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ARTICLE INFO ABSTRACT

Keywords: Motor unit activities provide important theoretical and clinical insights regarding different aspects of neuro-
Biosignal processing muscular control. Based on high-density electromyogram (HD EMG) recordings, we systematically evaluated the
Electromyogram performance of three independent component analysis (ICA)-based EMG decomposition algorithms (Infomax,

Source separation

Independent component analysis
RobustICA

Simulation

FastICA and RobustICA). The algorithms were tested on simulated HD EMG signals with a range of muscle
contraction levels and with a range of signal quality. Our results showed that all the three algorithms can output
accurate (85%-100%) motor unit discharge timings. Specifically, the RobustICA consistently showed high de-
composition accuracy among the three algorithms under a variety of signal conditions, especially with a low
signal quality and varying contraction levels. But the yield of decomposition of RobustICA tended to be low at
high contraction levels. In contrast, FastICA tended to show the lowest accuracy, but can detect the largest
number of motor units, especially at high contraction levels. Our results also showed that the computation time
was similar for FastICA and RobustICA, which was shorter than Infomax. Additionally, the accuracy of each
algorithm correlated moderately with the clustering index—the silhouette distance measure, and correlated
strongly with the rate of agreement of the algorithm pairs. Overall, our findings provide guidance on selecting
particular decomposition algorithms based on specific applications with different requirement on the accuracy/
yield of the decomposition.

1. Introduction

Electromyogram (EMG) signal is the superimposition of motor unit
action potentials (MUAPs) generated from motoneuron discharge
events that encode activities of the spinal circuitry and reflect high level
neural control signals from the brain. Motoneuron discharge activities
can provide theoretical understanding of the neural control of move-
ment [1,2], offer clinical insights into neuromuscular impairment [3-5]
and also be used as an interface signal for human-machine interactions
[6]. Therefore, there has been a continuous effort to extract individual
motor unit (MU) discharge information from the EMG signals [7-9].
MU decomposition of the EMG signals is the process of separating the
spatiotemporally superimposed MUAPs into individual MU activities.
Earlier work mostly involved manual expert editing [10], and later
semi-automated decomposition methods have been developed based on
MUAP template-matching [9,11], using highly-selective intramuscular
EMG recordings constrained at low contraction levels. These ap-
proaches can only identify a limited number of MUs, largely due to the
challenge of securely resolving superimposition from a large number of

active MUs.

With the help of hardware development of multi-channel surface
electrodes recently [12,13], advanced decomposition algorithms have
been developed that can yield a large number of MUs at a wide range of
contraction levels, allowing us to perform MU analysis at the popula-
tion level. One decomposition method was developed by De Luca and
colleagues based on a closely spaced 5-pin sensor array [12], and the
algorithm [14] uses a template-matching approach through a maximum
a-posteriori probability classifier. Alternatively, different blind source
separation algorithms have been used to decompose EMG signals with a
large number of channels. For example, the Convolution Kernel Com-
pensation (CKC) method has been developed to decompose high-den-
sity (HD) EMG signals [15,16], and independent component analysis
(ICA) based decomposition algorithm has also been applied to HD EMG
decomposition [17,18]. Although different ICA algorithms have been
used for source separation in other signal modalities (e.g. EEG), FastICA
in combination with CKC or with peel-off method is the only ICA-based
algorithm evaluated on EMG decomposition [17,18]. Furthermore, a
systematic valuation of the decomposition performance is crucial. A
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recent study [18] used the clustering index, silhouette (SIL) distance, to
evaluate the decomposition results. The rate of agreement (RoA) of
different algorithms can also serve as an evaluation metric of the de-
composition performance [19]. However, the reliability of these metrics
has not been systematically investigated.

Accordingly, our current study examined the performance of three
different ICA-based HD EMG decomposition algorithms (FastICA [20],
Infomax [21], and RobustICA [22]), and systematically evaluated the
performance of these three algorithms under different signal conditions,
in which a large range of signal conditions (excitation level and MU
firing synchronization level) and signal quality (baseline noise level)
were tested. The simulated EMG with known ground truth of the dis-
charge timings was used, and allowed us to directly assess the decom-
position performance. In addition, we systematically investigated the
relation among the clustering index (SIL), the RoA, and the decom-
position accuracy. Our main findings revealed that (1) RobustICA was
able to show a consistently high accuracy under different signal con-
ditions, but the decomposition yield tended to be low with a large
number of active MUs at high muscle contraction levels; (2) FastICA
was able to detect a greater number of MUs, but with the lowest ac-
curacy under more challenging signal conditions (i.e., low signal
quality and high contraction level); and (3) the decomposed MUs with a
wide range of SIL and a larger RoA (> 85%) between algorithms gen-
erally showed a high decomposition accuracy (> 90%). Overall, our
findings provided boundary conditions of the different ICA-based de-
composition algorithms, and offered guidance regarding the choice of
the algorithm based on specific application purposes with different
requirements on the accuracy/yield of the decomposition. In addition,
our results also showed that SIL and RoA (being more sensitive) can be
combined to predict the decomposition accuracy when applied to ex-
perimental data.

