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Abstract

In the interstellar medium at rest, containing low-frequency magnetohydrodynamic linearly polarized slab Alfvén
waves, the anisotropy of relativistic galactic cosmic rays consists of two parts: the streaming anisotropy g (z, p,1t),
caused by the spatial gradient of the isotropic part of the cosmic ray distribution function, and the interstellar
Compton—Getting anisotropy g.(z, p, 1), caused by the momentum gradient of the isotropic part of the cosmic ray
distribution function. Both anisotropies depend differently on the cosmic ray pitch-angle cosine p, cosmic ray
momentum p, and cross-helicity state H. of the Alfvenic slab turbulence. First, the streaming anisotropy is
independent from H, and varies as g(z, p, ) o< (p|p])?sgn(p) with n = 2 — s, where s denotes the power-law
spectral index of interstellar turbulence. Second, the interstellar Compton—Getting anisotropy g, (z, p, i) o< H.p is
independent of momentum and linearly proportional to H, . These different pitch-angle dependencies can be
tested by the Liouville mapping technique to infer the pristine interstellar cosmic ray anisotropy from
measurements inside the solar system. For cosmic rays with energy of 4 TeV the derived pristine interstellar
cosmic ray anisotropy suggest the linear (g oc || sgn(u)) pitch-angle dependence. This is well explained by the
interstellar Compton—Getting anisotropy, provided the Alfvén speed in the local interstellar medium is about

62kms™!
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1. Introduction

Observations of relativistic galactic cosmic rays indicate that
their phase space distribution functions are nearly isotropic up to
very high particle momenta (Ahlers & Mertsch 2017; Erlykin
et al. 2019). In magnetized space plasmas this is readily
explained by the presence of low-frequency linear (6B < By)
transverse MHD waves (such as shear Alfvén and magnetosonic
plasma waves). These transverse MHD waves have highly
subluminal phase and group speeds Vo = V; < Vi < ¢ less or
equal to the Alfvén speed Vy = 2.18 - 10°B(uG)n; /?(cm™3)
cms ', where ¢ denotes the speed of light. Faraday’s induction
law then indicates for MHD waves that the strength of turbulent
electric fields 6E = (V) /c¢)6B < 6B is much smaller than the
strength of turbulent magnetic fields. Rapid gyromotion in the
dominating uniform magnetic field B, establishes gyrotropic
particle distribution functions for all charged particles indepen-
dent from the gyrophase ¢. On a slower but still fast timescale
the turbulent magnetic fields 0B, dominating over the turbulent
electric fields 0E, then by rapid pitch-angle scatterings generate
nearly isotropic particle distribution functions independent from
the pitch-angle cosine p. Hence, the ordering By > 6B > 6FE
corresponds to the establishment of cosmic ray transport
equations for

(f)@x, p, p, ¢, 1) = foy(x, p, i, 1) — Fx, p, 1), 1)

from the collision-free Boltzmann equation for the full phase
space distribution (f)(x, p, p, ¢, t), to the Fokker—Planck
equation for its gyrotropic part f,(x, p, ft, t), and to the
diffusion-convection transport equation for its isotropic part
F(x, p, t), respectively (see, e.g., Schlickeiser 2002, 2011;
Casanova & Schlickeiser 2012).

Accordingly, the cosmic ray anisotropy, defined as the
deviation

g(xspa M t) :fb(x9p’ s f)—F(x’P’ t) (2)

then is small |g| < F. The diffusion approximation (Jokipii
1966; Hasselmann & Wibberenz 1968; Earl 1974) applied to
the Fokker—Planck transport equation for f, (x, p, p, t) allows
us to relate the cosmic ray anisotropy g to the solutions of the
diffusion-convection transport equation for F.

We orient the large-scale guide magnetic field, which is
uniform on the scales of the cosmic ray particles gyroradii
Ry = v/|Q4|, By = Bpe, = (0, 0, By) along the z-axis. v and
Q, = q,By/ymsc denote the speed and the relativistic
gyrofrequency of a cosmic ray particle with mass m,, charge
da> €nergy ym,c?, and momentum p = ym,v.

In the interstellar medium at rest containing slab Alfvén
waves only, the Larmor-phase averaged steady-state Fokker—
Planck transport equation is given by (Schlickeiser 1989)

%, 9 oy o
— +Rf, — S , 1) = D, — + D,,—
v,ua + Rf, (x,p, 1) = 3#[ m o + Dy, o
5, 0 o o
+p2=—p?| D=2 + D=2 |, 3
i [ Popw  "op @

irrespective of how the Fokker—Planck coefficients are calculated,
either by quasilinear (Schlickeiser 2002) or nonlinear (Shalchi
2009) cosmic ray transport theories. As the observed level of
Alfvén wave intensities in the local interstellar medium is small
compared to the strength of the uniform magnetic field, the
quasilinear transport theory should well apply. S (x, p, t) denotes
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the injection rate of cosmic rays, and

Ay s 4
Rf_ p ap [[7 plossf] + TL ( )

accounts for continuous (p,,,) and catastrophic (7,,) momen-
tum losses of cosmic ray particles. We emphasize that in slab
MHD turbulence (only Alfvén waves propagating parallel or
antiparallel to the uniform guide magnetic field) D,,, D,, and
D,,, are the only nonvanishing Fokker—Planck coefﬁc:1ents

2. Diffusion Approximation and Anisotropy

In the presence of low-frequency MHD plasma waves the
pitch-angle Fokker—Planck coefficient D, for energetic
particles with v >> V, is the largest. Then the gyrotropic
particle distribution function f,(x, p, 1) under the action of
low-frequency magnetohydrodynamic waves adjusts very
quickly to a distribution function through pitch-angle diffusion,
which is close to the isotropic distribution

1
Fx,p) = %f} dufy . o ), )

in the rest frame of the moving background plasma. Because of
Equation (5) the cosmic ray anisotropy, defined in Equation (2)
as the difference between the gyrotropic distribution function
Jo &, p, 1) and its isotropic part F (x, p), obeys

1
j:l duglx, p, p) =0. (6)

In the Appendix it is shown that in the limit of the diffusion
approximation (|g| < F) the cosmic ray anisotropy consists of
two parts

glx,p, w)=gx,p, )+ g.(x,p, 1),

2
S R v
g, p, ) = —%Wéi’;p)[zfﬂl dy %
L (]_Di#] @)

which is the sum of the so-called streaming (g,) and interstellar
Compton—Getting” (g.) anisotropies, determined by the
gradients of the isotropic distribution function F(x, p) with
respect to z and p, respectively.

