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Abstract
We prove two new results about the inability of low-degree polynomials to uniformly approximate
constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight Ω̃(n1/2)
lower bound on the threshold degree of the SURJECTIVITY function on n variables. This matches
the best known threshold degree bound for any AC0 function, previously exhibited by a much more
complicated circuit of larger depth (Sherstov, FOCS 2015). Our result also extends to a 2Ω̃(n1/2)

lower bound on the sign-rank of an AC0 function, improving on the previous best bound of 2Ω(n2/5)

(Bun and Thaler, ICALP 2016).
Second, for any δ > 0, we exhibit a function f : {−1, 1}n → {−1, 1} that is computed by a circuit

of depth O(1/δ) and is hard to approximate by polynomials in the following sense: f cannot be
uniformly approximated to error ε = 1− 2−Ω(n1−δ), even by polynomials of degree n1−δ. Our recent
prior work (Bun and Thaler, FOCS 2017) proved a similar lower bound, but which held only for
error ε = 1/3.

Our result implies 2Ω(n1−δ) lower bounds on the complexity of AC0 under a variety of basic
measures such as discrepancy, margin complexity, and threshold weight. This nearly matches the
trivial upper bound of 2O(n) that holds for every function. The previous best lower bound on AC0

for these measures was 2Ω(n1/2) (Sherstov, FOCS 2015). Additional applications in learning theory,
communication complexity, and cryptography are described.
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1 Introduction

The threshold degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted deg±(f), is
the least degree of a real polynomial p that sign-represents f , i.e., p(x) · f(x) > 0 for all
x ∈ {−1, 1}n. A closely related notion is the ε-approximate degree of f , denoted d̃egε(f),
which is the least degree of a real polynomial p such that |p(x)−f(x)| ≤ ε for all x ∈ {−1, 1}n.
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55:2 The Large-Error Approximate Degree of AC0

The parameter setting ε = 1 is a degenerate case: d̃eg1(f) = 0 because the constant 0
function approximates any Boolean f to error ε = 1. However, as soon as ε is strictly less
than 1, ε-approximate degree is a highly non-trivial notion with a rich mathematical theory.
In particular, it is easily seen that

deg±(f) = lim
ε↗1

d̃egε(f).

In other words, threshold degree is equivalent to the notion of ε-approximate degree when ε
is permitted to be arbitrarily close to (but strictly less than) 1.1

In this paper, we are concerned with proving ε-approximate degree lower bounds when
either:

ε is arbitrarily close to 1, or
ε is exponentially close to 1 (i.e., ε = 1− 2−n1−δ for some constant δ > 0).

The former parameter regime captures threshold degree, while we refer to the latter as
large-error approximate degree. While the approximate and threshold degree of a function
f capture simple statements about its approximability by polynomials, these quantities
relate intimately to the complexity of computing f in concrete computational models.
Specifically, the query complexity models UPPdt and PPdt, and the communication models
UPPcc,PPcc, are all defined (cf. Section 2) as natural analogs of the Turing machine class
PP, which in turn captures probabilistic computation with arbitrarily small advantage
over random guessing. It is known that the threshold degree of f is equivalent to its
complexity UPPdt(f), while a fundamental matrix-analytic analog of threshold degree
known as sign-rank characterizes UPPcc. Similarly, large-error approximate degree
characterizes the query complexity measure PPdt, in the following sense: for any d > 0,
d̃eg1−2−d(f) ≥ Ω(d)⇐⇒ PPdt(f) ≥ Ω(d). Section 2 elaborates on these models and their
many applications in learning theory, circuit complexity, and cryptography.

Our Results in a Nutshell. We prove two results about the threshold degree and large-error
approximate degree of functions in AC0.2 First, we prove a tight Ω̃(n1/2) lower bound on
the threshold degree (i.e., UPPdt complexity) of a natural function called SURJECTIVITY,
which is computed by a depth three circuit with logarithmic bottom fan-in. This matches
the previous best threshold degree lower bound for any AC0 function, due to Sherstov [34].
Our analysis is much simpler than Sherstov’s, which takes up the bulk of a (70+)-page
manuscript [34]. An additional advantage of our analysis is that our lower bound on the
threshold degree of SURJECTIVITY “lifts” to give a lower bound for the communication
analog UPPcc as well. In particular, we obtain an Ω(n1/2) UPPcc lower bound for a
related AC0 function; this improves over the previous best UPPcc lower bound for AC0, of
Ω(n2/5) [12].

Second, we give nearly optimal bounds on the large-error approximate degree (and hence,
PPdt complexity) of AC0. For any constant δ > 0, we show that there is an AC0 function
with ε-approximate degree Ω(n1−δ), where ε = 1−2−Ω(n1−δ). This result lifts to an analogous
PPcc lower bound.

1 It is known that for any d > 0, there are functions of threshold degree d that cannot be approximated
by degree d polynomials to error better than 1 − 2−Ω̃(nd) [27], and this bound is tight [7]. Hence,
threshold degree is also equivalent to the notion of ε-approximate degree for some value of ε that is
doubly-exponentially close to 1.

2 AC0 is the non-uniform class of sequences of functions computed by polynomial size Boolean circuits of
constant depth.
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Table 1 Comparison of our new bounds for AC0 to prior work in roughly chronological order.
The circuit depth column lists the depth of the Boolean circuit used to exhibit the bound, δ denotes
an arbitrarily small positive constant, and k an arbitrary positive integer. All Boolean circuits are
polynomial size.

