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Abstract—In this paper, we propose a new framework to
estimate the occupancy dynamics of the shoppers over a whole
retail store, based on the received power measurements of
wireless links that are installed in only a small number of
aisles, and without relying on people to carry any device. More
specifically, we utilize the received power measurements collected
by a small number of wireless links installed in only a few aisles
of a retail store and show that we can estimate the rate of
arrival of people in all the aisles of the retail store. We first
show how a pair of wireless links in an aisle can estimate the
rate of arrival of people into that aisle for the general case
where people can have a bi-directional flow. We then propose
a new framework to estimate the rate of arrival of people
into all the aisles of the retail store, using the received power
measurements of a number of wireless links that are installed
in only a few aisles. Our proposed approach utilizes the sparsity
in the spatial and temporal gradient of the occupancy dynamics
and poses an optimization problem to estimate the arrival rates
over the whole store based only on a very small number of
wireless measurements. We thoroughly validate our framework
with several experiments in three different retail stores - Kmart
and two anonymous retail stores (Store-2 and Store-3), using the
RSSI measurements of Bluetooth Low Energy (BLE) Chips. Our
results confirm that our framework can accurately estimate the
rate of arrival of people into different aisles of a retail store with
minimal wireless sensing. More specifically, we show that our
approach can estimate the rate of arrival of people in different
aisles of a store, with an average root mean square of 0.03
people/minute, when averaged over all the aisles and all the time,
and while reducing the number of required wireless links by 57%.

I. INTRODUCTION

In recent years, there has been an increased interest in

estimating the number of people a given area. Occupancy

estimation has several potential applications. For instance, in

places like retail stores, popular aisles in the store can be

identified which can help the store plan the services better [1].

In smart buildings, heating and cooling can be automatically

adjusted based on the occupancy level, which can help improve

the energy efficiency [2]. In smart cities, occupancy estimation

can help in planning the traffic [3].

In the literature, several methods have been proposed to

estimate the occupancy in an area. They can be classified into

four different categories as follows:

1) Vision-based sensing: These methods employ cameras

and process the video to estimate the occupancy in a given
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Fig. 1: A large retail store with several aisles. Our objective is to estimate
the rate of arrival of people into all the aisles throughout the store, based
on sensing with wireless links that are only installed in a few aisles. Image
courtesy: Thebricspost.

area [4]–[7]. However, in places like retail stores, vision-based

methods pose serious privacy concerns. For instance, a recent

survey on retail shoppers revealed that 75% of the people who

understood the capabilities of vision-based tracking technolo-

gies found it intrusive to track their behavior using cameras

[8]. Furthermore, employing such tracking techniques could

lead to shoppers not visiting the corresponding stores [9].

2) Environmental sensing: These methods measure the

environmental parameters, such as the concentration of carbon

dioxide and humidity in the environment to estimate the

total number of people in the area [10]–[12]. These methods

typically require specialized hardware to be installed in an area

to estimate the occupancy.

3) Device-based (active) wireless sensing: These methods

estimate the occupancy in an area based on the wireless signals

emitted by the devices carried by the people, such as the

mobile phone [10], [13]–[15]. However, these methods may

not be practical in places like retail stores and pose privacy

concerns. For instance, Nordstrom, a clothing company which

implemented an active WiFi-based in-store tracking technol-

ogy to analyze the behavior of their customers, withdrew it

due to privacy concerns of the shoppers [16]. Furthermore,

the accuracy of such methods is very limited as a device can

only be localized to the coverage area of the router to which

it is connected in the store.

4) Device-free (passive) wireless sensing: These methods

depend on the interaction of wireless signals with the people
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in the area of interest to estimate the total number of people

in the area [17]–[23]. Therefore, these methods do not require

the people to carry any device and thus preserve the privacy of

people in the area. Furthermore, as many places, such as retail

stores and museums, already have wireless devices (e.g., WiFi

access points) in the area, they do not require an installation

of specialized hardware. Therefore, in this paper, we focus
on device-free wireless sensing for estimating occupancy
in retail stores.

All of the aforementioned passive methods on occupancy

sensing focus on estimating the number of people in the

area where the sensors are present. In [24], walking speed

of occupants in two adjacent areas are estimated based on

sensing in one area. However, only one arrival rate (or fixed

number of people) is considered and assumed known.

In this paper, we are interested in estimating occupancy

dynamics over a large area that consists of several sub-areas

(e.g., a retail store), based on wireless transceivers that are

installed in only a few areas and without relying on people

to carry a device, i.e., passively. We are further interested in

the general case where people can have different occupancy

dynamics in different sub-areas. By estimating occupancy

dynamics, we mean estimating the rate of arrival of people

(the number of people per unit time) into different aisles. As

the rate of arrival will be time-varying, we are thus interested

in estimating it as a function of time. The existing work,

however, is either not generalizable to this setting or would

require a large number of wireless sensors all over the store.

