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Abstract— Soft robotics has shown great potential in manipu-
lation and human-robot interaction due to its compliant nature.
However, soft systems usually have a large degree of freedom
and strong nonlinearities, which pose significant challenges for
precise modeling and control. In this paper, a linear parameter-
varying (LPV) model is developed to describe the dynamics
of a soft robotic arm segment. Given the different actuation
mechanisms, the LPV models for elongation and bending
motions are identified through experimental data. A state-
feedback H∞ controller is designed for the LPV model using a
linear matrix inequality (LMI). Simulation of the state-feedback
controller indicates that the closed-loop system is stable but with
steady-state errors. As a result, an iterative learning control
(ILC) with P-type learning function is implemented to improve
the tracking performance. Simulation results of the ILC+state-
feedback controller show steady-state errors are significantly
reduced with iterations. The ILC+state-feedback controller
successfully moves the soft robotic arm segment to its desired
position within several iterations in experiments.

I. INTRODUCTION
The fast-growing interest in soft robotics comes from its

various intrinsic properties, such as its safe interaction with
the human body, high power-to-weight ratio, compliant to
the environment it interacts with, and low-cost fabrication.
Some examples are readily seen in the field of manipulation
[1] and wearable systems [2]. The contribution to various soft
actuators includes pneumatic artificial muscles [3], inflatable
structures [4], fluidic-elastomeric actuators [5], and origami
structures [6]. A topic of paramount importance is the
modeling and control of such systems [7].

The goal of designing a control system for soft robots
is to find a set of inputs based on feedback to reach its
desired shape or position. If the transient state is not of
interest, the model of an actuator can be estimated through
measurements at the steady state. In [8], researchers used
a constant curvature model to estimate the final posture
of a multi-link soft arm. In [9], the authors presented an
FEA method to generate control inputs based on the desired
deformation. In [10], it was assumed that the expansion force
in the actuator walls produced by air pressure was equivalent
to the contraction force due to the material deformation
and they built a pressure dependent curvature model to
estimate the actuator conformation at the steady state. Since
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these models focus only on the steady-state performance and
ignore the system dynamics, the corresponding controller
cannot be used to achieve fast and dynamic tasks.

Dynamic models of the soft robotics are generally com-
plicated, due to their nonlinear material properties and gen-
erally slow responses to the pressure stimuli. To capture the
dynamic behaviors and the nonlinear properties of soft ac-
tuators, Cosserat rod and mass-damper-spring based models
are proposed in [11], [12]. In [11], the authors provided a
piecewise-constant curvature model to estimate the dynamics
of an elastic tube robot. The computational cost of this
model increased significantly with an increasing number
of actuators. In [12], the author proposed a mass-damper-
spring based model which was built through a network of
mass-spring-damper links and their accuracy was improved
with a higher number of the links. It was also found that
the spring coefficient of the system was linearly dependent
on its control input, i.e., air pressure, while the mass and
damper coefficients were assumed to be constant values. The
dynamics of this input dependent system can be described
using a linear parameter-varying (LPV) model [13].

Besides modeling, soft robot control has received much
attention recently. To drive the soft robots to their desired
postures, sliding mode and model predictive controllers
were designed to track the reference trajectory [14], [15].
However, it is very challenging to achieve fast-tracking and
strong robustness simultaneously with feedback control only
for complex soft robot models. To address this problem, an
iterative learning controller (ILC) is proposed to improve the
tracking performance by reducing the delay in the transient
period and rejecting the unknown repetitive disturbances
[16]. A combination of the feedback controller and an ILC
could perform better than each method individually. The
contributions of this paper are outlined as follows:

• An LPV model is developed and experimentally vali-
dated for an elastomer-based soft robotic arm segment.

• A robust H∞ state-feedback controller and a combined
controller with ILC for the LPV model are designed.

• A custom experimental platform and a segment of the
soft robotic arm are used to validate the stability of the
H∞ control and the improved tracking through ILC.

The remainder of the paper is organized as follows:
Section II discusses the soft arm design and the experimental
platform setup. Section III introduces the LPV model for
one soft segment and its parameter identification. Section
IV discusses the state-feedback H∞ controller and ILC
design. Section V presents the simulation results of the
closed-loop system with two controllers (state-feedback and



Fig. 1: The soft robotic arm with a zoom-in view of a single
segment. uuu, vvv and www are the orthogonal axes. C0 and C1 are
the center points of the bottom and the top surface where
C0 is the origin of the coordinate. lll0 and lll are the vectors
between the two center points at the initial time and any time
instance where θ is the angle between lll and www.

ILC+state-feedback). Section VI presents the experimental
results. Section VII concludes the paper and discusses future
work.

