exons of high, medium, and low GC content. This figure only

illustrates three internal exon states for one phase on the plus strand

(corresponding to one reading frame). The internal exons of other

phases, the initial exon, the terminal exon, and the single exon all

have three states for high, medium, and low GC content. Genes of

various GC contents and gradients can be represented as various

paths through the exon states

2
⋃

i=0

{ASSi,EiH,E
i
M,EiL}

⋃

2
⋃

i=0

{rEiterm H, rE
i
term M, rEiterm L, rDSS

i, }
⋃

2
⋃

i=0

{rI ishort, rI
i
fixed, rI

i
geo, rASS

i, rEiH, rE
i
M, rEiL}

(1)

Figure 4 is a schematic representation of the HMM in

our work. In the upper half of Fig. 4, the states represent

protein-coding genes on the forward strand. The state

IR stands for the intergenic region. In the lower half of

Fig. 4, the states represent protein-coding genes on the

reverse strand. Each state on the reverse strand begins

with ‘r’. They have the consistent biological meaning with

the states on the forward strand. The superscript on the

reverse strand represents the reading frame phase of an

exon. Thus, there are nine states for a terminal exon and

three states for an initial exon considering high, medium,

and low GC contents.

Similar to existing HMMs for gene prediction, our

HMM is also a general HMM, which supports length dis-

tribution and the Markov model emission of the exons.

For each exon state on both forward strand and reverse

strand, the exon length distribution is computed on

the corresponding exons, respectively. Similarly, different

inhomogeneous kth-order Markov models (by default

k = 4) for each exon state are derived separately.

New transitions in our HMM

With new states representing exons of different GC con-

tents, new transitions incident to these new states are

added. In this section, we describe how we compute the

transition probabilities for the new edges.

In Fig. 4, the arrows represent the transitions between

states in the state set Q with non-zero probabilities. The

transitions from and to the intron states are the same as

those of states described in the AUGUSTUS model [22].

For GPRED-GC, we consider two strategies for comput-

ing transition probabilities. First strategy, we use a very

simple strategy by dividing the known transition proba-

bilities concerning the exon states of AUGUSTUS equally

for three exon states of high, medium, and low GC con-

tents. This strategy can be used when we have very limited

training data. Our hypothesis is that they start with equal

probabilities. Figure 4 includes the transition probabili-

ties of this strategy. The second strategy is a standard

method based on maximum likelihood training. We com-

pute the transition probabilities using the maximum like-

lihood estimation from the training data. In the following

equation, akl is the transition probability for k, l ∈ Q. Akl

is the number of observed transitions from the state k to

state l in training data. Themaximum likelihood estimator

is defined as

akl =
Akl

∑

q∈Q Akq
(2)

To avoid zero probabilities due to sparse/insufficient

training data, we add pseudocounts to the observed fre-

quencies to reflect prior biases regarding the probability

values. Given pseudocounts rkl, we define A
′
kl as

A′
kl = Akl + rkl (3)

Usually, with the Laplace method, all rkl equal to 1.

The performance comparison of the two strategies for

computing transition probabilities will be shown in the

Results and discussion Section.

Results and discussion
To evaluate the performance of GPRED-GC, we tested

GPRED-GC on three sets of data from A. thaliana and

O. sativa. The first data set on A. thaliana was down-

loaded from the server of Augustus [27]. The other two

were from O. sativa, obtained from the MSU Rice Anno-

tation Project and from Stanke et al. [28], respectively. A.

thaliana is a dicotyledenous plant and not a grass species.