5 The terminology “interstellar Compton—Getting anisotropy” used here in

reference to the net weighted Alfvén wave speed is technically correct, but
somewhat misleading as in the conventional context of cosmic ray transport the
Compton—Getting anisotropy refers to the dipole anisotropy induced by the
relative motion of the observer with respect to the interstellar medium.
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In the same limit the isotropic distribution function F (x, p)
obeys the general diffusion-convection transport equation

0 OF 1 0 OF
Lk o+ PPy — RF + S,
815” oz p? 8pp rr (. )

dz Op p?op 0z
OHyOF 1 & , . OF
= = —— Hy) — 8
4[v8z dp 28p(pv 0)8z:| ®)

with the diffusion coefficients

2 2
KRz = KO == f dﬂl: op (1) — ﬂpii;]s 9
Dy,

and the anisotropy moments

1 - M ) Lp(u)
Ky = Hy = .
0 f ‘u /1/1(#) f ,u/t(;u’)

(10)

2.1. Maximum Relative Anisotropy

A quantity often used in comparison with observations is the
maximum relative anisotropy

oG, py =1 —fo@x, p, p=—1)]
S, p,p=1+fx,p, p=-1)
g pp=1) — gl p,p=—D| an
2F (x, p) '

o(x, p)=

where we use Equation (2) and g < F. According to
Equation (7) this maximum relative anisotropy

6(x, p) = bs(x, p) + bc(x, p) 12)

is the sum of two parts: the streaming part

v OInF (x, ! 1 — 12
b, p) = —2IREER) [ g, I )
4 Dy (1)
and the interstellar Compton—Getting part
1
5.(x, p) = —LOME ) [ an “”(“). (14)
2 /1/1 ()

3. Linearly Polarized Isospectral Slab Alfvenic Turbulence

There are four different slab Alvén waves: forward (f) and
backward (b) propagating waves which each can be left-handed
(LH) or right-handed (RH) circularly polarized, respectively.
The cross and magnetic helicities

) bk
Lk + (k)
~ Mppintkp — Irpru(ky)
B Iy pn(ky) + Ir pru(ky)

e[-1,1],

e[—1,1] (15)

indicate the relative fraction of forward and backward waves in
the total intensity ko (k) = Ir(k)) + I,(k)) and the relative
fraction of LH and RH polarized waves, respectively.
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For undamped slab Alfvén waves the Fokker—Planck
coefficients are given by (Schlickeiser 2002, Ch. 13)

1mey; (1 — jep)?

Dyp(u) ¢ = > 4 jep(l — jew) ¢D(j), (16)

Dpp(/l) =l 62[72
where j =1 refers to forward moving Alfvén waves and
Jj = —1 refers to backward moving Alfvén waves, respectively.
Moreover,

oo v =) j j j
D(j)= (1 — ok + He (k) Dot (k)

 2RZBRIu — jel
+ (1 + aj(—=k N1 + He(—k)) o (— k)]
(17)

and

; 1
kj = ———— (18)
Rp(p — je)
denotes the resonant wavenumber.
Guided by interplanetary and interstellar turbulence mea-
surements we adopt power-law type wave intensities

Itotal(kH) = IOk\FS@(k\\ - kmin)g(kmax - kH)a

2 _ _
=B s— 1 s Lipppst (g

l—s 1—s min
At ki’ — ko 47

for positive k| > kpin > 0 with s € [1, 2). The case s = 5/3
represents Kolgomorov-type turbulence; the case s=1 is
referred to as hard-sphere scattering. Moreover, we adopt
isospectral turbulence, that the same spectral index s holds for
the intensities of all four waves. In this case the cross and
magnetic helicities are constants independent of wavenumber.
With both forward and backward moving waves present, the
maximum resonant wavenumber (18) for cosmic ray hadrons
with mass (A) and charge (Q,) numbers and Lorentz factor

occurs at about the inverse ion skin depth,
Ky = k= 0) = —— = S ila

L€ VA C A”}/

Consequently, the maximum resonant Alfvén wave frequency
is given by

Wrmax = Vakrmax = Q = Qp,O&» (21)

Ay
which for Lorentz factors and charge/mass ratios lies well
within the Alfvenic range of turbulence wg < €2,0.
We introduce the maximum cosmic ray momentum with
qa = Que

_ |QuleBy
kminc

TeV
= 1.5 - 103|Q,|Bo(11G) Mio o (22)

m

where Apax = 27Tkn:1L = 10)\;p pc denotes the maximum
wavelength of the Alfvén waves in the interstellar medium.
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We then obtain for momenta p < p,,

D(1) = (1 + H)Do(p)(1 — p?)
X [(1 = ap)(p — €)" 'O — €)
+ (1 + op)(e — p)*~'0(e — W,
D(—1)=(1 — H)Do(p)(1 — i)
X [(1 — o) (e + ) 'O + )
+ (1 + o=+ ) 'O(—(u+ )] (23)

with

Do(p < p,, 1 <s5s<2)
(s — 1)vkmin (53)2

= 3 BOZ (RLkmin )572
_ ) 2 s—2
_ (s — 1)vkmpin (632) P , 24)
8 BO Pm

whereas for hard-sphere scattering

i (5B’ (1)1. 05)

D <Ppp,s=1) =
op <P ) S intom /) B2

m

For greater momenta p > p,, the functions Dy(p > p,,) = 0.
With Equations (23)—(25) we find for the Fokker—Planck
coefficients (16)

Dy (1) (1 — eu)*D(1) + (1 + eu)*D(—1)
Dyp(p) ¢ = epl(l — e)D(1) — (1 + e)D(—=1)] ¢.
Dy, (1) e?p?[D(1) + D(—-1)]

(26)

3.1. Linearly Polarized Alfvén Waves

For linearly polarized Alfvén waves oz, = 0 the Fokker—
Planck coefficients (26) simplify to

