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ARTICLE INFO ABSTRACT

Motor unit firing activities can provide critical information regarding neural control of skeletal muscles.
Extracting motor unit activities reliably from surface electromyogram (EMG) is still a challenge in signal pro-
cessing. We quantified the performance of three different independent component analysis (ICA)-based de-
composition algorithms (Infomax, FastICA and RobustICA) on high-density EMG signals, obtained from arm
muscles (biceps brachii and extensor digitorum communis) at different contraction levels. The source separation
outcomes were evaluated based on the degree of agreement in the discharge timings between different algo-
rithms, and based on the number of common motor units identified concurrently by two algorithms. Two me-
trics, the separation index (silhouette distance or SIL) and the rate of agreement, were used to evaluate the
decomposition accuracy. Our results revealed a high rate of agreement (80%-90%) between different algo-
rithms, which was consistent across different contraction levels. The RobustICA tended to show a higher RoA
with the other two algorithms (especially with Infomax), whereas FastICA and Infomax tended to yield a greater
number of common MUs. Overall, through an experimental evaluation of the three algorithms, the outcomes
provide information regarding the utility of these algorithms and the motor unit filter criteria involving EMG
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signals of upper extremity muscles.

1. Introduction

Electromyogram (EMG) signals represent a convoluted process of
hundreds of motor unit (MU) discharge activities with the corre-
sponding motor unit action potentials (MUAPs). Decomposition of the
EMG signals involves the separation of the composite interference ac-
tivities into the constituent MU discharge activities, which can provide
clinical and scientific insights into the neuromuscular systems [1-4]. In
addition, recent studies have shown that MU discharge timings could be
used as a neural interface signal during human-machine interactions
[5].

Earlier EMG decomposition mainly based on template-matching of
MUAPs via manual expert editing or automated algorithms using in-
tramuscular recordings [6-8]. With the development of algorithms and
electrode hardware, MU activities can be extracted through the de-
composition of high-density (HD) surface EMG signals using different
blind source separation algorithms [9-12]. Despite these initial suc-
cesses, the performance evaluation of the decomposition is still a
challenging task. Previously, the decomposition performance has been

evaluated through several methods. First, synthesized EMG signals can
be simulated, and the accuracy of the decomposition can be evaluated
by directly comparing with the ground truth. Although the model si-
mulation may not fully reproduce the detailed features as in real EMG
signals, this technique can directly measure the performance of de-
composition [9,10]. Second, two source validation has been used to
evaluate the decomposition accuracy of a small sample of MU firing
activities [13-15]. Specifically, surface and intramuscular recordings
are performed concurrently on the same muscle, and the two types of
recordings at different sources are decomposed separately, with the
intramuscular decomposition as the reference outcome. The rate of
agreement (RoA) of the common MU activities are used as a measure of
decomposition accuracy. However, the number of common MUs ob-
tained from the two recording sources are typically small, and, there-
fore, only a small fraction of the decomposed MUs from the surface
recordings can be assessed. Lastly, different metrics extracted from in-
dividual MUs (e.g. spike pulse to noise ratio [16], dissimilarities or
amplitude of the MUAP [17]) have been used to predict the decom-
position accuracy through a correlation analysis. Recent studies have

* Corresponding author. University of North Carolina at Chapel Hill, 144 MacNider Hall, Chapel Hill, NC, 27599, United States.

E-mail address: xiaogang@unc.edu (X. Hu).

https://doi.org/10.1016/j.compbiomed.2019.03.009

Received 5 December 2018; Received in revised form 8 March 2019; Accepted 9 March 2019

0010-4825/ © 2019 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2019.03.009
https://doi.org/10.1016/j.compbiomed.2019.03.009
mailto:xiaogang@unc.edu
https://doi.org/10.1016/j.compbiomed.2019.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2019.03.009&domain=pdf

C. Dai and X. Hu

A: Extensor Digitorum Communis

Computers in Biology and Medicine 108 (2019) 42-48

B: Biceps Brachii

Fig. 1. Electromyogram recording setup. An 8 X 8 high-density electrode array is placed on the center of measured muscle. A: extensor digitorum communis (EDC)

muscle. B: biceps brachii muscle.

also used a clustering index, the silhouette distance (SIL), as a measure
of the degree of separation of the MUAP train from the background
noise, including other potential source signals [18,19]. However, the
association between the SIL and the decomposition performance has
not been fully investigated.