For instance, in a store that has hundreds of aisles, we would

need to employ sensors in all the aisles in order to estimate

the arrival rate of people in all the aisles.

In this paper, we propose a new method that exploits

the spatial and temporal dynamics of occupancy in order to

minimize the required number of sensors. More specifically,

consider a scenario of a large retail store, such as a store shown

in Fig. 1, with several aisles. In this paper, we develop a
new framework to estimate the rate of arrival of people
into all the aisles throughout the retail store by utilizing
the received power measurements of wireless transceivers
in only a few aisles of the store.1 Thus, our framework

tremendously reduces the number of required measurements,

the cost associated with the hardware, and the complexity of

the sensor network. To the best of our knowledge, there is no

existing work (based on any kind of sensors) that can estimate

the occupancy or rate of arrival in several areas, by making

measurements in only a few areas. We next summarize our

main contributions:

• We mathematically characterize the probability of crossing a

link, for the case where people can have bi-directional flows

(i.e., a person can change his/her direction at any time), and

show that the rate of arrival of people into an aisle can

be estimated using the received power measurements of a

1Note that the total rate of arrival into an aisle will become the same as
the total rate of departure as we shall see in the next section. Thus, we only
use the term “rate of arrival” in this paper for brevity.

pair of wireless links located at each end of the aisle. The

main difference of this part with the existing work [24] is

considering bi-directional flows, which would require a new

characterization.

• We propose a new framework to estimate the rate of arrival

of people into different aisles throughout a retail store by

using the received power measurements of wireless links

in only a few aisles. More specifically, we exploit the

sparsity in the spatial and temporal changes of the rate of

arrival and propose an optimization framework to estimate

the rate of arrival throughout the store. To the best of our

knowledge, no existing work can achieve this. This is the

main theoretical contribution of the paper.

• We implement a sensor network based on Texas Instrument

CC2650 Bluetooth low energy (BLE) chips to collect RSSI

measurements in a large area such as a retail store.

• We validate our framework in three different retail stores -

Kmart and two other anonymous stores (Store-2 and Store-

3) and show that our framework can accurately estimate the

rate of arrival of people throughout the store with minimal

sensing and in a device-free manner.

The rest of the paper is organized as follows. In Section

II, we first mathematically characterize the probability of

crossing a link and show that the rate of arrival of people, for

the general case with a bi-directional flow, can be estimated

using the probability of crossing the link. We then propose

a framework, exploiting the spatial and temporal sparsity in

the rate of arrival gradient, and formulate an optimization

problem to estimate the rate of arrival of people throughout

the store using measurements in only a few aisles. In Section

III-A, we then propose a sensor network setup based on Texas

instruments BLE chips to collect the RSSI measurements.

In Section III-C, we thoroughly validate our framework with

several experiments in three different retail stores, Kmart and

two other anonymous stores. We conclude in Section IV.

II. PROPOSED METHODOLOGY AND SYSTEM DESIGN

In this section, we propose a framework to first estimate the

rate of arrival of people into an aisle of a retail store using two

wireless links located in the aisle. We then propose a frame-

work to estimate the rate of arrival of people into different

aisles throughout the retail store based on the wireless links

located in only a few aisles. We next start by summarizing the

effect of people walking in the aisle on the wireless links.

A. Effect of people on the wireless links

Consider the scenario shown in Fig. 2, where people can

enter/exit the aisle from either side of the aisle. A wireless

link is located on each side of the aisle as shown in the

figure. The wireless transmitter (Tx) transmits wireless signals

that interact with the people/objects in the area and are then

received by the receiver (Rx). In general, properly capturing

the interaction of the people with the transmitted signal

requires detailed wave modeling to capture several propagation

phenomena. We have previously shown that the two main

phenomena of LOS blockage and multipath suffice to capture
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Fig. 2: A typical aisle in a retail store. People can enter and exit the aisle
from either side of the aisle. Two wireless links collect received power
measurements as people walk in the aisle and are located at each end of the
aisle, as shown in the figure. People walking in the aisle affect the wireless
links in two main ways - LOS blockage effect and multipath effect. A person
blocking the LOS link significantly attenuates the RSSI signal while a person
not along the LOS link reflects the signal from the Tx, resulting in random
fluctuations in the RSSI measurements.

the impact of walking people on wireless transmissions. We

next briefly summarize these two impacts:
1) LOS blocking: When a person is along the line joining

the Tx and Rx (i.e., the LOS link), the received power

measurements are significantly attenuated.
2) Multipath effect: The wireless signals from the Tx

get reflected off of the people and interfere construc-

tively/destructively at the Rx, depending on the position of the

people. This causes the wireless measurements to fluctuate as

people are walking. Fig. 2 illustrates the LOS blocking and

multipath effects. See Fig. 5 for an experimental example of

these effects.