Dy (1) = Do(p, $)(1 — A1 + H)lp — el 1 (1 — ep)?
+ (1 = H)lp + el + e,
Dy (1) = Do(p, $)(1 — p)epl(1 + H)|p — 1 (1 — ep)
— (L = H)lp + e~ + ew)].
Dyy(1) = Do(p, $)(1 — ) e?p* [(1 + H)lp — ¢!
+ 1 = H)lp + e '] (27
For energetic cosmic ray particles ¢ < 1 and turbulence
spectral indices s < 2 the general calculations of Dung &

Schlickeiser (1990a, 1990b) demonstrate that the Fokker—
Planck coefficients (27) are well approximated by

Dy (1) = 2Do(1 — p®) |ul = '[1 — 2H, epp + €27,

D;Lp(/’l’) =~ 2D0(1 - Mz)gpll’cls_l(Hc - f,U/),
Dpp (1) = 2Do(1 — ) ep? pl*~ 1. (28)
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3.2. Diffusion-convection Transport Equation

With the approximations (28) we obtain to lowest order in
€ < 1 for the moments (10)

1o A —Apl's
Ko~ .Ll d _ 2,2
2Dy 1 —2H.epp + e
2

1 rl
~ ____ d 1 2 17S: ,
Dofo ne Rl Do(2 — 5)(4 — )

(I — p»(H: — ep)
1 — 2H.eu + €2

1
H()ﬁfpﬁl du
1 4
ﬁepHC£1 du (1 — pi») + O(e3) =~ §€pHC. (29)

The spatial diffusion coefficient in Equation (9) then becomes

Vs v2

3 42— 9@ — 9)Do(p)

B v)\mm BOZ £ 2—s
~ (s - DR - 54— 5) (8B)*\ p,

kz(p, 1 <s<2)=

=94-10% all By 8
(s — D2 — 5)4 — s) (6B)?
2—s
x (pﬁ) cm? s, (30)

with G=v/c for 1 <s <2, whereas for hard-sphere
scattering

1 v?
Ko . s = =—
== ) s = 1)
B 4V Amax BO2 ya
37 (K /fomin) OB)2 \ 1,

B? p
~ 46102 \g—208| & |ecm?s~!, (31
10(6B)Zﬂ(pm) €2V

where we use kpax = wpi/c 50 that kpax /Kmin = Amax Wp,i/
2mc = 1.15 - 10"\ o /n/? and In(kmax /Kmin) = 28.4 + In Ajg —
0.5Inn;, where n; denotes the ionized gas density. For linearly
polarized slab Alfvén waves both spatial diffusion coefficients
(30)—(31) are independent from the cross-helicity.

Likewise, we obtain for the momentum diffusion coefficient
in Equation (9)

1 .
Kpp(P) = 2Do(p)e?p? [ dp (1 — )|l
1 — (Hc 7 6/1/)2
1 — 2H ey + e*i?

1
2D(p)ep*(1 = HY) [ du

(1 = pA)|pf!
1 — 2H.ep + €*p?

R

4Do(p)ep? (1 — H) [ dpi (1 — 2y~
8Do(p)ep>(1 — HY) 21 — HHVip?
s(s +2) s — )@ — Drg(p)

(32)
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where we used Equation (30) to express Dy(p) in terms of
K.:(p). Hy from Equation (29) provides 0H,/0z x d(¢)/dz
dVy /dz = 0 and

14 ,
_ Hpy) ~
poe ap(p vHo)

He .

Vap?) = H, V. 33
3p28p(Ap) A (33)

The diffusion-convection transport Equation (8) then reads

0 oF
—\| Ky (p)— + H VA F
92 [sz(l?) Py A ]

1 of_ 20 -H)Vip*t OF
p2 8]) S(4 - S)(4 - Sz)ﬁzz(p) 817
—RF + S,p)=0. (34)

The diffusion-convection transport Equation (34) indicates
correctly that momentum diffusion of particles only occurs for
cross-helicity values different from 1. Both forward and
backward moving waves have to be present® in order to obtain
a finite value of k.

Moreover, the diffusion-convection transport Equation (34)
indicates a net cosmic ray convection speed H.V, although
the interstellar medium has been assumed to be at rest. This is
easy to understand: the cosmic ray particles do not directly
interact with the interstellar gas. Instead they undergo
resonant interactions with the Alfvén waves carried by the
interstellar gas. The forward and backward moving Alfvén
waves themselves propagate with speeds +V, and —V,,
respectively, through the interstellar medium. The net cosmic
ray convection speed H V4 is the weighted net speed of the
slab Alfvén waves.

3.3. Maximum Relative Anisotropy

Likewise, the approximations (28) yield to lowest order in
€ < 1 for the maximum relative streaming and interstellar
Compton—Getting anisotropies (13)—(14)

v OInF(x, p)
4Do(p)(2 — 5) 0z
(4 — 5)kz(p) OInF (x, p)

- 35
v 0z (33)

O(x, p) =—

and

OlnF(x,
SO @,p).

6.(x,p) = —€H,
(x, p) € o

(36)

o I only one type of wave was present (either forward or backward moving)

we could make a Lorentz coordinate transformation into the rest frame of these
waves, where the turbulent electric fields of these waves would vanish. Without
electric fields, momentum, diffusion of particles is absent. Obviously, such a
Lorentz transformation into a coordinate system, where all turbulent electric
fields vanish, is not possible if both forward and backward moving waves are
present.
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3.4. Anisotropy

For the p-dependent anisotropy we use the approximations
(28) to calculate to lowest order in ¢ < 1 the integrals

1 —y? 1
Jhdy — = —— "y |y
B D/tu(y) 2D0 B

1 {1 — (—p)** for p < 0}

T 22— 9D | 142 forp =0

1—wd —d 1
I du Gompd i) ﬁﬁfjl dy (1 =yl
0

Dy (1)
B 1
Do(2 — )’
’ D,,(y) 2H. — 1)e
[y 2= ep[ch v HeDegn 1)],
Dy (y) 2
1 —y)D,
[ dy A=) 37)
! D;L,u(y)
The streaming anisotropy in Equation (7) then becomes
% OF (x,
8, py ) =— @, p)

42 — s)Do(p) 0Oz

y {(u)“ for 1 < 0}
2= forp >0
(4 — §)k OF(x, p)
T v 0z

Likewise, the interstellar Compton—Getting anisotropy in
Equation (7) reads

|l sgn(p).  (38)

QH. — e

p2EC ) g 2l — 1)

Op

OF (x, p)
~ —eHopup =P
op

8.(x,p, p)=—¢€

(39)

where the last approximation holds for nonzero cross helicities.
Most noteworthy are the different u-dependences of the two
anisotropies. The streaming anisotropy is proportional to
oc|e|>~* sgn(u). For the Kolmogorov turbulence spectral index
s =5/3 we obtain g (1) o |u|'/? sgn(u). This is markedly
different from the much weaker p-dependence of the
interstellar Compton—Getting anisotropy g.(u) o< p.

