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ABSTRACT
In this paper, we are interested in passively tracking multiple people
walking in an area, using only the magnitude of WiFi signals from
one WiFi transmitter and a small number of receivers (configured
as an array) located on one side of the area. Past works on RF-based
tracking either track only a single moving person, use a large num-
ber of transceivers surrounding the area to track multiple people,
or use additional resources like ultra-wideband signals. Further-
more, magnitude-based tracking provides an attractive feature that
additional receiver antennas can easily be added to the antenna
array as needed, without the need for phase synchronization, since
the magnitude can be measured independently on the different
antennas. In this paper, we then propose a new framework that
uses only the magnitude of WiFi signals and expresses it in terms
of the angles of arrival of signal paths at the receivers as well as the
motion parameters of the virtual arrays emulated by the moving
people. We then use a two-dimensional MUltiple SIgnal Classifica-
tion (MUSIC) algorithm to estimate the aforementioned parameters,
and further utilize a Particle Filter with a Joint Probabilistic Data
Association Filter to track multiple people walking in the area. We
extensively validate our proposed framework in both indoor and
outdoor areas, through 40 experiments of tracking 1 to 3 people,
using only one transmit antenna and three laptops as receivers (a
total of four off-the-shelf Intel 5300 WiFi Network Interface Cards
(NICs)). Our results show highly accurate tracking (mean error of
38 cm in outdoor areas/closed parking lots, and 55 cm in indoor
areas) using minimal WiFi resources on only one side of the area.
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• Hardware → Wireless devices; • Computer systems organi-
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1 INTRODUCTION
In recent years, the idea of smart spaces, homes, and buildings is
increasingly becoming popular, leading to an increasing demand for
easy and effortless interaction of humans with their surroundings
and devices. This has also been accompanied by a huge growth
in the number of wirelessly-connected devices, leading to ubiq-
uitous RF signals. These RF signals interact with the people and
objects in the environment, and implicitly carry information about
various attributes of our surroundings. Consequently, there has
been a considerable interest in the research community in using
RF signals to learn about our surroundings. For instance, several
attempts have been made for using RF signals for localization and
imaging of static objects [13], localization of devices [14], crowd
occupancy estimation [7], tracking peoples’ movements [3, 18],
and gestures [26]. In particular, passively tracking multiple people
that are walking in an area, without relying on them to carry any
device, is a challenging problem of considerable interest, due to
its importance in many applications such as elderly monitoring,
intrusion detection, and retail analytics.

In this paper, we consider the problem of passively tracking
multiple people walking in an area, using minimal WiFi resources
on only one side. In particular, we are interested in multi-person
tracking using only the magnitude of WiFi Channel State Informa-
tion (CSI) measurements, measured using one WiFi transmitter and
a small number of WiFi receiver Network Interface Cards (NICs)
located on only one side of the area.

Device-free localization and tracking (DFLT) is a challenging
problem that has gained a considerable attention in the recent
years. The efforts exerted in DFLT can be broadly categorized
into two categories: (a) machine learning and fingerprinting-based
approaches, and (b) model-based approaches. Machine learning
and fingerprinting approaches (e.g. [23, 28, 30]) require extensive
prior calibration and training, which is both time consuming and
environment-specific. Model-based approaches, on the other hand,
build a model/relationship between the location (or track) of the
target and the wireless measurements at the receiver. They then
estimate the location and track of the target based on that model.
Earlier work in this category assumes the availability of extensive
amount of resources. For instance, [3] tracks multiple targets using
a link-crossing model based on RSSI, but with a large number of
sensors (total of 32) distributed on all sides of the tracking area.
Other attempts track multiple targets using specialized hardware
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Figure 1: An illustration of our passive multi-person tracking
setup. N people are walking in an area. A WiFi link consisting of
one Tx antenna and one small Rx array (for instance, from a couple
of laptops) is located on one side of this area. We are then interested
in estimating the tracks of the N people walking in the area using
only the magnitude of the received WiFi signal measurements.

and signals with very large bandwidth [1, 4]. More recently, WiFi
CSI has been made available on Commercial Off-The-Shelf (COTS)
WiFi devices, such as Intel 5300 and Atheros AR9580 WiFi cards.
The availability of CSI on COTS WiFi cards has opened the door for
DFLT techniques that require fewer resources than before. Several
works then utilized WiFi CSI to track a single moving target by
estimating different parameters of the wireless signal, e.g. Angle-of-
Arrival (AoA), Time of Flight (ToF), and Doppler spread [15, 16, 18].
Two common threads exist among the aforementioned CSI-based
device-free tracking approaches. First, all these approaches are de-
signed for single target tracking, and fail to track multiple targets
that are moving simultaneously. Second, these approaches rely on
the CSI phase information, which can be hard to measure accu-
rately or may be unavailable on other COTS devices. Furthermore,
relying on the phase information limits the flexibility of adding
more antennas to the receiver, since different WiFi cards need to
be synchronized for obtaining meaningful phase information. This
will add a considerable synchronization overhead to the system.
These two problems motivate the need for a device-free tracking
framework, that is able to track multiple targets, using only the
WiFi magnitude measurements.

Contribution Statements: In this paper, we propose a frame-
work for passively tracking multiple people walking in an area,
without requiring a prohibitive amount of resources (e.g. band-
width or number of transceivers), which were used previously for
such purposes. Our framework uses only the magnitude of WiFi
CSI measurements, measured from one side of the area, on a small
receiver array. More specifically,
• We propose a new magnitude-based framework to track multiple

people walking in an area, using one transmitter and a very small
receiver array (for instance, from a couple of laptops), without
the need to make any prior measurements in the area of interest.
By modeling the tracking problem in terms of only the signal
magnitude, our proposed framework can be implemented on
any off-the-shelf platform where phase measurements are not
reliable or are not easily available. Furthermore, additional Rx
NICs can be added to the receiver setup if required, without any
need for phase synchronization or calibration. On the other hand,
such a receiver antenna extension in the case of relying on phase

measurements would have required an antenna port on each NIC
to be used up for the purpose of synchronization, after which the
phase is still only accurate to within a median error of 20◦ [9].