2. Materials and methods
2.1. EMG decomposition

HD EMG signal can be regarded as a convoluted mixing process of
hundreds of MU spike trains with their MUAPs. To decompose the raw
EMG signals in the time domain into constituent MUAP trains, different
Independent Component Analysis (ICA) algorithms (FastICA [20], In-
fomax [21] and RobustICA [22]) were used to estimate the original MU
spike trains. These three algorithms were selected because of their su-
perior performance on the source separation of EEG signals. The overall
decomposition algorithms involve six procedures:

(1) Extend the raw EMG signals by adding R delayed replicas of ori-
ginal signals in each channel [15].
(2) Whiten the extended signals with eigenvalue decomposition.
(3) Deconvolute the signals using ICA-based algorithms with the fol-
lowing:
(a) The selection of contrast function f(-) highly influences the con-
vergence speed, and is mostly based on experience. In our study, the
most widely used contrast function tanh was selected for Infomax
and FastICA. However, the RobustICA solves this issue by searching
for the optimal convergence step based on Kkurtosis:
Hopt = argmaxyl(wi(n) + ug)|, where g is the gradient of the nor-
malized fourth-order marginal cumulant function (refer to Ref. [22]
for the details of 4 and g calculation). Therefore, the RobustICA
does not require a specific contrast function, and has been shown as
a faster approach.
The iteration process was considered converged if the measure (dot
products) of non-gaussianity was less than a threshold with respect
to the previous iteration (w;] (n + 1)w;(n) — 1| < threshold). The
convergence threshold determines the efficiency and accuracy of
the algorithm. In our study, the convergence threshold was set at
10~ based on a previous study [18].

(b

—
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(c) B is the separation matrix, which includes all m separation vectors
[wy, wy, ..., w,]. Both FastICA and RobustICA may converge to the
same source S. Therefore, an orthogonalization step [20] was per-
formed as: w;(n) = w;(n) — BBTw;(n), which is an efficient ap-
proach to reduce the probability of convergence to the same spike
train.

Detect the spike trains through k-means clustering on the decom-
posed source S. The clustering index SIL was calculated as a metric
to evaluate the decomposition performance for further analysis. The
SIL was defined as the difference of point-to-centroid distances
between the within-cluster distance summation and the between-
cluster distance summation normalized by the larger value of the
two distance summations.

Remove the duplicate MUs. The algorithm may converge repeti-
tively to the same motor unit as well as its delayed replicas because
of the extension step. If any of the two decomposed MU spike trains
had more than 50% synchronized discharge events within = 1 ms
after shifting the delay and aligning the timings of the two spike
trains, the MU spike train with a lower SIL was removed.

Identify the common MUs. RoA was used as a metric to predict the
decomposition performance, and the common MUs detected by two
algorithms were identified. A MU was referred as “common MU” if
both algorithms identified a MU spike train with more than 50%
discharge events matched within = 1 ms window, after adjusting a
timing offset.

@

()

(6)

The RoA of the two algorithms was calculated as:

# of matches

ROIA= —————
# of matches + NI

where # of matches means the number of spike timings matches with
each other within + 1 ms window, and NI is the total number of firings
not identified by either of the two algorithms.

2.2. EMG signal simulation

The multi-channel EMG mathematical model [23,24] was used to
simulate the EMG signals following these three steps:

First, the individual timings of the spike train were generated based
on a widely used physiologically-based motor unit pool model [25].
Briefly, the progressive MU recruitment threshold was modeled as an
exponential function as a function of the excitation drive. The MU
discharge rate increased linearly with the excitation level, and then
plateaued when it reached the maximum firing rate. The main model
parameters used here are summarized in Table 1. Discharge variations
with a 10% Coefficient of Variation were added for each firing event. In
addition, 0%, 10%, or 20% of the MU discharge synchronization [26]
was added to different test conditions.

Second, to obtain the HD MUAP templates, the waveforms were
randomly selected from a HD MUAP pool. The MUAP pool was derived
from earlier experimental data [27] obtained using a HD EMG acqui-
sition system (OT Bioelettronica, Torino, Italy). The EMG signals were
acquired from forearm flexor muscles (flexor digitorum superficialis
and flexor carpi radialis) at 30% and 60% maximum voluntary con-
traction levels, and then decomposed using previously developed

Table 1

The main parameters used for the MU spike train generation.
Parameter Value
Total number of neurons in the pool 120
Range of recruitment threshold 30
Exponential coefficient of recruitment threshold 1n30/120

Minimum firing rate 5
Maximum firing rate of first recruited MU 35
Maximum firing rate of last recruited MU 20
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FastICA combined with convolution kernel compensation (CKC) algo-
rithm. The 8 X 8 MUAP grid of each MU was estimated by a spike
trigger average algorithm [28] to construct the MUAP pool. The MUAP
pool was obtained experimentally rather than through a simulation
based on muscle geometric models, largely because the MUAP shapes
are more realistic and can closely reflect the morphological patterns of
real action potentials.

Third, one 8 X 8 HD MUAP was then convolved with a spike train to
create an 8 X 8 HD MUAP train grid. In order to simulate a more rea-
listic condition, the MUAP corresponding to each firing has a = 10%
amplitude and duration variation. Different number of MUAP train
grids were then superimposed to construct the 8 x 8 noise free EMG
signals. In addition, prior to the convolution, the MUAP grid was also
scaled by a coefficient from a uniformly distributed random number
ranging from 0.1 to 2. This amplitude scaling created a range of MUAP
amplitudes that are realistic to real EMG recordings, with some MUAP
amplitudes below the noise level. Then, Gaussian noise (band-pass fil-
tered at 10-900 Hz) was added to different simulated conditions
[17,29].