3.5. Local Interstellar Cosmic Ray Anisotropy

Cosmic rays at momenta much larger than about 10 GeV/c
are not affected by the interplanetary solar wind magnetic
turbulence, as the maximum solar wind turbulence wavelength
is much smaller than the gyroradius of the relativistic galactic
cosmic rays. Consequently, no solar modulation of galactic
cosmic rays with momenta much larger than about 10 GeV /c is
observed.

It has been demonstrated by Zhang et al. (2014) and Zhang
& Pogorelov (2017) that the pristine galactic anisotropy of
relativistic cosmic rays with TeV energies in the local
interstellar medium can be derived from using Liouville’s
theorem to map the observed cosmic ray anisotropies at Earth
back to the local interstellar medium. This requires the
knowledge of the guide magnetic field configuration as

Schlickeiser et al.

calculated from magnetohydrodynamic model heliospheres. This
Liouville mapping technique is able to infer the p-dependence of
the pristine TeV cosmic ray anisotropy in the local interstellar
medium (see Figure 1).

The observations shown in Figure 1 agree better with a linear
dependence on . We therefore calculate in the following the
local interstellar Compton—Getting and the streaming aniso-
tropies of TeV cosmic rays.

4. Local Interstellar Compton—Getting Anisotropy

For the local interstellar Compton—Getting cosmic ray
anisotropy we use the observed power-law momentum
spectrum of galactic TeV cosmic rays Fy(p) oc p~' with
I' ~ 4.7. With Equation (39) we then obtain for the relative
interstellar Compton—Getting anisotropy

8o.c(Ps 1) T'eH, = VaTH, 11
F@ ¢ Cﬁ '

For relativistic cosmic ray momenta (3 ~ 1)

(40)

8o.c(Ps 1) V,T

H.p=1.6-10"3V,(10" cm s YH, .
Fo(p)

(41)

In Figure 2 we plot the local relative interstellar Compton—
Getting anisotropy as a function of u for different cross-helicity
values.

We emphasize that the relative interstellar Compton—Getting
anisotropy (1) of relativistic cosmic rays is independent of
momentum as long as the local interstellar cosmic ray
momentum spectrum is a straight power law. If the latter
shows spectral curvature the relative interstellar Compton—
Getting anisotropy directly reflects this spectral curvature
because then

8o.c(P> 1)

=33.10"*V, (10’ cm sl)[
Fo(p)

Oln Fo(p) Hop
Olnp o
(42)

This spectral curvature in Equation (42) can explain the
observed momentum dependence of the local cosmic ray
anisotropy shown in the bottom part of Figure 7 of Ahlers &
Mertsch (2017).

We note that the local maximum relative interstellar
Compton—Getting anisotropy (36) is given by

p@lnF(x,p) - |g@,g(,u = 1]
Op Fs(p)
~ F|HC|£ = 1.6 - 1073|H|VA(107 cm s~ ). (43)
c

5@,0 = 7EHC

It is independent of momentum as long as the local interstellar
cosmic ray momentum spectrum is a straight power law. Its
constant value is in excellent agreement with the observations
of 8 = 1072, shown in Figure 1 of Mertsch & Funk (2015).
The observed anisotropy suggests values of

|H|VA(10" cm s~1) = 0.62, (44)

which are highly reasonable for values of |H,| close to unity.
Realistic values are indeed extreme values of H. = —1 (only
backward moving waves present) and H. = 1 (only forward
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Figure 1. Distribution of the relative density 1 + (g(x)/F) of cosmic rays with energy of 4 TeV as a function of 4 in the local interstellar medium. The top panel is the
measured relative intensity from the Tibet airshower array (Amenomori et al. 2006) after backtracking the data into the interstellar medium. The middle panel results
after correcting for the Compton—Getting or acceleration effect due to the regular solar system movement around the galactic center. There are no particles at ;1 = 0,
because they never get into the heliosphere from the strict particle trajectory calculations. The bottom panel is obtained from the Liouville mapping technique, which
uses a detailed model of the heliospheric electromagnetic fields, adopting also the direction and strength (3 11G) of the ambient uniform local interstellar magnetic field.
The bottom diagram indicates the true pristine cosmic ray pitch-angle anisotropy in the local interstellar medium. In the lowest diagram the blue line is the pitch-angle
distribution o||'/3 sgn(u1) expected from the streaming anisotropy with s = 5/3 due to resonant wave-particle interactions. The red line is the fitted linear pitch-angle
distribution ocye, which agrees better with the observations. Such a linear dependence also results from the streaming anisotropy due to resonant wave-particle
interactions under the hard-sphere scattering assumption (s = 1).
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Figure 2. Interstellar relative Compton—-Getting cosmic ray anisotropy g .(p, jt) /Fo (in units of T'V,/c as a function of 4 for different cross-helicity values
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moving waves present). In the interstellar medium we deal with
self-generated Alfvén waves by anisotropic cosmic ray
distribution functions (so-called cosmic ray self-confinement).
Here it is relevant that the growth/damping rates of forward-
and backward moving slab Alfvén waves by the cosmic ray
streaming anisotropy are different (Bell 1978; Vainio &
Schlickeiser 1998): independent of the polarization state
forward moving waves have a positive growth rate, whereas
backward moving waves have a positive damping rate. This
difference drives physical systems quickly to a state in which
only unidirectional waves remain (Ko 1992, Appendix of
Schlickeiser & Shalchi 2008). This is demonstrated clearly,
e.g., in Sections 6 and 7 of Schlickeiser et al. (2016).