• We propose a two-dimensional signal model for the estimation
of various AoA parameters that are functions of the targets’
locations and motion directions. By posing our problem as a
joint parameter estimation problem in this manner, we show
how the ambiguity in individual dimensions can be overcome.
We then extend the multi-dimensional MUSIC algorithm to our
magnitude-based modeling framework in order to estimate the
2D AoA parameters. Finally, we track multiple targets in the
area by using a Particle Filter (PF) with a Joint Probabilistic Data
Association Filter (JPDAF).

• We extensively validate our proposed multi-person tracking
framework through a total of 40 experiments in 6 different en-
vironments, with 1, 2, and 3 people walking on different paths,
on different days. We use only one transmit and 3 WiFi receiver
NICs on one side of the area to measure WiFi CSI magnitude.
Our results show highly accurate tracking with a mean error of
38 cm in outdoor areas/parking lots, and 55 cm in indoor areas.

The rest of this paper is organized as follows. In Sec. 2, we
provide a detailed discussion on the state-of-the-art for both single
and multiple target tracking. In Sec. 3, we describe our proposed
magnitude-based two-dimensional framework for the estimation of
AoA parameters. In Sec. 4, we show how to track multiple moving
targets using a particle filter with a JPDAF. We experimentally
validate our proposed framework for tracking multiple targets in
Sec. 5. Finally, we discuss the limitations and future extensions of
our proposed framework in Sec. 6, and conclude in Sec. 7.

2 RELATED WORK
In this section,we provide a review of the state-of-the-art on passive
target tracking using RF signals. We start by discussing the work
that only focused on single target tracking. This is then followed by
summarizing the work that enabled passive multiple target tracking.
We then place our proposed framework in the context of the state-
of-the-art work in tracking and discuss our contributions. A detailed
comparison of the different proposed methods (including ours) for
single and multiple target tracking is shown in Table 1.

Single target tracking: In [18], the authors proposed Widar2.0
for single target tracking, using one WiFi transmitter and a receiver
array to measure multiple wireless signal parameters. These pa-
rameters include ToF, AoA, Doppler spread, and attenuation. The
authors also rely on successive measurements in time in order to
select the single reflected path that fits the time series of these pa-
rameters. This reflected path is then used to localize the reflecting
target. Widar2.0 achieves an average tracking error of 75 cm. The
authors of [16] use a similar setup of one WiFi transmitter and two
receiver arrays located on two sides of the area. The receiver arrays
independently estimate the Doppler spread and AoA of the single
reflected path, and the target is localized accordingly, achieving a
median tracking error of 35 cm. In [15], the authors utilize two WiFi
links, each with one transmitter and one receiver array, to estimate
the AoA and ToF of the reflected path, and then choose the target’s
location as the one that best fits the measurements on both links,
simultaneously. They then achieve a median tracking error in the

182



Tracking from One Side – Multi-Person Passive Tracking with WiFi Magnitude IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

Paper Number of targets Bandwidth Magnitude/power
information only

Number of
devices used

Tracking from
one side Tracking error

Widar2.0 [18] Single Narrowband ✗ 2 WiFi NICs ✓ 75 cm
IndoTrack [16] Single Narrowband ✗ 3 WiFi NICs ✗ 35 cm
DynMusic [15] Single Narrowband ✗ 4 WiFi NICs ✗ 36–62 cm

[12] Single Narrowband ✓ 4 WiFi NICs ✗ 31 cm
WiTrack2.0 [1] Multiple (4) FMCW radar ✗ 1 FMCW radar ✓ 10.6–17.5 cm

[4] Multiple (2) UWB radar ✗ 1 UWB radar ✓ 0.6 cm*
[3] Multiple (4) Narrowband ✓ 32 ZigBee nodes ✗ 26–45 cm
[17] Multiple (3) Narrowband ✓ 24 ZigBee nodes ✗ 31–91 cm

SCPL [29] Multiple (4) Narrowband ✓ 22 CC1100 nodes† ✗ 108 cm
This paper Multiple (3) Narrowband ✓ 4 WiFi NICs ✓ 47 cm

* when compared to a colocated LiDAR system
† radio transcievers operating in the 909.1 MHz unlicensed band

Table 1: Comparison with the state-of-the-art in target tracking using RF signals.

range of 26–62 cm. The authors of [12] use one WiFi transmitter and
3 WiFi receivers to track a single target using a magnitude-based
framework for virtual array AoA estimation and a Particle Filter.
They then achieve a mean tracking error of 31 cm in an outdoor
environment. All these previously-proposed methods only focus on
tracking one target in the area, and thereby estimate the parameters
of a single reflected time-varying path. Hence, these methods can-
not directly be extended to accommodate multiple targets moving
in the area. Furthermore, the algorithms presented in [15, 16, 18]
rely on phase information of the received wireless signal, which is
not available on many COTS devices, and require calibration and
synchronization overhead when using multiple receivers.

Multiple target tracking: Several works have been proposed
to track multiple targets simultaneously. In [1], the authors propose
WiTrack2.0, a system that uses an FMCW radar, spanning 1.79 GHz
of bandwidth, in order to localize passive targets. An FMCW radar
produces a very high-resolution ToF profile of the environment.
Hence, it is possible to generate a heatmap with a high-resolution
in the range of the targets in the area. The ambiguity in cross-
resolution is then resolved by using multiple TX-RX pairs for the
FMCW radar, achieving a high localization accuracy of 10–17 cm.
In [4], the authors propose a Kalman-Filter-based algorithm to
track the ranges and velocities of two moving targets using a UWB
monostatic radar. Their method achieves a localization accuracy
of 0.6 cm when compared to a colocated LiDAR system. Other
works utilized off-the-shelf devices to solve the passive multi-target
tracking problem. For instance, the authors in [3] utilized many
ZigBee nodes (30–33) distributed all around the tracking area, and
measuring RSSI information. A target in the area blocks the Line
of Sight (LOS) of a subset of the links created by the nodes. The
location of the target is then calculated based on the links with the
highest changes in RSSI. The tracks of multiple targets are then
estimated by means of clustering and Kalman Filter algorithms. The
algorithm in [3] then achieves an average error in the range 26–
45 cm (depending on the environment, and the number of targets).
Similar algorithms that create a mesh network with a very dense
node deployment, and a resulting large number of links all around
the tracking area, were proposed in [17, 29].