The genes in A. thaliana do not have GC-gradients that

are common to genes from grasses. We expect that our

program should achieve similar performance to other
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Fig. 4 The state diagram of GPRED-GC. The states beginning with r represents the reverse strand. EHsingle : a single exon of high GC content. EMsingle : a

single exon of medium GC content. ELsingle : a single exon of low GC content. Einit H : the initial coding exon of a multi-exon gene with high GC

content. Einit M : the initial exon of a multi-exon gene with medium GC content. Einit L : the initial exon of a multi-exon gene with low GC content. DSS:

a donor splice site. Ishort : an intron emitting at most d nucleotides. Ifixed : a longer intron with the first d nucleotides. Igeo : a longer intron emitting one

nucleotide at a time after the first d nucleotides. ASS: an acceptor splice site with branch point. EH : an internal coding exon of a multi-exon gene

with high GC content. EM : the internal exon of a multi-exon gene with medium GC content. EL : the internal exon of a multi-exon gene with low GC

content. EHterm : the last coding exon of a multi-exon gene with high GC content. EMterm : the terminal exon of a multi-exon gene with medium GC

content. ELterm : the terminal exon of a multi-exon gene with low GC content. IR: intergenic region. Diamonds represent the states that emit fixed

length strings. Ovals represent the states including explicit length distribution. The numbers at the arrows show the transition probabilities. The

transition probabilities incident to new exon states are derived using equal divisions (strategy 1). The exponents 0, 1, and 2 represent the reading

frame phase. For an exon state, this is the position of the last base of the exon in its codon. For the other states, the exponent are the

preceding-exon phase. The small circles represent silent states

ab initio gene prediction programs on gene prediction for

A. thaliana. For the data sets from O. sativa, we expect to

observe improved performance of gene prediction. As our

HMM is modified from the HMM in Augustus, we com-

pared our results to the output of regular AUGUSTUS

ab initio gene finding program. In particular, we focus on

examining the performance of our method on identifying

genes with sharp change of GC content.

Evaluation metrics

We adopted the standard evaluation metrics [22] for gene

prediction: sensitivity and specificity. The sensitivity and

specificity are computed at three levels: the nucleotide

level, the exon level, and the gene level. The sensitivity and

the specificity are defined as

Sensitivity(Sen) =
TP

TP + FN
(4)



Techa-Angkoon et al. BMC Bioinformatics 2019, 20(Suppl 15):482 Page 6 of 15

Specificity(Spe) =
TP

TP + FP
(5)

TP (true positive) represents the number of correctly

predicted features (coding nucleotides, exons, or genes).

FN (false negative) represents the number of annotated

features that are not correctly predicted by a gene anno-

tation program. FP represents the number of predicted

features that are not annotated. At each level, we report

both the sensitivity and specificity. Sensitivity is the per-

centage of correctly predicted features in the set of all

annotated features. Specificity is the percentage of cor-

rectly predicted features in the set of all predicted features.

Specificity is also called positive predictive value (PPV)

in other literature. At the exon level, a predicted exon

will be correct if both splice sites are identical to their

labeled positions. At the gene level, a predicted gene is

considered correct if all exons are correctly identified, and

no additional exons are identified in the gene. The pre-

dicted partial genes are evaluated similarly. The forward

and reverse strands are considered as different sequences.

Gene prediction on A. thaliana

We trained our HMM for A. thaliana using the training

set from Stanke’s website [27]. The data set contained 249

genomic regions. There were two single exon genes and

247 multi-exon genes in the data set.

Training the HMMmodel

To train our HMM, we calculated the GC contents for all

of the exons and classified them as high, medium, and low

using specified cutoffs. For GPRED-GC, we have two cut-

offs: lowT and highT. If an exon has GC content below

lowT, it is classified as low GC content. If an exon has GC

content above highT, it is labeled as high GC content. Oth-

erwise, it is labeled as medium. The detailed classification

is summarized in Procedure 1.

Figure 5 illustrates the distribution of exons by their GC

contents for 1,431 exons in A. thaliana data set. Com-

pared to the GC content distribution for exons inO. sativa

(see the figure in SectionGene Prediction inO. sativa), the

variation of GC contents of exons inA. thaliana is smaller.

Table 1 shows the values of lowT and highT used in the

experiments. Exons in the training set are classified into

three groups based on lowT and highT cutoffs. Parameters

are derived separately for different exon states.

For all newly added exons of types EH , EL, and EM, their

exon length distributions are computed. In addition, we

calculated kth-order Markov Model (by default k=4) for

each new exon state.

For computing transition probabilities, we used two

strategies. First, we equally divided the probabilities of

AUGUSTUS for three states of high, medium, and lowGC

contents. Second, we used maximum likelihood estima-

tion to calculate transition probabilities.