II. HARDWARE DEVELOPMENT AND TESTING

The soft robotic arm is made of elastomeric material
introduced in our previous work [17]. In this paper, we focus
on the control of a single segment [18] of the soft robotic
arm. The segment is manufactured by fusing three ring-
reinforced tubular actuators (RRAs) in parallel to constrict
the radial motion while promoting extension motion of the
actuator using Acrylonitrile Butadiene Styrene (ABS) circu-
lar ring reinforcements in an equilateral triangular fashion.
The material of the elastomeric actuator body has a shore
hardness of 30A (Dragon Skin 30, Smooth-On Inc., PA). The
segments are designed to be 160 mm long and have various
degree of freedoms depending on the inflation combination
of the three RRAs in each segment. The coordinate frame
of the soft arm is shown in Fig. 1. The custom soft robotics
evaluation platform is designed to sense, actuate, and record
motion trajectories [17], shown in Fig. 2.

III. MODELING AND PARAMETER
IDENTIFICATION

In this section, a mass-damper-spring model [19] is em-
ployed to describe the dynamics and the end-effector position
of the soft arm. The model input is air pressure and outputs
are the bending angle and distance between the center points
of the bottom and top surfaces. It should be noted that only
these two outputs are not enough to uniquely define the
3D position of the end-effector. In this paper, as a proof
of concept, only one output will be controlled during the
simulation and experiment. The more comprehensive full
system model is left as future work. In elongation motion, all
three chambers of the actuator will be inflated with the same
pressure while in bending motion only one chamber will
be activated. Therefore, the dynamic models for elongation
motion and bending motion are identified individually.

Fig. 2: Experimental platform to monitor and control the soft
segment. (1) The 3-chambered segment. (2) Motion capture
system. (3) Computer system. (4) Thirty-two high-switching
valves. (5) Sixteen pressure regulators. (6) Emergency stop
button. (7) Power supply. (8) Motor drivers. (9) NI compact-
RIO (cRIO) controller. (10) Keyboard and mouse. (11)
Ethernet adapter. (12) 8-port Gigabit PoE/PoE+ switch for
use with Ethernet cameras. (13) eSync 2 box to synchronize
motion capture readings with NI system.

A. LPV Model of the Soft Arm

In [19], each segment was considered as a rigid parallel
mechanism which provides a more accurate description in
elongation motion than in bending motion. In this paper,
the end-effector position of the segment is described as the
distance changes between the center points of the top and
bottom surfaces L and angle changes θ between the initial
posture and the posture at any time instance, as shown in
Fig. 1. It should be noted that when only one chamber is
actuated the bending axis of the segment is parallel with
the line that goes through the centers of the other two
chambers at the bottom surface. With the soft arm fixed on
the platform, the direction of the rotation axis is constant
in the global coordinate. With the knowledge of the rotation
axis direction, the 3D position of the end-effector can be
represented using L and θ, shown in Fig. 1.

The position and angle changes, L(t) and θ(t), are calcu-
lated as follows.

L(t) = ||lll(t)|| − ||lll0|| (1)

θ(t) = cos−1 lll(t) ·www0

||lll(t)||
− cos−1 lll0 ·www0

||lll0||
(2)

where lll(t) = C1(t)−C0(t) is the end-effector position vector
at any time instance. lll0 = lll(t = 0) is the initial position
vector of end-effector. www0 is a unit vector along www axis. In
this paper, we assume that only one chamber will be inflated
during the bending motion.

As mentioned in [15], the torque generated by a pneumatic
actuator can be estimated as a linear function of the input
pressure p such that the dynamic model of the soft arm
segment is expressed as follows (the time index is omitted
for brevity in the following sections)

M(p)q̈qq +B(p)q̇qq +K(p)qqq = f(p) (3)



(a) Estimated system parameter for length

(b) Simulation vs. experimental results

Fig. 3: The system parameter estimation and simulation
result for elongation motion

TABLE I: Parameter for elongation motion (y = a1x+ a0)

Variable a1 a0 R2

mL(p) 3.471E − 03 −3.612E − 03 0.9027
bL(p) 7.657E − 03 3.243E − 01 0.9245
kL(p) −2.835E − 02 2.248 0.9892
f(p) 1 0 N/A

where qqq = [L, θ]T is the state vector of the system.
Suggested by the collected experimental data whose input
pressure ranges from 10 to 25 psi, a decoupled dynamic
model is presented to bending motion dynamics. This will
also be validated in experimental results later in Fig. 4(c)
Therefore, M(p), B(p) and K(p) are diagonal matrices and
only dependent on the input pressure. The simplified LPV
model can be described by:[

mL(p) 0
0 mθ(p)

]
q̈qq +

[
bL(p) 0

0 bθ(p)

]
q̇qq

+

[
kL(p) 0

0 kθ(p)

]
qqq = f(p)

(4)

B. Parameter Identification

For each type of motion, there are three parameter matrices
that need to be identified, i.e., the equivalent mass, damping,
and spring coefficient matrices. In elongation motion, a set
of step input (fixed pressure) is given to all three chambers
and only the length changes L are recorded. Using the
pressure and length changes as the model input and output,

the required parameters are calculated using the MATLAB
System Identification Toolbox and presented in Fig. 3(a).