We next propose a framework to estimate the rate of arrival

of people into different aisles of a retail store, based on

wireless sensing in only a few aisles. Our approach utilizes

the LOS blockage effects.

B. Rate of arrival estimation in a single aisle

Consider an aisle in a retail store, a schematic of which is

shown in Fig. 2. People can enter/exit from either side of the

aisle, as marked in the figure. A wireless link is located at

each end of the aisle and collects the corresponding received

power measurements (e.g., RSSI). The objective in this section

is then to estimate the total rate of arrival of the people into

the aisle using the received power measurements. The main

difference between the setup and characterization of this part,

as compared to [1], is that [1] assumes that people entering

from one side always exit from the other side. In a general

retail store setting, however, people can enter from one side

and exit from either sides. Thus, in this part we extend the

analysis of [1] to this general setting.

Let ra
1 and ra

2 denote the rate of arrival of people and rd
1

and rd
2 denote the rate of departure of people from the sides 1

and 2 of the aisle, respectively. Let an event denote the act of

any person crossing the wireless link in the aisle. Since any

person entering or exiting the aisle from side 1 of the aisle

causes an event on the wireless link located on side 1, the

rate of events on the link at side 1 is ra
1 + rd

1. Similarly, the

rate of events on the link at side 2 of the aisle is ra
2 + rd

2.

The shoppers who enter the aisle typically spend a random

amount of time in the aisle and exit the aisle from either side

of the aisle. In this paper, to estimate the rate of arrival, we

consider a time period larger than the typical time spent by the

shoppers in the aisle. Therefore, since most people who enter

the aisle also exit the aisle in this estimation time frame, we

can assume that the rate of arrival into the aisle is the same

as the rate of departure. We then have the following equation

relating the rate of arrival and departure:

ra
1 + ra

2 ≈ rd
1 + rd

2. (1)

In order to estimate the rate of arrival from the received

power measurements, we next relate the rate of arrival to the

probability of a person blocking (crossing)2 a wireless link.

The probability of crossing a link i, i ∈ {1, 2}, where i denotes

the side of the aisle where the wireless link is located, is given

as follows:

pic = Number of events in time interval Δ× δ

Δ
,

= (ra
i + rd

i )× δ,
(2)

where pic, i ∈ {1, 2}, is the probability of crossing the link i
in the aisle, Δ is the total time period over which the rate is

estimated, and δ is the time step at which the links collect the

received power measurements. From equations (1) and (2),

it can be easily seen that, by combining the probability of

crossing of both the links, we can estimate the total rate of

arrival of people into the aisle as follows:

ra = ra1 + ra2 =
p1c + p2c

2δ
, (3)

where ra denotes the total rate of arrival of people into the

aisle from both sides of the aisle. We use equation (3) to

estimate the total rate of arrival in an aisle of a retail store

from the probability of crossing the links located on each side

of the aisle. Next, we propose a new framework to estimate

the rate of arrivals of people in different aisles throughout a

store by utilizing wireless links in only a few aisles.

C. Rate of arrival estimation over the whole retail store with
minimal sensing

Consider a large store with several aisles, as shown in

Fig. 1. Let K denote the number of aisles in the store. Let

ri(t), for i ∈ {1, 2, · · · ,K}, denote the rate of arrival of

people in the ith aisle at time t, for t > Δ. By rate of arrival at

time t, we mean the number of people that entered the aisle in

the time interval [t, t−Δ]. Let r(t) = [r1(t), r2(t), · · · , rK(t)]′

denote the corresponding rate vector, where (.)′ denotes the

transpose of the argument. Our objective, in this section,

is to estimate the rates of arrivals in K aisles by utilizing

the measurements of wireless links in only a few aisles.

Let M denote the number of aisles in which direct wireless

measurements are made (i.e., the sensors are placed) and let

Y(t) denote the corresponding M × 1 rate of arrival vector

in these M (< K) aisles at time t. Fig. 3 shows a sample

wireless link in an aisle. We can further obtain the summation

of the arrival rates of multiple adjacent aisles by putting one

2Throughout this paper, we use the terms blocking and crossing inter-
changeably.
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Fig. 3: The figure shows the layout of Store-3 considered in this paper. The store has 26 aisles as numbered in the figure. We consider the main group of
aisles numbered from 1 to 14 for the rate of arrival estimation in section II-C. The red dashed lines indicate the wireless links. Our proposed framework of
section II-C can estimate the rate of arrival of people in all the 14 aisles based only on a small number of wireless links, locations of which are indicated in
the figure. Sub-groups of aisles are shown by a hashed shading.

wireless link at the entrance of multiple adjacent aisles. Fig.