Procedure 1 The pseudocode for classifying the exons

into three groups

Input: E: a set of exons and e.GC: GC Content of an exon.

Output: EH: a set of exons classified as high GC content,

EM: a set of exons classified as medium GC content,

and EL: a set of exons classified as low GC content.

//Exon Classification

1: for each e ∈ E do

2: if e.GC > highT then

3: EH ⇐ e

4: else

5: if e.GC >= lowT and e.GC <= highT then

6: EM ⇐ e

7: else

8: if e.GC < lowT then

9: EL ⇐ e

10: end if

11: end if

12: end if

13: end for

We used 10-fold cross-validation for model training.

It divided the training data set randomly into 10 sub-

sets. The evaluation method is repeated 10 times. For

each round, one of 10 subsets is designated as the

test set and the other 9 subsets are put together for

training. Then the average prediction accuracy of all

10 trials is calculated. The parameters maximizing the

average prediction performance are kept as the default

parameters.

Performance comparison between different gene prediction

tools

We tested AUGUSTUS and GPRED-GC on the testing

data set of A. thaliana [27], which has no overlap with

the training data set. There were 74 genomic regions

with 168 genes on the forward and reverse strand.

Our program was modified from AUGUSTUS version

2.4 downloaded from [29]. Both original AUGUS-

TUS and GPRED-GC were tested using default input

parameters.

Table 1 shows the comparison of the accuracy of

AUGUSTUS and GPRED-GC with different thresholds of

GC contents. In this experiment, the transition probabil-

ities from intron to exons of different GC contents were

equally divided into three portions. These experimental

results show that GPRED-GC achieved slightly better sen-

sitivity and specificity for gene level predictions. For base

level and exon level predictions, GPRED-GC has higher

specificity than AUGUSTUS. Overall, the performances

of these two tools are comparable on this data set, which

is expected for a non-grass genome that lack genes with

widely varying GC contents or genes with negative GC
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Fig. 5 GC Content of exons in the A. thaliana data set

gradients. In addition, the performance of GPRED-GC

does not vary significantly with the change of the GC con-

tent cutoffs, mainly because the GC contents of the exons

in this data set are clustered between 0.35 and 0.6.

We also implemented GPRED-GC by computing the

transition probabilities from intron to different exon states

using maximum likelihood estimation. Table 2 presents

the accuracy comparison of AUGUSTUS and GPRED-GC

with different cutoffs and trained transition probabili-

ties. Using maximum likelihood estimation for comput-

ing the transition probabilities gave the better overall

performance.

The uniquely predicted genes by GPRED-GC

As the major goal of GPRED-GC is to detect genes with

highly variable GC contents, we evaluated this goal by

examining the GC contents of uniquely identified genes by

GPRED-GC. There were 14 uniquely identified genes by

our tool and 149 shared genes. For all these genes, we

computed their GC contents and the standard deviation

(SD). In addition, we introduce another metric named

“GC-distance", which is the largest difference of GC con-

tents between all exons inside a gene. Thus, a gene with

highly variable GC contents are more likely to have a big

SD and also a large GC-distance.

Table 1 Performance comparison of gene prediction tools on A. thalianawith the transition probabilities divided into three equal portions

Program AUGUSTUS GPRED-GC

lowT=0.47 lowT=0.30 lowT=0.30 lowT=0.60

highT=0.63 highT=0.60 highT=0.70 highT=0.70

Base Sen 0.968 0.962 0.963 0.962 0.963

level Spe 0.708 0.709 0.710 0.710 0.710

Exon Sen 0.870 0.848 0.848 0.845 0.848

level Spe 0.666 0.669 0.679 0.680 0.679

Gene Sen 0.554 0.565 0.548 0.548 0.548

level Spe 0.352 0.360 0.354 0.354 0.354

Time(Sec.) 40.3 52.4 52.8 54.2 53.0

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under

different sets of thresholds on A. thaliana dataset in seconds. Note: The running time is the total running time of prediction
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Table 2 Performance comparison of gene prediction tools on A. thaliana with the transition probabilities trained by computing