Using the linear least square method, the coefficients of
the linear function are estimated and shown in Table I. It is
observed that all three parameters are linearly dependent on
the input pressure since the R2 values are all close to one.
The fitted linear functions are presented in Fig. 3(a).

Similarly, the system parameters for bending motion are
identified through a set of experiments with fixed pressure
inputs. Only one chamber is inflated during the test to
simplify the modeling process. The experimental results with

(a) Estimated system parameters for length

(b) Estimated system parameters for angle

(c) Comparison between simulation and experimental results

Fig. 4: The system parameter estimation and simulation
result for bending motion



TABLE II: Parameter for bending motion (y = a1x+ a0)
Variable a1 a0 R2

mL(p) 2.191E − 02 −1.962E − 01 0.8699
bL(p) 8.517E − 02 2.677E − 01 0.9553
kL(p) −9.350E − 03 7.374 0.0334
mθ(p) 4.624E − 03 −1.768E − 02 0.9664
bθ(p) 1.123E − 02 3.469E − 01 0.9194
kθ(p) −3.622E − 02 2.816 0.9890
f(p) 1 0 N/A

their estimated linear functions are shown in Figs. 4(a) and
4(b) for the L term and θ term, respectively. The identified
parameters in Table II demonstrate that all model parameters
except kL are linearly dependent on the input pressure.

Comparing the experimental data presented in Figs. 3(b)
and 4(c), it is found that the distance changes at the steady
state are relatively small in bending motion than elongation
which indicates that the kL(p) term is independent of the
pressure and can be treated as a constant (this is also
the reason why the R2 for kL(p) is so small). It is also
noticeable that given the same step input (fixed pressure), the
LPV model simulations are able to match the corresponding
experimental results. This indicates that the LPV model well
captures the dynamics of the soft arm and supports the
decoupled system assumption mentioned above.

IV. MOTION CONTROL OF THE SOFT ARM
SEGMENT

A. Motion Control with a State-feedback Controller

This subsection focuses on robust motion control of the
soft arm motion. Take the elongation motion as an example,
it can be rewritten as the following second-order system

ẋ = A(p) · x+B(p) · (p+ d), (5)
y = C · x, (6)

where x = [L L̇]T is the system state vector, p represents
the pressure input, and d is the external disturbance from
the valve and pressure regulator. The system matrices for
elongation motion are shown as follows:

A (p) =

[
0 1

− kL(p)
mL(p) − bL(p)

mL(p)

]
, B (p) =

[
0
1

mL(p)

]
, C =

[
1
0

]T
In this paper, we propose to use a fixed-gain state-feedback
controller ufb = K ·x and the resulting closed-loop dynamics
is [

ẋcl
y

]
=

[
A (p) +B (p) ·K B (p)

C 0

] [
xcl
d

]
. (7)

where xcl ∈ R2 is the closed-loop system state.

Fig. 5: Closed-loop transfer function Gyd for various pres-
sure inputs in Φp

Fig. 6: Block diagram for ILC+state-feedback controller

In this paper, we aim at designing a robust controller that
could effectively reject disturbance, and the H∞ performance
of the closed-loop system is defined as [20]∥∥Gcl(p)∥∥∞ := sup

p∈Φp

sup
d∈L2,‖d‖2 6=0

‖y‖2
‖d‖2

, (8)

where Φp ∈ [5psi, 25psi] is range of the input pressure. It
is well known that the H∞ performance requirement above
can be converted to a linear matrix inequality (LMI). Given

(a) Elongation motion L tracking results

(b) Bending motion θ tracking results

Fig. 7: Simulations of closed-loop system with optimized PD
and ILC+PD controllers with a step input



Fig. 8: Hardware diagram for soft arm control system

γ > 0, the feedback control design with
∥∥Gcl(p)∥∥∞ < γ

can be achieved if there exist matrices Y ∈ R1×2 and Q =
QT ∈ R2 > 0, such that the following LMI holds for all
p ∈ Φp [20]:A (p)Q+QAT (p) +B (p)Y + Y TBT (p) ∗ ∗

CQ −γ ∗
BT (p) 0 −γ

 < 0

(9)
and the corresponding state feedback gain is K = Y Q−1.
It should be noted this will yield a suboptimal controller
because we do not minimize the γ, and the reason is to make
sure the feedback control gain is not too high. In a motion
control system, a high-gain feedback control will make the
system very sensitive to measurement noise. In this paper,
the resultant gain K is implemented as a PD controller for
the system. Figure 5 shows the transfer function between
disturbance and output for the closed-loop system with all
p ∈ Φp when γ = 5, and it can be seen that the closed-loop
system can effectively reject disturbance at all frequencies.