Intuitively, the number of MUs used for the EMG construction and
the noise level determined the degree of interference from noise or from
MUAPs superposition, which were the two main factors that can in-
fluence the performance of the decomposition algorithms. Therefore,
we simulated a range of different signal-to-noise ratios (SNR = 5, 10,
20, and 30 dB) and different excitation levels (5%, 10%, 20%, and 50%
of maximum excitation). The recruited number of MUs at 5%, 10%,
20%, and 50% of maximum excitation were 14, 38, 68, and 95, re-
spectively. All simulated data were sampled at 2048 Hz. Examples of
the simulated EMG in each condition are shown in Fig. 1A. A total of
800 trials (4 SNRs X 4 excitation levels x 50 repeated trials) were si-
mulated for the decomposition analysis. In different repeated simula-
tion runs, different MUAPs can be randomly drawn from the MUAP
pool. Fig. 1B shows the exemplar decomposition results compared with
the ground truth (only 5 MUs are shown for clarity).

To further test the performance of the algorithms under a more
challenging condition, a varying mean firing rate and MUAP amplitude
following a trapezoid was simulated. Under trapezoidal contraction,
there is MU progressive recruitment and derecruitment, and variations
in MUAP amplitudes during the ramp-up and ramp-down phases.
Specifically, a 10-s trial with two trapezoidal excitatory drive profile
was created with a 1-s rest period in between (Fig. 2A). The two tra-
pezoids were simulated to test the decomposition performance when
the MUs derecruit and recruit again. The MU recruitment and dere-
cruitment thresholds were based on the excitation level described in a
previous motoneuron pool model [25] (Fig. 2A). Each trapezoid had a
1-s ramp up and ramp down portion, and a 2.5-s steady portion. The
entire 10-s signal involving two 4.5-s trapezoids and 1-s rest period was
used for decomposition. During the ramp portion, the firing rate in-
creased/declined linearly with the change of excitation level. In addi-
tion, the magnitude of each column of the 8 x 8 MUAP grid was
multiplied by a coefficient to simulate the shift of the muscle fibers
relative to the electrodes. The signal values in each column were mul-
tiplied by a different coefficient obtained from the hamming window
(Fig. 2B). Therefore, the MUAP channels in the same column were
multiplied by the same coefficient, while the MUAP channels in dif-
ferent columns were multiplied by a different coefficient. Essentially,
the hamming window slid across the columns of the channels during
the ramp portion with increasing/decreasing excitation level. Eight
discrete points for each column were chosen from the hamming
window (see green ‘X’ in Fig. 2B) as the coefficients to scale the MUAP
amplitude. As a result, the amplitude distribution of the MUAP in the
grid shifted accordingly. Fig. 2C illustrates the change of MUAP am-
plitude during the two trapezoid contractions. Depending on the loca-
tion of the channel, the MUAP amplitude may increase or decrease.

The goal here was not to simulate physiologically realistic changes
of MUAPs, but to induce large changes in MUAP amplitude that can
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occur during EMG recordings with varying levels of muscle contrac-
tions. With such a coefficient modification, the amplitude of the MUAPs
can experience an approximate two-fold change (Fig. 2C), substantially
challenging the performance of the decomposition algorithms. For the
trapezoid contraction simulation, two different SNRs (10 and 20 dB)
and two excitation levels (20% and 50%) were tested. Therefore, a total
of 200 trials (2 SNRs X 2 excitation levels X 50 repeated trials) were
simulated.

2.3. Evaluation of decomposition performance

To quantify decomposition accuracy, the true spike train of each MU
was compared with all the decomposed MUs from different algorithms.
The accuracy was calculated as:

# of matches
# of matches + FP + FN

Accuracy =

where # of matches means the number of spike timings matches with
the truth within + 1 ms window; FP is the number of false positive
firings and FN is the number of false negative firings.

The RoA between algorithms was also calculated as the number of
matched spikes divided by the sum of matched and unmatched spikes
from either algorithm. Only MUs with a SIL > 0.5 were used for further
analysis, and MU pairs with a RoA > 60% were considered common
MUs.

2.4. Algorithm comparison

We first verified the optimal extension factors R, and the influence
of synchronization level for each algorithm. The performance (accuracy
and yield) of the three algorithms were quantified in the steady con-
traction condition, under 20 SNR with different excitation levels or
synchronization levels. Second, we investigated the decomposition
performance and the corresponding computation time under different
SNRs and different excitation levels with the optimal R value and the
moderate synchronization level fixed at 10%. The decomposition ac-
curacy was correlated with the SIL and the RoA between algorithms.
Lastly, we tested the influence of MUAP amplitude variation on de-
composition during trapezoid force levels. The performance of the al-
gorithms were tested statistically using repeated measures analysis of
variance (ANOVA) in SPSS (IBM). To satisfy the normal distribution
assumption of the ANOVA and the regression analysis, arcsine-square-
root transformation was performed on the accuracy and the RoA of the
decomposition. Post hoc pair-wise multiple comparisons were con-
ducted with Bonferroni correction when necessary. A significance level
of p < 0.05 was used.