3 shows a sub-group of adjacent aisles and a wireless link

at each entrance of the sub-group. Let there be P such sub-

regions and let Z(t) denote the corresponding P ×1 vector of

the rate of arrivals into these P sub-regions at time t. We then

have the following matrix equations relating the observed rate

vectors, Y(t) and Z(t), to the rate vector r(t).

Y(t) = Br(t) and Z(t) = Cr(t), for t ∈ {Δ, 2Δ, · · · , NΔ},
(4)

where B and C denote the observation matrices, Δ denotes

the time period over which the rate is estimated, and NΔ
denotes the total time period over which the measurements

are made. The observation matrix B defines the aisles in

which the wireless links are placed, and the rate of arrival is

directly measured. More specifically, B is an M ×K matrix

with each row containing all zeros except at one location

which has a one. This location determines the aisle in which

direct measurements are made. Similarly, C is an observation

matrix which determines the group of aisles for which direct

measurements are made. More specifically, C is a P × K
matrix with each row containing all zeros except at a few

locations which has ones. These locations determine the group

of aisles in which the total rate of arrival is directly measured

using the wireless links.3 In other words, we measure the sum

of the rate of arrival of people into each aisle, within a group

of aisles. Our objective in this section then is to estimate the

rate vector, r(t), with the knowledge of Y(t) and Z(t).4

An estimate of the rate vector, r(t), can then be obtained

3The procedure of making the wireless received power measurements in
each aisle and the group of aisles is described in detail in section III-A.

4Note that we would have an estimate of Y(t) and Z(t) using the method
of section II-B.

by solving the following least squares problem:

r̂(t) = argmin
r(t),t∈{Δ,2Δ,··· ,NΔ}

NΔ∑
t=Δ

[
||Y(t)−Br(t)||22+

λ1||Z(t)− Cr(t)||22
]
,

for t ∈ {Δ, 2Δ, · · · , NΔ},

(5)

where r̂(t) denotes the estimate of the rate vector, ||.||2 denotes

the l2 norm of the argument, and λ1 is a hyper-parameter.

Since we measure the rate of arrivals in a relatively small

number of aisles, the number of observations is relatively

smaller than the number of unknowns at each time instant, i.e.,

M+P << K. As such, the optimization problem in equation

(5) is ill-posed. Therefore, we next propose a method to

solve this ill-posed problem based on utilizing the underlying

spatial/temporal sparsity of the occupancy dynamics.

Remark: The form of the optimization problem in equation

(5) is motivated by the potential difference in the accuracy

of the rate of arrival measurements for a single aisle and a

group of aisles. More specifically, we expect the measured

rate of arrival in a single aisle to be more accurate than the

measured rate of arrival in a group of aisles, as the quality of

the wireless receptions degrade with the distance. Thus, we

choose a weighing factor λ1 as a model parameter to account

for this potential difference.

1) Sparse spatial gradient: Consider a shopper visiting a

particular aisle in a retail store. After exiting this aisle, the

shopper tends to visit aisles that are close to the current aisle

[25]. Therefore, we expect the number of people visiting the

aisles that are adjacent to each other to be similar. More

specifically, the rate of arrival vector, r(t), is expected to be

spatially smooth. To mathematically characterize the spatial

variation of the vector r(t) in a retail store, we model the

store as a graph where each aisle is a vertex in the graph. We

draw an edge between the aisles, with a weight of 1, if there is

a direct path between these aisles, i.e., if a shopper can reach
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Fig. 4: (a) The figure shows the considered aisle in the retail store Kmart. Our objective in this store is to estimate the rate of arrival of people into this aisle.
Four wireless transceivers (TI CC2650 BLE chips) are located on each corner of the aisle, as marked. Two of the nodes are used as Tx’s and the other two
as Rx’s. The Tx and Rx on each side of the aisle form a wireless link and collect the BLE RSSI measurements. (b) TI CC2650 BLE chip used for collecting
the RSSI measurements in the store. (c) A laptop, with CC2531 BLE dongle attached to it, collects and stores the RSSI measurements from the two wireless
links in the aisle.

from one aisle to the other without going through any other

aisles. Let L denote the Laplacian of the resulting graph as

defined below.