Reference PPdt PPcc UPPdt UPPcc Circuit
log(threshold weight) log(1/discrepancy) threshold degree log(sign-rank) Depth

[23] — — Ω(n1/3) — 2
[20] Ω(n1/3) — — — 3
[16] — Ω(logk(n)) — Ω(logk(n)) O(k)
[25] Ω(n1/3 logk n) — Ω(n1/3 logk(n)) — O(k)
[29] — Ω(n1/5) — — 3
[7,31] — Ω(n1/3) — — 3
[28] — — — Ω(n1/3) 3
[10] Ω(n2/5) Ω(n2/5) — — 3
[33] Ω(n1/2−δ) Ω(n1/2−δ) Ω(n1/2−δ) — O(1/δ)
[34] Ω(n3/7) — Ω(n3/7) — 3
[34] Ω(n1/2) Ω(n1/2) Ω(n1/2) — 4
[12] — — — Ω(n2/5) 3
[11] Ω(n1/2−δ) Ω(n1/2−δ) — — 3

This work Ω̃(n1/2) Ω̃(n1/2) Ω̃(n1/2) — 3
This work — — — Ω̃(n1/2) 7
This work Ω(n1−δ) Ω(n1−δ) — — O(1/δ)

To summarize our results succinctly:
We prove a Ω̃(n1/2) lower bound on the UPP complexity of SURJECTIVITY in the query
setting, and of a related AC0 function in the communication setting.
We prove a Ω(n1−δ) lower bound on the PP complexity of some AC0 circuit of depth
O(1/δ), in both the query and communication settings.

Table 1 compares our new lower bounds for AC0 to the long line of prior works with
similar goals.

Context and Prior Work. The study of both large-error approximate degree and threshold
degree has led to many breakthrough results in theoretical computer science, especially in
the algorithmic and complexity-theoretic study of constant depth circuits. For example,
threshold degree upper bounds are at the core of many of the fastest known PAC learning
algorithms. This includes the notorious case of polynomial size CNF formulas on n variables,
for which the fastest known algorithm [19] runs in time exp(Õ(n1/3)) owing to a Õ(n1/3)
upper bound on the threshold degree of any such formula. This upper bound is tight,
matching a classic Ω(n1/3) lower bound of Minsky and Papert [23] for the following read-once
CNF: ANDn1/3 ◦ORn2/3 (here, we use subscripts to clarify the number of inputs on which a
function is defined).

In complexity theory, breakthrough results of Sherstov [29,31] and Buhrman et al. [7] used
lower bounds on large-error approximate degree to show that there are AC0 functions with
polynomial PPcc complexity. One notable implication of these results is that Allender’s [1]
classic simulation of AC0 functions by depth-three majority circuits is optimal. (This
resolved an open problem of Krause and Pudlák [20].) A subsequent, related breakthrough of
Razborov and Sherstov [28] used Minsky and Papert’s lower bound on the threshold degree
of ANDn1/3 ◦ORn2/3 to prove the first polynomial UPPcc lower bound for a function in AC0,
answering an old open question of Babai et al. [2].

APPROX/RANDOM 2019



55:4 The Large-Error Approximate Degree of AC0

These breakthrough lower bounds raised the intriguing possibility that AC0 functions
could be maximally hard for the UPPcc and PPcc communication models, as well as for
related complexity measures. Nevertheless, the quantitative parameters achieved in these
works are far from actually showing that this is the case. Indeed, the following basic questions
about the complexity of AC0 remain open.

I Problem 1. Is there an AC0 function F : {−1, 1}n×n → {−1, 1} with UPPcc complexity
Ω(n)?

I Problem 2. Is there an AC0 function F : {−1, 1}n×n → {−1, 1} with PPcc complexity
Ω(n)?

An affirmative answer to either question would be tight: Every function F : {−1, 1}n ×
{−1, 1}n → {−1, 1} has UPPcc and PPcc complexity at most n. Obtaining an affirmative
answer to Open Problem 1 is harder than for Open Problem 2, since UPPcc(f) ≤ PPcc(f)
for all f .

Guided by these open problems, a sequence of works has established quantitatively
stronger and more general lower bounds for AC0 functions [9–13, 33, 34]. In addition to
making partial progress toward resolving these questions, the techniques developed in these
works have found fruitful applications in new domains. For example, Bouland et al. [6] built
on techniques from a number of aforementioned works [9,10,12,33] to resolve several old open
questions about the relativized power of statistical zero knowledge proofs and their variants.
As another example, our recent prior works [8, 13] built on the same line of work to resolve
or nearly resolve a number of longstanding open questions in quantum query complexity.
Finally, large-error and threshold degree lower bounds on AC0 functions have recently proved
instrumental in the development of cryptographic secret-sharing schemes with reconstruction
procedures in AC0 [4, 5, 14]. We thus believe that the new techniques developed in this work
will find further applications, perhaps in unexpected areas.

Prior to our work, the best known result toward a resolution of Open Problem 1 was a
Ω(n2/5) lower bound on UPPcc complexity of an AC0 function [12], while the best known
result toward Open Problem 2 was a Ω(n1/2) bound on the PPcc complexity of a very
complicated AC0 circuit [34].