Accordingly, the purpose of our current study was to evaluate the
RoA of three ICA based EMG decomposition algorithms (FastICA [20],
Infomax [21], and RobustICA [22]), based on EMG signals obtained
from two arm muscles (biceps brachii and extensor digitorum com-
munis) at different muscle contraction levels. The RoA between algo-
rithms was evaluated based on the notion that the accuracy should be
high if the same MUs can be separated repetitively from different al-
gorithms with a high agreement. The decomposition yield of the algo-
rithm was also compared based on the experimental data. Our results
showed that the RoA of the decomposition from different algorithms
was largely above 80% with the SIL > 0.85, although a number of MUs
still showed high RoA (> 80%) with the SIL ranging from 0.50 to 0.85.
Overall, the combination of RobustICA and Infomax showed a con-
sistently higher RoA than other algorithm combinations. In contrast,
the number of common motor units between Infomax and FastICA was
the highest among the different algorithm combinations. These findings
provided experimental evidence on selecting decomposition algorithms
and performance assessment metrics for specific applications that have
different accuracy and yield requirements.

2. Materials and methods
2.1. Subject

Eight healthy subjects (6 males, 2 females; aged 26.3 + 4.9 years)
without any known neuromuscular abnormality participated in the
experiment. All subjects provided written informed consent. The ex-
perimental procedures were approved by the Institutional Review
Board at the University of North Carolina at Chapel Hill.

2.2. Experimental setup and procedures

During the biceps EMG data acquisition, the subjects sat in a
straight-back chair with their arm comfortably placing on a table, their
shoulder abducted at approximately 30°, their elbow extended at ap-
proximately 120°, and their wrist supinated approximately 90°. During
the experiment, the subjects were asked to isometrically flex their
elbow against a horizontal board attached to their palm and wrist. We
measured 64 channels of EMG signals of the biceps muscle, and selected
one channel with the highest EMG amplitude from the high-density
EMG grid, and the root-mean-square (RMS) value was calculated as an
estimation of the muscle contraction level. During the maximum vo-
luntary contraction (MVC) trial, the subjects were asked to perform
their maximum contraction and maintain the effort for 3s. The RMS
value of the 3-s recordings from the selected channel was calculated as
the MVC. We then determined the effort level based on the RMS values
(very low: 5% MVC, low: 10% MVC, moderate: 30% MVC and high:
50% MVCQ). In each flexion effort, subjects produced 5 repetitions. The
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root mean square (RMS) of the EMG signals was displayed on the
computer screen to guide their efforts.

During the EDC EMG acquisition, subject's wrist was secured with
two stiff form pads, with the forearm in neutral position. The four
fingers were naturally abducted, and each was secured with a velcro
strap to a load cell (Interface, SM-100 N). During the experiment, the
subjects were asked to isometrically extend their four fingers con-
currently against the load cells. During the MVC trial, the subjects were
asked to maintain the maximum isometric extension force for 3s. The
MVC value was determined by calculating the peak summed force of
the four fingers during the 3s recordings. Two extension efforts
(moderate: 30% MVC and high: 50% MVC) were produced by the
subjects with 5 repetitions at each level. The very low and low force
levels were not performed, since the acquired EMG signals were es-
sentially baseline noise. In each repetition, subjects took 3-5s to ramp
up to the target effort, maintained the effort for approximately 10 s, and
took another 3-5s to ramp down to the resting state. The order of the
effort levels was randomized for both muscles.

2.3. EMG recordings

In both experiments, the EMG signals were obtains using an 8 x 8
channel HD EMG electrode grid with 10 mm inter-electrode distance
(ELSCHO064NM3, OT Bioelettronica, Torino, Italy), placed to the center
of the muscle belly (Fig. 1). Before the electrode placement, the skin
was cleaned with alcohol pads. Two water-based conductive belts were
wrapped around the wrist as the ground electrode and the subject re-
ference electrode. The EMG signals were recorded via EMG_USB2+ (OT
Bioelettronica, Torino, Italy) with a gain of 1000, sampled at 2048 Hz,
band-pass filtered from 10 to 900 Hz, and A/D converted with 12 bits
resolution.

