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Abstract—In this paper, we propose a new framework to
estimate the occupancy dynamics of the shoppers over a whole
retail store, based on the received power measurements of
wireless links that are installed in only a small number of
aisles, and without relying on people to carry any device. More
specifically, we utilize the received power measurements collected
by a small number of wireless links installed in only a few aisles
of a retail store and show that we can estimate the rate of
arrival of people in all the aisles of the retail store. We first
show how a pair of wireless links in an aisle can estimate the
rate of arrival of people into that aisle for the general case
where people can have a bi-directional flow. We then propose
a new framework to estimate the rate of arrival of people
into all the aisles of the retail store, using the received power
measurements of a number of wireless links that are installed
in only a few aisles. Our proposed approach utilizes the sparsity
in the spatial and temporal gradient of the occupancy dynamics
and poses an optimization problem to estimate the arrival rates
over the whole store based only on a very small number of
wireless measurements. We thoroughly validate our framework
with several experiments in three different retail stores - Kmart
and two anonymous retail stores (Store-2 and Store-3), using the
RSSI measurements of Bluetooth Low Energy (BLE) Chips. Our
results confirm that our framework can accurately estimate the
rate of arrival of people into different aisles of a retail store with
minimal wireless sensing. More specifically, we show that our
approach can estimate the rate of arrival of people in different
aisles of a store, with an average root mean square of 0.03
people/minute, when averaged over all the aisles and all the time,
and while reducing the number of required wireless links by 57 %.

I. INTRODUCTION

In recent years, there has been an increased interest in
estimating the number of people a given area. Occupancy
estimation has several potential applications. For instance, in
places like retail stores, popular aisles in the store can be
identified which can help the store plan the services better [1].
In smart buildings, heating and cooling can be automatically
adjusted based on the occupancy level, which can help improve
the energy efficiency [2]. In smart cities, occupancy estimation
can help in planning the traffic [3].

In the literature, several methods have been proposed to
estimate the occupancy in an area. They can be classified into
four different categories as follows:

1) Vision-based sensing: These methods employ cameras
and process the video to estimate the occupancy in a given
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Fig. 1: A large retail store with several aisles. Our objective is to estimate
the rate of arrival of people into all the aisles throughout the store, based
on sensing with wireless links that are only installed in a few aisles. Image
courtesy: Thebricspost.

area [4]-[7]. However, in places like retail stores, vision-based
methods pose serious privacy concerns. For instance, a recent
survey on retail shoppers revealed that 75% of the people who
understood the capabilities of vision-based tracking technolo-
gies found it intrusive to track their behavior using cameras
[8]. Furthermore, employing such tracking techniques could
lead to shoppers not visiting the corresponding stores [9].

2) Environmental sensing: These methods measure the
environmental parameters, such as the concentration of carbon
dioxide and humidity in the environment to estimate the
total number of people in the area [10]-[12]. These methods
typically require specialized hardware to be installed in an area
to estimate the occupancy.

3) Device-based (active) wireless sensing: These methods
estimate the occupancy in an area based on the wireless signals
emitted by the devices carried by the people, such as the
mobile phone [10], [13]-[15]. However, these methods may
not be practical in places like retail stores and pose privacy
concerns. For instance, Nordstrom, a clothing company which
implemented an active WiFi-based in-store tracking technol-
ogy to analyze the behavior of their customers, withdrew it
due to privacy concerns of the shoppers [16]. Furthermore,
the accuracy of such methods is very limited as a device can
only be localized to the coverage area of the router to which
it is connected in the store.

4) Device-free (passive) wireless sensing: These methods
depend on the interaction of wireless signals with the people



2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

in the area of interest to estimate the total number of people
in the area [17]-[23]. Therefore, these methods do not require
the people to carry any device and thus preserve the privacy of
people in the area. Furthermore, as many places, such as retail
stores and museums, already have wireless devices (e.g., WiFi
access points) in the area, they do not require an installation
of specialized hardware. Therefore, in this paper, we focus
on device-free wireless sensing for estimating occupancy
in retail stores.

All of the aforementioned passive methods on occupancy
sensing focus on estimating the number of people in the
area where the sensors are present. In [24], walking speed
of occupants in two adjacent areas are estimated based on
sensing in one area. However, only one arrival rate (or fixed
number of people) is considered and assumed known.