As can be seen from the previous discussion, enabling multiple
target tracking has traditionally required a prohibitive increase in

the required resources, either a huge bandwidth and specialized
hardware as shown in [1, 4], or a large number of transceivers
distributed around the tracking area from all sides as shown in [3, 17,
29]. Our proposed framework in this paper is then the first to enable
multiple target tracking with comparable accuracy to the state-of-
the-art, without requiring extra resources. We show that multiple
target tracking is possible using only magnitude measurements on
one receiver array located on the same side of the tracking area as
the transmitter. We provide tracking results of up to 3 people, with
an average tracking accuracy of 47 cm across 40 experiments in six
different tracking areas.

3 PROPOSED 2D FRAMEWORK FOR
MULTI-PERSON TRACKING

Consider N people walking in an area, as shown in Fig. 1. A WiFi
transmitter (Tx) and a small WiFi receiver (Rx) array (for instance,
from a couple of laptops) are located on one side of the area. The
WiFi signals in the area are scattered and reflected off of the people
and the objects present in the area. When these signals reach the
receiver, they implicitly contain information about the people and
objects that they interact with, on their path from the transmitter
to the receiver. More specifically, as we shall see, these signals can
be used to infer the location and the track of the people walking
in the area. In this section, we show how to model this interaction
of WiFi signals with the people and the environment, in order to
obtain valuable information on their whereabouts. We next describe
the information that can be extracted from the magnitude of WiFi
signals in such a scenario. As mentioned earlier, the advantage
of using such a magnitude-based approach is that any number
of antennas from different receivers can be added to the array to
extend its length if the scenario warrants it, without any need for
phase synchronization or phase correction.

3.1 Review of 1D Signal Analysis [12]
In this section, we provide a brief primer on the various target
parameters that can be extracted from a one-dimensional signal
measured using the framework shown in Fig. 1. More specifically,
we first discuss the AoA information that can be extracted using
only the magnitude of the signal measured at a receiver antenna
array. Then, we discuss the virtual array parameters created by
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a person’s motion, which can be extracted from the magnitude
measurements at a single receiver antenna over time. We henceforth
refer to these two dimensions of measurements as the Rx array
angle-of-arrival parameters and Motion-induced array parameters.

3.1.1 Rx Array Angle-of-Arrival Parameters. Consider the receiver
array shown in Fig. 2. The baseband received signal (or equivalently,
the baseband channel gain) at the Rx array at one time instant due
to the WiFi signal transmissions in the area can be written as a
function of the distance d along the array as follows [11]:

c(d) = α0e
−j 2π

λ d cosϕ0 +

N∑
n=1

αne
−j 2π

λ d cosϕn + η(d), (1)

where αn is the complex amplitude (or equivalently the gain) of
the received signal path from the nth target at the first antenna, ϕn
is the angle-of-arrival corresponding to the nth path, α0 and ϕ0 are
the complex amplitude and angle-of-arrival corresponding to the
direct signal path from the transmitter to the receiver array, N is
the number of targets in the area, λ is the signal wavelength, and
η(d) is the receiver noise. The Fourier transform of |c(d)|2 for the
case of passive targets (|α0 | >> |αn |) can be derived as,

C(fd ) = Aδ (fd ) +
N∑
n=1

α0α
∗
nδ

(
fd −

ψA
n
λ

)
+

N∑
n=1

α∗0αnδ

(
fd +

ψA
n
λ

)
+ ζd (fd ),

(2)

where fd is the spatial frequency, δ (.) is the Dirac delta function,
A =

∑N
n=0 |αn |

2,ψA
n = cosϕ0 − cosϕn , and ζd (fd ) is the frequency

domain modeling error term. As can be seen, there are peaks in
the spectrum C(fd ) at frequencies (normalized with respect to 1/λ)
corresponding to±ψA

n . Therefore, given a path with angle-of-arrival
ϕn , we see two peaks in the spectrum corresponding to the two
frequencies ±(cosϕ0 − cosϕn ). We then have an ambiguity in the
AoA of that path, due to the ambiguity in the sign ofψA

n .
In the context of tracking multiple targets, the estimation of the

AoAs of the targets from Eq. 2 localizes the targets to a small extent.
However, the previously-mentioned ambiguity in the sign of ψA

n
hinders our ability to accurately estimate these angles for each
target. Furthermore, the resolution and the number of angles that
can be estimated is limited by the length of the receiver antenna
array, which we assume to be small. This is a crucial aspect that
we address in this paper, since there could be a relatively large
number of signal paths arriving at the receiver due to reflections
off of multiple targets as well as static objects in the area.

3.1.2 Motion-Induced Array Parameters. Next consider the sce-
nario of measuring the time series of the received signal at a single
antenna of the array shown in Fig. 2. As the targets move in the
area, they create equivalent virtual antenna arrays when the signal
receptions at the antenna are considered over time. The temporal
received signal in such a case can be written as,

c(t) = α0 +
N∑
n=1

αne
−j 2π

λ ψ
M
n t + η(t), (3)

Rx (x
R 

, y
R
) Tx

  
(x

T 
, y

T
)
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Figure 2: Signal model for the multi-target tracking problem. One
temporal snapshot of the measurements at the small receiver array
can estimate the array-based angles-of-arrival of the targets, and
measurements over time at one antenna of the array can estimate
the motion-induced array parameters of a moving target, using only
the magnitude of the received signals.

where αn is the complex amplitude of the path arriving from the
nth moving target at time t = 0, ψM

n = vn (cosϕRn + cosϕTn ) is
the motion-induced array parameter that arises from the virtual
antenna array created by the motion of the nth target, ϕRn and ϕTn
are angles with respect to the direction of motion as shown in
Fig. 2, vn is the speed of the nth target, and η(t) is the receiver
noise. Consequently, the magnitude of the signal can be used to
estimate the motion-induced array parameterψM

n , which contains
information about the location of the corresponding target. The
spectrum of |c(t)|2 generated with respect to the variable t can then
be written as follows:

C(ft ) = Aδ (ft )+
N∑
n=1

α0α
∗
nδ (ft−

ψM
n
λ

)+

N∑
n=1

α∗0αnδ (ft+
ψM
n
λ

)+ζt (ft ),

(4)
where ft is the frequency variable, and ζt (ft ) is the modeling error
term in the spectrum. In the spectrum in Eq. 4, we see peaks at
locations ±ψM

n , thereby exhibiting ambiguity regarding the sign
of ψM

n for the nth target. Furthermore, the value ψM
n itself does

not localize the nth target, since different locations, headings and
speeds of the target can result in the same value ofψM

n . However,
it is a function of the targets’ motion parameters, which is still
informative and can be utilized to track the moving targets over
time [12].