2.4. Methods of analysis

Individual MU discharge timings were extracted via the three ICA-
based decomposition algorithms (FastICA [20], Infomax [21], and Ro-
bustICA [22]). A representative segment of the decomposition results is
shown in Fig. 2. The details of the three decomposition algorithms can
be found in the simulation Part 1 study. Here, the main steps of the
decomposition were briefly described as follows:

(1) Extend the EMG signals by adding 8 delayed replicas to each ori-
ginal channel [9].

(2) Whiten the extended signals using the eigenvalue decomposition.

(3) Deconvolute the whitened signals using the three ICA-based algo-
rithms: Infomax, FastICA and RobustICA.

(4) Identify discharge timings through peak detection and k-means
clustering, and calculate silhouette distance values (SIL) for further
analysis.

(5) Remove the duplicate MUs. The ICA-based algorithm may detect
both the original MU and its delayed replicas. To remove the du-
plicate MUs, the percentage of synchronized firing events
within = 1 ms was calculated between any possible pairs of MU
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Fig. 2. Exemplar EMG decomposition results under high effort contraction of the extensor digitorum communis (EDC) muscle. The green and blue spikes represent
the decomposition results of FastICA (F) and RobustICA (R), respectively. The rate of agreement (RoA) and mean silhouette (SIL) values of the entire 15-s trial are
shown in the right. A: Entire trial with a representative EMG channel shown. B: Zoomed-in 5-s portion. Only nine common motor units are shown for clarity.

spike trains. If a pair of spike trains had > 50% synchronized firing
events after adjusting the time delay, only the MU spike train with
higher SIL value was reserved for further analysis.

Detect the common MUs. A MU spike train was considered a
“common MU”, if a MU spike train detected by two algorithms
had > 50% firing events discharging within + 1 ms match window
after compensating the time offset.

6

~

The algorithms were evaluated at different effort levels and with/
without variations in the contraction level (i.e., the entire trapezoid
contraction or just the steady contraction segment). With varying
contraction level, the action potential amplitude may change due to
small displacement between the muscle fibers and recording electrodes,
which can pose challenge to the decomposition.

2.5. Evaluation of decomposition performance

First, the silhouette distance measurement was used as a metric to
evaluate the performance. SIL measures the distance between the peaks
of the extracted MUAP train and the baseline noise (including possible
remaining MU activities) during k-means clustering. A higher SIL value
typically means a better separation from the baseline. Since the SIL
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measure is embedded in the cluster analysis, it does not require extra
computations. Second, the RoA of different algorithms was also used as
a metric. A higher RoA value means that the same MU is extracted with
consistent spike timings by different algorithms, which suggests that the
decomposition accuracy is likely to be high. The RoA of the two algo-
rithms was calculated as:

# of matches

RIA= ——————
# of matches + NI

where # of matches means the number of spike timings matches with
each other within + 1 ms window, and NI is the total number of firings
not identified by either of the two algorithms.

2.6. Statistical comparisons

The performance was tested using a repeated measures analysis of
variance (ANOVA) in SPSS 24 (IBM). The arcsine-square-root trans-
formation was performed on the RoA values to satisfy the normal dis-
tribution assumption of the ANOVA and the regression analysis, since
the agreement values were bounded at 1. Post hoc pair-wise multiple
comparisons were conducted with Bonferroni correction when neces-
sary. A significance level of p < 0.05 was used.
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Fig. 3. The mean rate of agreement (RoA) vs mean silhouette (SIL) of each
algorithm combination. Each point represents one motor unit.