B. Motion Control with ILC+state-feedback Controller

Due to the LPV dynamics, a pure state-feedback controller
cannot handle the steady-state errors. One possible solution
is implementing integration gains to reduce such errors.
However, the integration term will amplify the system noise
and potentially make the system unstable. Another solution
is using the feedforward control and a good choice is the ILC
which records errors from previous iterations and generate
feedforward inputs to improve the tracking performance.

For a non-linear system, the P-type learning function has
been widely used [21]. A continuous-time, P-type learning
function can be described as:

uffj+1(t) = uffj (t) + kpej(t) (10)

where j is the iteration index, kp is the proportional gain,
uff (t) is the feedforward term and e(t) is the tracking error.
The block diagram of the control system is shown in Fig. 6.

V. SIMULATION

The simulation results of the closed-loop systems are
presented in Figs. 7(a) and 7(b). In each simulation, a step
reference (desired position or bending angle) is given to
the closed-loop system and the steady-state errors from the
optimized state-feedback controller which gains from (9) and

the combined controller are presented. It can be noted in Fig.
7(a) that given a desired L term, the optimized state-feedback
controller reaches a steady state without an overshoot in the
elongation motion. However, a residual error of 1 mm is
observed at the end of the simulation. To address this residual
error, the ILC controller is introduced to the system and the
new controller reduces the elongation error.

In Fig. 7(b), the residual error for bending angle θ exists
in the optimized state-feedback controller as well and adding
the ILC to the system is able to reduce the steady-state errors.
In both simulations, the optimized state-feedback gains are
relatively large which makes the initial tracking error so
small that limited improvement can be achieved by ILC.

VI. EXPERIMENTS AND RESULTS

To validate the performance of both the PD and ILC+PD
controllers, the same experimental platform was used to
execute the control system presented in Fig. 8. The high
performance PC and the motion capture system were con-
nected to the same robot operating system (ROS) server using
Ethernet cable to minimize the communication delay. Three
markers were placed on the top and bottom of the segment
and their positions were tracked and published to the ROS
server via motion capture system. The PC subscribed the

(a) Elongation motion L tracking results

(b) Bending motion θ tracking results

Fig. 9: Experimental results with PD and ILC+PD controllers



markers data at 100 Hz through the server and calculated
the desired pressure based on the desired position. Then,
the PC sent the calculation results to the NI cRIO using
serial communication. The cRIO read and tracked the desired
pressure by opening and closing the corresponding valves.

With the state-feedback controller only, the system reached
the steady state with a residual error of 6.42 mm, shown in
Fig. 9(a). When the ILC was implemented, the segment got
closer to the desired posture with an increase of iterations. A
similar performance was observed in the bending experiment.
Using the same gain sets as the first experiment, the PD
controller showed a steady-state error of 5.12 degrees. It was
also visible that, in the bending test, the segment periodically
oscillated around the steady-state angle. One possible reason
was the unknown deflation dynamics. As shown in Fig. 9(b),
in the state-feedback experiment, the slopes of the inflation
and deflation processes are different. However, in the model,
it is assumed that the inflation and deflation follow the same
dynamics. This unknown dynamics could introduce modeling
uncertainties and hinder the system performance.

In this paper, we only applied the step input to the LPV
model and the closed-loop system experiments to present
the potential of the proposed model and the model-based
control strategies for this soft robotic arm segment. Other
typical input, such as sinusoidal signal, will be tested in
future experiments. Also, due to the safety concerns, we
selected a relatively low input pressure range to identify the
model parameters and to validate the proposed closed-loop
system performance. A higher range of input pressure would
be applied to the system to evaluate this model with larger
elongation and bending angles.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed an LPV model for an elastomer
based soft arm and implemented an ILC+state-feedback con-
trol algorithm to improve the system tracking performance.
The parameters of the LPV model for elongation and bending
motion were identified through two sets of experiments.
The simulation results of such models showed that the LPV
model was able to describe the dynamics of the system. A
H∞ state-feedback control strategy was introduced to the
LPV model. Using the LMI method, the optimized gains
for the state-feedback controller were identified. However,
the residual error existed in the simulation with the opti-
mized state-feedback gains. An ILC with the P-type learning
function was implemented into the system with the same
PD feedback gains and the steady-state error reduced with
the increase of the iterations. The performance of purposed
controllers was validated at the custom evaluation platform,
and the results matched the mentioned simulations.

Future studies include improving the LPV model perfor-
mance by identifying the deflation dynamics, applying a
wider range of pressure to further validate this model, and
combining the model with the motion planning strategy [22]
to control the soft robotic arm with multi-segment.
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