3. Results

A total of 800 steady contraction trials and a total of 200 trapezoid
contraction trials were simulated for algorithm evaluations.

3.1. Extension factor R verification

First, we identified the optimal extension factor R for each algo-
rithm under steady contraction simulation. The R value was evaluated
from 2 to 16 under three different synchronization levels (0%, 10% and
20%) with four different excitation levels at SNR = 20. A previous
study has shown that the accuracy and the yield of the decomposition
tended to increase initially, and then plateaued with a larger R (ex-
tended to 500 channels or more) [16]. However, the computation time
increased substantially, due to the complexity of matrix operations from
increased matrix size. Therefore, a lower R value was typically pre-
ferred when the performance (accuracy and yield) started to plateau.
Our results showed that the optimal R value of FastICA and Infomax
was consistent with the previous study, but the optimal R value of
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A: Samples of Simulated EMG
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Fig. 1. A: The samples of simulated data with 1s duration under 10% MU synchronization level. Each row represents a different excitation level. Each column
represents a different signal-to-noise ratio (SNR). B: Exemplar EMG decomposition results compared with the ground truth (T) under 20% excitation, 20 SNR, and
10% synchronization condition. The black spikes represent the truth. The red, green, and blue spikes represent the decomposition results of the three algorithms:
Infomax (I), FastICA (F), and RobustICA (R), respectively. The black dots represent false positive or false negative errors compared with the ground truth. The
accuracy of the entire 10-s trial was also presented (only a 5-s window is shown for clarity). One exemplar decomposed source signal and discharge event detection

are shown. The black circles represent the detected discharge events based on the kmeans clustering.
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Fig. 2. EMG simulation during 20% trapezoid contraction. A: The excitatory drive profile of the trapezoid contraction. The MU progressive recruitment and de-
recruitment at different excitation levels. Different colors represent different MUs. Each vertical bar represents one discharge event. Only six representative MU spike
trains are shown for clarity. B: The hamming window for the modification of MUAP amplitude. During ramp-up, the solid trace shift to the red dashed trace, and shift
back during ramp-down. The x’ symbols represent the coefficient multiplied with the MUAPs in each corresponding column. C: Two examples show the change of the
MUAP amplitude in the first and last channels of the 8 x 8 grid during the trapezoid contraction.

RobustICA was also affected by the synchronization level and the ex-
citation level.

Fig. 3 shows the performance of each algorithm under different
conditions. Regarding the accuracy and yield of Infomax (red dash
lines) and FastICA (green solid lines), their performance showed similar
trend when R increased from 2 to 8, and then tended to plateau after 8.
For RobustICA (blue dot lines), the accuracy monotonically increased
with R. However, the number of MUs detected dropped substantially
from 8 to 16, especially when the signals contained more action po-
tentials at high excitation levels or the correlation of sources became
higher (high synchronization levels). In addition, the performance for
all the three algorithms did not change with the synchronization level

when the excitation levels were low to moderate (5% or 10%). How-
ever, when the synchronization level was high, the accuracy of Infomax
and FastICA reduced by approximately 1-2% at 10% excitation level
and 4-5% at 20% excitation level, and the number of MUs detected
reduced by about 2 MUs with increasing synchronization level. In
contrast, the accuracy of RobustICA did not change with the synchro-
nization level, but the number of MUs detected substantially decreased
at larger R values. Based on these results, 8 was chosen as the best R
value for the rest of the analyses, and this led to a total of 576 channels
after extension. Since a moderate level of MU firing synchronization
was typically observed during experimental testing [26], 10% syn-
chronization level was used for subsequent simulations.
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Fig. 3. Extension factor R evaluation for the three algorithms. Red dash lines: Infomax; green solid lines: FastICA; blue dot lines: RobustICA. Triangle represents 0%
synchronization level. Square represents 10% moderate synchronization level. Circle represents 20% high synchronization level. Four columns from left to right are
5%, 10%, 20% and 50% excitation levels. Top row is the decomposition accuracy. Bottom row is the decomposition yields.
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Fig. 4. The overall performance of the three algorithms under steady contraction simulation. A: 3-D plot of accuracy at different SNRs and excitation levels. B: 3-D
plot of the number of MUs detected at different SNRs and excitation levels. C: 3-D plot of the computation time at different SNRs and excitation levels. The red dash-
square lines represent Infomax. The green solid-triangle lines represent FastICA. The blue dot-circle lines represent RobustICA.

3.2. Algorithm comparison under steady contraction

The performance of the three algorithms was compared using the
steady contraction simulation data under different SNRs and excitation
levels (Fig. 4). Overall, we found that all the three ICA-based algorithms
had a high accuracy (> 90%) under most of the simulated conditions.
Even for the most challenging condition (50% excitation level with
SNR = 5), the RobustICA had an accuracy at approximately 95%, and
the other two algorithms had an accuracy close to 85%. In general,
RobustICA showed a consistently high performance under different
signal conditions in that it presented the highest accuracy when SNR
was low, but detected the least number of MUs when the signals were
more challenge for the algorithm (50% excitation level or SNR = 5), in
comparison with the other two algorithms.