1.1 Our Results In Detail
1.1.1 Resolving the Threshold Degree of SURJECTIVITY
Surjectivity and its History. Let R be a power of 2 and n = N logR. The function
SURJECTIVITYn (SURJR,N for short) is defined as follows. Given an input in {−1, 1}n,
SURJR,N interprets the input as a list of N numbers (s1, . . . , sN ) from a range [R] :=
{1, . . . , R}, and evaluates to −1 if and only if every element of the range [R] appears at least
once in the list.3 SURJR,N is computed by an AC0 circuit of depth three and logarithmic
bottom fan-in, since it is equivalent to the ANDR (over all range items r ∈ [R]) of the ORN
(over all inputs i ∈ [N ]) of “Is input si equal to r?”, where the quoted question is computed
by a conjunction of width logR over the input bits.

SURJR,N has been studied extensively in the contexts of quantum query complexity
and approximate degree. Beame and Machmouchi [3] showed that computing SURJR,N for
R = N/2 + 1 requires Ω̃(n) quantum queries, making it the only known AC0 function with
linear quantum query complexity. Meanwhile, the (1/3)-approximate degree of SURJR,N was

3 As is standard, we associate −1 with logical TRUE and +1 with logical FALSE throughout.
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recently shown to be Θ̃(R1/4 ·N1/2). The lower bound is from our prior work [8], while the
upper bound was shown by Sherstov [35], with a different proof given in [8]. In particular,
when R = N/2, d̃eg1/3(SURJR,N ) = Θ̃(N3/4). Our prior works [8,13] built directly on the
approximate degree lower bound for SURJR,N to give near-optimal lower bounds on the
(1/3)-approximate degree of AC0 (see Section 3.3 for details).

Our Result. In spite of the progress described above, the threshold degree SURJR,N re-
mained open. For R < N/2, an upper bound of Õ(min{R,N1/2}) follows from standard
techniques. The best known lower bound was Ω(min{R,N1/3}), obtained by a reduction to
Minsky and Papert’s threshold degree lower bound for ANDn1/3 ◦ORn2/3 . In this work, we
settle the threshold degree of SURJR,N , showing that the known upper bound is tight up to
logarithmic factors.

I Theorem 3. For R < N/2, the threshold degree of SURJR,N is Θ̃(min{R,N1/2}). In
particular, if R = N1/2, deg±(SURJR,N ) = Θ̃(N1/2).

In addition to resolving a natural question in its own right, Theorem 3 matches the
best prior threshold degree lower bound for AC0, previously proved in [34] for a much more
complicated function computed by a circuit of strictly greater depth. Furthermore, with
some extra effort, our lower bound for SURJR,N extends to give a Ω̃(n1/2) lower bound on
the UPPcc complexity of a related AC0 function, yielding progress on Open Question 1 (cf.
Section 1). In contrast, Sherstov’s Ω(n1/2) threshold degree lower bound for AC0 [34] is not
known to extend to UPPcc complexity. As stated in Section 1, the best previous UPPcc

lower bound for an AC0 function was Ω(n2/5).

I Corollary 4. There is an AC0 function F : {−1, 1}n×n → {−1, 1} such that UPPcc(F ) ≥
Ω̃(n1/2).

1.1.2 AC0 Has Nearly Maximal PPcc Complexity
In our second result, for any constant δ > 0, we exhibit an AC0 function f : {−1, 1}n →
{−1, 1} with d̃egε(f) = Ω(n1−δ) for some ε = 1− 2−Ω(n1−δ). This is a major strengthening
of our prior works [8, 13], which proved a similar result for ε = 1/3. By combining this
large-error approximate degree lower bound with a “query-to-communication lifting theorem”
for PP [31], we obtain a Ω(n1−δ) bound on the PPcc complexity of an AC0 function, nearly
resolving Open Question 2 from the previous section.

I Theorem 5. For any constant δ > 0, there is an AC0 function F : {−1, 1}n×n → {−1, 1}
with PPcc(F ) = Ω(n1−δ).

The best previous lower bound for the PPcc complexity of an AC0 function was Ω(n1/2) [34].

2 Algorithmic and Complexity-Theoretic Applications

To introduce the applications of our results, we begin by defining the query complexity
quantities UPPdt and PPdt and the communication complexity quantities UPPcc and PPcc.

Query Models. In randomized query complexity, an algorithm aims to evaluate a known
Boolean function f on an unknown input x ∈ {−1, 1}n by reading as few bits of x as possible.
We say that the query cost of a randomized algorithm is the maximum number of bits it
queries for any input x.

APPROX/RANDOM 2019



55:6 The Large-Error Approximate Degree of AC0

UPPdt considers “unbounded error” randomized algorithms, which means that on any
input x, the algorithm outputs f(x) with probability strictly greater than 1/2. UPPdt(f)
is the minimum query cost of any unbounded error algorithm for f .
PPdt(f) captures “large” (rather than unbounded) error algorithms. If a randomized
query algorithm outputs f(x) with probability 1/2 + β for all x, then the PP-cost of the
algorithm is the sum of the query cost and log(1/β). PPdt(x) is the minimum PP-cost
of any randomized query algorithm for f .

Communication Models. UPPcc and PPcc consider the standard two-party setup where
Alice holds an input x and Bob holds an input y, and they run a private-coin randomized
communication protocol to compute a function f(x, y), while minimizing the number of bits
they exchange. In direct analogy to the query complexity measures above, we say that the
communication cost of a randomized protocol is the maximum number of bits Alice and Bob
exchange on any input (x, y).