In this paper, we are interested in estimating occupancy
dynamics over a large area that consists of several sub-areas
(e.g., a retail store), based on wireless transceivers that are
installed in only a few areas and without relying on people
to carry a device, i.e., passively. We are further interested in
the general case where people can have different occupancy
dynamics in different sub-areas. By estimating occupancy
dynamics, we mean estimating the rate of arrival of people
(the number of people per unit time) into different aisles. As
the rate of arrival will be time-varying, we are thus interested
in estimating it as a function of time. The existing work,
however, is either not generalizable to this setting or would
require a large number of wireless sensors all over the store.
For instance, in a store that has hundreds of aisles, we would
need to employ sensors in all the aisles in order to estimate
the arrival rate of people in all the aisles.

In this paper, we propose a new method that exploits
the spatial and temporal dynamics of occupancy in order to
minimize the required number of sensors. More specifically,
consider a scenario of a large retail store, such as a store shown
in Fig. 1, with several aisles. In this paper, we develop a
new framework to estimate the rate of arrival of people
into all the aisles throughout the retail store by utilizing
the received power measurements of wireless transceivers
in only a few aisles of the store.! Thus, our framework
tremendously reduces the number of required measurements,
the cost associated with the hardware, and the complexity of
the sensor network. To the best of our knowledge, there is no
existing work (based on any kind of sensors) that can estimate
the occupancy or rate of arrival in several areas, by making
measurements in only a few areas. We next summarize our
main contributions:

« We mathematically characterize the probability of crossing a
link, for the case where people can have bi-directional flows
(i.e., a person can change his/her direction at any time), and
show that the rate of arrival of people into an aisle can
be estimated using the received power measurements of a

Note that the total rate of arrival into an aisle will become the same as
the total rate of departure as we shall see in the next section. Thus, we only
use the term “rate of arrival” in this paper for brevity.

pair of wireless links located at each end of the aisle. The
main difference of this part with the existing work [24] is
considering bi-directional flows, which would require a new
characterization.

o We propose a new framework to estimate the rate of arrival
of people into different aisles throughout a retail store by
using the received power measurements of wireless links
in only a few aisles. More specifically, we exploit the
sparsity in the spatial and temporal changes of the rate of
arrival and propose an optimization framework to estimate
the rate of arrival throughout the store. To the best of our
knowledge, no existing work can achieve this. This is the
main theoretical contribution of the paper.

o We implement a sensor network based on Texas Instrument
CC2650 Bluetooth low energy (BLE) chips to collect RSSI
measurements in a large area such as a retail store.

o We validate our framework in three different retail stores -
Kmart and two other anonymous stores (Store-2 and Store-
3) and show that our framework can accurately estimate the
rate of arrival of people throughout the store with minimal
sensing and in a device-free manner.

The rest of the paper is organized as follows. In Section
I, we first mathematically characterize the probability of
crossing a link and show that the rate of arrival of people, for
the general case with a bi-directional flow, can be estimated
using the probability of crossing the link. We then propose
a framework, exploiting the spatial and temporal sparsity in
the rate of arrival gradient, and formulate an optimization
problem to estimate the rate of arrival of people throughout
the store using measurements in only a few aisles. In Section
III-A, we then propose a sensor network setup based on Texas
instruments BLE chips to collect the RSSI measurements.
In Section III-C, we thoroughly validate our framework with
several experiments in three different retail stores, Kmart and
two other anonymous stores. We conclude in Section IV.

II. PROPOSED METHODOLOGY AND SYSTEM DESIGN

In this section, we propose a framework to first estimate the
rate of arrival of people into an aisle of a retail store using two
wireless links located in the aisle. We then propose a frame-
work to estimate the rate of arrival of people into different
aisles throughout the retail store based on the wireless links
located in only a few aisles. We next start by summarizing the
effect of people walking in the aisle on the wireless links.

A. Effect of people on the wireless links

Consider the scenario shown in Fig. 2, where people can
enter/exit the aisle from either side of the aisle. A wireless
link is located on each side of the aisle as shown in the
figure. The wireless transmitter (Tx) transmits wireless signals
that interact with the people/objects in the area and are then
received by the receiver (Rx). In general, properly capturing
the interaction of the people with the transmitted signal
requires detailed wave modeling to capture several propagation
phenomena. We have previously shown that the two main
phenomena of LOS blockage and multipath suffice to capture
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Fig. 2: A typical aisle in a retail store. People can enter and exit the aisle
from either side of the aisle. Two wireless links collect received power
measurements as people walk in the aisle and are located at each end of the
aisle, as shown in the figure. People walking in the aisle affect the wireless
links in two main ways - LOS blockage effect and multipath effect. A person
blocking the LOS link significantly attenuates the RSSI signal while a person
not along the LOS link reflects the signal from the Tx, resulting in random
fluctuations in the RSSI measurements.

the impact of walking people on wireless transmissions. We
next briefly summarize these two impacts:

1) LOS blocking: When a person is along the line joining
the Tx and Rx (i.e., the LOS link), the received power
measurements are significantly attenuated.