In addition, the corresponding computation time (Fig. 4C) of the
three algorithms was investigated under MATLAB R2016a (MathWorks
Inc.), and Intel Core i7-6700@3.40GHz with 32 GB of memory en-
vironment. Since Infomax extracted the sources concurrently by mini-
mizing the mutual information, the decomposition runs of Infomax
were selected based on the number of extended channels ((R(8)
+1) X 64 = 576). For fair comparison, the same number of decom-
position runs was used for FastICA and RobustICA. The computation
time of Infomax was much longer than that of FastICA and RobustICA.
In addition, the computation time of FastICA and RobustICA tended to
increase as the SNR decreased or the drive level increased. FastICA
required less computation time than RobustICA at less challenging
signal conditions (high SNRs and low drive levels), but required more
computation time as the signals became more challenging.

To further test the performance (accuracy and yield) of the de-
composition, four (5%, 10%, 20% and 50% excitation levels) individual
Two-Way [SNR x algorithm] repeated measures ANOVAs were per-
formed. A significant SNR X algorithm interaction (p < 0.05) was al-
ways found for all the ANOVAs. Within each algorithm, the post hoc
comparison on the factor SNR showed that there was significant im-
provement on both the accuracy and the number of detected MUs as
SNR increased (p < 0.05), except in a few cases: the accuracy of
FastlCA and RobustICA had no difference (p > 0.05) between
SNR = 20 and 30, when the excitation level was 5%.

To compare the performance between algorithms, multiple com-
parisons were performed under each excitation and SNR levels. The
main findings are summarized in Table 2. Overall, the accuracy of
RobustICA and Infomax was higher than FastICA, but the decomposi-
tion yield of FastICA was higher than RobustICA and Infomax.

The effect of reducing the number of electrodes on the decomposi-
tion performance was also tested (Fig. 5). We compared the perfor-
mance when using 64, 54, 44, 34, and 24 channels. When the channel
reduction step was performed, 10, 20, 30, or 40 channels with the
smallest signal power were removed for decomposition. We typically

Table 2
The main findings of one-way [algorithm] repeated measures ANOVAs for the
three algorithms. Acc and Num represent accuracy and the number of MUs
detected.

Excitation  If significance Main findings

5% Acc Yes RobustICA = Infomax > FastICA at SNR = 5dB
Num Yes FastICA > RobustICA = Infomax at SNR = 5dB
FastICA = RobustICA > Infomax at SNR = 10 dB
10% Acc Yes RobustICA > Infomax > FastICA at SNR = 5dB
RobustICA > FastICA at SNR = 10dB
Num Yes FastICA > RobustICA = Infomax at SNR = 5dB.
20% Acc Yes RobustICA > Infomax > FastICA at SNR =5
and 10dB
Num Yes FastICA > Infomax > RobustICA at SNR = 5dB
50% Acc Yes RobustICA > Infomax > FastICA at SNR =5
and 10dB
RobustICA = Infomax > FastICA at SNR = 20
and 30dB
Num Yes FastICA = Infomax > RobustICA at all SNRs

observe that a large number of channels at the edge of the electrode
grid are off the muscle belly and the recordings are largely baseline
noise. Depending on the muscle, the active region may be localized to a
small region relative to the large electrode grid. As a result, a large
number of channels will also just record baseline noise. Therefore, we
reduced the channel number based on the signal amplitude in order to
reduce the computation time. Three (Infomax, FastICA, and RobustICA)
individual three-Way [SNR X Excitation level X Number of channels]
repeated measures ANOVAs were performed. Besides SNR and Excita-
tion level, a significant (p < 0.05) effect on the factor Number of
channels was found without interactions for all the three algorithms.
The post hoc comparison further revealed that the accuracy of using 64,
54, and 44 channels had no significant difference but the accuracy was
higher than just using 34 or 24 channels. On the other hand, the yield
was always higher when using a greater number of channels.

We also investigated the correlation among the SIL, RoA, and ac-
curacy. Fig. 6A shows the SIL of individual MUs and the corresponding
accuracy, as well as the mean accuracy at each SIL value. A moderate
correlation (R? = 0.69 to 0.82) was observed based on the linear re-
gression. Note that the linear regression was performed on the data
with arcsine-square-root transformation, and then converted back to
the original scale shown in the figure. Fig. 6B shows the RoA between
algorithm pairs and their corresponding accuracy. We found that a high
RoA (> 85%) can provide a strong confidence that both algorithms are
accurate (> 90%), although a majority of the accuracy values were
higher than their individual agreement values. Fig. 6C illustrates the
overall relation among the three variables. When RobustICA was
compared with FastICA or Infomax, the RoA was a stronger predictor of
accuracy than SIL, with a high accuracy corresponding to a high RoA
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but to a wide range of SIL values. In contrast, when FastICA and In-
fomax were compared, only MUs with both large SIL and high RoA
showed a high accuracy.

3.3. Algorithm comparison under the trapezoid contraction condition

The three algorithms were further tested in the more challenging
trapezoid contraction condition. Four separate One-Way [algorithm]
repeated measures ANOVAs were conducted in each condition. The
main findings are summarized in Table 3 and Fig. 7. Overall, we found
that the accuracy of RobustICA was significantly higher than Infomax
and FastICA in most of the conditions (p < 0.05), but RobustICA de-
tected the least number of MUs at high contraction levels (p < 0.05).