UPPcc(f) [26] is the minimum communication cost of any randomized protocol that
outputs f(x, y) with probability strictly greater than 1/2 on all inputs (x, y).
PPcc(f) [2] is the minimum PP-cost of a protocol for f , where the PP-cost of a protocol
that outputs f(x, y) with probability 1/2+β for all (x, y) is the sum of the communication
cost and log(1/β).

We now give an overview of the applications of Theorem 5 and Corollary 4.

2.1 Applications of Theorem 5
PPcc is known to be equivalent to two measures of central importance in learning theory
and communication complexity, namely margin complexity [22] and discrepancy [18]. Hence,
Theorem 5 implies that AC0 has nearly maximal complexity under both measures. Below,
we highlight four additional applications.

Communication Complexity. The PPcc communication model can efficiently sim-
ulate almost every two-party communication model, including P (i.e., deterministic
communication), BPP (randomized communication), BQP (quantum), and PNP. The
only well-studied exceptions are UPPcc, and communication analogs of the polynomial
hierarchy (the latter of which we do not know how to prove lower bounds against). Hence,
in showing that AC0 has essentially maximal PPcc complexity, we subsume or nearly
subsume all previous results on the communication complexity of AC0.
Cryptography. Bogdanov et al. [4] observed that for any f : {−1, 1}n → {−1, 1} and
d > 0, if one shows that d̃egε(f) ≥ d, then one obtains a scheme for sharing a secret bit
b ∈ {−1, 1} among n parties such that any subset of d shares provides no reconstruction
advantage, yet applying f to all n shares yields b with probability at least 1/2 + ε/2.
They combined this with known approximate degree lower bounds for AC0 functions to
get secret sharing schemes with reconstruction procedures in AC0. Via this connection,
an immediate corollary of Theorem 5 is a nearly optimal secret sharing scheme in AC0:
for any desired constant δ > 0, any subset of n1−δ shares provides no reconstruction
advantage, yet all n shares can be successfully reconstructed (by applying an AC0 function)
with probability 1− 2−n1−δ .
Learning Theory. Valiant [38] introduced the evolvability model in an effort to quantify
how (and which) mechanisms can evolve in realistic population sizes within realistic
time periods. Feldman [15] showed that the “weak evolvability” of a class of functions
F = {φ1, . . . , φ|F|} is characterized by the PPcc complexity of the function F (x, y) =
φx(y). Hence, a consequence of Theorem 5 is that there are AC0 functions that are nearly
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maximally hard to evolve (i.e., for any constant δ > 0, there are AC0 functions that
require either 2n1−δ generations, or populations of size 2n1−δ to evolve, even if one only
wants to evolve a mechanism that has advantage just 2−n1−δ over random guessing).
We also obtain a nearly optimal 2n1−δ lower bound on the threshold weight of an AC0

function. Threshold weight is another central quantity underlying many algorithmic
results in learning theory. Our results rule out the possibility that algorithms based on
threshold weight bounds can PAC learn AC0 in time significantly faster than 2n.
Circuit Complexity. If PPcc(f) ≥ d, then f is not computable by Majority-of-
Threshold circuits of size 2Ω(d) [24]. Hence, by showing that AC0 has nearly maximal
PPcc complexity, we show that there are AC0 functions that are not computed by
Majority-of-Threshold circuits of size 2n1−δ . That is, AC0 has essentially no non-trivial
simulation by Majority-of-Threshold circuits (in contrast, AC0 can be efficiently simulated
by depth-three Majority circuits [1]).

2.2 Applications of Corollary 4
As indicated in Section 1, UPPcc(F ) is known to be characterized by (the logarithm of)
of the sign-rank of the matrix [F (x, y)]x,y∈{−1,1}n×n [26].4 Hence, Corollary 4 implies an
exp(Ω̃(n1/2)) lower bound on the sign-rank of AC0 function. Below, we highlight two addi-
tional applications of Corollary 4, based on the following connections between communication
complexity, circuit complexity, and learning theory.

In communication complexity, UPPcc is the most powerful two-party model against which
we know how to prove lower bounds. In circuit complexity, if UPPcc(f) ≥ d, then f cannot
be computed by Threshold-of-Majority circuits of size 2Ω(d) [17]. (Threshold-of-Majority
circuits represent the most powerful class of threshold circuits against which we can prove
superpolynomial lower bounds.) In learning theory, it is commonly assumed that data
can be classified by a halfspace in many dimensions; the UPPcc-complexity of a concept
class precisely captures how many dimensions are needed. To connect this to a previously
mentioned example, Klivans and Servedio [19] observed that an upper bound of d on the
UPPcc complexity of a concept class C yields a PAC learning for C running in time 2O(d).
They used this result to give a 2Õ(n1/3)-time algorithm for PAC-learning CNFs. This remains
the state-of-the-art algorithm for this fundamental problem. Accordingly, Corollary 4 has
the following implications.

Circuit Complexity. There are AC0 functions that are not computable by Threshold-
of-Majority Circuits of size 2Ω̃(n1/2).
Learning Theory. UPPcc-based learning algorithms cannot learn AC0 in time better
than 2Ω̃(n1/2).

3 Techniques

3.1 The SURJECTIVITY Lower Bound
For a function fn, let f≤N denote the partial function obtained by restricting f to the
domain of inputs of Hamming weight at most N . The ε-approximate degree of f≤N , denoted
d̃egε(f≤N ), is the least degree of a real polynomial p such that

|p(x)− f(x)| ≤ ε for all inputs x of Hamming weight at most N. (1)

4 The sign-rank of a matrix M with entries in {±1} is the least rank of a real matrix M ′ that agrees in
sign with M entry-wise.