L = D −A, (6)

where A denotes the adjacency matrix of the graph, and D is

a diagonal matrix with each diagonal entry representing the

degree of the corresponding vertex. The following quantity

then represents the spatial variation of the rate of arrival of

people in different aisles of the store:

r(t)′Lr(t) =
1

2

∑
i�=j

wi,j(ri(t)− rj(t))
2, (7)

where wi,j denotes the weight of the edge between the vertex i
and vertex j, ri(t) and rj(t) denote the ith and jth entry of r(t),
respectively, and (.)′ denotes the transpose of the argument.

Thus, minimizing the quantity in equation (7) promotes the

spatial smoothness of the rate of arrival in different aisles of

the store.

2) Sparse temporal gradient: The overall rate of arrival of

people into a retail store, on a given day, changes slowly with

the time of the day as observed in multiple retail stores [26].

Since the rate of arrival of people into each aisle of the store

is proportional to the total rate of arrival into the store, we

expect the rate of arrival vector to also have sparse variations

with time. Thus, we regularize the optimization problem (5)

by adding the l1 norm of the time variations in the rate vector,

||r(t)− r(t− 1)||1, to promote the sparsity in time variations.

By incorporating the spatial and temporal variation terms

of the rate of arrival in the optimization problem (5), we then

get the following regularized problem:

r̂(t) = argmin
r(t),t∈{Δ,2Δ,··· ,NΔ}

NΔ∑
t=Δ

[
||Y(t)−Br(t)||22+

λ1||Z(t)− Cr(t)||22 + λ2r(t)
′Lr(t) + λ3||r(t)− r(t− 1)||1

]

for t ∈ {Δ, 2Δ, · · · , NΔ},
(8)

The optimization problem (8) is convex in r(t). Therefore,

we use the CVX solver [27] to solve (8) and estimate the

rate of arrival of people in different aisles of the store as a

function of time. We next validate our framework with several

experiments.

III. PERFORMANCE EVALUATION

In this section, we validate our framework with several

experiments in 3 different retail stores. We first describe our

experimental setup to collect the RSSI measurements in the

retail stores. We then first show several results obtained in the

retail stores Kmart and an anonymous retail store (Store-2 in

our town). In these two stores, we physically insert wireless

links in one aisle and show how we can robustly estimate the

arrival rate of the shoppers in the corresponding aisle. We also

identify interesting trends in the occupancy dynamics. In order

to validate our framework over the whole store, we then use a

large online dataset from an anonymous retail store (Store-3),

and robustly estimate the rate of arrival of people into different

aisles throughout the store, based on measurements in only a

few aisles, thus significantly reducing the number of required

sensors and the complexity of the system.

A. Experiment setup

In this paper, we use Texas Instrument TI CC2650 system on

chips to collect the RSSI measurements as people walk in the

store [28]. Fig. 4 illustrates the experimental setup. TI CC2650

is a system on chip that contains ARM cortex microprocessor

and an RF core targeted for BLE and Zigbee applications. It is

designed to operate on a coin cell battery for more than a year

and is hence suitable for applications which require minimal

manual interference. We use the CC2650 chips with RF core

configured to BLE protocol. To estimate the rate of arrival of

people into an aisle, we utilize two BLE links placed on each

side of the aisle, as shown in Fig. 4(a). Each link uses two

TI CC2650 chips, one configured as a Tx and the other as

an Rx. As per the BLE specification, each device can be in

one of the following modes - broadcaster, observer, peripheral,

and central. In the broadcast mode, a device simply transmits

BLE beacons without any requirements for acknowledgments.

In the observer mode, the device scans for any BLE beacons

in the area. The devices need to be in peripheral or central

modes when they need to establish a connection with another

device for the purpose of data transfer. Since, in this paper,

we only need to measure the RSSI of each link, we utilize

only broadcast and observer roles for the BLE devices. More
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Fig. 5: A sample wireless measurement. The effects of people walking in the
aisle on the RSSI measurements are marked: The LOS blockage effect results
in strong attenuations while the multipath results in random fluctuations in
the RSSI measurements. We threshold the RSSI measurements to separate the
LOS blockage effect from the multipath effect, as shown in the figure.

specifically, we configure the Tx chip to broadcast Bluetooth

beacons at regular intervals of time. The Rx is configured

to the observer mode where it keeps scanning for the BLE

beacons. Since there could be other BLE devices in the area

that are broadcasting, the receiver is configured to listen to

beacons only from the corresponding Tx. The receiver is

also configured to measure the RSSI when it observes the

BLE beacon from the corresponding Tx of the link. Since

the memory on the chip is limited, we switch the receiver

from observer mode to the broadcast mode, after measuring

the RSSI value, in order to broadcast the measured RSSI

value. The receiver is then switched back to the observer

role to measure the next RSSI value. A laptop then listens

to all such broadcasts from the receivers and stores the RSSI

measurements of all the links in the area. More specifically,

we run the TI packet sniffer program to capture all the BLE

packets and store the BLE packets from the receivers of all

the links. Since off-the-shelf laptops are not equipped with

BLE radios, we use a TI CC2531 BLE dongle (connected to

a laptop) to receive the Bluetooth packets, as shown in Fig.