4. Discussion

This study evaluated the performance of three ICA-based algorithms
on MU decomposition under different signal conditions using simulated
EMG signals. Our results showed that all the three ICA-based algorithms
can output accurate (85-100%) MU discharge timings. Specifically, the
RobustICA consistently showed high accuracy among the three algo-
rithms under a variety of signal conditions especially with a low signal
quality and with varying contraction levels, but the yield of the de-
composition of RobustICA tended to be low at high contraction levels.
In contrast, FastICA tended to have the lowest accuracy but can detect
the largest number of MUs, especially at high contraction levels. Our
results also showed that the computation time was similar for FastICA
and RobustICA, which was shorter than that of Infomax. With an in-
crease in the channel number, the decomposition yield showed pro-
gressive increase, and the decomposition accuracy also increased in-
itially but plateaued with over 44 channels. Overall, our findings
provide guidance on selecting particular decomposition algorithms for
specific applications with different accuracy/yield requirement. In ad-
dition, the SIL and the RoA showed varying degree of correlation with
the accuracy, with RoA being a stronger predictor of accuracy, which
could be used to predict the decomposition accuracy of experimental
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data.
4.1. ICA-based algorithms for EMG decomposition

The ICA-based algorithms used in our study differ in how the al-
gorithms evaluate the independence of each component from the
mixing signals. The three measures, including negentropy (FastICA),
mutual information (Infomax), and kurtosis (RobustICA), have been
widely used during independent component separation [20]. However,
they may exhibit different performance depending on the properties of
signal sources and mixing signals. Specifically, the negentropy-based
method is commonly used due to its simplicity and fast convergence
speed. However, this method is sensitive to signal artifacts [30].
Therefore, the decomposition accuracy of negentropy-based FastICA
tended to be low at low SNR levels. On the other hand, the mutual-
information-based Infomax can help address the artifacts issue [31].
Our decomposition results showed an improved performance of In-
fomax over FastICA at low SNR conditions. RobustICA is an improved
kurtosis-based approach in order to address the existing issues of classic
kurtosis- or negentropy-based approaches [22]. It performs an optimal
search of the kurtosis contrast function instead of a random search
within each iteration. Based on our results, it tended to detect the MUs
with high accuracy under low SNR conditions.

All ICA-based algorithms make the assumption that the sources
within the mixing signals are independent. Previous studies [32,33]
have shown that MU firings have some degree of synchronization,
which may affect the accuracy of source separation. On the other hand,
if the MUAP trains are sparse, the ICA-based algorithm can still separate
them reliably despite a low level of source synchronization. We also
observed a slight decrease in the decomposition performance with a
high level of firing synchronization.

4.2. Decomposition performance

With a range of simulated MUs in the EMG and with different levels
of added noise or MU firing synchronization, the different ICA-based
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approaches tended to give relatively accurate discharge timings in
steady muscle contractions. However, as the signals contain more active
MUs at higher excitation levels, a higher degree of superposition can
occur. Both Infomax and FastICA tended to show less accurate de-
composition outcomes compared with RobustICA, and the decomposi-
tion accuracy of FastICA was the lowest at high excitation levels even
with high SNRs. In contrast, the accuracy of RobustICA was still high in
these challenging conditions.

Regarding the yield of the decomposition, the number of MUs

detected showed a substantial decline as the SNR decreased. The
change of decomposition yield can arise from the fact that we multi-
plied the MUAP amplitudes by a random coefficient from a uniform
distribution ranging from 0.1 to 2. Therefore, the MUAP amplitude of
some MUs could be similar to or smaller than the noise level at low
SNRs. As a result, those MUs may not be identified. In addition, the
three algorithms have similar performance when the excitation level is
less than 50%. In contrast, the performance differs when the excitation
level is high, with the Infomax and FastICA giving the highest yield
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Table 3

The main findings of one-way [algorithm] repeated measures ANOVAs for three
algorithms under trapezoid conditions with MUAP amplitude variation. Acc
and Num represent accuracy and the number of MUs detected.

Condition If significance Main findings

20% at SNR = 10dB Acc Yes RobustICA > Infomax > FastICA
Num Yes FastICA > Infomax > RobustICA

20% at SNR = 20 dB Acc Yes RobustICA > FastICA
Num Yes FastICA > Infomax

50% at SNR = 10dB Acc Yes RobustICA > Infomax > FastICA
Num Yes FastICA = Infomax > RobustICA

50% at SNR = 20 dB Acc Yes RobustICA = Infomax > FastICA
Num Yes FastICA > Infomax > RobustICA
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present FastICA. Blue bars represent RobustICA. Error bars represent the stan-
dard errors. A: represent the overall accuracy of the three algorithms. B: re-
present the number of MUs detected.

compared with the yield of RobustICA. It is possible that the RobustICA
searches for the optimal convergence step during each iteration of se-
paration vector calculation, which can lead to convergence to the same
MUs or their replicas with high accuracy, but can lead to a smaller
number of identified unique MUs. Additionally, a complete decom-
position of all the simulated MUs cannot be performed in a majority of
the conditions, e.g., less than 50% of MUs were decomposed out of the
95 MUs under the 50% excitation level, and less than 60% of MUs were
decomposed out of the 68 MUs under the 20% excitation level. At low
SNRs, approximately 10% of MUs were decomposed. A near complete
decomposition was only observed when the EMG signals are relatively
sparse with 5% or 10% excitation levels and with high SNRs.
Nevertheless, 10-30 concurrently active MUs with a high decomposi-
tion accuracy is much higher compared with the earlier intramuscular
decomposition techniques [1,34], which still allows us to evaluate the
MU behavior at the population level.