In summary, both the Rx array angle-of-arrival parameters (ψA)
and motion-induced array parameters (ψM ) measure different quan-
tities related to the targets’ locations and headings, but are ambigu-
ous in the sign of the respective measurements as well as the loca-
tions they correspond to, in the area of interest. We next propose a
framework to jointly estimate both quantities, and show that this
joint estimation additionally eliminates the ambiguity in the signs
of the individual measurements. Sec. 4 then shows how to resolve
the residual location ambiguity and fully track the targets.

3.2 Multi-Dimensional Signal Analysis for
Target Tracking

So far, we have seen that the Rx array angle-of-arrival (ψA) and
motion-induced array parameters (ψM ) contain different kinds of
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information about the targets in the area. In this section, we pro-
pose to estimate these parameters jointly, by using the magnitude-
based framework to generate a joint spectrum. Consider the multi-
dimensional received signal c(t ,d), which is a function of time t
and distance d along the array, written as follows:

c(t ,d) = α0e
−j 2π

λ cosϕ0 +

N∑
n=1

αne
−j 2π

λ ψ
M
n te−j

2π
λ d cosϕn + η(t ,d),

(5)

where η(t ,d) is the receiver noise. The two parametersψA andψM

then appear jointly in the two-dimensional spectrum generated
from |c(t ,d)|2. More specifically, the 2D spectrum of |c(t ,d)|2 can
be written as

C(ft , fd ) =Aδ (ft ) +
N∑
n=1

α0α
∗
nδ (ft −

ψM
n
λ
, fd −

ψA
n
λ

)

+

N∑
n=1

α∗0αnδ (ft +
ψM
n
λ
, fd +

ψA
n
λ

) + ζt,d (ft , fd ),

(6)

where δ (., .) is the 2D Dirac delta function, and ζt,d (ft , fd ) repre-
sents the modeling error term in the 2D spectrum. The locations of
the peaks in this 2D spectrum then give the corresponding pairs of
ψA andψM values for each of the moving targets. By using a joint
estimation framework, the chance of two targets resulting in the
same peak considerably decreases. For instance, two targets could
have the sameψA values, but they could be different in theirψM

values, or vice versa. Such scenarios are now well separated in the
2D spectrum.

Note that in the joint spectrum in Eq. 6, we still obtain two peaks
corresponding to each target in the area. For instance, the nth tar-
get generates peaks in the spectrum at (ψM

n ,ψ
A
n ) and (−ψM

n ,−ψ
A
n ).

However, by choosing the location of the transmitter appropriately,
we can eliminate this ambiguity. To this end, we propose to place
the transmitter at one extreme of the angle-of-arrival space of the
receiver array (ϕ0 = 0◦ or ϕ0 = 180◦). Without loss of generality,
suppose that we place the transmitter such that ϕ0 = 0◦, as shown
in Fig. 2. Then,ψA

n = 1 − cosϕn , which is a quantity that lies in the
interval [0, 2]. This implies that −ψA

n lies in [−2, 0]. Since these two
intervals are disjoint, we can restrict the search space ofψA in the
spectrum to the [0, 2] interval. Then, the nth target generates only
one peak in the limited spectrum at (ψM

n ,ψ
A
n ), thereby eliminating

the ambiguity in the sign of both theψ parameters. We henceforth
use this configuration in all the discussions in this paper. A sim-
ilar analysis can be derived for the case when the transmitter is
located such that ϕ0 = 180◦. Thus, our proposed joint framework
eliminates the ambiguity in the peaks and provides a larger search
space for multiple targets in the spectrum. Fig. 3 shows an example
of a 2D spectrum with 3 peaks corresponding to 3 targets in the
region −2 ≤ ψM ≤ 2, and 0 ≤ ψA ≤ 2. The locations of the peaks
in the (ψM ,ψA) space are (1.2, 1.4), (1.2, 0.6), and (−1.2, 0.6). In the
1D analysis for ψM , all the peaks would not be resolvable since
they have the same absolute value of 1.2. On the other hand, in the
1D analysis for theψA dimension, two of the peaks would not be
resolvable due to having the same value of 0.6. However, as can be
seen in Fig. 3, all three peaks are resolvable in the joint 2D spectrum.

Figure 3: A sample 2D spectrum with 3 peaks corresponding to 3
targets in an area. The locations of the peaks in the (ψM , ψA) space
are (1.2, 1.4), (1.2, 0.6), and (−1.2, 0.6). The peaks are resolvable only
in the joint 2D spectrum, but not in the individual dimensions.

So far, we have shown how the peaks in the joint spectrum
in Eq. 6 contain information about the targets in the area. While
this joint spectrum can easily be obtained by using a 2D Fourier
Transform on |c(t ,d)|2, in practice, we would need a long antenna
array to get a reasonable resolution in the fd dimension in the 2D
spectrum. Thus, we next discuss how we can efficiently estimate
the required 2D spectrum, using MUSIC, even with a small Rx an-
tenna array, and subsequently use that information to track moving
targets in the area.

Remark 1. Note that in equations 5 and 6, the static multipath
does not affect the locations of the peaks of the moving targets in the
spectrum. All the signal paths corresponding to the static multipath get
lumped atψM = 0 in the spectrum. Thus, by removing the temporal
mean of |c(t ,d)|2, we can eliminate the effect of the static multipath.