5. Local Streaming Anisotropy
With 7 = 2 — s the local relative streaming anisotropy can
be calculated from Equation (38) as
8o.s(P> 11)

= Y 4
o) ae(n)|pl" sgn(u) (45)

with the dimensionless quantity

©

cf3 0z

Equations (30)-(31) provide for relativistic cosmic rays in
terms of the dimensionless momentum x = p/my,c and the
constant scattering mean free path L

%m:mwﬂzﬁwumw«mn
Mo "
BJl(uG)n(1 — n)(2 + n)

=94-10"%.(6.3-1077)y

()
X |—1| cm,
6B

Lo(n=1)=

L 1pll 2
29-10 (Bo) @7

Bo(uG) \ 6B

Especially for Kolmogorov turbulence with s = 5/3, we obtain

n=1/3 and
2/3 2
Alo (BO) cm. 48)

L) 15 00 (5
3 B3 (uG)\ 6B

For relativistic cosmic rays the quantity (46) then reads

ae(n) = — 2 F n)Loxn[alnF(z, p)] ’ )
3 9z R
or
a(0<77<l):—3].]018#
) ' - D2 -

8 B¢} £27S [81nF(z,p)]
(6B)2 Pm 0z 1o}

= -3.1-10"%.(6.3 - 1077y
Mo B§ xn[alnm,p)] (50)
(1 — n)By (6B)? e
and in the hard-sphere case

0 BF ox [8lnF(z,p)]
(6B)? Bo(uG) Oz o

aen=1)=-29-10

(S1)

Obviously the parameter (49) is determined by the local
galactic spatial gradient [OF (z, p)/0z]e at the position of the
solar system. Unfortunately, this galactic spatial gradient
cannot be directly observed. However, we can calculate this
spatial gradient from the analytical solution of the diffusion-
convection transport Equation (34). As we will demonstrate
below the inferred theoretical value of the local galactic spatial
gradient [OF (z, p)/0z]e at the position of the solar system
depends sensitively on the adopted spatial distribution function
S1(z) of cosmic ray sources in the transport Equation (34). We
illustrate this essential point below by using the solution of
Schlickeiser et al. (2014—hereafter referred to as SWK):

(1) For symmetric spatial source distributions S;(—z) = $1(2)
we expect rather small values of o due to the galactic location
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of the Earth and solar system close or near to the galactic plane
at z = 0. Because of the adopted source distribution symmetry,
all solutions of the diffusion-momentum transport Equation (34)
exhibit the property [0F/0z],—o = 0, which then implies
ae = 0 so that the local streaming anisotropy vanishes.’

(2) Nonzero values of the local galactic spatial gradient
[OF (z, p) /0z]e only occur for nonsymmetric spatial source
distributions with respect to the galactic plane. We illustrate
this effect below using the simplified SWK-model, but
assuming that only one point source of sub-PeV cosmic rays
located at z; = O exists in the galaxy. This single point source
case has been suggested before by, e.g., Erlykin & Wolfendale
(1997). We then calculate the resulting local streaming
isotropy.

We consider both cases in turn.

5.1. The SWK-model

SWK modeled the transport of local galactic cosmic ray
protons by the spatially one-dimensional steady-state diffusion
transport equation

2
repZEEP) L L0 hp e p) = —5i@8:0. (52)
072 p* Op

In comparison to our transport Equation (34) SWK only
investigated the competition of momentum dependent spatial
diffusion, continuous momentum losses, and injection by
sources, but they ignored particle convection, momentum
diffusion and catastrophic losses as less important processes.
With reasonable assumptions on the momentum dependence of
the spatial diffusion coefficient r_(p) SWK successfully
explained the differential intensity spectrum of the local
galactic cosmic ray protons observed by Voyager 1, justifying
this simplified modeling.

The spatial variable z in Equation (52) refers to the spatial
coordinate along the guide magnetic field, As noted by Blies &
Schlickeiser (2012) the dimensionality of the spatial cosmic ray
transport depends on the structure and disorder of the partially
turbulent galactic magnetic field. In general, one has to
discriminate between spatial diffusion along (parallel diffusion)
and across (perpendicular diffusion) the ordered guide magn-
etic field. Parallel diffusion results from rapid pitch-angle
scattering of cosmic ray particles by the fluctuating magnetic
field component, whereas perpendicular diffusion can be
caused by a variety of effects including gradient and curvature
drifts in nonuniform guide magnetic fields combined with rapid
pitch-angle scattering and by magnetic field line random walk.
If perpendicular diffusion is negligibly small, the one-
dimensional spatial transport is appropriate, implying that the
cosmic ray sources and the solar system are well connected on
the same magnetic flux tube. If the local ordered magnetic field
is inclined with the constant nonzero angle v with respect to
the galactic plane one finds that z = z, sin), where z, is the
galactic height. For ease of exposition we adopt this one-
dimensional spatial transport model here as in SWK. Because
of the highly flattened disk shape of the Galaxy, the radial
spatial gradients are much smaller than the perpendicular
gradient with respect to the galactic height z, (note that these

7 In fact [0F /0z],—0 = 0 is often used as one spatial boundary condition

when solving the transport Equation (34) for symmetric spatial source
distributions.
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gradients enter the diffusion transport equation). This also
justifies the one-dimensional spatial transport model. In the
following we refer to z simply as galactic distance from the
plane, with the understanding that strictly z = z, sin .

In terms of the normalized momentum x = p/ (Amy,c) the
transport Equation (52) for relativistic cosmic ray protons reads

2F 1
xnaa;;m + ;%[B(x)sz(z, 0] = =512 (x),

(53)

Ky

where
Bo) =2, m=54-10n"yr=17-100%"s (54)

To

denotes the relevant momentum loss rate due to pion
production losses in inelastic hadron—hadron collisions in the
interstellar medium of number density n. According to SWK
the general solution of the transport Equation (53) for the
spatial boundary conditions F(z = £oo,x) =0 and the
momentum boundary condition F(z, x = co) = 0 then is
given by

1

P9 =g

I dz0 810

=20

0 T AWl
X [ dxy 200 M0 (55)
x Wa(x, xo)

in terms of the effective diffusion function length®

w, kO [k, , 17
Wy (x, x9) = [Kofx dt %] = [%(xol _ xz)]

=uwﬁ(@f—1
X
(56)

with

Koo 4.1 [(6.3 - 10771\ "BZ "
Falm = \ 7 kpe. (57
o l U \/(1 “DC + neBE * 57)