Regarding the computation time, Infomax required much more
computation time than FastICA and RobustICA. Since the Infomax is
based on the mutual information of different sources in the mixing EMG
signals, it separates different sources concurrently during each iteration
step. Even if most of the extracted sources have been converged, the
iteration continues until all the sources (defined by the dimension of the
signals) have been converged. On the other hand, FastICA and
RobustICA extracted only one source signal for each iteration, which
can substantially decrease the computation time. In addition,
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RobustICA required less computation time as the signal became chal-
lenging, largely because RobustICA has an optimal convergence
searching step, making it easier to converge for each iteration, espe-
cially for signals with a large number of sources and low SNRs [22].

Regarding the channel reduction results, the overall performance of
all three algorithms decreased as the number of signal observation
channels reduced. The results can rise from several aspects. ICA-based
algorithms require a number of distinct observations of individual
sources in order to extract each source from the mixing signals. The
missing information due to reduced channel numbers can limit the
decomposition performance. This is especially true for some MUs that
are only recorded by a limited number of channels. With channel re-
duction, a majority of the information can be lost, which may lead to a
lower decomposition accuracy or be completely missed by the algo-
rithm. We also observed that the channel reduction made a greater
impact on the decomposition yield than the accuracy. Specifically, the
yields declined by 50% from 64 channels to 24 channels, whereas the
overall accuracy only declined by up to 15% from 64 to 24 channels.
The overall accuracy did not show a significant decrease until the
channel number was reduced to 34. One possible reason is that the
criteria of channel removal was based on the power of particular
channels. The channels with a lower power mainly included MUs with
small amplitude and background noise. The decomposition accuracy of
MUs with small amplitudes tended to be lower. Therefore, the missed
MUs by the algorithm may lead to an increment of the overall accuracy.
However, the required absolute channel number for reliable decom-
position likely depends on many factors: the quality of the signal (SNR
and external interference, e.g., motion artifact or power line noise), the
targeted muscle (superficial or deep from the skin surface, and the size
of the muscle), or electrode configuration (e.g., whether the user can
reconfigure the electrode placement based on the targeted muscle). To
address this important issue, a careful experiment combined with si-
mulation work is needed. A range of different muscles should be re-
corded with different signal quality, and associated EMG simulation
should be performed that reflect the different muscle features.

4.3. Metrics for accuracy prediction

We evaluated the feasibility of using SIL and RoA to predict the
decomposition accuracy of individual MUs. The SIL calculation is em-
bedded in the kmeans cluster calculation, requiring minimal computa-
tion time, which could be used readily to evaluate the decomposition
accuracy. We found that the mean accuracy can reach 95% with a SIL
threshold > 0.9, and reach > 85% accuracy with a SIL threshold > 0.8.
However, a large variation in the accuracy is not explained by the SIL
based on the correlation analysis. Specifically, a certain amount of MUs
with a high SIL may have low accuracy. This situation can arise when
the algorithm converges to large MUAPs but actually belong to different
sources (MUs). If the spatial location and the magnitude of different
MUAPs are similar in the mixing signals (EMG), the ICA-based algo-
rithm cannot distinguish them. As a result, false positive and false ne-
gative errors can occur frequently in an identified MU spike train. On
the other hand, spike trains of a number of MUs with relatively low SIL
values (e.g. 0.6-0.7) could still be separated accurately, largely because
the spatial activation of those MUs are unique from other sources, but
with low MUAP amplitudes. As a result, setting a high threshold of SIL
can inevitably remove a large number of accurate MUAP trains.

The RoA was then evaluated for accuracy prediction, based on the
notion that the accuracy would be high if the same MUs can be sepa-
rated repetitively from different algorithms. We found that the mean
accuracy can reach 95% when the RoA threshold was set to 90%, and
the accuracy can reach 85% with RoA > 80%. We also observed that
the MUs with low SIL values (0.6-0.7) but with a high RoA (> 95%)
also showed a high accuracy > 95. The RoA is more sensitive to accu-
racy than SIL when these three variables are compared concurrently. In
a majority of the conditions, the RoA is 5-10% lower than the
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corresponding accuracy values from each algorithm. This difference can
arise from two factors. First, the two algorithms can have separate er-
rors that are un-common across algorithms, which can lead to a lower
RoA. This further verified that RoA could be a good metric for accuracy
prediction. Second, the low agreement can arise from the fact that one
algorithm may have a relatively low decomposition accuracy than the
other one.

Considering both SIL and RoA measurements, the MUs with a large
SIL and a high RoA provided more confidence for the decomposition
accuracy. In addition, if one metric value was very high but the other
was low (e.g. SIL > 0.9 with RoA < 70 or SIL < 0.7 with RoA > 95%),
the decomposition results could still be accepted for certain applica-
tions that require a large number of MUs, while allowing a certain level
of decomposition errors (e.g. mean firing rate calculation over a large
time window).