3.3 Multi-Dimensional Parameter Estimation -
2D MUSIC

In this section, we describe our framework to estimate the 2D spec-
trum from the raw spatio-temporal magnitude-squared measure-
ments |c(t ,d)|2. We can then estimate the positions of the spectrum
peaks, which constitute a set of (ψM ,ψA) pairs that carry informa-
tion about the locations and tracks of the N moving targets. Then,
in Sec. 4, we show how this set of pairs can subsequently be used
to track the N moving targets in the area.

Spectral content estimation of time or space signals is a well-
explored problem in the literature, and several methods have been
proposed to this end. Examples of these methods include, but are not
limited to, Fourier Transform [24], MUltiple SIgnal Classification
(MUSIC) [20], and Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) [19]. In this paper, we propose to
use 2D MUSIC spectral estimation for the problem of Sec. 3.2, due
to its simplicity and high-resolution capability. Another advantage
of using MUSIC for the joint estimation of parameters is that the
resolvability of paths in each dimension depends on the length of
the arrays in both dimensions [25]. For instance, while a longer
time window better resolves paths in the dimension of time, it can
also help resolve paths in the dimension of space, i.e. paths that
have the sameψM but differentψA. This is particularly crucial in
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the context of multi-target tracking, since we need to clearly dis-
tinguish the peaks in the spectrum, whereas for the case of single
target tracking, one would only be concerned with the location of
the single-largest peak. In our framework of multi-person track-
ing, we are then interested in the joint estimation of parameters
(ψM ,ψA) from the multi-dimensional signal model shown in equa-
tions 5 and 6. We next show how we can utilize 2D MUSIC for a
magnitude-based signal model in order to estimate the spectrum
and the corresponding peaks.

Consider the scenario where a receiver array contains MA an-
tennas with inter-antenna spacing of dant. The antennas of the
array sample the received signal at a rate of 1/Ts samples/sec for a
duration Twin. The number of samples in space and time are thus
MA and MT = ⌊Twin/Ts ⌋, respectively. Denote by C the MA ×MT
matrix of magnitude-squared measurements in the spatio-temporal
window:

C =


|c1,1 |2 |c1,2 |2 . . . |c1,MT |

2

|c2,1 |2
. . .

...
...

. . .
...

|cMA,1 |
2 . . . . . . |cMA,MT |

2


, (8)

where ci, j = c ((i − 1)dant, (j − 1)Ts ) is the measured 2D received
signal described in Eq. 5.

In order to estimate the 2D spectral content of the measurements
in C, we define the steering vector s(ψM ,ψA) as shown in Eq. 7.
Then, it is straightforward to show that the vectorized form of C
can be written in terms of the steering vectors of the paths arriving
at the Rx array as follows:

®C = SA + ®η, (9)

where ®(.) denotes the vectorized form of a matrix, S is anMAMT ×N
matrix whose nth column is s(ψM

n ,ψ
A
n ), and A = [α1,α2, . . . ,αN ]⊤.

The MUSIC algorithm calculates the eigen-decomposition of the
correlation matrix Rc of the measurement vector ®C [20],

Rc = E{ ®C®CH } = SRASH + Rη , (10)

where RA = E{AAH }, Rη = E{ηηH }, and E{.} is the expectation
operator. It can be shown that the eigenvectors of Rc are divided
into bases of a signal subspace, whose dimension is equal to the
rank of RA, and bases of a noise subspace, which is orthogonal to all
the steering vectors corresponding to the N signal paths arriving
at the receiver array. Therefore, we can define a pseudospectrum
P(ψM ,ψA) as

P(ψM ,ψA) =
1

sH (ψM ,ψA)EN EHN s(ψ
M ,ψA)

, (11)

where EN is a matrix whose columns constitute the bases for the
noise subspace. P(ψM ,ψA) peaks at the locations of (ψM

n ,ψ
A
n ),n =

1, . . . ,N , since the steering vectors corresponding to these locations
are orthogonal to the noise subspace EN . Hence, extracting the
locations of the peaks of P(ψM ,ψA) provides the required (ψM

n ,ψ
A
n )

pairs needed for tracking the N targets.
A critical assumption in the MUSIC algorithm is that the matrix

RA is full rank, i.e., all the different N signals are uncorrelated.
Such an assumption is not valid in many practical scenarios where
scattering and multipath propagation are involved. Then, in order to
uncorrelate the signals, spatial smoothing is a technique commonly
used in the literature [5]. In spatial smoothing, the correlation
matrix Rc is calculated by averaging the correlation matrices of
different subsets of the antenna array, given that each of the subsets
is a set of contiguous antennas. Then, to address the correlation
of signals in our 2D framework, we extend spatial smoothing to
spatio-temporal smoothing MUSIC for our scenario. We divide the
matrix C into overlapping sub-matrices Csub of size Msub

A ×Msub
T

each. The correlation matrix Rc is then calculated as the average
of the correlation matrices Rsub

c of the sub-matrices Csub. Similar
spatio-frequential smoothing techniques have been proposed for
the JADE MUSIC problem in the literature [2].

After computing the pseudospectrum P(ψM ,ψA), we next find
the locations of the peaks of the pseudospectrum as

Ψ =
{
ψj = (ψM

j ,ψ
A
j ), j = 1, . . . , J

}
,

where J is the number of detected peaks in the pseudospectrum.
As we shall see next, this information is then used to estimate the
tracks of the N targets.

4 MULTIPLE TARGET TRACKING
In this section, we show how we can use the extracted information
from the 2D spectrum to track multiple targets. In order to extract
the information about the targets’ locations and headings at time t ,
we apply the aforementioned 2D spatio-temporal smoothing MUSIC
algorithm on the data |c(t ,d)|2 in a time window of duration Twin
starting at time t , to extract the set of peaks Ψt at time t . We
first list the problems that arise when relying directly on Ψt (with
cardinality Jt ) for tracking the N targets. Then, we present our
solutions to overcome these problems and reconstruct the targets’
tracks using Ψt .