APPROX/RANDOM 2019



55:8 The Large-Error Approximate Degree of AC0

Note that Property (1) allows p to behave arbitrarily on inputs x of Hamming weight more
than N . Similarly, the threshold degree of f≤N is the least degree of a real polynomial p
such that

p(x) · f(x) > 0 for all inputs x of Hamming weight at most N.

Our prior work [13] showed the ε-approximate (respectively, threshold) degree of SURJR,N is
equivalent to the ε-approximate (respectively, threshold) degree of (ANDR ◦ORN )≤N . Hence,
the main technical result underpinning our threshold degree lower bound for SURJ is the
following theorem about the threshold degree of (ANDR ◦ ORN )≤N (we have made no effort
to optimize the logarithmic factors).

I Theorem 6. Let R = N1/2. Then deg±
(

(ANDR ◦ ORN )≤N
)

= Ω(N1/2/ log3/2N).

Discussion. Theorem 6 is a substantial strengthening of the classic result of Minsky and
Papert [23] mentioned above, which established that the total function MPN1/2,N :=
ANDN1/2 ◦ ORN on n = N3/2 inputs has threshold degree Ω(N1/2). Theorem 6 estab-
lishes that Minsky and Papert’s lower bound holds even under the promise that the input
has Hamming weight at most N = n2/3. That is, any polynomial that sign-represents
ANDn1/3 ◦ORn2/3 on inputs of Hamming weight at most n2/3 has degree Ω̃(n1/3), even when
p is allowed to behave arbitrarily on inputs of Hamming weight larger than n2/3.

Proof overview for Theorem 6 and comparison to prior work. Like much recent work on
approximate and threshold degree lower bounds, our proof makes use of dual polynomials. A
dual polynomial is a dual solution to a certain linear program capturing the approximate
or threshold degree of any function, and acts as a certificate of the high approximate or
threshold degree of the function.

A dual polynomial that witnesses the fact that deg±(fM ) ≥ d is a function ψ : {−1, 1}M →
{−1, 1} satisfying three properties:

ψ(x) · f(x) ≥ 0 for all x ∈ {−1, 1}M . If ψ satisfies this condition, we say ψ agrees in sign
with f .∑

x∈{−1,1}M |ψ(x)| = 1. If ψ satisfies this condition, it is said to have `1-norm equal to 1.
For all polynomials p : {−1, 1}M → R of degree at most d,

∑
x∈{−1,1}M p(x) · ψ(x) = 0.

If ψ satisfies this condition, it is said to have pure high degree at least d.
A dual witness for the fact that d̃egε(fM ) ≥ d is similar, except that the first condition is
replaced with:∑

x∈{−1,1}M ψ(x) · f(x) > ε. If ψ satisfies this condition, it is said to be ε-correlated with
f . If ψ(x) · f(x) < 0, we say that ψ makes an error at x.

Sherstov [34] reproved Minsky and Papert’s result by constructing an explicit dual witness
for MPN1/2,N , via a two-step process. First, Sherstov started with a dual witness ψbase for
the fact that

d̃egε(MPN1/2,N ) = Ω(N1/2), for ε = 1− 2−N
1/2
.

The function ψbase was introduced in our prior work [10], where it was constructed by
combining a dual witness for ANDN1/2 with a dual witness for ORN via a technique called
dual block composition [21,32,37].
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Unfortunately, ψbase falls short of witnessing Minsky and Papert’s threshold degree
lower bound because it makes errors on some inputs. In the second step of Sherstov’s
construction [34], he adds in a correction term that zeros out the errors of ψbase, without
disturbing the sign of ψbase on any other inputs, and without lowering its pure high degree.

Theorem 6 asserts that MP≤N
N1/2,N

satisfies the same threshold degree lower bound as
MPN1/2,N itself. To prove Theorem 6, we need to construct a dual witness ψ that not only
reproves Minsky and Papert’s classic lower bound for MPN1/2,N , but also satisfies the extra
condition that:

ψ(x) = 0 for all inputs x of Hamming weight more than N. (2)

To accomplish this, we apply a novel strategy that can be thought of as a three-step process.
First, like Sherstov, we start with ψbase. Second, we modify ψbase to obtain a dual witness
ψ′base that places significant mass on all inputs of Hamming weight at most d, for some
d = Ω̃(N1/2) (details of the construction of ψ′base are described two paragraphs hence). More
specifically, we ensure that ψ′base satisfies:

|ψ′base(x)| � n−d for all inputs x of Hamming weight at most d. (3)

We refer to this property by saying that ψ′base is “smooth” or “large” on all inputs of Hamming
weight at most d. Note that, in modifying ψbase to obtain ψ′base, we do not correct the errors
that ψbase makes, nor do we ensure that ψ′base is supported on inputs of Hamming weight at
most N .

Third, we add in a correction term, very different than Sherstov’s correction term, that not
only zeros out the errors of ψ′base, but also zeros out any mass it places on inputs of Hamming
weight more than N . While the general technique we use to construct this correction term
appeared in our prior works [8, 13], the novelty in our construction and analysis is two-fold.
First, the technique was used in our prior work only to zero out mass placed on inputs of
Hamming weight more than N (i.e., to ensure that Equation (2) is satisfied), not to correct
errors. Second, and more importantly, we crucially exploit the largeness of ψ′base on inputs of
Hamming weight at most d to ensure that the correction term does not disturb the sign of
ψ′base on any inputs other than those on which it is deliberately being zeroed out. This is
what enables us to obtain a threshold degree lower bound, whereas our prior works [8,13]
were only able to obtain ε-approximate degree lower bounds for ε bounded away from 1.