2) Multipath effect: The wireless signals from the Tx
get reflected off of the people and interfere construc-
tively/destructively at the Rx, depending on the position of the
people. This causes the wireless measurements to fluctuate as
people are walking. Fig. 2 illustrates the LOS blocking and
multipath effects. See Fig. 5 for an experimental example of
these effects.

We next propose a framework to estimate the rate of arrival
of people into different aisles of a retail store, based on
wireless sensing in only a few aisles. Our approach utilizes
the LOS blockage effects.

B. Rate of arrival estimation in a single aisle

Consider an aisle in a retail store, a schematic of which is
shown in Fig. 2. People can enter/exit from either side of the
aisle, as marked in the figure. A wireless link is located at
each end of the aisle and collects the corresponding received
power measurements (e.g., RSSI). The objective in this section
is then to estimate the total rate of arrival of the people into
the aisle using the received power measurements. The main
difference between the setup and characterization of this part,
as compared to [1], is that [1] assumes that people entering
from one side always exit from the other side. In a general
retail store setting, however, people can enter from one side
and exit from either sides. Thus, in this part we extend the
analysis of [1] to this general setting.

Let ¢ and 34 denote the rate of arrival of people and r¢
and r§ denote the rate of departure of people from the sides 1
and 2 of the aisle, respectively. Let an event denote the act of
any person crossing the wireless link in the aisle. Since any
person entering or exiting the aisle from side 1 of the aisle
causes an event on the wireless link located on side 1, the
rate of events on the link at side 1 is 7% + 7. Similarly, the
rate of events on the link at side 2 of the aisle is 73 + r9.
The shoppers who enter the aisle typically spend a random

amount of time in the aisle and exit the aisle from either side
of the aisle. In this paper, to estimate the rate of arrival, we
consider a time period larger than the typical time spent by the
shoppers in the aisle. Therefore, since most people who enter
the aisle also exit the aisle in this estimation time frame, we
can assume that the rate of arrival into the aisle is the same
as the rate of departure. We then have the following equation
relating the rate of arrival and departure:

(1)
In order to estimate the rate of arrival from the received
power measurements, we next relate the rate of arrival to the
probability of a person blocking (crossing)’> a wireless link.
The probability of crossing a link ¢, ¢ € {1, 2}, where ¢ denotes
the side of the aisle where the wireless link is located, is given
as follows:

s~ 48

pf: = Number of events in time interval A x —, 2
= (r} +1{) x 0,

where p’,i € {1,2}, is the probability of crossing the link i
in the aisle, A is the total time period over which the rate is
estimated, and ¢ is the time step at which the links collect the
received power measurements. From equations (1) and (2),
it can be easily seen that, by combining the probability of
crossing of both the links, we can estimate the total rate of
arrival of people into the aisle as follows:

_ petpl 3)
26

where r“ denotes the total rate of arrival of people into the
aisle from both sides of the aisle. We use equation (3) to
estimate the total rate of arrival in an aisle of a retail store
from the probability of crossing the links located on each side
of the aisle. Next, we propose a new framework to estimate
the rate of arrivals of people in different aisles throughout a
store by utilizing wireless links in only a few aisles.

r*=r{+rs

C. Rate of arrival estimation over the whole retail store with
minimal sensing

Consider a large store with several aisles, as shown in
Fig. 1. Let K denote the number of aisles in the store. Let
ri(t), for ¢ € {1,2,---, K}, denote the rate of arrival of
people in the i aisle at time ¢, for ¢ > A. By rate of arrival at
time ¢, we mean the number of people that entered the aisle in
the time interval [t,t—A]. Letr(¢) = [r1(¢),r2(t), - ,rx(t)]
denote the corresponding rate vector, where (.) denotes the
transpose of the argument. Our objective, in this section,
is to estimate the rates of arrivals in K aisles by utilizing
the measurements of wireless links in only a few aisles.
Let M denote the number of aisles in which direct wireless
measurements are made (i.e., the sensors are placed) and let
Y (t) denote the corresponding M x 1 rate of arrival vector
in these M (< K) aisles at time ¢. Fig. 3 shows a sample
wireless link in an aisle. We can further obtain the summation
of the arrival rates of multiple adjacent aisles by putting one