For the Kolmogorov value we obtain

1 A Bg
Ld(—) =910, | — ' ———0 pe, (58)
3 nB,"”(uG) (6B)

while in the hard-sphere scattering case

Bz
Ly(1)=072 | ——%  pc. 59
= 0T BB Gy ™ &

5.2. Symmetric Spatial Source Distribution

As SWK we adopt as injection conditions a spatially
homogeneous layer of cosmic ray sources within the maximum
distance z, ~ 200 pc (solar system inside of the source

8 Our notation is slightly different from SWK: our W, equals \/ W, swk -
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distribution), injecting the same momentum power law, i.e.,
S1(2) = Olz, — lzl], S2(x) = Spx o (60)

with the step function © and spectral index value I'y > 3. The
solution (55) then reads

72

F(z,x)= dZ e *jeo

SoTo ) X(;FO Zu—2
172 X0 f
27l /2y Jx Wy (x, xo) VGt

SoTy oo I
= — dxg xy °
2x j; 070
X erf(&] + erf(L) .
2W; (x, xo) 2W;(x, x0)

From Equation (61) we readily find the spatial gradient

(61)

OF(z,x) _ =S I X"
0z 271/ 2x Wd(x X0)

2 ~ 2
o u—2 _ utz
X [e (2Wd<mo)) — e (2Wd(r.xo)):|

.y 2.2

S 0 BN — L 2z

— 102 f ~dxo —9 ¢ w0 sinh 27” .
/2y W, (x, xo) 4W; (x, xo)

(62)

The solar system is located in the galactic disk near z = 0, so
that the local galactic spatial gradient (62) vanishes. Conse-
quently, also the parameter (49) vanishes and the local
streaming anisotropy (45) becomes zero. In this case the local
cosmic ray anisotropy is solely determined by the interstellar
Compton—Getting anisotropy (41) and (42).

Moreover, as the local streaming anisotropy vanishes, no
galactic cosmic ray anisotropy problem, as described by
Mertsch & Funk (2015), exists, and there is no reason to
discard quasilinear cosmic ray transport theories.

5.3. Single Point Source

Here we adopt as injection conditions a single cosmic ray
source at position z;, injecting a momentum power law, i.e.,

S1(@) = 6(z — 7)), Sa(x) = Spx? (63)

with spectral index value g > 3. The solution (55) then reads

S 70 [e%¢) qu _ (zfz[)z
- f dro —0_Twiw,  (64)
2wt/ ex Jx W, (x, x0)

F(z,x) =

yielding readily

OF (z, x) S,mo(z — zi) f 6—4;((”20)
= — d'%*0)
0z 4712 Wd (x X0)
(65)
Consequently,
00 d xo"’ _ 4?;; zi)? )
(x.x0
OInF(z,x)  z-— zifx 0 e ¢ 66)
aZ B 2 ood xo ! _4;;(:,')2) .
< (x,X()
f‘ * W/(X,Xo)e ‘
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Then at the position z = 0 of the solar system

22
> STt
‘ X,x0)
[2nren) i de 0 o )
0 2 - __ i
< © foc de Le 4W3(x,x0)
x W (x.x0)

With the effective diffusion length (56) inserted we obtain for
Equation (67)

z,-z
[fﬂnF(z, x)] . j; dxg [(%0)7,07 1]3,26 2 ]
S

0z S 2L2xn B %
S sy e 4l

[(xox)” — 1]' 72

fooodu u*%(l + é)% -
fooodu u*%(l + é)l;q

S du 1+ uy 7y

L2y _mE
d o0 1—q g—1 u
fo du (1 4+ uy v ' —1e 43

(68)

where we substituted u = [(xo/x)" — 1]~!. The two remaining
integrals can be expressed in terms of confluent hypergeometric
functions (Abramowitz & Stegun 1972), so that

[8lnF(z, x)]
0z o

g—1 33z
_[q—l 1] Z; U( n +5’ 2’ 4L}x”)

n 2 |2L2xm (a1 11 22
@ U n +2 27 4L3x"

le 4L "

2
1e 4Ldv7

B 2L2x"

22
5 +26‘ 4L %x’i

(69)

Then for single point source injection the dimensionless
2—|— L Zi — 1 1
o) = _@2+nLo [f] 1

quantity (49) becomes
g—1 33z
4 U( n + 272’ 4Ldzx”)
6L; n 2pfa=r 11 2
n 272’ 4L‘,2x’7
Ui
[a-1+2]e+mn

g—1 33 7
U( n + 2727 4L2x

2 b
2 cTo 1y qfl_'_l 1z
2727 4L2x"

where we inserted L, from Equation (57).

Using the Kummer transformation formula (13.1.29) in
Abramowitz & Stegun (1972) Equation (70) can also be
written as

g—1 1{Lg sgn(zi)xg
ap(n) =-2 + + -
oM =—( n)[ ; 2] 3L,

1 2
Zi
2’ (Zn(nvx)) )
X 2
g-1 11 Zi
U( n + 272’ (zc(n,x)) )

o4,

(71)
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with the momentum dependent characteristic diffusion length

ze(n, X) = 2Lq(n)x7. (72)
We introduce the timescale
2 2
i i
() = - d (73)

Ar(x)  4Ko(x

which is the typical timescale for cosmic ray particles to
spatially diffuse from the point source at z; to the solar system
at z = 0. In terms of the pion loss timescale (54) we note that
the argument of the confluent hypergeometric functions in
Equation (71) equals the ratio

Y U
(L) G (ﬁ) (74)
Zc(x) To X
with the characteristic dimensionless momentum
1
| (75)
xm=|-].
X 4L7
For Kolmogorov turbulence
2 2/3 2P
7 (kpc)B G
xc(l) — 0.03| 2L UPIBT W OB | - g6,
3 )\1({ BO
whereas for hard-sphere scattering
< s sBY
x.(1) = 6.9 - 10°nz;" (kpc)nBy(uG) rE (o))
0

Hence, for point source distances smaller than z.(x), which is
equivalent to momenta x greater than x,., the diffusion time of
cosmic ray particles is shorter than the pion loss time.
Alternatively, for point source distances greater than z.(x),
which is equivalent to momenta x smaller than x,., the cosmic
rays diffuse longer than the pion loss time.