Our “smoothing followed by correction” approach appears to be significantly more
generic than the correction technique of [34]. For example, prior work of Bouland et
al. [6] proved an Ω(n1/4) lower bound on the threshold degree of a certain function denoted
GAPMAJn1/4 ◦PTPn3/4 , and used this result to give an oracle separating the oracle complexity
classes SZK and UPP, thereby answering an open question of Watrous from 2002. Our
techniques can be used to give a much simpler proof of this result, as well as several others
appearing in the literature (for brevity, we omit the details of these simpler proofs of prior
results). We are confident that our technique will find additional applications in the future.

Details of the smoothing step. As stated above, the dual witness ψbase from our prior
work does not satisfy the property we need (cf. Equation (3)) of being “large” on all inputs
of Hamming weight at most d = Ω̃(N1/2).

Fortunately, we observe that although ψbase is not large on all inputs of Hamming weight
at most d, it is large on one very special input of low Hamming weight, namely the ALL-FALSE
input. That is, ψbase(1) ≥ 2−d. So we just need a way to “bootstrap” this largeness property
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on 1 to a largeness property on all inputs of Hamming weight at most d. Put another way, we
need to be able to treat other inputs of Hamming weight at most d as if they actually have
Hamming weight 0. But MPN1/2,N := ANDN1/2 ◦ORN has a property that enables precisely
this: we can fix the inputs to any constant fraction c of the OR gates to an arbitrary value
in OR−1(−1), and the remaining function of the unrestricted inputs is AND(1−c)·R ◦ ORN .
This is “almost” the same function as ANDR ◦ORN ; we have merely slightly reduced the top
fan-in, which does not substantially lower the threshold degree of the resulting function.

We exploit the above observation to achieve the following: for each input x of Hamming
weight at most d, we build a dual witness νx targeted at x (i.e., that essentially treats x as
if it is the ALL-FALSE input). We do this as follows. Let T be the set of all OR gates that
are fed one or more −1s by x, and let S ⊆ [N1/2 ·N ] be the union of the inputs to each of
the OR gates in T . Let ψbase be the dual witness for ANDN1/2−|T | ◦ ORN given in our prior
work [10]. We let

νx(y) =
{
ψbase(yS̄) if yS = xS

0 otherwise,

where yS̄ denotes the set of all the coordinates of y other than those in S.
The dual witness ψ′base is then defined to be the average of the νx’s, over all inputs x

of Hamming weight at most d. This averaged dual witness ψ′base has all of the same useful
properties as ψbase, and additionally satisfies the key requirement captured by Equation (3).

3.2 Extension to UPPcc: Proof of Corollary 4
Building on the celebrated framework of Forster [16], Razborov and Sherstov [28] developed
techniques to translate threshold degree lower bounds into sign-rank lower bounds. Specifically,
they showed that, in order for a threshold degree lower bound of the form deg±(fn) ≥ d to
translate into a UPPcc lower bound for a related function F , it suffices for the threshold
degree lower bound for fn to be exhibited by a dual witness φ satisfying the following
smoothness condition:

|φ(x)| ≥ 2−O(d) · 2−n for all but a 2−Ω(d) fraction of inputs x ∈ {−1, 1}n. (4)

Note that this is a different smoothness condition than the one satisfied by the dual witness
ψ′base discussed above for MPN1/2,N (cf. Equation (3)): on inputs x of Hamming weight
at most d, |ψ′base(x)| is always at least n−d � 2−d · 2−n, whereas on inputs x of Hamming
weight more than d, |ψ′base(x)| may be 0. In words, |ψ′base(x)| is very large on inputs x of
Hamming weight at most d, but may not be large at all on inputs of larger Hamming weight.
In contrast, Equation (4) requires a dual witness to be “somewhat large” (within a 2−O(d)

factor of uniform) on nearly all inputs.
In summary, our construction of a dual witness for MP≤N

N1/2,N
that is sketched in the

previous subsection is not sufficient to apply Razborov and Sherstov’s framework to SURJR,N ,
for two reasons. First, the dual witness we construct for MP≤N

N1/2,N
is not smooth in the

sense of Equation (4), as it is only “large” on inputs of Hamming weight at most d. Second,
to apply Razborov and Sherstov’s framework to SURJR,N , we actually need to give a smooth
dual witness for SURJR,N itself, not for MP≤N

N1/2,N
. Note that SURJR,N is defined over the

domain {−1, 1}n where n = N logR, while MP≤N
N1/2,N

is defined over subset of {−1, 1}NR
consisting of inputs of Hamming weight at most N .

We address both of the above issues as follows. First, we show how to turn our dual witness
µ for MP≤N

N1/2,N
into a dual witness σ̂ for the fact that deg± (SURJR,N ) ≥ d, such that σ̂ inher-

its the “largeness” property of µ on inputs of Hamming weight at most d. Second, we transform
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σ̂ into a dual witness τ for the fact that deg±
(
SURJR,N ◦ ANDlog2 n ◦ PARITYlog3 n

)
≥ d,

such that τ satisfies the smoothness condition given in Equation (4). We conclude that
SURJR,N ◦ ANDlog2 n ◦ PARITYlog3 n can be transformed into a related function F (on Õ(n)
inputs, and which is also in AC0) that has sign-rank exp(Ω̃(n1/2)).