2Throughout this paper, we use the terms blocking and crossing inter-
changeably.
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Fig. 3: The figure shows the layout of Store-3 considered in this paper. The store has 26 aisles as numbered in the figure. We consider the main group of
aisles numbered from 1 to 14 for the rate of arrival estimation in section II-C. The red dashed lines indicate the wireless links. Our proposed framework of
section II-C can estimate the rate of arrival of people in all the 14 aisles based only on a small number of wireless links, locations of which are indicated in

the figure. Sub-groups of aisles are shown by a hashed shading.

wireless link at the entrance of multiple adjacent aisles. Fig.
3 shows a sub-group of adjacent aisles and a wireless link
at each entrance of the sub-group. Let there be P such sub-
regions and let Z(t) denote the corresponding P X 1 vector of
the rate of arrivals into these P sub-regions at time ¢. We then
have the following matrix equations relating the observed rate
vectors, Y (t) and Z(t), to the rate vector r(t).
Y (t) = Br(t) and Z(t) = Cr(t), for t € {A,2A,--- | NA},
“)
where B and C' denote the observation matrices, A denotes
the time period over which the rate is estimated, and NA
denotes the total time period over which the measurements
are made. The observation matrix B defines the aisles in
which the wireless links are placed, and the rate of arrival is
directly measured. More specifically, B is an M x K matrix
with each row containing all zeros except at one location
which has a one. This location determines the aisle in which
direct measurements are made. Similarly, C' is an observation
matrix which determines the group of aisles for which direct
measurements are made. More specifically, C' is a P x K
matrix with each row containing all zeros except at a few
locations which has ones. These locations determine the group
of aisles in which the total rate of arrival is directly measured
using the wireless links.? In other words, we measure the sum
of the rate of arrival of people into each aisle, within a group
of aisles. Our objective in this section then is to estimate the
rate vector, r(t), with the knowledge of Y (¢) and Z(t).*

An estimate of the rate vector, r(t), can then be obtained

3The procedure of making the wireless received power measurements in
each aisle and the group of aisles is described in detail in section III-A.

“Note that we would have an estimate of Y (¢) and Z(t) using the method
of section II-B.

by solving the following least squares problem:
NA

arg min Z 1Y (t) — Br(t)| |5+
r(t),te{A2A, - ,NA} ;TR

#(t) =

] ®
M|Z(t) = Cr@)] |,

for t € {A2A,--- | NA},

where 7(t) denotes the estimate of the rate vector, ||.||2 denotes
the /5 norm of the argument, and A\; is a hyper-parameter.
Since we measure the rate of arrivals in a relatively small
number of aisles, the number of observations is relatively
smaller than the number of unknowns at each time instant, i.e.,
M+ P << K. As such, the optimization problem in equation
(5) is ill-posed. Therefore, we next propose a method to
solve this ill-posed problem based on utilizing the underlying
spatial/temporal sparsity of the occupancy dynamics.

Remark: The form of the optimization problem in equation
(5) is motivated by the potential difference in the accuracy
of the rate of arrival measurements for a single aisle and a
group of aisles. More specifically, we expect the measured
rate of arrival in a single aisle to be more accurate than the
measured rate of arrival in a group of aisles, as the quality of
the wireless receptions degrade with the distance. Thus, we
choose a weighing factor \; as a model parameter to account
for this potential difference.

1) Sparse spatial gradient: Consider a shopper visiting a
particular aisle in a retail store. After exiting this aisle, the
shopper tends to visit aisles that are close to the current aisle
[25]. Therefore, we expect the number of people visiting the
aisles that are adjacent to each other to be similar. More
specifically, the rate of arrival vector, r(t), is expected to be
spatially smooth. To mathematically characterize the spatial
variation of the vector r(¢) in a retail store, we model the
store as a graph where each aisle is a vertex in the graph. We
draw an edge between the aisles, with a weight of 1, if there is
a direct path between these aisles, i.e., if a shopper can reach
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Fig. 4: (a) The figure shows the considered aisle in the retail store Kmart. Our objective in this store is to estimate the rate of arrival of people into this aisle.
Four wireless transceivers (TI CC2650 BLE chips) are located on each corner of the aisle, as marked. Two of the nodes are used as Tx’s and the other two
as Rx’s. The Tx and Rx on each side of the aisle form a wireless link and collect the BLE RSSI measurements. (b) TI CC2650 BLE chip used for collecting
the RSSI measurements in the store. (¢) A laptop, with CC2531 BLE dongle attached to it, collects and stores the RSSI measurements from the two wireless

links in the aisle.

from one aisle to the other without going through any other
aisles. Let L denote the Laplacian of the resulting graph as
defined below.