4(c). To capture the dips in the RSSI values, associated with

a person crossing the link,5 we configure the transmitter and

receiver of each link to measure the RSSI values at a rate of

20 times/sec. Furthermore, the Tx and Rx are set to transmit

BLE beacons at 0 dBm power.

B. Separation of LOS from MP

In section II, we discussed that people walking near the

BLE link can affect the RSSI measurements through LOS

blocking and multipath effects. In section II, we proposed

a framework to estimate the rate of arrival of people into

different aisles based on LOS blockage effect. Therefore, in

this section, we briefly summarize how we can extract the

LOS blockage events from the RSSI measurements.

We have previously shown that the fluctuations in the RSSI

measurements due to multipath are concentrated around the

mean level of the RSSI signal, while blocking the LOS causes

a more pronounced dip in the signal level [19]. Therefore,

following the same procedure as in our past work, we con-

5In this paper, we do not consider the case of multiple people simultane-
ously crossing a link, as it is a low probability event in an aisle-type scenario.

tribute any dip in the RSSI signal level that is larger than a

sufficiently-large threshold to people blocking the LOS link.

Fig. 5 illustrates a dip due to LOS blockage, fluctuations due

to multipath, and the threshold.

C. Experimental results and discussion

In this section, we experimentally validate our framework

using several experiments in three different retail stores, using

the aforementioned experimental setup. We start by validating

that we can robustly estimate the rate of arrival in the aisles

where the wireless links are. We then show how we can

estimate the occupancy attributes in several other aisles, based

on wireless sensing in only a few aisles.

1) Occupancy estimation in the sensed aisles: Kmart and
Store-2: We obtained permission from our local Kmart store as

well as another large retail store that shall remain anonymous6

(referred to as Store-2 here) to put wireless links in one aisle

in each store. In this part, we extensively discuss our findings

along this line.

We start by considering the setup in Kmart. Fig. 4(a)

shows the aisle where we put two wireless links, based on

the experimental setup described in the previous section. The

ground-truth rate of arrival of people in the aisle is obtained

by manually counting the number of people in the security

camera footage covering the aisle. Fig. 6 and 7 show the

estimated and true rate of arrival in the aisle on two different

days (Monday and Friday) and for 1 hour respectively, using

our framework. Here, the rate of arrival is measured as the

number of people per each 10 minute time interval. It can

be seen that our framework accurately estimates the rate of

arrival and its trends. For instance, the average error in the rate

of arrival estimation is 0.15 people/min on day-1 (Monday),

when the true average rate of arrival is 0.44 people/min, and

0.2 on day-2 (Friday) when the true average rate of arrival is

0.85. Thus the error is very small as compared to the true rate

of arrival, which confirms the accuracy of our framework.

Weekday vs Weekend: Fig. 6 and 7 showed the true and

estimated traffic on Monday and Friday respectively. By plot-

ting them on the same graph, we can see interesting underling

trends for the traffic as a function of the day. More specifically,

Fig. 8 shows the estimated and true arrival rate for both of

these days. In general, it is expected that the traffic in the

store is higher during the weekend time, which is captured by

the true and estimated rate of arrival in Fig. 8. Such analysis

can help the retail stores obtain valuable occupancy analytic,

without relying on cameras (thus preserving the privacy), and

plan their resources accordingly.

We next discuss the experimental results obtained in Store-

2. Fig. 9 shows the estimated and true rate of arrival in the

aisle where we installed the wireless links, for a period of 1
hour. It can be seen that the estimated rate closely follows the