3.3 The PPcc Bound: Proof of Theorem 5
As mentioned in Section 1.1.2, the core of Theorem 5 is to exhibit an AC0 function f such
that d̃egε(f) = Ω(n1−δ) for some ε = 1− 2−Ω(n1−δ). To accomplish this, we prove a hardness
amplification theorem that should be understood in the context of a weaker result from our
prior work [13].

As stated in Section 3.1, for ε = 1/3, our prior work [13] showed how to take any Boolean
function fn in AC0 with ε-approximate degree d and transform it into a related function g
on roughly the same number of variables, such that g is still in AC0, and g has significantly
higher ε′-approximate degree for some ε′ ≈ 1/3. This was done in a two-step process. First,
we showed that in order to construct a “harder” function g, it is sufficient to identify an AC0

function G defined on poly(n) inputs such that for some ` = n ·polylog(n), d̃egε′(G≤`)� d.5
Second, we exhibited such a G. In our prior works [8, 13], for general functions fn, the
function G was fn ◦ ANDr ◦ ORm′ , where r = 10 logn, and m′ = Θ(n/d).

We would like to prove a similar result, but we require that G have larger ε′-approximate
degree than fn, where ε′ is exponentially closer to 1 than is ε itself. Unfortunately, the
definition of G from our prior works [8, 13] does not necessarily result in such a function.
For example, if fn = ORn (or any polylogarithmic DNF for that matter), then the function
G = fn ◦ANDr ◦ORm′ is also a DNF of polylogarithmic width, and it is not hard to see that
all such DNFs have ε-approximate degree at most polylog(n) for some ε = 1− 1/npolylog(n).

To address this situation, we change the definition of G. Rather than defining G :=
fn ◦ ANDr ◦ ORm′ , we define G = GAPMAJt ◦ fz ◦ ANDr ◦ ORm for appropriately chosen
settings of the parameters t, z, r, and m. Here, GAPMAJt denotes any function evaluating
to 1 on inputs of Hamming weight at most t/3, −1 on inputs of Hamming weight at least
2t/3, and taking any value in {−1, 1} on all other inputs (such functions are also called
approximate majorities, and it is known that there are approximate majorities computable in
AC0). GAPMAJ has also played an important role in related prior work [6, 13].

In order to show that d̃egε′(G≤`) � d̃egε(fn) for an ε′ that is exponentially closer
to 1 than is ε, we require a more delicate construction of a dual witness than our prior
works [8,13]. After all, our prior works only required a dual witness for G≤` with correlation
at least 1/3 with G`, while we require a dual witness achieving correlation with G≤` that is
exponentially close to 1. Roughly speaking, whereas our prior works [8, 13] were able to get
away with exclusively using the simple and clean technique called dual block composition
for constructing dual witnesses, we use a closely related but more involved construction
introduced by Sherstov [30]. (Sherstov introduced his construction to prove that approximate
degree satisfies a type of direct-sum theorem.)

More specifically, suppose that for some positive integer k, fz has ε(z)-approximate
degree at least d(z) = zk/(k+1), where ε(z) = 1− 2−zk/(k+1) . In our definition of G, we set
t = n1/(k+2), z = n(k+1)/(k+2), r = 10 logn, and m = n2/(k+2), and we build a dual witness
for G≤` via a multi-step construction.

5 This step was also used in the analysis of SURJR,N outlined in Section 3.2 above, where G was the
function ANDR ◦ ORN .
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In Step 1, we take dual witnesses ψfz , ψANDr , and ψORm for fz, ANDr, and ORm respec-
tively, and we combine them using the technique of Sherstov [30], to give a dual witness
γ for fz ◦ ANDr ◦ ORm satisfying the following properties: γ has pure high degree at least
D(n) = n(k+1)/(k+2) = d(n)(k+1)/k � d(n), and γ’s correlation with with fz ◦ANDr ◦ORm is
ε′′ ≈ ε(z). That is, γ witnesses the fact that the ε′′-approximate degree of fz ◦ ANDr ◦ ORm
is much larger than the ε(n)-approximate degree of fn itself.

This step of the construction is in contrast to our prior work, which constructed a dual
witness for fn ◦ ANDr ◦ ORm′ via direct dual block composition of ψfn , ψANDr , and ψORm .
Direct dual block composition does not suffice for us because it would yield a dual witness
with significantly worse correlation with fz ◦ ANDr ◦ ORm than ε(z).

While achieving correlation ε′′ ≈ ε(z) is an improvement over what would obtain from
direct dual block composition, it is still significantly farther from 1 than is ε(n), i.e.,
1 − ε′′ � 1 − ε(n). And we ultimately need to construct a dual witness for G≤` that is
significantly closer to 1 than is ε(n). To address this issue, in Step 2 of our construction, we
use dual block composition to turn γ into a dual witness η for G = GAPMAJt◦fz◦ANDr◦ORm
satisfying the following properties: η has the same pure high degree as γ, and moreover η
has correlation at least ε′ = 1− 2−Ω(n(k+1)/(k+2)) with G.