L=D— A, (6)

where A denotes the adjacency matrix of the graph, and D is
a diagonal matrix with each diagonal entry representing the
degree of the corresponding vertex. The following quantity
then represents the spatial variation of the rate of arrival of
people in different aisles of the store:

() Le(t) = 5 St () ~ 1,07, @)
i#£]

where w®7 denotes the weight of the edge between the vertex i
and vertex j, r;(¢) and r;(t) denote the i and j™ entry of r(¢),
respectively, and (.)" denotes the transpose of the argument.
Thus, minimizing the quantity in equation (7) promotes the
spatial smoothness of the rate of arrival in different aisles of
the store.

2) Sparse temporal gradient: The overall rate of arrival of
people into a retail store, on a given day, changes slowly with
the time of the day as observed in multiple retail stores [26].
Since the rate of arrival of people into each aisle of the store
is proportional to the total rate of arrival into the store, we
expect the rate of arrival vector to also have sparse variations
with time. Thus, we regularize the optimization problem (5)
by adding the /; norm of the time variations in the rate vector,
[|lr(t) —r(t —1)||1, to promote the sparsity in time variations.

By incorporating the spatial and temporal variation terms
of the rate of arrival in the optimization problem (5), we then

get the following regularized problem:
NA

arg min Z

lIIY(t) — Br(t)|[3+
r(t),te{A24,-- NA} ;T\

MIIZ(t) = Cr(t)[13 + Aor(t) Lr(t) + As|r(t) — r(t = 1)[1

fort € {A,2A,--- | NA},

®)

The optimization problem (8) is convex in r(t¢). Therefore,
we use the CVX solver [27] to solve (8) and estimate the
rate of arrival of people in different aisles of the store as a

function of time. We next validate our framework with several
experiments.
III. PERFORMANCE EVALUATION

In this section, we validate our framework with several
experiments in 3 different retail stores. We first describe our
experimental setup to collect the RSSI measurements in the
retail stores. We then first show several results obtained in the
retail stores Kmart and an anonymous retail store (Store-2 in
our town). In these two stores, we physically insert wireless
links in one aisle and show how we can robustly estimate the
arrival rate of the shoppers in the corresponding aisle. We also
identify interesting trends in the occupancy dynamics. In order
to validate our framework over the whole store, we then use a
large online dataset from an anonymous retail store (Store-3),
and robustly estimate the rate of arrival of people into different
aisles throughout the store, based on measurements in only a
few aisles, thus significantly reducing the number of required
sensors and the complexity of the system.

A. Experiment setup

In this paper, we use Texas Instrument TI CC2650 system on
chips to collect the RSSI measurements as people walk in the
store [28]. Fig. 4 illustrates the experimental setup. TT CC2650
is a system on chip that contains ARM cortex microprocessor
and an RF core targeted for BLE and Zigbee applications. It is
designed to operate on a coin cell battery for more than a year
and is hence suitable for applications which require minimal
manual interference. We use the CC2650 chips with RF core
configured to BLE protocol. To estimate the rate of arrival of
people into an aisle, we utilize two BLE links placed on each
side of the aisle, as shown in Fig. 4(a). Each link uses two
TI CC2650 chips, one configured as a Tx and the other as
an Rx. As per the BLE specification, each device can be in
one of the following modes - broadcaster, observer, peripheral,
and central. In the broadcast mode, a device simply transmits
BLE beacons without any requirements for acknowledgments.
In the observer mode, the device scans for any BLE beacons
in the area. The devices need to be in peripheral or central
modes when they need to establish a connection with another
device for the purpose of data transfer. Since, in this paper,
we only need to measure the RSSI of each link, we utilize
only broadcast and observer roles for the BLE devices. More
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Fig. 5: A sample wireless measurement. The effects of people walking in the
aisle on the RSSI measurements are marked: The LOS blockage effect results
in strong attenuations while the multipath results in random fluctuations in
the RSSI measurements. We threshold the RSSI measurements to separate the
LOS blockage effect from the multipath effect, as shown in the figure.