maximum likelihood estimation

Program AUGUSTUS GPRED-GC

lowT=0.47 lowT=0.30 lowT=0.30 lowT=0.60

highT=0.63 highT=0.60 highT=0.70 highT=0.70

Base Sen 0.968 0.960 0.972 0.972 0.972

level Spe 0.708 0.711 0.709 0.709 0.709

Exon Sen 0.870 0.851 0.882 0.882 0.882

level Spe 0.666 0.674 0.677 0.677 0.677

Gene Sen 0.554 0.560 0.565 0.565 0.565

level Spe 0.352 0.346 0.351 0.351 0.351

Time(Sec.) 40.3 51.1 57.7 56.4 57.7

The two tools have comparable performance. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under different sets of thresholds on A. thaliana dataset in

seconds. Note: The running time represents the total running time of prediction

The experimental results demonstrated that the average

SD of the uniquely predicted genes was 0.046. However,

the average SD of the common ones was 0.033 which is

smaller than the uniquely predicted genes. Also, the aver-

age GC-distance for uniquely found genes was 0.111. The

average GC-distance of the common genes was only 0.087.

As an example, a uniquely identified gene is reported in

Fig. 6.

Running time analysis

The theoretical time complexity is O(|Q|L) where Q is the

set of the states in the HMM and L is the query length.

The actual running time is in Tables 1 and 2. As the total

number of states in GPRED-GC is less than twice of the

states in AUGUSTUS, the running time of GPRED-GC is

comparable to AUGUSTUS.

Gene prediction inO. sativa

Weconducted twoexperimentsusing two differentO. sativa

data sets. The first O. sativa data set is part of the MSU

Rice GenomeAnnotation Project [30], [31]. The secondO.

sativa data set was obtained from Stanke et al. [28]. Unlike

A. thaliana, which has a set of gene predictions with high

confidence, O. sativa does not have confidence descrip-

tions assigned to gene predictions. Therefore, we choose

two data sets on O. sativa to avoid the possible inaccu-

rate annotations. These two data sets were constructed

from different means and contain different sequences.

The first data set is smaller than the second data set.

Figure 7 presents the distribution of exons by their GC

contents for 844 exons in the first O. sativa data set.

Figure 8 shows the distribution of exons by their GC con-

tents for 16,199 exons in the second O. sativa data set.

Fig. 6 The GC content change across all exons in a predicted multi-exon gene of A. thaliana. This gene SEQ16AC003000G7G8 was predicted by

GPRED-GC. X-axis represents the exon index. Y-axis represents the GC content
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Fig. 7 GC Content of the exons in the first data set of O. sativa

According to Figs. 7 and 8, the GC content of the exons

has a larger variation than that of A. thaliana. Thus, the

main purpose of the experiments is to test whether our

model can capture the change of GC content inside the

genes.

Gene identification in the first O. sativa data set

The training data set consisted of 150 genomic regions

with 11 single-exon genes and 139 multi-exon genes

on forward strand and reverse strand. Again, we used

10-fold cross validation strategy for model training. The

Fig. 8 GC Content of the exons in the second O. sativa data set
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Table 3 Performance comparison of gene prediction on the first O. sativa data set with the transition probabilities divided into three

equal parts

Program AUGUSTUS GPRED-GC

lowT=0.39 lowT=0.35 lowT=0.50 lowT=0.40

highT=0.61 highT=0.61 highT=0.60 highT=0.60

Base Sen 0.839 0.840 0.831 0.921 0.841

level Spe 0.892 0.902 0.898 0.883 0.901

Exon Sen 0.613 0.617 0.589 0.698 0.617

level Spe 0.694 0.733 0.715 0.692 0.725

Gene Sen 0.260 0.280 0.267 0.267 0.287

level Spe 0.235 0.261 0.250 0.234 0.267

Time(Sec.) 37.6 58.1 58.2 57.0 56.0

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under

different sets of thresholds on the first O. sativa dataset in seconds. Note: The running time is the total running time of prediction

test data set contains 150 genomic regions with 13 sin-

gle exon genes and 137 multi-exon genes on forward and

reverse strands.

We compared GPRED-GC with AUGUSTUS in Table 3.