3. Results

We first investigated the relation between the SIL and RoA values
for each algorithm combination at a wide range of values. Individual
MUs from all the conditions (including two muscles and all effort levels)
were pooled and are shown in Fig. 3. Linear regression based on least
squares fitting was performed. Note that only a single trial randomly
selected from the five repetitions was used for the analysis to avoid
potentially repeated count of the same MUs. The SIL and RoA showed a
moderate correlation (R? ranged from 0.61 to 0.65) in different algo-
rithm combinations. Our simulation study in Part 1 has investigated a
broad range of SIL and RoA values in relation with the accuracy. Based
on our simulated results, low RoA mostly indicated inaccurate decom-
position results. Therefore, the MUs satisfying both thresholds
(SIL = 0.80 and RoA = 70%) were further used for subsequent data
analyses. The SIL criterion was still used to ensure that the decomposed
spike activities are reliable. A lower RoA value was used here to ensure
that MUs were not over-filtered.

The RoA of different algorithm combinations and the number of
common MUs across algorithms are shown in Fig. 4 (EDC) and Fig. 5
(Biceps). The mean # SD of the signal to noise ratio (SNR) values of
the EMG signals across all 64 channels were also provided in the x-axis
as a reference. The SNR was defined as the ratio between the power of
the signals during steady muscle contraction and the power of the
baseline noise. The SNR tended to show a moderate increase as the
effort level increased. Overall, the RoA between FastICA and Infomax
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was the lowest among the different algorithm combinations, but the
largest number of common MUs between these two algorithms was
evident. Similar RoA and number of common MU trends were also
observed in both muscles. However, the overall decomposition perfor-
mance (both RoA and yield) of the EMG from the EDC muscle was
slightly better than that of the biceps muscle with comparable effort
levels. In addition, the decomposition performance also varied de-
pending on the effort level. Specifically, the RoA tended to be higher at
lower effort levels. However, a larger number of common MUs can be
detected during moderate effort contractions, and a low or high effort
contraction typically led to a smaller number of common MUs. Lastly,
the decomposition performance showed a slight improvement when the
entire trapezoid contraction was used for the MU decomposition, in
comparison with the steady state contraction segment, which is in-
dicated by a higher RoA (by approximately 2-5%) and a greater
number of common MUs (by approximately 1-4 MUs). The detailed
statistical outcomes of the three-way repeated measures ANOVAs
(contraction segment X effort level X algorithm combination) and pairwise
comparisons on both the RoA and the number of common MUs are
summarized in Table 1.

4. Discussion

The purpose of this study was to evaluate the performance of three
previously developed ICA-based source separation algorithms (Infomax,
FastICA and RobustICA) on MU decomposition of EMG signals obtained
from two arm muscles (biceps brachii and EDC). Two evaluation me-
trics, SIL and RoA between algorithms, were used to assess the de-
composition performance. Our results revealed a high RoA between
different algorithms across different muscle contraction levels. The
RobustICA tended to show a higher RoA with the other two algorithms
(especially Infomax), whereas FastICA and Infomax tended to yield a
greater number of common MUs by these two algorithms. The experi-
mental outcomes were also largely consistent with earlier simulation
results in Part 1. These findings can provide guidance on selecting
particular decomposition algorithms and particular performance as-
sessment metrics for different applications that have different require-
ments on the decomposition accuracy and yield.

4.1. Decomposition performance

The SIL and RoA measurements were used to assess the algorithm
performance. For the SIL measurement, although a majority of the SIL
values of the MUs decomposed by the three algorithms were above 0.8,
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Fig. 4. The overall performance of the three algorithms of EDC data. Error bars represent the standard error. A, C: Rate of Agreement (RoA) between algorithm
combinations from moderate to high efforts. B, D: Numbers of common motor units detected from moderate to high efforts.
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Fig. 5. The overall performance of the three algorithms of biceps data. Error bars represent the standard error. A, C, E, G: Rate of Agreement (RoA) between
algorithm combinations from very low to high efforts. B, D, F, H: Numbers of common MUs detected from very low to high efforts.

Table 1

The three-way [contraction type X effort level X algorithm combination] repeated measures ANOVAs of the experimental data. Trapezoid and Steady represent the
entire trapezoid contraction and the steady-only contraction segment, respectively. RoA and CNum represent the rate of agreement and the number of common MUs,

respectively.

Muscle Significant Factors

Main Outcomes

EDC RoA interaction between contraction type X combination

CNum contraction type,
combination
Biceps RoA contraction type, effort level, combination

CNum contraction type, effort level, combination

1. RobustICA&FastICA > RobustICA&Infomax

> FastICA&Infomax under Trapezoid.