specifically, we configure the Tx chip to broadcast Bluetooth
beacons at regular intervals of time. The Rx is configured
to the observer mode where it keeps scanning for the BLE
beacons. Since there could be other BLE devices in the area
that are broadcasting, the receiver is configured to listen to
beacons only from the corresponding Tx. The receiver is
also configured to measure the RSSI when it observes the
BLE beacon from the corresponding Tx of the link. Since
the memory on the chip is limited, we switch the receiver
from observer mode to the broadcast mode, after measuring
the RSSI value, in order to broadcast the measured RSSI
value. The receiver is then switched back to the observer
role to measure the next RSSI value. A laptop then listens
to all such broadcasts from the receivers and stores the RSSI
measurements of all the links in the area. More specifically,
we run the TI packet sniffer program to capture all the BLE
packets and store the BLE packets from the receivers of all
the links. Since off-the-shelf laptops are not equipped with
BLE radios, we use a TI CC2531 BLE dongle (connected to
a laptop) to receive the Bluetooth packets, as shown in Fig.
4(c). To capture the dips in the RSSI values, associated with
a person crossing the link,> we configure the transmitter and
receiver of each link to measure the RSSI values at a rate of
20 times/sec. Furthermore, the Tx and Rx are set to transmit
BLE beacons at 0 dBm power.

B. Separation of LOS from MP

In section II, we discussed that people walking near the
BLE link can affect the RSSI measurements through LOS
blocking and multipath effects. In section II, we proposed
a framework to estimate the rate of arrival of people into
different aisles based on LOS blockage effect. Therefore, in
this section, we briefly summarize how we can extract the
LOS blockage events from the RSSI measurements.

We have previously shown that the fluctuations in the RSSI
measurements due to multipath are concentrated around the
mean level of the RSSI signal, while blocking the LOS causes
a more pronounced dip in the signal level [19]. Therefore,
following the same procedure as in our past work, we con-

SIn this paper, we do not consider the case of multiple people simultane-
ously crossing a link, as it is a low probability event in an aisle-type scenario.

tribute any dip in the RSSI signal level that is larger than a
sufficiently-large threshold to people blocking the LOS link.
Fig. 5 illustrates a dip due to LOS blockage, fluctuations due
to multipath, and the threshold.

C. Experimental results and discussion

In this section, we experimentally validate our framework
using several experiments in three different retail stores, using
the aforementioned experimental setup. We start by validating
that we can robustly estimate the rate of arrival in the aisles
where the wireless links are. We then show how we can
estimate the occupancy attributes in several other aisles, based
on wireless sensing in only a few aisles.

1) Occupancy estimation in the sensed aisles: Kmart and
Store-2: We obtained permission from our local Kmart store as
well as another large retail store that shall remain anonymous®
(referred to as Store-2 here) to put wireless links in one aisle
in each store. In this part, we extensively discuss our findings
along this line.

We start by considering the setup in Kmart. Fig. 4(a)
shows the aisle where we put two wireless links, based on
the experimental setup described in the previous section. The
ground-truth rate of arrival of people in the aisle is obtained
by manually counting the number of people in the security
camera footage covering the aisle. Fig. 6 and 7 show the
estimated and true rate of arrival in the aisle on two different
days (Monday and Friday) and for 1 hour respectively, using
our framework. Here, the rate of arrival is measured as the
number of people per each 10 minute time interval. It can
be seen that our framework accurately estimates the rate of
arrival and its trends. For instance, the average error in the rate
of arrival estimation is 0.15 people/min on day-1 (Monday),
when the true average rate of arrival is 0.44 people/min, and
0.2 on day-2 (Friday) when the true average rate of arrival is
0.85. Thus the error is very small as compared to the true rate
of arrival, which confirms the accuracy of our framework.

Weekday vs Weekend: Fig. 6 and 7 showed the true and
estimated traffic on Monday and Friday respectively. By plot-
ting them on the same graph, we can see interesting underling
trends for the traffic as a function of the day. More specifically,
Fig. 8 shows the estimated and true arrival rate for both of
these days. In general, it is expected that the traffic in the
store is higher during the weekend time, which is captured by
the true and estimated rate of arrival in Fig. 8. Such analysis
can help the retail stores obtain valuable occupancy analytic,
without relying on cameras (thus preserving the privacy), and
plan their resources accordingly.

We next discuss the experimental results obtained in Store-
2. Fig. 9 shows the estimated and true rate of arrival in the
aisle where we installed the wireless links, for a period of 1
hour. It can be seen that the estimated rate closely follows the
true rate. For instance, the average error in the rate of arrival
is 0.18 people/minute when the true average rate of arrival of

%The name of the store is withheld for the anonymity per request of the
store.
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Fig. 6: The figure shows the true and estimated
rate of arrival of people, using our framework, in
an aisle in Kmart on day-1. It can be seen that the
estimated rate closely matches the true rate.
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Fig. 9: The figure shows the true and estimated rate
of arrival of people, using our framework, in the
aisle of Store-2. It can be seen that the estimated
rate closely matches the true rate.
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Fig. 7: The figure shows the true and estimated
rate of arrival of people, using our framework, in
an aisle of Kmart on day-2. It can be seen that the
estimated rate closely matches the true rate.
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Fig. 10: The true and estimated rate of arrival of
people in Aisle-3 of Store-3, obtained using our
framework. It can be seen that the estimated rate
closely matches the true rate.
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Fig. 8: The figure shows the true and estimated rate
of arrival of people in the aisle of the Kmart store
on both Monday and Friday. It can be seen that the
traffic on Friday is higher than on Monday, which
is correctly estimated by our framework.