4.4. Implications of varying contraction conditions

All the three ICA-based algorithms were further evaluated under
varying muscle contraction levels. Neither the accuracy nor the yield of
all the three algorithms were also strongly influenced by the changes of
the MUAP amplitude variations. In our simulation, the MUAP ampli-
tude was designed to vary by up to 100%, based on the expectation that
it will impose substantial challenge to the algorithms. However, this
range was more or less arbitrary, largely because we do not have
concrete experimental evidence regarding the changes of MUAP am-
plitude during varying levels of muscle contractions. The accuracy of
RobustICA was consistently higher than that of Infomax and FastICA in
most of the evaluated conditions. In addition, all the three algorithms
yielded similar number of MUs under less challenging signal conditions,
whereas Infomax and FastICA can detect a greater number of MUs than
RobustICA under more challenging conditions. These findings are lar-
gely consistent with the steady muscle contraction conditions.

4.5. Comparison with previous decomposition algorithms

To date, FastICA and CKC have been used for high-density EMG
decomposition, including CKC [15], peel-off FastICA [17,35] and Fas-
tICA combined with CKC [18]. Consistent with our findings, these EMG
decomposition studies found that the decomposition accuracy and the
number of MUs detected tended to become lower as the number of
active MUs in the EMG signals increased or SNR decreased. For ex-
ample, the peel-off FastICA study [17] simulated EMG signals with 30,
70, and 91 MUs under SNR = 10 and 20 dB, which is similar to the
conditions with 10%, 20%, and 50% excitation levels under the same
SNRs in our study. Compared with our FastICA results, the peel-off
FastICA method showed overall accuracy > 98% under all conditions,
but the yield was smaller. One potential reason was that the previous
study only reported MUs with accuracy > 90%, whereas our current
study considered all MUs with accuracy > 60%. The high accuracy
threshold can increase the overall accuracy, but decrease the yield.
Another possible reason was that the simulated signals used in the
current study involved MU synchronization, which can reduce the de-
composition accuracy. The CKC study [15] simulated EMG signals with
10, 20, and 30 MUs under SNR = 10 and 20 dB, which is similar to our
conditions with 5% and 10% excitation under the same SNRs. Similar to
our study, the earlier study reported that the CKC can reach a near
complete decomposition with 10 MUs in the EMG signal. The CKC
decomposition performance has been further improved when combined
with a cluster analysis [16].

4.6. Limitations
When using simulated data, the ground truth of the MU firings is

known, and the decomposition performance can be directly evaluated.
However, simulation may not fully capture all the different
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characteristics of the experimental signals such as the spatial and
temporal varying features of action potentials. Therefore, the number of
MUs decomposed in simulated data could be larger than that in ex-
perimental data. On the other hand, the number of MUs detected in the
experimental data can also vary based on the characteristics of the
muscle. For example, a previous study reported that the decomposition
yield ranged from 11 to 19 for abductor pollicis, but ranged from 6 to
10 for vastus lateralis [36]. Our experimental data from biceps brachii
and extensor digitorum communis in Part 2 showed that approximately
5-15 MUs per contraction can be identified by RobustICA, and 6-25
MUs can be identified by FastICA or Infomax [37]. With comparable
SNR and muscle contraction level, the decomposition yield was similar
to the simulated data as shown in this study.

During our simulation, the action potentials were derived directly
from previous experimental data through a spike triggered averaging
(STA) technique, rather than from a volume conductor based model
with a set of parameters specifying the properties of different tissue
layers. The latter could not simulate realistic action potential spatial
distribution at different electrode locations, due to limited variations in
geometrical shape and conductivity at different locations of different
tissue layers. The changes in complex dynamic tissue properties even
during isometric muscle contractions, including irregular tissue geo-
metry changes and ununiform fiber shifts below the recording sites, can
further complicate the geometric model simulations. On the other hand,
the MUAPs estimated from STA can still represent realistic action po-
tential shapes such as due to irregularity of tissue properties as in the
real biological tissue. However, there is still potential bias. For example,
the MUAP shapes already identified by a decomposition algorithm
could be easier to be detected by other algorithms. In addition, it is
worth noting that the explicit shape variations of the MUAPs was not
simulated. To simulate MUAP variations as in real EMG signals, only
variations in the amplitude and duration of the average MUAPs were
introduced for each simulated train of MUAP, and systematic changes
in MUAP amplitude during varying contraction levels were also in-
troduced to simulate muscle fiber shift beneath the recording elec-
trodes. Therefore, we believe that the use of STA-based MUAP in the
simulation will minimize the bias of our evaluation of the decomposi-
tion accuracy compared with other simulation approaches.

5. Conclusion

Overall, through a systematic evaluation of the performance of
different ICA-based algorithms on simulated EMG signals, we found
that the accuracy of RobustICA was typically higher than FastICA and
Infomax in a range of signal conditions, especially with a low signal
quality, a high excitation level, and a varying signal condition. The
yield of the decomposition of RobustICA, however, tends to be low at
more challenging signal conditions, compared with the other two al-
gorithms. Among the three algorithms, FastICA can detect the highest
number of MUs under the most challenging conditions. These findings
indicate that different algorithms may be selected based on specific
applications. Both SIL and RoA could be used to evaluate the decom-
position accuracy, and the combination of both can further decrease
potential errors and provide more reliable reference about accuracy. In
general, the outcomes can help us identify reliable MU activities at the
population level, and provide accuracy predictions for experimental
results.
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