2. RobustICA&Infomax = RobustICA&FastICA

> FastICA&Infomax under Steady.

1. FastICA&Infomax > RobustICA&FastICA = RobustICA&Infomax.
2. Trapezoid > Steady.

1. RobustICA&FastICA = RobustICA&Infomax

> FastICA&Infomax.

2. Very Low effort level > the rest of effort levels.

3. Trapezoid > Steady.

1. FastICA&Infomax > RobustICA&FastICA = RobustICA&Infomax.
2. Medium effort level > the rest of effort levels.

3. Trapezoid > Steady.

consistent with our simulated results, a large number of MUs with high
RoA still showed SIL values ranging from 0.5 to 0.8. These results
suggest that the SIL may not be a strong predictor of decomposition
performance, and may over filter the decomposed MUs but could still
retain the less accurate MU spike trains. In general, a high SIL indicates
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that the spike trains are well separated from the background noise and
other source signals. But the well-separated spike trains can still have
missed and spurious spikes, which would lead to low RoA and low
accuracy.

For the RoA measurement, the agreement of RobustICA with
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FastICA or with Infomax exhibited higher values than that of FastICA
and Infomax. These differences can arise from the possibility that
RobustICA tends to have a higher accuracy than the other two algo-
rithms, and when two algorithms with low decomposition accuracy are
compared with a more accurate algorithm, their RoA tends to be low.
This possibility is further supported by the fact that the RoA between
FastICA and Infomax is the lowest among the algorithm pairs. We also
found that the RoA was at 86.67 = 2.94% on the EDC muscle and
82.07 + 3.18% on the biceps brachii muscle. The relatively low
agreement shown in the biceps muscle can arise from the fact that the
biceps brachii is more proximal and may have more fat tissue on top of
the muscle. As a result, the low-pass filtering effect of the fat layer can
widen the action potential duration, and make the action potential
shapes less unique from the skin surface, which can lead to less accurate
decomposition results and low RoA between algorithms.

Regarding the yield of the decomposition, approximately 5-15 MUs
per contraction can be identified by RobustICA, and 6-25 MUs can be
identified by FastICA or Infomax. Approximately 5-10 common MUs
per contraction can be identified concurrently by RobustICA and
FastICA (or Infomax), and 8-15 common MUs between Infomax and
FastICA can be identified. The low yield of RobustICA can arise from
the fact that the RobustICA calculates the optimal convergence step
during each iteration of the separation vector. This step can increase the
chance of converging to the same MUs or their replicas that are more
distinguishable, which can lead to a smaller number of unique MUs
being detected. In addition, we also observed an initial increase of the
identified MU number from very low contraction level to moderate
contraction level. However, at high contraction levels, the decomposi-
tion yield declined, potentially due to a high degree of superposition
across a large number of concurrently active MUs. Lastly, we found that
the number of common MUs with the entire trapezoid contraction was
slightly higher than just with the steady state contraction segment. The
changes in action potential amplitude and/or shape due to fiber shift
beneath the electrodes had minimal impact on the decomposition
performance. This effect could arise from the fact that more MU in-
formation was obtained from a prolonged recording time, which can
help improve the known to unknown ratio in the source separation. In
addition, a less degree of superposition during the ramp-up or ramp-
down contractions can also help the separation of the different sources
[23].

A potential source of interference to the surface EMG decomposition
is the cross-talk among different muscles or different muscle compart-
ments. The 8 x 8 high-density surface EMG grid (8 x 8 cm) placed at
the center of the biceps or EDC muscle can record activities of nearby
muscles [24]. For example, EDC is a multi-compartment muscle, and
there are also multiple wrist muscles in close proximity [25]. The cross-
talk from other muscle groups may be recorded by the HD EMG grid.
The cross-talk can be manifested as MU activities with small MUAP
amplitudes or activities only recorded by a small number of electrodes.
The cross-talk can also distort the action potential features of the MUs
in EDC. The cross-talk interference may have different effect on the
decomposition performance of different algorithms. Since the Robus-
tICA tended to detect MUs that are more distinguishable or have large
amplitudes, the algorithm may be less affected by the cross-talk.
However, Infomax and FastICA tended to detect more MUs with low
amplitudes, which can reduce the RoA between algorithms.

