
Synchronization and Error Correction

Using Optical and Gene Tags

Linking a database of barcode se-

quences with cytometric data is prone

to errors. In IBC-generating chips, spots

for oligonucleotide synthesis could be

empty or occupied by multiple cores,

or cores may stick elsewhere. In cell/

IBC pairing droplets, the one-to-one ra-

tio could be compromised. In a cytome-

ter,multiple cells could bedetected as a

single event, or cells may stick or switch

elution order. These errors would mani-

fest themselves in mismatching indexes

in the barcode database and cytometric

data, and they would have to be cor-

rected. Two possible correction ap-

proaches could be employed.

For presequencing correction, fluores-

cently marked reference cores could

be added into IBCs identified by serial

number (but not IBCs with intrinsic

IDs) and to analyzed cells. Images of

the IBC-producing chip and the cell

accumulator (Figure 1A,D) would reveal

the elution order of these reference

IBCs among regular cells and IBCs (Fig-

ure 1A,D; red and violet dots, respec-

tively). These data will be compared

with data from on-flow detectors

(Figure 1A,B,E,F).

For postsequencing correction, known

barcode sequences of paired reference

IBCs (one from the cell sample and

another from the IBC supply) will be

compared with pairing data (Figure 1F)

and order of elution expected from op-

tical analysis (Figure 1A,B,E).

Applied in parallel, these methods

would reveal if IBCs and cells switched

positions in elution order or were lost,

and they would reveal junk particle

reads and pairing mismatches.

Compromised data will be repaired

for confirmed cases of switched posi-

tions. Alternatively, if the correction

data is insufficient for repair, the

compromised data for cells between

reference IBCs (Figure 1A,B; blue dots

between red dots) will be eliminated.

Concluding Remarks

We anticipate that the recent single cell

sequencing technologies based on in-

drop barcoding are ready to be

augmented with the full power of on-

flow detection methods, such as

cytometry, enabling a transformative

analytical tool for comprehensive

assessment of heterogeneity in genetic

makeup and phenotypic properties of

cells, organelles, exosomes, and other

biological entities. Here we have sug-

gested pathways to developing such

an analytical tool using the concept of

IBCs.
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Predicting CRISPR/
Cas9-Induced
Mutations for
Precise Genome
Editing
Kutubuddin A. Molla1,2,3,@

and Yinong Yang1,2,*

SpCas9 creates blunt end cuts in the

genome and generates random and

unpredictable mutations through er-

ror-prone repair systems. However, a
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growing body of recent evidence

points instead to Cas9-induced stag-

gered end generation, nonrandomness

of mutations, and the predictability of

editing outcomes using machine

learning models.

Cas9 Cleavage Creates Both Blunt

and Staggered Ends

Cas9 nuclease was thought to make a

blunt-ended cut, specifically 3 base

pairs (bp) upstream (i.e., the –3 posi-

tion) of the NGG protospacer adjacent

motif (PAM) [1]. Active Cas9 contains

two nuclease domains, HNH and

RuvC, which are responsible for

cleaving the target and nontarget

DNA strand, respectively [1]. However,

other studies suggested that Cas9 can

also produce 1 nucleotide (nt) 5’ stag-

gered ends [1,2]. Towards resolving

the controversy, Shou and colleagues

found that along with blunt ends, Cas9

also generates nonblunt ends with 1–3

nt 5’ overhangs [3]. Their study showed

that HNH accurately cuts at the –3 posi-

tion upstream of the PAM sequence,

whereas RuvC flexibly cuts at either

–3, –4, –5, or even further upstream

(Figure 1A) [3]. In contrast to the earlier

observation that the nontarget strand

can be chewed up by the 3’–5’ exonu-

clease activity of RuvC after the initial

cut at –3 base, they found the cleavage

is indeed endonucleolytic at –3 or

further upstream [3]. A single nucleo-

tide insertion identical to the nucleo-

tide at –4 position was observed as a

common repair outcome in another

study, further indicating asymmetric

DNA cleavage by Cas9 [4]. Similar ob-

servations of templated origin of 1 bp

insertions in yeast, mouse embryonic

stem cells (mESCs), and mammalian

cells strongly implies the generation of

Cas9-induced 1 bp 50 staggered DNA

ends and subsequent filling in by a

DNA polymerase [5–7]. Interestingly,

in vitro studies revealed that D10A

Cas9 nickase (RuvC mutated) cleaves

exactly at the –3 position of the target

strand, and H840A Cas9 nickase (HNH

mutated) makes a flexible cut at –3,

–4, and –5 of the nontarget strand [3].