Two main problems arise when using Ψt for tracking:
• Ambiguity: As previously mentioned, while the 2D joint pa-

rameter estimation resolves a few ambiguities that exist when
estimating each parameter individually, the pair of (ψM ,ψA)

does not give sufficient information about the location of the
target that resulted in a particular measurement. For instance,
Fig. 4 shows an example of two different valid solutions to a
target’s location and heading for a measurement ofψM = 0.187

s
(
ψM ,ψA

)
=

[ array measurements at t=0︷                                              ︸︸                                              ︷
1, e−

j2π
λ ψAdant , . . . , e−

j2π
λ ψA(MA−1)dant ,

array measurements at t=Ts︷                                                                                   ︸︸                                                                                   ︷
e−

j2π
λ ψMTs , e−

j2π
λ (ψMTs+ψAdant), . . . , e−

j2π
λ (ψMTs+ψA(MA−1)dant), . . .

. . . , e−
j2π
λ ψM (MT −1)Ts , e−

j2π
λ (ψM (MT −1)Ts+ψAdant), . . . , e−

j2π
λ (ψM (MT −1)Ts+ψA(MA−1)dant)︸                                                                                                               ︷︷                                                                                                               ︸

array measurements at t=(MT −1)Ts

]⊤
(7)
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Rx array Tx antenna
(-3,0) (3,0)

(-1,2)

(1.5,4.5)

x

y

Figure 4: Example of ambiguity resulting from the measurement
of ψ = (0.187, 0.707). Two targets result in the same measurement:
one at location (-1,2) with heading of 0◦, the other at location (1.5,4.5)
with heading of 173◦. Both targets have a speed of 1 m/s.

andψA = 0.707, thus showing the ambiguity prevalent in each
(ψM ,ψA) measurement.

• Association: At each time instant, we extract a set of Jt measure-
ments from the 2D spectrum. However, we lack the knowledge
of the subset of these Jt measurements that are actual detec-
tions from the moving targets, and the complimentary subset
of false alarms. Furthermore, for the subset of actual detections,
we would need an association profile of which detections corre-
spond to which targets. Such an issue does not arise and is thus
not addressed in a single target tracking framework. Thus, the
methods proposed for single-target tracking cannot be directly
utilized for multi-target tracking in this paper.

In order to overcome these problems, we exploit the fact that the tar-
gets are moving and model the measurements associated with the
targets’ motion as a nonlinear dynamical system [12]. We further
utilize a Particle Filter (PF) with a Joint Probabilistic Data Associa-
tion Filter (JPDAF) to solve this dynamical system and obtain an
estimate for the track of each target, as we shall see next.

Consider the scenario where a Tx is located at (xT ,yT ) and a
Rx array is centered at (xR ,yR ) such that its array axis is paral-
lel to the x-axis, as shown in Fig. 2. We define the state of the
nth target at time t as a 4-dimensional vector xnt that carries in-
formation about the target’s location, heading, and speed. More
specifically, xnt =

[
xn (t),yn (t),θn (t),vn (t)

]⊤, where xn (t),yn (t)

define the location of the nth target at time t , θn (t) is its direction of
motion, measured with respect to the x-axis, and vn (t) is its speed.
Furthermore, we define a measurement process ψn (t) as the pair
(ψM
n (t),ψA

n (t)), which can be related to the target’s state as follows:

ψM
n (t) = vn (t)

(
(xR − xn (t)) cos(θn (t)) + (yR − yn (t)) sin(θn (t))√

(xR − xn (t))2 + (yR − yn (t))2

)
+vn (t)

(
(xT − xn (t)) cos(θn (t)) + (yT − yn (t)) sin(θn (t))√

(xT − xn (t))2 + (yT − yn (t))2

)
+ ηM (t),

(12)

and

ψA
n (t) = 1 −

(
xn (t) − xR√

(xR − xn (t))2 + (yR − yn (t))2

)
+ ηA(t), (13)

where ηM and ηA are measurement noise processes with variances
σ 2
ηM and σ 2

ηA , respectively. On the other hand, we assume a simple
motion dynamics model for the targets, in which a target maintains
the same direction of motion with probability Pc , and occasionally
changes that direction with probability 1 − Pc . More specifically,
we assume the state of the nth target evolves with time according
to the model xnt+1 = дn (x

n
t ) as follows:

xn (t + 1) = xn (t) +vn (t) cos(θn (t)) + ηxn (t + 1),
yn (t + 1) = yn (t) +vn (t) sin(θn (t)) + ηyn (t + 1),

θn (t + 1) = ηθn (t + 1) +
{
θn (t) w.p. Pc
∼ U(0, 2π ) w.p. 1 − Pc

,

vn (t + 1) = vn (t) + ηvn (t + 1), (14)

where ηxn ,ηyn ,ηθn , and ηvn are all dynamics noise processes with
variances σ 2

ηxn ,σ
2
ηyn ,σ

2
ηθn , and σ 2

ηvn , respectively, and U(0, 2π ) is
the uniform distribution in the interval [0, 2π ).

For the estimation of the state of the nth target xnt at time t ,
we propose to compute the filtering Probability Density Function
(PDF) p(xnt |Ψ1:t ) of the nth target’s state at time t given all the
measurements up to time t . Then, we use the mean of this PDF
as the estimate of the target’s state x̂nt = E

{
xnt |Ψ1:t

}
. To this end,

we propose to use a Particle Filter (PF) for the computation of the
filtering PDF of the nth target [21]. The underlying principle of
PFs is that they approximate any probability distribution using
samples (or particles) drawn from that distribution. Such a repre-
sentation is favorable in many scenarios, especially when nonlinear
random variable transformations are involved. The steps of the
PFs used in our problem are summarized in Algorithm 1. The PF
for the nth target starts by drawing a total of I samples/particles
x[i,n]1 , i = 1, . . . , I from an initial distribution χn1 (x

n
1 ), which can

depend on any prior information we have about the initial state of
the nth target. Then, these particles are given importance weights
w
[i,n]
1 which represent how well they fit the current set of measure-

ments Ψ1 (step 4 in Algorithm 1). However, the aforementioned
association problem hinders the completion of this step, since the
PF lacks the knowledge of which of the measurements in Ψ1 was
generated by the nth target. To overcome this, we propose to utilize
a Joint Probabilistic Data Association Filter (JPDAF) to calculate the
importance weights [22]. We will discuss the details of the JPDAF
later in this section. After the importance weights are calculated, a
resampling step (step 9) is performed in order to neglect the low-
weight particles and retain particles that have a high probability of
producing the current measurement set. The resampled particles
then evolve according to the motion model in Eq. 14 and the whole
process is repeated for consecutive time instants. More details on
PFs can be found in [21].