However, after Step 2, we are still not done, because η places some mass on inputs of
Hamming weight as large as t · z · r ·m � `. Hence η is only a dual witness to the high
ε′-approximate degree of G, not the high ε′-approximate degree of G≤` (recall that any dual
witness witness for G≤`, must evaluate to 0 on all inputs of Hamming weight larger than `,
cf. Equation (2)). Nonetheless, as in our prior work [8,13], we are able to argue that η places
very little mass on inputs of Hamming weight more than `, and thereby invoke techniques
from our prior work [8, 13] to zero out this mass. The reason this final step of the argument
is not immediate from our prior work [8,13] is as follows. Although prior work has developed
a precise understanding of how much mass is placed on inputs of Hamming weight more
than ` by dual witnesses constructed via basic dual block composition, the dual witness γ for
fz ◦ ANDr ◦ ORm that we constructed in Step 1 was not built by invoking pure dual block
composition. Our key observation is that Sherstov’s technique that we invoked to construct γ
is “similar enough” to vanilla dual block composition that the precise understanding of dual
block composition developed in our prior work can be brought to bear on our dual witness η.

In summary, there are two main technical contributions in our proof of Theorem 5. The
first is the identification of a hardness amplification construction for ε-approximate degree
that not only amplifies the degree against which the lower bound holds, but also the error
parameter ε. The second is constructing a dual polynomial to witness the claimed lower
bound, using techniques more involved and delicate than the vanilla dual block composition
technique that sufficed in our prior works [8, 13].

4 Subsequent Work and Discussion

Subsequent to our work, Sherstov and Wu [36] have made major progress toward resolving
Open Problem 1 by showing nearly optimal threshold degree and sign-rank lower bounds
for AC0. Specifically, for every k ≥ 1, they exhibit a family of depth-k AC0 circuits with
threshold degree Ω̃(n(k−1)/(k+1)). This generalizes Minsky and Papert’s lower bound of
Ω(n1/3) on the threshold degree of DNF, as well as our lower bound of Ω̃(n1/2) for the depth-
3 SURJECTIVITY function. Sherstov and Wu, moreover, show that for any positive constant
δ > 0 there is a family of AC0 circuits with depth O(1/δ) and sign-rank exp

(
Ω̃(n1−δ)

)
. This

gives an almost optimal improvement to our sign-rank lower bound of exp
(
Ω̃(n1/2)

)
on an

AC0 function.



M. Bun and J. Thaler 55:13

As in our proof of Theorem 5, as well as our prior work [13], Sherstov and Wu obtain their
threshold degree lower bound for AC0 by recursively applying a new hardness amplification
theorem. Their hardness amplification theorem shows how to convert a function fz into a
new function gn, computable by circuits with slightly higher depth and roughly the same size,
but with polynomially larger threshold degree. Again as in the proof of Theorem 5, in order
to obtain such a g, it suffices to construct a function G with deg±(G≤n)� deg±(f). Starting
from a function fz with threshold degree z(k−1)/(k+1), the function G that they identify as
sufficient for this purpose is G = fz ◦MPr,r2 , where z = n(k+1)/(k+3) and r = n2/(k+3). When
fz is a trivial function, this recovers our lower bound of Ω̃(n1/2) for SURJECTIVITY. Hence,
their construction in full can be viewed as a generalization of our Theorem 6 that is amenable
to recursive application. This requires several technical new ideas in the construction of
the dual witness. However, we remain optimistic that the simplicity of our analysis for
SURJECTIVITY will nonetheless lead to future applications of our techniques.

Sherstov and Wu’s sign-rank lower bound follows from a similar high-level (though more
technically demanding) strategy, where they show that smooth threshold degree also obeys
such a hardness amplification theorem.

While these new results resolve the most glaring question raised in the initial version of
this work, a number of interesting directions remain for further study. A common feature of
our large-error approximate degree lower bound and Sherstov and Wu’s threshold degree
and sign-rank lower bounds for AC0 is that, in order to obtain lower bounds of the form
Ω(n1−δ), we must consider functions computed by circuits of depth Θ(1/δ). This contrasts
with the situation for bounded error approximate degree [13], where a lower bound of
Ω(n1−δ) can be obtained at depth only O(log(1/δ)). Can one show that there are AC0

functions f of depth O(log(1/δ)) with d̃egε(f) = Ω(n1−δ) for ε = 1 − 2−Ω(n1−δ) or with
deg±(f) = Ω(n1−δ)? There is a common underlying reason why our construction and
Sherstov and Wu’s construction both require circuits of depth Θ(1/δ) and not Θ(log(1/δ)):
a component of the hardness amplifier in both constructions (in our case, GAPMAJn1/(k+1) ,
and in Sherstov and Wu’s case, the top gate of MPr,r2) is used to amplify error but does not
amplify degree. In contrast, in the construction of [13] for lower bounding bounded-error
approximate degree, up to a logarithmic factor, all of the hardness amplifier is used to
amplify degree.

We would also like to highlight the question of proving sublinear upper bounds on the
threshold degree of AC0. Given the surprising O(R1/4 · N1/2) upper bound on the (1/3)-
approximate degree of SURJR,N from recent works [8,35], we have begun to seriously entertain
the possibility that for every function f computable by AC0 of depth k, there is some constant
δ(k) > 0 such that the threshold degree (and possibly even (1/3)-approximate degree) of f
is O(n1−δ). Unfortunately, we cannot currently even show that this is true for depth three
circuits of quadratic size. Any progress in this direction would be very interesting, and we
believe that such progress would likely lead to new circuit lower bounds.
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