In this experiment, we observed GC content change for

exons inside each gene. For example, some genes tend to

start with exons of high GC content and end with exons

of low GC content. As the result, GPRED-GC achieved

higher sensitivity than AUGUSTUS. GPRED-GC can

improve both the sensitivity and the specificity at all lev-

els using a cutoff of low GC content(0.40) and the cutoff

of high GC content(0.60). With transition probabilities

derived using maximum likelihood, the results are shown

in Table 4.

Furthermore, we compared changes in GC contents

of the uniquely identified genes by GPRED-GC and the

common genes shared by AUGUSTUS and GPRED-GC.

There were four uniquely predicted genes by GPRED-

GC and 143 common genes. We compared the uniquely

identified genes and common ones in terms of SD and

GC-distance for each protein-coding gene. The results

showed that the average SD of the uniquely predicted

genes (0.098) was higher than that of common genes

(0.075). Also, the average GC-distance of the uniquely

found genes by GPRED-GC (0.241) was bigger than that

of common genes (0.171).

Figure 9 plots the GC contents of the genes that can be

correctly predicted by GPRED-GC but miss-annotated by

regular AUGUSTUS. All these genes have a negative GC

gradient.

Running time on the first O. sativa data set

The running times of AUGUSTUS and GPRED-GC with

different sets of thresholds are compared in Table 3 and

Table 4.

Finding genes in the secondO. sativa data set

The second O. sativa data set was provided by Stanke

et al. [28]. The detailed information about these genes

can be found in the authors’ paper. Here we provide a

brief summary about the genes in this data set. First,

Stanke et al. made a genbank file from the genome and

Table 4 Performance comparison of gene prediction on the first O. sativa data set with the transition probabilities trained using

maximum likelihood estimation

Program AUGUSTUS GPRED-GC

lowT=0.39 lowT=0.35 lowT=0.50 lowT=0.40

highT=0.61 highT=0.61 highT=0.60 highT=0.60

Base Sen 0.839 0.850 0.847 0.923 0.847

level Spe 0.892 0.898 0.898 0.876 0.899

Exon Sen 0.613 0.633 0.62 0.707 0.629

level Spe 0.694 0.732 0.716 0.670 0.727

Gene Sen 0.260 0.253 0.253 0.267 0.267

level Spe 0.235 0.235 0.235 0.227 0.247

Time(Sec.) 37.6 57.4 57.8 56.0 57.4

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under

different sets of thresholds on the first O. sativa dataset in seconds. Note: The running time shows the total running time of prediction
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Fig. 9 Genes of the first O. sativa data set predicted correctly by GPRED-GC but missed or incorrectly annotated by Augustus. Four genes are listed in

the four subplots: (a), (b), (c), and (d). X-axis represents the exon index inside a gene. Y-axis represents GC content

the gff file. Second, they constructed a set with both

5’ and 3’ UTRs annotated. Then, they selected genes

with both UTRs and CDSes (from a visual inspection in

JBrowse against panicle and leaf RNA-Seq STAR align-

ments). Fourth, they identified genes with errors only

and removed the sequences with errors. Finally, the data

set contains 1000 genes, which consist of 128 manually

selected and 872 randomly chosen ones (from among

filtered genes with both UTRs annotated). The HMM for

O. sativa was trained on a selection of 800 genes with

UTRs from phytozome [32]. For the training data set,

there were 187 single exon genes and 613 multi-exon

genes on the forward and reverse strands.

To assess the performance, we used the remaining 200

genes as the test set to avoid any overlap with the train-

ing set. The testing data set consisted of 40 single-exon

genes and 160 multi-exon genes on the forward and

reverse strands. Tables 5 and 6 compare the accuracy of

AUGUSTUS and GPRED-GC on the test set. Table 5

shows the results of the prediction using the equal

Table 5 Performance comparison of gene prediction tools on the second O. sativa data set with the transition probabilities divided

into three equal parts

Program AUGUSTUS GPRED-GC

lowT=0.31 lowT=0.49 lowT=0.30 lowT=0.60

highT=0.52 highT=0.52 highT=0.50 highT=0.70

Base Sen 0.859 0.942 0.950 0.937 0.840

level Spe 0.619 0.607 0.597 0.590 0.622

Exon Sen 0.670 0.768 0.781 0.748 0.630

level Spe 0.552 0.546 0.553 0.520 0.559

Gene Sen 0.355 0.400 0.400 0.355 0.365

level Spe 0.191 0.211 0.205 0.177 0.204

Time(Sec.) 48.2 60.2 60.8 60.8 59.0

The transition probabilities were divided into three equal parts. Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time