The JPDAF, on the other hand, deals with the problem of associ-
ating measurements to targets. Consider the set of measurements
Ψt = {ψj , j = 1, . . . , Jt } measured at time t . Some of these measure-
ments can be false alarms that are not associated with any target,
arising due to the modeling errors. We denote the probability of
such false alarms as PFA. Furthermore, some target measurements
can be missing from the set Ψt , for instance, due to blockage by
other targets. We denote the probability of a target miss as 1 − PD ,
where PD is the detection probability. The underlying principle
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of the JPDAF is then to calculate the probabilities of all possible
association profiles given the current set of measurements and par-
ticles [22]. An association profile ω matches each target to one of
the Jt measurements. In other words, an association profile ω is a
set of N pairs (k, l) where l = 1, 2, . . . ,N , k ∈ {0, 1, . . . , Jt }, and
a pair (k, l) represents assigning the measurement ψk to the l th

target.1 Afterwards, the probability of the nth target generating the
measurementψj can be computed by summing the probabilities of
all the association profiles which assign the measurementψj to the
nth target. We denote the set of all such association profiles by Ωjn ,
i.e., Ωjn = {ω; (j,n) ∈ ω}. The details of the JPDAF calculation of
the importance weights are shown in Algorithm 2.

Remark 2. Note that in the case of tracking one person, we still
utilize the JPDAF in the calculation of the particle weights in the PF.
In such a case, the main function of the JPDAF is to distinguish false
alarm measurements from the actual measurement corresponding to
the target’s motion.

Algorithm 1 Particle Filter for Motion Tracking
Input: Total tracking time T , Number of particles I , Number of
moving people N , Measurements Ψ1:T
Output: Estimate of the target states x̂n1:T ,n = 1, 2, . . . ,N

1: Initialize t = 1
2: for 1 ≤ n ≤ N do
3: Sample x[i,n]1 ∼ χn1 (x

n
1 ) for i = 1, 2, . . . , I

4: end for
5: Compute the importance weights w̃[i,n]

1 using the JPDAF in

Algorithm 2, and normalize w[i,n]
1 =

w̃ [i,n]
1∑I

i=1 w̃[i,n]
1

6: Estimate the initial state of the nth target as x̂n1 = E{xn1 |Ψ1} =∑I
i=1w

[i,n]
1 x[i,n]1

7: for 2 ≤ t ≤ T do
8: for 1 ≤ n ≤ N do
9: Sample x̃[i,n]t−1 , for i = 1, . . . , I , from the distribution de-

fined by p(x̃nt−1 = x[i,n]t−1 ) = w
[i,n]
t−1

10: Sample x[i,n]t ∼ дn (x̃
[i,n]
t−1 )

11: end for
12: Compute the importance weights w̃[i,n]

t using the JPDAF in

Algorithm 2, and normalize w[i,n]
t =

w̃ [i,n]
t∑I

i=1 w̃[i,n]
t

13: Estimate the state of the nth target as x̂nt =
∑I
i=1w

[i,n]
t x[i,n]t

14: end for

5 EXPERIMENTAL RESULTS
In this section, we present the experimental results of our proposed
magnitude-based framework for multi-person tracking, using WiFi
CSI magnitude measurements from one side of the area. We first
discuss our experimental setup and the practical considerations
that arise in these experiments. We then show the performance
1Note that the pair (k = 0, l ) represents the case of no measurement associated to the
l th target, which can happen with probability (1 − PD ), where PD is the detection
probability.

Algorithm 2 Joint Probabilistic Data Association Filter for Particle
Weight Calculation

Input: All current particles x[i,n], current measurement set Ψ,
PD , PFA
Output: The particles’ importance weights w̃[i,n]

1: Calculate the number of current measurements J = |Ψ|

2: Calculateγ [i,n]j = p(ψj |x[i,n]), which denotes the probability of
the measurementψj being generated by the nth target having
a state x[i,n], according to Eq. 12 and Eq. 13

3: Generate all possible association profiles ω, where ω =

{(k, l);k ∈ {0, 1, . . . , J }, l = {1, . . . ,N }}, and (k, l) is a pair
assigning the measurementψk to the l th target

4: Calculate the probability of each association profile as

p(ω |Ψ) = P
J−|ω |

FA P
|ω |− |ωo |
D (1 − PD )

|ωo |
∏

(k,l )∈ω
k,0

1
I

I∑
i=1

p(ψk |x
[i,l ])

(15)
where ωo is a subset of ω with targets not being assigned to
any of the measurements, i.e., ωo = {(k, l); (k, l) ∈ ω,k = 0}

5: Calculate the probability that a measurementψj is caused by
the nth target βjn by summing over all association profiles
making such an assignment,

βjn =
∑

ω ∈Ωjn

p(ω |Ψ) (16)

6: Calculate the importance weights

w̃[i,n] =
1∑J

j=0 βjn

©­«β0n +
J∑
j=1

βjnp(ψj |x[i,n])
ª®¬ (17)

of our tracking framework through extensive experiments (40 in
total) carried out in six different environments, with various levels
of clutter. Finally, we discuss the impact of several experimental
parameters on the results, and compare with the state-of-the-art
tracking algorithms.