4.2. Comparison with earlier decomposition results

Currently, different blind source separation methods have been used
for EMG decomposition, including Convolution Kernel Compensation
(CKC) [9], CKC combined with cluster analysis [12], peel-off FastICA
[10], and FastICA combined with CKC [18]. A comparison between
peel-off FastICA and CKC showed that the two algorithms tended to
detect MUs with a high agreement [26]. Consistent with our experi-
mental results, the different HD EMG decomposition studies showed
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that the decomposition accuracy and yield tended to become lower as
the muscle activation level increased or the SNR of the signal decreased.
The EMG signals obtained from biceps brachii and extensor digitorum
communis showed that approximately 5-15 MUs per contraction can be
identified by RobustICA, and 6-25 MUs can be identified by FastICA or
Infomax. The decomposition yield was similar between these two
muscles. However, an earlier study have reported that the decomposi-
tion yield varied between muscles, which ranged from 11 to 19 for
abductor pollicis, and from 6 to 10 for vastus lateralis [27]. The dif-
ferences largely arise from different muscle characteristics.

Methodologically, our study focused on three ICA-based algorithms
with different objective functions: negentropy (FastICA [20]), mutual
information (Infomax [21]), and kurtosis (RobustICA [22]). The Fas-
tICA calculation procedure used in this study differs from the peel-off
FastICA or FastICA combined with CKC in several aspects. First, to in-
crease the number of detected MUs, a peel-off step was performed in the
peel-off FastICA [10], in which the decomposed source of each iteration
was subtracted from the original signals. However, possible alignment
errors or inevitable decomposition errors can distort the residual sig-
nals. To avoid the peel-off step, an alternative procedure with ortho-
gonalization step [20] was performed in this study. Second, we did not
perform the second convergence loop in the FastICA combined with
CKC approach [18] based on the coefficient of variation (CoV) of the
inter-spike intervals, because the CoV may change greatly during
varying excitation levels. Lastly, existing EMG decomposition is typi-
cally performed in the time domain, transforming the signals to the
frequency or time-frequency domains for decomposition requires fur-
ther investigation.

4.3. Metric and algorithm selection for specific applications

Both the SIL and RoA could potentially be used to predict accuracy
for the decomposition of the experimental data, with RoA being a more
sensitive matric. The threshold selection of SIL and RoA could be varied
depending on the study requirement. For example, studies of MU dis-
charge behaviors rely on accurate decomposition results [28]. Our si-
mulated results have shown that a MU with a high SIL may still contain
erroneous spikes, and the error can be reduced largely by adding the
threshold of RoA. More stringent criteria can help improve the de-
composition accuracy of the retained MUs, but at a cost of low yield.
Other studies (e.g. human-machine interaction) used the pooled spike
trains as the control interface to predict the force/movement [5,29].
Having more MUs can better reflect the high-level neural control in-
formation of the entire motoneuron pool. In this case, less stringent
criteria can be used to maintain a high yield.

The algorithm selection is similar to the threshold selection, which
is also a ‘quantity vs. quality’ problem. Specifically, if the accuracy of
the MU discharge timing is critical, for example, in estimating action
potential shapes [30], RobustICA with a high decomposition accuracy
may be preferred. However, if a large number of MUs are necessary to
evaluate MU population behaviors, and the discharge accuracy is not
critical (e.g., mean discharge rate over a long-time interval is of inter-
ests), FastICA or Infomax that can yield a large number of MUs may be
preferred.

5. Conclusion

In general, we performed a systematic evaluation on the perfor-
mance of different ICA-based algorithms for MU decomposition of EMG
signals obtained from arm muscles. Specifically, RobustICA showed
higher RoA with other algorithms, whereas FastICA and Infomax can
decompose a greater number of common MUs, consistent with the si-
mulation results in Part 1 [31]. The selection of specific algorithms or
MU filtering metrics may depend on different applications with parti-
cular requirement. The outcomes can help us identify reliable MU ac-
tivities at the population level that can be used to understand
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mechanistic and clinical aspects of the neural control of muscle acti-
vations.
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