We use the asymptotic expansions of the confluent
hypergeometric functions for small and large arguments to
derive

., -1 +1 1 ( Zi )2
qg—1 1 U S
+ 5 2
77 q7] 1 1 Zi
U( n EETEY (Zf(”’X)) )
r(q:] 1)

+
—" £ for |zj] < z.(x) equivalent to x >> x,
r("" +1
~ 7
q

~—

2

-1 1]z,
[ n + 2:|IZ,'I’

for |z;] > z.(x) equivalent to x < x,

(78)
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Apart from factors of order unity, Equation (78) is well

approximated by
U q—1 +1 l ( Zi )2
[q — 1 1] " 27 )
o 2gfazr 11 ( )2
U( n + 27 27 \z.(n,x)
ze(x) 2L,x2

Ze(x) + |Zi| B |Z,‘| + 2de%'
With this approximation the quantity (71) varies as

(79)

Ul

Zc(x) + |Zi|
x"

|zi| + 2Lgx>

2
ap(n) = —5(2 + mLosgn(zi)

2
= —5(2 + mLosgn(z;) (30)
Most noteworthy: for close source distances |z;| < z.(x), or large
momenta x >> x., the quantity (80), apart from sgn(z;), is
independent of the actual value of |z;|, and given by the ratio of
the constant mean free path (47) and the effective diffusion length
(57) as

n

— H—T]ﬂ Sgn(zi)xz .

3 Ly
Alternatively, for far source distances |z;] > z.(x), or small
momenta x < x., the quantity (80) decreases as

e (), |z K ze(x)) = g = 81)

Qg

|i]
and therefore is always smaller than «y,.
Numerically, we obtain for general values of nonzero n

e (1, 2] K z:(x) =~ (82)

1-n 2
)‘10 BO

1)~ — ) 3.1 AY
ol << D= =sen@)(6.3 A0 G Gay

n
X2

for |zi| < z.(x)

La(pc)
2N '
Do) forlal > ze()
(83)
and in the hard-sphere case
B 1
ap(n=1)=—sgn(z;)9.4 - 103
(6B)? Bo(1G)
1
D (84)
2x .
oo forlzl > ze()
For the Kolmogorov case
1 NGBS
04@(—) = —sgn(z;)3.9 - 1072—~2—
3 By"*(uG) (8BY?
1
X6
for |z;] < z.(x)
La(pe)
205 (83)
BN for |zl > z.(x)
We recall that the value of L, depends on 17, see

Equations (57)—(59).
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According to Equations (81)—(82) the maximum possible
value of the parameter o < v in the point source model are

ap(0 < np<1)=—-25-10"*sgn(z)x2

1—-n

)\ 2
n2 +n) (6.3 - 10-7y1/2 /210 By (86)
1 —n By (uG) (6B)
and
aon=1=-13-10"7 sgn(zi)x%ﬂ 0
0B\ Bo(1G)
For the Kolmogorov case
1 . N Mg
aol =] = —4.3 - 103 sgn(z)xe—vn —>2 . 88
0(3) gn@xey BI/5(1G) 88)

Then, according to Equation (45), the maximum local relative
streaming anisotropy for the single point source model is given by

g@,s,max ([7, ,u)

89
Fo(p) (89

= ao(n) |ul" sgn(p).

6. Summary and Conclusions

Starting from the Fokker—Planck description of cosmic ray
transport we have derived the anisotropy of galactic cosmic
rays in the interstellar medium at rest employing the diffusion
approximation, which holds in astrophysical systems with the
electromagnetic field ordering By > 6B > OE. This ordering is
valid in the interstellar medium containing low-frequency
magnetohydrodynamic linearly polarized slab Alfvén waves.
We demonstrated that the anisotropy consists of two parts: the
streaming anisotropy g(z, p, i), caused by the spatial gradient
of the isotropic part of the cosmic ray distribution function, and
the interstellar Compton—Getting anisotropy g.(z, p, 1), caused
by the momentum gradient of the isotropic part of the cosmic
ray distribution function.

For the case of linearly polarized Alfvén waves we calculate the
dependencies of both anisotropies on the cosmic ray momentum
p, cosmic ray pitch-angle cosine p, and on the cross-helicity state
H, of the Alfvenic turbulence, characterizing the relative fraction
of Alfvén waves moving parallel or antiparallel to the ordered
magnetic guide field. First, the interstellar Compton—Getting
anisotropy g.(z, p, 1) o< H,p is independent of momentum and
linearly proportional to H, ;.. Second, the streaming anisotropy is
independent from H, and varies as g,(z, p, ) o< (p|upl)’sgn(w)
with 7 = 2 — s, where s denotes the power-law spectral index of
interstellar turbulence. For Kolmogorov turbulence with s = 5/3
we obtain = 1/3 and g (z, p, 1)  (plp))'/3sgn(u). In the
hard-sphere scattering case with s = 1 one finds g,(z, p, )
plul sgn(p). However, this increasing momentum dependence
p is clearly ruled out by the observed momentum dependence
(see Figure 7 of Ahlers & Mertsch 2017 of the local cosmic ray
anisotropy at relativistic particle momenta.

These different pitch-angle dependencies can be tested by
the Liouville mapping technique to infer the pristine interstellar
cosmic ray anisotropy from measurements inside the solar
system. For cosmic rays with energy of 4 TeV the derived
pristine interstellar cosmic ray anisotropy shown in Figure 1
suggests the linear (g o< |u|sgn(u)) pitch-angle dependence.
This is well explained by the interstellar Compton—Getting
anisotropy, provided the Alfvén speed in the local interstellar
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medium is about 62kms~'. The implied near independence
from the particle momentum also agrees favorably with the
observed momentum dependence of the local cosmic ray
anisotropy at relativistic particle momenta. The required local
Alfvén speed of 62 km s~ is about a factor of 2 higher than the
Alfvén speed calculated with the observed electron density and
magnetic field strength outside the solar system. However, the
relativistic TeV cosmic rays arriving at Earth are about 10°
years old, and have transversed a much larger volume in the
galaxy. So what is of interest is the average Alfvén speed in
that cosmic ray volume, which can be higher than 30 kms™'.
For example, in the coronal phase of the ISM, occupying 90%
of the volume, the electron density is as low as 103 cm 3 , SO
that with a magnetic field strength of 1 /G, the Alfvén speed is
69kms .