(Sec.) is the running time of AUGUSTUS and GPRED-GC under different sets of thresholds on the second O. sativa dataset in seconds. Note: The total running time of

prediction is presented
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Table 6 Performance comparison of gene prediction tools on the second O. sativa data set with the transition probabilities trained

using maximum likelihood estimation

Program AUGUSTUS GPRED-GC

lowT=0.31 lowT=0.49 lowT=0.30 lowT=0.60

highT=0.52 highT=0.52 highT=0.50 highT=0.70

Base Sen 0.859 0.955 0.945 0.948 0.858

level Spe 0.619 0.607 0.601 0.586 0.620

Exon Sen 0.670 0.798 0.769 0.765 0.665

level Spe 0.552 0.565 0.544 0.572 0.547

Gene Sen 0.355 0.425 0.360 0.350 0.370

level Spe 0.191 0.217 0.186 0.170 0.204

Time(Sec.) 48.2 64.9 62.4 63.5 60.3

Bold number indicates that sensitivity or specificity of GPRED-GC are higher than those of AUGUSTUS. Time (Sec.) is the running time of AUGUSTUS and GPRED-GC under

different sets of thresholds on the second O. sativa dataset in seconds. Note: The running time is the total running time of prediction

transition probabilities while Table 6 contains the

prediction results of the HMMwhose transition probabil-

ities were trained usingmaximum likelihood. Bothmodels

shows improved accuracy compared to AUGUSTUS.

By applying GPRED-GC of equal transition probabil-

ities (strategy 1), the sensitivity of GPRED-GC at base

level was enhanced from 0.859 to 0.942 for 0.31 lowT

cutoff and 0.52 highT cutoff. At the exon level, the sen-

sitivity of GPRED-GC was improved from 0.67 to 0.768.

The specificity of AUGUSTUS is slightly better than that

of GPRED-GC for the same cutoffs at the base level.

At the gene level, GPRED-GC had better sensitivity and

specificity (0.4 and 0.211, respectively). By using the tran-

sition probabilities trained via maximum likelihood, we

observed a bigger improvement in the performance (see

Table 6).

We conducted additional analysis using the results of

lowT=0.31 and highT=0.52. The analysis confirms that

Fig. 10 Summary of GC content profile of six genes correctly predicted by GPRED-GC. The names of the genes in each subplot are (a)

LOC_Os03g44820.1, (b) LOC_Os04g52180.1, (c) LOC_Os04g52710.1, (d) LOC_Os05g30860.1, (e) LOC_Os06g11040.1, (f) LOC_Os10g03830.1,

respectively from the second O. sativa data set. These genes cannot be detected or annotated correctly by AUGUSTUS. X-axis represents exon index

inside the gene. Y-axis represents the GC content
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GPRED-GC can detect the genes containing a GC con-

tent gradient. There were 26 uniquely predicted genes by

GPRED-GC and 163 common genes shared byAUGUSTUS

and GPRED-GC. Uniquely predicted genes had higher

SD (0.099) than common genes (0.080). Besides, the

average GC-distance (i.e. the difference between the

exon with the highest GC content and the exon with the

lowest GC content) for each protein-coding gene of the

uniquely found genes are larger than that of the common

genes (0.211 and 0.171, respectively). GPRED-GC

miss-annotated 11 genes, which are correctly predicted

by AUGUSTUS. For all these genes, we correctly pre-

dicted the initial and terminal exons but some of the

internal exons’ starting and ending positions are not

correctly computed. Overall, we correctly identified 26

more genes than AUGUSTUS while we missed 11 genes.