Accurate cleavage at –3 of the target

strand by HNH is likely due to the re-

striction imposed by target DNA–

sgRNA (single guide RNA) hybrid for-

mation, whereas the availability of dis-

placed flexible single-strand nontarget

DNA may result in the plasticity of

RuvC cleavage [8]. Therefore, Cas9

most likely produces both blunt and

staggered ends. Upon repair, a blunt

end may give rise to random deletion,

template-independent insertion, or

wild type [7]. By contrast, the genera-

tion of an overhang and nonhomolo-

gous end joining (NHEJ)-mediated

repair can result in predictable tem-

plated insertion, making it more desir-

able for precise genome engineering.

Cas9-Induced Double-Strand

Break Repair Outcome is
Nonrandom

Convincing results from recent studies

suggest that the time has come to

rethink the notion of unpredictable

and random repair from the Cas9-

induced double-strand breaks (DSBs)

[3,4,9–11]. They also inspire a path to-

wards template-free precise editing in

the genome independently of homol-

ogy-directed repair (HDR) (Figure 1B).

The first indication of nonrandom repair

of Cas9-created DSBs came from the

study of Li and colleagues [2]. Analysis

of 223 DSB repair outcomes in the hu-

man genome further showed that the

mutation is not arbitrary [12]. One of

the major factors determining the

outcome is the nature of protospacer

sequences, rather than the larger

genomic context, cell lines, or delivery

of editing reagents [12]. For instance,

a single protospacer targeting seven

distinct genomic sites yielded similar

repair events [12]. Increasing evidence

from large-scale recent studies in hu-

man cell lines further suggest that the

cut site adjacent sequence is an impor-

tant determining factor for Cas9-

induced mutations [3,4,9]. The most

consistently predictable class of editing

outcome is the single nucleotide inser-

tion [4,9–11]; the inserted nucleotide

was found to be identical to the nucleo-

tide at –4 from the PAM sequence [4,9].

If a protospacer contains T at –4, inser-

tion of another T is themost predictable

outcome among all mutations.

Recently, independent studies in

budding yeast, human, and mouse cell

lines confirmed this observation [5–

7,11]. Consistent findings across the

cell lines and even different organisms

indicate that indeed the nucleotide at

the –4 position is the most influential

in determining repair outcome, at least

for the predictable insertion. However,

the predictability gradually decreases

in the order T>A>C>G at the –4 nucle-

otide position [4,9,11].

Interestingly, the presence of two or

more repeating nucleotides at the cut

site frequently results in the deletion

of the repeating unit [4,9,11]. Iteration

of C and G represents the most predict-

able class of repeating unit for 1 bp de-

letions [4,9,11]. Similarly, loss of a trinu-

cleotide repeat was found to be the

most abundant class of deletion in

Cas9 treated mESCs [7]. These findings

could be attributed to microhomology-

mediated end joining (MMEJ) repair

(Figure 1B). Another intriguing recent

report showed that the creation of a

Cas9 DSB near the center of a tandem

microduplication can result in the dele-

tion of one of the repeat sequences

[13]. Cells treated with an MMEJ inhibi-

tor drug exhibited a sharp decrease in

microhomology-based deletion [13]. In

mammalian cell lines with impaired

MMEJ repair pathways, paired guide

RNA (gRNA) yielded precise DNA

fragment deletion, and the inserted
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nucleotides at the junction of fragment

deletion matched perfectly with the –4

to –10 (upstream of PAM) sequence of

the nontarget DNA strand [3]. A prelim-

inary study showed that in NHEJ repair

(Figure 1B), incompatible ends gener-

ated by DSB undergo processing

events like gap filling to make the

ends compatible [14]. Once the ends

become compatible, they are immedi-

ately ligated by ligase 4 to minimize er-

ror by further end processing [14].

These findings support the hypothesis

that Cas9-induced DSB repair involves

5’ overhang generation, filling in by a

polymerase, and subsequent ligation

(Figure 1C) [2,5,7]. Specific PAM config-

uration of the paired guide could result

in predictable nucleotide insertion at

the junction of deleted, duplicated, or

inverted DNA fragments [3]. Hence,

the mechanism behind the Cas9-

induced mutations, especially insertion

of a single base and deletion of a

repeating nucleotide unit, is becoming

increasingly clear. The studies also indi-

cate that at least a portion of NHEJ and

MMEJ repair outcomes are defined and

predictable.

Prediction of Repair Outcome

Using Machine Learning Models

Given the nonrandom nature of Cas9-

induced DSB repair, abundant data

available in the public domain can be

utilized to develop machine learning al-

gorithms to effectively perform predic-

tions of suitable guides with a high

probability of predictable repair

outcome and what kind of repair they

would generate (Figure 1D and Box 1).