Sample estimates in aisle #12
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Fig. 11: The true and estimated rate of arrival of
people in Aisle-12 of Store-3, obtained using our
framework. It can be seen that the estimated rate
closely matches the true rate.

people in the considered aisle is 0.75 people/minute, which
further establishes the robust nature of our framework.

2) Occupancy estimation over the whole store (Store-3): So
far, we have presented the experimental results for estimating
the rate of arrival in the aisles where the wireless links are
present. In this section, we validate our framework to estimate
the rate of arrival in different aisles of a store based on wireless
links located in only a few aisles. For this purpose, we utilize
an online dataset from a large anonymous retail store [29].”
The dataset contains the trip details of each shopper. More
specifically, the data contains the location of the shopper in the
store at each time instant, while the shopper is walking in the
store. Thus, we can evaluate the number of people visiting each
aisle in a given time period, i.e., the rate of arrival of people
into each aisle. We then use this online dataset to validate the
proposed framework of section II-C.

Fig. 3 shows the floor plan of Store-3. This store contains
26 different regions, as labeled in the figure. The regions 1 to
14 are the main aisles in the store whereas the regions labeled
15 to 26 are the regions in the corners and the edges of the
store. In this section, we validate our framework using the
occupancy data in aisles 1 through 14. More specifically, we

7We note that we did not have permission to visually monitor the security
footage covering all the aisles in the aforementioned local Kmart and Store-2
to build the ground truth for this part. As such, we are using the large available
online dataset for Store-3.

utilize the knowledge of the rate of arrival of people in the
aisles 1, 6, 10, and 14 and the knowledge of the total rate of
arrival of people into two groups of aisles, 2—5 and 6 —9, and
the knowledge of the total rate of arrival of to estimate the rate
of arrival of people in all the aisles, i.e., aisles 1 to 14. The
knowledge of the rate of arrival of people in individual aisles
can be obtained by placing wireless links in these aisles, as we
throughly verified in Kmart and in Store-2. Similarly, the rate
of arrival of people into a sub-group of aisles can be obtained
by considering the sub-group of aisles as one big aisle and
placing the wireless links accordingly. For instance, to estimate
the rate of arrival in the sub-group of aisles 2 — 5, we insert
the Tx-1 and Tx-2 of the two wireless links on each end of
aisle-2 and the Rx-1 and Rx-2 of the two wireless links on
the corresponding ends of aisle-5. Fig. 3 shows the locations
where the wireless links would be, for sensing in the individual
aisles as well as for sensing in the 2 sub-group of aisles.
Without the proposed framework of this paper, we would have
to put sensors in all the aisles, which would require 56 nodes
(2 nodes for each wireless link). By using our framework,
on the other hand, we sense the rate of arrival in only 4
aisles and two groups of aisles, thus requiring only 24 sensor
nodes. Therefore, we achieve a 57% reduction in the number
of required sensor nodes. Since the data for this store is only
available online, we cannot manually put wireless links for
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Fig. 12: The average RMSE in estimating the rate
of arrival of people in each aisle of Store-3. It
can be seen that the RMSE error is very small
compared to the true average rate of arrival of
people.
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Fig. 15: The true and estimated rate of arrival of
people in Aisle-3 of Store-3, obtained using our
framework, in the presence of noise. It can be seen
that the estimated rate closely matches the true rate.
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Fig. 13: The average RMSE in estimating the rate
of arrival of people, averaged across all the aisles
in Store-3, as a function of time. It can be seen
that the RMSE error is very small compared to the
true average rate of arrival of people.
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Fig. 16: The true and estimated rate of arrival of
people in Aisle-12 of Store-3, obtained using our
framework, in the presence of noise. It can be seen
that the estimated rate closely matches the true rate.
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Fig. 14: The figure shows a histogram of the error
in the rate of arrival estimation in the Kmart store.
A Gaussian fit to the error is also shown. This
Gaussian noise is used to validate the robustness
of our framework.
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Fig. 17: The average RMSE in estimating the rate
of arrival of people in each aisle of Store-3. It
can be seen that the RMSE error is very small
compared to the true average rate of arrival of
people, even in the presence of noise.
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Fig. 18: The average RMSE in estimating the rate of arrival of people,
averaged across all the aisles in Store-3, as a function of time. It can be
seen that the RMSE error is very small compared to the true average rate of
arrival of people even in the presence of noise.