There are 533 exons in all of these 37 genes. At the exon

level for these genes, the sensitivities of GPRED-GC

vs. AUGUSTUS are 0.838 and 0.627, respectively. The

specificities of GPRED-GC VS AUGUSTUS are 0.639 and

0.543, respectively.

Figure 10 illustrates the examples of genes correctly pre-

dicted by GPRED-GC but missed by AUGUSTUS. This is

strong evidence showing that our tool can predict genes

with changing GC contents.

How to determine the lowT and highT cutoffs?

Our experimental results have shown that the gene pre-

diction performance is affected by the values of lowT and

highT. In Table 6, setting lowT and highT to 0.31 and 0.52

achieved significantly better performance than 0.30 and

0.50. As such a small change can lead to a big difference,

we investigated the reasons. Essentially, changing lowT

and highT mainly changes the labels of exons of the train-

ing data. The numbers of exons classified as having high,

medium, and lowGC contentmay change.Meanwhile, the

number of transitions involving these states may change

too. Thus, we compared the corresponding parameters in

the two HMMs for these two sets of cutoffs. While many

parameters are identical, there are several differences as

shown in Table 7.

For the cutoff set (0.30, 0.50), there are several edges that

have zero or a very small number of training samples pass-

ing those edges. If the training case contains 0 samples for

one edge, only the pseudocount will be used, leading to

a very small transition probability. When the testing data

Table 7 The comparison of the corresponding parameters in the two HMMs for these two sets of cutoffs

From To lowT=0.30, highT=0.50 lowT=0.31, highT=0.52

Transition probabilities Training count Transition probabilities Training count

ASS0 E1H 0.051961 212 0.045098 184

ASS0 E1M 0.125490 510 0.132353 540

ASS0 E1L 0.000980 4 0.000980 4

ASS0 E2H 0.034314 140 0.027450 112

ASS0 E2M 0.124510 508 0.129412 528

ASS0 E2L 0.000980 4 0.002941 12

ASS1 E0H 0.119469 216 0.101770 184

ASS1 E0M 0.316372 572 0.334071 604

ASS1 E0L 0.004425 8 0.004425 8

ASS1 EHterm 0.066372 120 0.055310 100

ASS1 EMterm 0.130531 236 0.139381 252

ASS1 ELterm 0.002212 4 0.004425 8

rDSS0 rE2H 0.107246 148 0.092754 128

rDSS0 rE2M 0.272464 376 0.284058 392

rDSS0 rE2L 0 0 0.002899 4

rDSS1 rE2H 0.074074 96 0.067901 88

rDSS1 rE2M 0.379630 492 0.385802 500

rDSS1 rE2L 0.003086 4 0.003086 4

rDSS2 rE2H 0.099088 348 0.077449 272

rDSS2 rE2M 0.407745 1432 0.428246 1504

rDSS2 rE2L 0.001139 4 0.002278 8

Set1: lowT and highT are 0.30 and 0.50. Set2: lowT and highT are 0.31 and 0.52. The different probabilities before using pseudocount and their corresponding training counts

are listed
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has those cases, the overall generation probabilities tend

to be small. In order to avoid any bias of training, our guid-

ance is to choose the cutoffs so that the training data can

cover all the edges/transitions.

Running time on the secondO. sativa data set

The running times of AUGUSTUS and GPRED-GC with

different sets of thresholds are compared in Tables 5 and 6.

The two tools have comparable total running time.

Conclusion
In this work, we provided an implementation of a HMM

that is optimized for predicting protein-coding regions

that have various GC content and 5′-3′ changing patterns.

Our experimental results showed that our program can

identify genes that are missed by AUGUSTUS.

According to the previous studies, several directions

can be improved. For gene prediction, some existing gene

prediction tools can identify 5′UTR and 3′UTR regions.

Currently, GPRED-GC is not able to identify UTR regions.

We plan to extend GPRED-GC to accurately predict

5’UTR and 3’UTR regions. Existing gene prediction tools

demonstrated that using extrinsic evidence derived from

matches to an EST or protein database can improve the

accuracy of gene prediction. We will further improve

GPRED-GC accuracy by using hints from external sources

if the data is available.
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