true rate. For instance, the average error in the rate of arrival

is 0.18 people/minute when the true average rate of arrival of

6The name of the store is withheld for the anonymity per request of the
store.
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Fig. 6: The figure shows the true and estimated
rate of arrival of people, using our framework, in
an aisle in Kmart on day-1. It can be seen that the
estimated rate closely matches the true rate.
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Fig. 7: The figure shows the true and estimated
rate of arrival of people, using our framework, in
an aisle of Kmart on day-2. It can be seen that the
estimated rate closely matches the true rate.
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Fig. 8: The figure shows the true and estimated rate
of arrival of people in the aisle of the Kmart store
on both Monday and Friday. It can be seen that the
traffic on Friday is higher than on Monday, which
is correctly estimated by our framework.
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Fig. 9: The figure shows the true and estimated rate
of arrival of people, using our framework, in the
aisle of Store-2. It can be seen that the estimated
rate closely matches the true rate.
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Fig. 10: The true and estimated rate of arrival of
people in Aisle-3 of Store-3, obtained using our
framework. It can be seen that the estimated rate
closely matches the true rate.
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Fig. 11: The true and estimated rate of arrival of
people in Aisle-12 of Store-3, obtained using our
framework. It can be seen that the estimated rate
closely matches the true rate.

people in the considered aisle is 0.75 people/minute, which

further establishes the robust nature of our framework.

2) Occupancy estimation over the whole store (Store-3): So

far, we have presented the experimental results for estimating

the rate of arrival in the aisles where the wireless links are

present. In this section, we validate our framework to estimate

the rate of arrival in different aisles of a store based on wireless

links located in only a few aisles. For this purpose, we utilize

an online dataset from a large anonymous retail store [29].7

The dataset contains the trip details of each shopper. More

specifically, the data contains the location of the shopper in the

store at each time instant, while the shopper is walking in the

store. Thus, we can evaluate the number of people visiting each

aisle in a given time period, i.e., the rate of arrival of people

into each aisle. We then use this online dataset to validate the

proposed framework of section II-C.

Fig. 3 shows the floor plan of Store-3. This store contains

26 different regions, as labeled in the figure. The regions 1 to

14 are the main aisles in the store whereas the regions labeled

15 to 26 are the regions in the corners and the edges of the

store. In this section, we validate our framework using the

occupancy data in aisles 1 through 14. More specifically, we

7We note that we did not have permission to visually monitor the security
footage covering all the aisles in the aforementioned local Kmart and Store-2
to build the ground truth for this part. As such, we are using the large available
online dataset for Store-3.

utilize the knowledge of the rate of arrival of people in the

aisles 1, 6, 10, and 14 and the knowledge of the total rate of

arrival of people into two groups of aisles, 2−5 and 6−9, and

the knowledge of the total rate of arrival of to estimate the rate

of arrival of people in all the aisles, i.e., aisles 1 to 14. The

knowledge of the rate of arrival of people in individual aisles

can be obtained by placing wireless links in these aisles, as we

throughly verified in Kmart and in Store-2. Similarly, the rate

of arrival of people into a sub-group of aisles can be obtained

by considering the sub-group of aisles as one big aisle and

placing the wireless links accordingly. For instance, to estimate

the rate of arrival in the sub-group of aisles 2 − 5, we insert

the Tx-1 and Tx-2 of the two wireless links on each end of

aisle-2 and the Rx-1 and Rx-2 of the two wireless links on

the corresponding ends of aisle-5. Fig. 3 shows the locations

where the wireless links would be, for sensing in the individual

aisles as well as for sensing in the 2 sub-group of aisles.

Without the proposed framework of this paper, we would have

to put sensors in all the aisles, which would require 56 nodes

(2 nodes for each wireless link). By using our framework,

on the other hand, we sense the rate of arrival in only 4
aisles and two groups of aisles, thus requiring only 24 sensor

nodes. Therefore, we achieve a 57% reduction in the number

of required sensor nodes. Since the data for this store is only

available online, we cannot manually put wireless links for
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Fig. 12: The average RMSE in estimating the rate
of arrival of people in each aisle of Store-3. It
can be seen that the RMSE error is very small
compared to the true average rate of arrival of
people.
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Fig. 13: The average RMSE in estimating the rate
of arrival of people, averaged across all the aisles
in Store-3, as a function of time. It can be seen
that the RMSE error is very small compared to the
true average rate of arrival of people.
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Fig. 14: The figure shows a histogram of the error
in the rate of arrival estimation in the Kmart store.
A Gaussian fit to the error is also shown. This
Gaussian noise is used to validate the robustness
of our framework.
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Fig. 15: The true and estimated rate of arrival of
people in Aisle-3 of Store-3, obtained using our
framework, in the presence of noise. It can be seen
that the estimated rate closely matches the true rate.
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Fig. 16: The true and estimated rate of arrival of
people in Aisle-12 of Store-3, obtained using our
framework, in the presence of noise. It can be seen
that the estimated rate closely matches the true rate.