direct sensing in the aforementioned aisles/sub-groups. Thus,
we first test our proposed sparsity-based framework by using
the true arrival rate in the sensed aisles. We then add noise
(with the proper statistics) to the true arrival rate of the sensed
aisles/sub-group, and show the performance of our approach.
We next show the performance of our framework in this store.

Fig. 10 and 11 show the sample estimated rate of arrival in

Aisle-3 and Aisle-12 of the store, respectively, for a period of
120 hours. It can be seen that the estimated rate of arrival is
very close to the true arrival rate in these aisles. To characterize
the performance of our framework over all the aisles 1-14,
we next look at the average root mean square error (RMSE),
averaged across different time periods and different aisles.

Fig. 12 shows the average RMSE in the rate of arrival
estimates in each aisle, averaged over 120 hours. The figure
also shows the average true rate of arrival in each aisle,
averaged over the 120 hour time period. It can be seen that
the RMSE error is very small as compared to the true rate of
arrival in all the aisles. Fig. 13 shows the average RMSE error
in the rate of arrival estimation at each time, averaged over all
the aisles. It can be seen that the RMSE error is very small
as compared to the true rate of arrival at each time. Overall,
the error in rate of arrival estimation, averaged over all the
aisles and over 120 hour time period, is 0.03 people/minute
when the true average rate of arrival is 0.11 people/minute,
thus showing the accuracy of our framework.

So far, we validated our sparsity-based framework for Store-
3 when the true rate of arrival in sensed aisles/sub-groups
is known. However, when the rate of arrival is estimated by
actually placing the wireless links in the aisles, we can only
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get an estimate of the true rate of arrival, as we showed in
section III-C1. Therefore, we next validate our sparsity-based
framework in the presence of errors in the rate of arrival
estimation for Store-3. Since Store-3 data is only available
online, we first characterize the noise in the rate of arrival
estimation, by utilizing the data collected in the aisle of the
Kmart store. More specifically, we use the 2 hours of the data
we collected in the aisle of the Kmart store and estimate
the probability density function (PDF) of the error in the
rate of arrival estimation. Fig. 14 shows this PDF. Since the
error PDF resembles the Gaussian density function, we fit a
Gaussian PDF to the error PDF and estimate the corresponding
parameters of the Gaussian PDF. We then add a Gaussian noise
with the estimated parameters to the true rate of arrivals of
the online data set of Store-3. Thus, this process simulates
the effect of collecting the data by physically placing the
wireless links in the aisles. We next show the performance
of our framework for this scenario, for the same case of direct
sensing for aisles 1-14 and sub-groups 2 — 5 and 6 — 9.

Fig. 15 and 16 show the estimated and the true arrival rates
in Aisle-3 and Aisle-12, respectively. It can be seen that the
estimated rate is close to the true rate of arrival, even in the
presence of noise. Fig. 17 and 18 show the average RMSE
errors as a function of the aisles and time. It can be seen that
the average RMSE error is very small as compared to the true
rate of arrival. Thus our framework can robustly estimate the
rate of arrival throughout the store with minimal sensing.

IV. CONCLUSIONS

In this paper, we proposed a new framework to estimate
the rate of arrival of people over the aisles of a large retail
store, based only on the received power measurements of
wireless links that are located in only a few aisles, and without
relying on people to carry any device. We first showed how
to estimate the rate of arrival of people into an aisle, for the
case where people have a bi-directional flow, based on the
received power measurements of two wireless links that are
located in the aisle. We then exploited the spatial and temporal
smoothness of the occupancy dynamics over the whole store
and formulated an optimization problem to estimate the rate
of arrival throughout the store, based only on a small number
of wireless links that are installed in a few aisles. To validate
our proposed framework, we developed an experimental setup,
using TI CC2650 BLE chips, and ran experiments in three
different retail stores - Kmart, two other anonymous stores,
and showed that our approach can estimate the rate of arrival
of people in different aisles of a store with minimal sensing
(7% reduction in the number of required wireless links)
and with a high accuracy (average root mean square of 0.03
people/minute when averaged over all the aisles and time).
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