Shen and colleagues generated a ma-

chine learning model, inDelphi, based

on their repair product data from

DSBs at 1872 target sites of the human

genome [10]. inDelphi categorized pre-

cise gRNAs that resulted in a single pre-

dictable repair outcome inR50% of to-

tal editing products. The accuracy of

inDelphi prediction was demonstrated

by achieving precise deletion and 1 bp

insertions in two separate experiments

[10]. Using gRNAs identified with inDel-

phi, this study demonstrated template-

free correction of HPS1 (Hermansky–

Pudlak syndrome) and ATP7A (Menkes

disease) gene mutation with 88% and

94% efficiency, respectively, in pa-

tient-derived fibroblasts. Similarly, Al-

len and coworkers created a computa-

tional tool, FORECasT, and

demonstrated predictions of in-frame

mutations with high accuracy [9] (Box

1). Employing a machine learning

approach, a study demonstrated that

–2, –3, –4, and –5 nucleotides from

PAM are critical for determining editing

precision of a target site [4]. Another

machine learning model, SPROUT, has

been developed to foresee the editing

outcome in primary T cells [11]. Like in-

Delphi, SPROUT correctly predicted

and ranked the top sgRNAs based on

their likelihood to cause insertion for

73% of the tested genes [11]. Interest-

ingly, SPROUT showed superior perfor-

mance in repair prediction when

compared with inDelphi and FORECasT

[11]. Only the targeted genome

sequence is required to predict repair

outcome using the freely available on-

line tools (Box 1). Those user-friendly

web tools would certainly facilitate re-

searchers to fine-tune their experi-

mental design and envisage a part of

their CRISPR/Cas9-mediated editing

outcome.

The Way Forward

Although base editing, a technique that

uses a fusion of catalytically impaired

nuclease with a nucleotide deaminase

to install targeted point mutation, can

cause single nucleotide alteration, it

cannot generate precise indels [15].

The most recent findings represent a

great leap towards template-free pre-

cise genome editing, which should

facilitate the development of CRISPR-

based therapeutics. The evidence sug-

gests that the repair outcome is not al-

ways random, and it depends on the

type of cut (blunt vs staggered), the

cut site’s neighboring bases, and the

type of repair pathways. A large pro-

portion of Cas9-induced mutations

like large deletions, inversion, and

translocation are not mechanistically

understood. Developing a full mecha-

nistic picture of what percentage of

Cas9-mediated DSBs are staggered

and how the DSBs are repaired would

expedite prediction and in turn preci-

sion genome editing. Availability of

suitable and specific inhibitors for

different DNA repair pathways could

facilitate fine-tuning the balance be-

tween different pathways for a desir-

able outcome. Besides, engineering

the nuclease domains for increased/

decreased plasticity could facilitate

diverse applications. Training data

comprising of repair genotypes from

other nuclease variants could be used

Figure 1. Double-Strand DNA Breaks, Cellular Repair Pathways, and Prediction of CRISPR/Cas9-Induced Mutations.

(A) Staggered cuts by SpCas9. HNH domain cleaves target strand at –3 position, and RuvC domain can make a cut at either –3, –4, –5, or even further. (B)

Genomic double-strand break (DSB) generation is followed by different cellular repair pathways. Error-prone nonhomologous end joining (NHEJ) and

microhomology-mediated end joining (MMEJ) pathways create the majority of mutations throughout the cell cycle. Homology-directed repair (HDR),

active in S/G2 phases of the cell cycle, repairs DSBs without error. (C) Hypothetical model explaining the generation of a 1 base pair (bp) insertion during

CRISPR/Cas9-induced DSB repair. (D) Machine learning aids in the prediction of precise guides and their repair outcome. ‘–4’ signifies position of the

nucleotide proximate to the 5’ end of protospacer adjacent motif (PAM). Abbreviations: dsDNA, double-strand DNA; FORECasT, favored outcomes of

repair events at Cas9 targets; HR, homologous recombination; inDelphi, inDel score (phi); Nucleotide N, A/T/G/C; SPROUT, CRISPR Repair Outcome.
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to facilitate prediction of different mu-

tation patterns. Since precise indel gen-

eration can introduce single nucleotide

polymorphisms and modify alleles to

improve agronomic traits, it will also

be important to examine DSB repair

outcomes in plant systems. This knowl-

edge would facilitate CRISPR/Cas-

enabled precision breeding and crop

improvement without linkage drag. To

optimize the precision of genome edit-

ing independent of the low-efficiency

HDR, this emerging area of research it-

self is worthy of attention and rapid

investigation.
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