0 5 10 15
Aisle number

0.05

0.1

0.15

R
M

SE
 e

rro
r (

in
 p

eo
pl

e/
m

in
ut

e)

RMSE in different aisles
(With Noise)

RMSE
Average rate of arrival

Fig. 17: The average RMSE in estimating the rate
of arrival of people in each aisle of Store-3. It
can be seen that the RMSE error is very small
compared to the true average rate of arrival of
people, even in the presence of noise.
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Fig. 18: The average RMSE in estimating the rate of arrival of people,
averaged across all the aisles in Store-3, as a function of time. It can be
seen that the RMSE error is very small compared to the true average rate of
arrival of people even in the presence of noise.

direct sensing in the aforementioned aisles/sub-groups. Thus,

we first test our proposed sparsity-based framework by using

the true arrival rate in the sensed aisles. We then add noise

(with the proper statistics) to the true arrival rate of the sensed

aisles/sub-group, and show the performance of our approach.

We next show the performance of our framework in this store.

Fig. 10 and 11 show the sample estimated rate of arrival in

Aisle-3 and Aisle-12 of the store, respectively, for a period of

120 hours. It can be seen that the estimated rate of arrival is

very close to the true arrival rate in these aisles. To characterize

the performance of our framework over all the aisles 1-14,

we next look at the average root mean square error (RMSE),

averaged across different time periods and different aisles.

Fig. 12 shows the average RMSE in the rate of arrival

estimates in each aisle, averaged over 120 hours. The figure

also shows the average true rate of arrival in each aisle,

averaged over the 120 hour time period. It can be seen that

the RMSE error is very small as compared to the true rate of

arrival in all the aisles. Fig. 13 shows the average RMSE error

in the rate of arrival estimation at each time, averaged over all

the aisles. It can be seen that the RMSE error is very small

as compared to the true rate of arrival at each time. Overall,

the error in rate of arrival estimation, averaged over all the

aisles and over 120 hour time period, is 0.03 people/minute

when the true average rate of arrival is 0.11 people/minute,

thus showing the accuracy of our framework.

So far, we validated our sparsity-based framework for Store-

3 when the true rate of arrival in sensed aisles/sub-groups

is known. However, when the rate of arrival is estimated by

actually placing the wireless links in the aisles, we can only
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get an estimate of the true rate of arrival, as we showed in

section III-C1. Therefore, we next validate our sparsity-based

framework in the presence of errors in the rate of arrival

estimation for Store-3. Since Store-3 data is only available

online, we first characterize the noise in the rate of arrival

estimation, by utilizing the data collected in the aisle of the

Kmart store. More specifically, we use the 2 hours of the data

we collected in the aisle of the Kmart store and estimate

the probability density function (PDF) of the error in the

rate of arrival estimation. Fig. 14 shows this PDF. Since the

error PDF resembles the Gaussian density function, we fit a

Gaussian PDF to the error PDF and estimate the corresponding

parameters of the Gaussian PDF. We then add a Gaussian noise

with the estimated parameters to the true rate of arrivals of

the online data set of Store-3. Thus, this process simulates

the effect of collecting the data by physically placing the

wireless links in the aisles. We next show the performance

of our framework for this scenario, for the same case of direct

sensing for aisles 1-14 and sub-groups 2− 5 and 6− 9.

Fig. 15 and 16 show the estimated and the true arrival rates

in Aisle-3 and Aisle-12, respectively. It can be seen that the

estimated rate is close to the true rate of arrival, even in the

presence of noise. Fig. 17 and 18 show the average RMSE

errors as a function of the aisles and time. It can be seen that

the average RMSE error is very small as compared to the true

rate of arrival. Thus our framework can robustly estimate the

rate of arrival throughout the store with minimal sensing.

IV. CONCLUSIONS

In this paper, we proposed a new framework to estimate

the rate of arrival of people over the aisles of a large retail

store, based only on the received power measurements of

wireless links that are located in only a few aisles, and without

relying on people to carry any device. We first showed how

to estimate the rate of arrival of people into an aisle, for the

case where people have a bi-directional flow, based on the

received power measurements of two wireless links that are

located in the aisle. We then exploited the spatial and temporal

smoothness of the occupancy dynamics over the whole store

and formulated an optimization problem to estimate the rate

of arrival throughout the store, based only on a small number

of wireless links that are installed in a few aisles. To validate

our proposed framework, we developed an experimental setup,

using TI CC2650 BLE chips, and ran experiments in three

different retail stores - Kmart, two other anonymous stores,

and showed that our approach can estimate the rate of arrival

of people in different aisles of a store with minimal sensing

(57% reduction in the number of required wireless links)

and with a high accuracy (average root mean square of 0.03
people/minute when averaged over all the aisles and time).
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