The linear pitch-angle dependence of the local interstellar
anisotropy of 4 TeV cosmic rays can be explained by the
streaming anisotropy only for the hard-sphere scattering case
s = 1. However, this value of s = 1 implies an increasing
momentum dependence op, which is clearly ruled out by the
observed momentum dependence of the local cosmic ray
anisotropy at relativistic particle momenta.

Moreover, the streaming anisotropy (xdF /Jz) is proportional
to the spatial gradient of the isotropic part of the cosmic ray
distribution function. Due to the particular location of the solar
system in the galactic plane (z = 0) the spatial gradient (OF /07),
and therefore the local streaming anisotropy vanish for
symmetric spatial source distribution with respect to galactic
height z. Therefore, the galactic cosmic ray anisotropy problem
as described by Mertsch & Funk (2015) does not exist. Finite
values of the local streaming anisotropy only exist for
nonsymmetric spatial source distributions with respect to the
galactic plane. We illustrate this result adopting a single steady
point source of sub-PeV cosmic rays. In the hard-sphere
scattering case the single point source model also predicts an
increasing momentum dependence (stronger than ocx!'/2) of the
local streaming anisotropy, which is ruled out by the observed
momentum dependence of the local cosmic ray anisotropy at
relativistic particle momenta.

This work relies on the quasilinear diffusion of cosmic rays
caused by the resonant interactions with slab Alfvén waves. In
future theoretical studies the implications of alternative
transport theories on the cosmic ray anisotropy should be
investigated, including nonresonant scattering and other types
of nonslab turbulence. Moreover, the point source of sub-PeV
cosmic rays can also be time-dependent. These topics will be
left for future studies.

In conclusion, within the theoretical modeling presented in
this work the local interstellar relative cosmic ray anisotropy is
currently best explained by the interstellar Compton—Getting
anisotropy. It is constant at relativistic particle momenta in
excellent agreement with the observations at TeV energies, and
it requires an Alfvén speed of about 62kms~' in the local
interstellar medium.

R.S. and J.O. acknowledge partial support by the Deutsche
Forschungsgemeinschaft through grant Schl 201/34-1.

Appendix
Anisotropy and Diffusion Approximation

For ease of exposition here we only consider isotropic source
terms and isotropic momentum losses.
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With Equation (2) the Fokker—Planck Equation (3) becomes

OF 0
viu— + v,ua—i + RF +Rg — S, p, 1)

0z
0 og oF og
=D, + D, = +D
8#[ P ‘pﬁp upap]
5, 0 og OF og
+p?—p?|Dyp—= + Dyy— + D . 90
p app [ ;pa‘u 6 3p] (90)

Averaging this equation over u using Equation (6) yields

v o pl
22 [ dupg + RF — Sx, p. 1
28ZL pnig @, p. 1)

OF og
+ D + D 91
21,2 3 f [ M (O o " op ] ©On
involving different moments of the anisotropy. In the
derivation of Equation (91) we have used
Dy (= %1) = Dyp(pp = £1) = 0. (92)

Subtracting Equation (91) from the full Fokker—Planck
Equation (90) provides

v a—F+v 8—8
“az M@z

0 og oF
:a[ wa +D upa
o , 0g
~Z p2|p =5
3pp [ " ou

— ——f dupg + RF

0g
+ D ;Lpa ]

0]
+p? + Dpp—— + Dppé]

Pp ap

»?
- — . + D,,— + D,,—=|.
f [/1) o ppap ppap]

We note that Equations (91) and (93) are exact.

A.l. Diffusion Approximation

We approximate the anisotropy Equation (93) assuming
small anisotropies, i.e.,

lgl < F. 94)

We also assume that D,, and D,,, are about a factor € and €2,
respectively, with ¢ = V, /v >~ VA /c < 1, smaller than D
To leading order this provides for Equation (93)

OF _ a[ dg DG_F].
lp@p

o T ou| M op
The same approximation (94) applied to Equation (91) provides
the steady-state diffusion-convection transport equation for the
isotropic part of the cosmic ray phase space distribution as

e

95)

—gfjl dupg + RF — S(x, p)

” oF
22@, [ d [ M+Dpp ] (96)

op
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A.2. Anisotropy
Integrating Equation (95) provides

p, 98

OF Tvu? OF
o T D, co + Ak
o

— = . 97
" op 2 0Oz oD

The integration constant ¢y (with respect to ) is deter-
mined from the property that the left-hand side of this
equation vanishes for p = =£1, because of property (92),
yielding

I'v oF
c=————— 98
0 2 o (98)
and thus for Equation (97)
dg v - M2)3_F _ D) OF 99)
o 2Dy () 9z Duu(p) Op
Integrating Equation (99) again over p, we obtain
g§(x, p, j1)
2
—Cl—la—F hd (1 y)_a_Ffﬂdy ;Lp()’)
20717 Du(y) T Dy
(100)

The second integration constant c¢; (with respect to p) is
determined from condition (6). Using the integral for any
function /() and general n > 0

1 n [H h(y)
[ e ay 2O

,u,u(y)
_ ,n+1
_ L g A=y aon)
n+1 - D;m (,u)
we find especially for n = 0
_ )
o= RO g, (L= 0 = )
4 81 Dml(,u)
1 — D
10F d d = #p(u)' (102)
28p - Dy ()
This provides for the cosmic ray anisotropy (100)
g(x, p, p) = g(x, p, 1) + g.(x, p, P,
vOFx,p)|, pr , 1 —)°
g, p, ) = ——————|2 | " dy
4 0z [ L D, ()
_ 2
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1 — wD,
L 4 = Wby | (103)
! Dy (1)
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which is the sum of the so-called streaming (g,) and interstellar
Compton—Getting (g.) anisotropies, determined by the gradi-
ents of the isotropic distribution function F'(x, p) with respect
to z and p.

A.3. Anisotropy Moments

With the anisotropy Equations (99) and (103) we determine
the moments needed in the diffusion-convection transport
Equation (96). Using integral (101) for n = 1 we find

1 vKoy OF HQ OF
d =—— 104
L His 4 0z 20p (109
with
W(u)
1 —
H():fl du M (105)
-1 D,uu(/ff)
Likewise
fl du D, 28 — _VHOF 8Ff dy D). (106)
-1 " 8M 2 0z op /I/J(N)

Inserting the moments (104)—(106) in Equation (96) provides
the steady-state diffusion-convection transport Equation (8)
given above.
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