5.1 Experimental Setup
For the data collection process, we use laptops with Intel 5300 WiFi
NICs for both transmission and reception. For the Tx, a tripod-
mounted antenna is connected to one port of an Intel card that
broadcasts WiFi packets on channel 36 in the 5 GHz band. We then
use the WiFi cards of three laptops as receivers, with each WiFi
card providing two antenna ports. In other words, we use WiFi
NICs of three laptops and connect two WiFi ports of each laptop
to two antennas mounted on a tripod, as shown in Fig. 5.2 The 3
Rx WiFi NICs log the packets transmitted on the WiFi channel. We
then process the measured data offline using Csitool [10] to extract
the CSI measurements and track the moving subjects. As previously
2Note that while each Intel 5300 NIC has 3 antenna ports available, we observed that
the signal on port 3, which is located between port 1 and 2 on the NIC, is sometimes
corrupted due to crosstalk (as is reported by other users [8]). Hence, we use only ports
1 and 2 on each WiFi Rx. In the future, if one could obtain clean measurements on all
the three ports, then one would only need 2 Rx laptops with Intel 5300 NICs to achieve
the results of this paper.
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Figure 5: Receiver setup: WiFi cards of 3 laptops are used, resulting
in 6 total antennas that we space λ/2 apart on a tripod as shown.

mentioned, since we rely only on the magnitude of the CSI mea-
surements, the Rx NICs do not need any phase synchronization.
Thus, our proposed framework is also flexible to facilitate further
addition of antennas to the array as needed, without any additional
calibrations. We next discuss some practical considerations that
arise in our experiments.
• Spatio-temporal sampling rates: As shown in Sec. 3, the re-

flected signal from the nth person results in a peak in the 2D spec-
trum at (ψM

n ,ψ
A
n ) =

(
vn (cosϕRn + cosϕTn ), 1 − cosϕn

)
. Hence,

the maximum frequency content for ft and fd are 2vmax
λ and

2/λ respectively, where vmax is the maximum possible human
walking speed. Then, according to the Nyquist sampling theorem,
the sampling rates for the 2D received signal in time and space
should be greater than 4vmax

λ and 4/λ respectively.
In the temporal dimension, we set the sampling rate to 1000
packets/sec, which is much higher than the required sampling
rate of 139 packets/sec (assuming a vmax of 2 m/s). However, for
the spatial dimension, fixing the antennas λ/4 meters (1.45 cm)
apart is difficult due to the relatively large physical dimensions
of the antennas. Hence, we place the antennas λ/2 apart, which
leads to aliasing in the fd dimension of the spectrum. In order to
overcome such aliasing effect, we propose to place the Rx array
in a corner of the tracking area, so that the ϕns for all the targets
are less than 90◦. Hence, the maximum possible value of fd in
this case is 1/λ, and such a λ/2-spaced array configuration does
not suffer from aliasing problems.

• Data clean-up process: Raw CSI measurements on commodity
WiFi cards can suffer from noise due to the internal state transi-
tions in the Tx and Rx WiFi NICs [27]. To reduce the noise in the
raw CSI measurements, we utilize two denoising schemes.

(1) Principal Component Analysis (PCA): The Intel 5300 NIC re-
ports CSI measurements on 30 different subcarriers. It has
been shown in [27] that the changes in CSI due to human
movements on different subcarriers are correlated. Hence, the
reflected signal can be separated from noise by performing
PCA on the data from the 30 subcarriers.

(2) Wavelet denoising: Discrete Wavelet Transform (DWT)-based
noise suppression techniques have been shown to outperform
traditional denoising schemes such as band-pass filters [6].
Hence, we apply wavelet denoising on the PCA-denoised signal
in order to suppress residual noise.

• 2D MUSIC parameters: We choose the array parameters of
the 2D MUSIC algorithm described in Sec. 3 as follows: Twin =

(a) (b)

Rx Tx

Rx Tx

Figure 6: Tracking experimental setup in outdoor areas in (a)
an open area and (b) a closed parking lot. The boundaries of the
workspace are marked with a solid black line.

0.5s , T sub
win = 0.25s , MA = 6, and Msub

A = 5. Note that a small
Twin implies that people can take any track in our framework
and are not limited to walk on straight lines. In order to detect
peaks in the pseudospectrum, we define a peak as a point in the
pseudospectrum whose value is greater than its neighbors, and
greater than an empirically predefined threshold pth = 0.6 ×

Pmin, dB, where Pmin, dB is the minimum value in the normalized
pseudospectrum in dB (with the maximum value being 0 dB in
the normalized pseudospectrum).

• Particle filter parameters: In order to set the parameters of the
PF, we collect a few prior measurements (not in the same area of
the experiment) and estimate the values for the noise variances
and probabilities of detection and false alarms. These parameters
are then used in all the different experiments in different areas.
The parameters are then set as follows: σηM = 0.1, σηA = 0.07,
σηxn = σηyn = 1 cm, σηθn = 1◦, σηvn = 2.5 × 10−3, Pc = 0.9,
PD = 0.85 , PFA = 0.25 for outdoor areas, PFA = 0.35 for indoor
areas, and I = 5000. Note that the probability of false alarm is
higher in indoor environments due to the stronger multipath.

5.2 Tracking Results
In this section, we show how our proposed framework can track
multiple moving people in an area, based on only the WiFi CSI
magnitude measurements of 3 laptops that are located on one side
of the area. We carry out tracking experiments in six different
environments, with up to three people walking simultaneously in
the area. We categorize the areas into outdoor and indoor scenarios.
Fig. 6 shows the outdoor areas, where Fig. 6 (a) is an open area with
minimal clutter, and Fig. 6 (b) is a parking lot which has considerable
multipath due to the walls and the low ceiling beams. The top row
of Fig. 8 then shows some of the indoor areas, which are more
challenging than the outdoor areas due to higher extent of clutter
(e.g. furniture, walls) and the resulting multipath. In all experiments,
we ask the subjects to walk on predefined tracks defined by floor
markers in a 7 m × 7 m area, and time-stamp their motion at the
markers in order to obtain the ground-truth locations of the subjects.
Furthermore, since we cannot know the exact point of reflection
on the person’s body at which the signal bounces off at each time
instant, we approximate a person as a cylindrical object of radius 25
cm. We then calculate the tracking error, at any time instant, as the
minimum distance between the estimated location and the surface
of that cylinder. Such a method of error calculation has previously
been adopted in similar contexts in the literature [12, 16].

Outdoor Tracking: In this section, we show our tracking results
for the outdoor areas shown in Fig. 6. The first location, shown in
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Figure 7: Sample multi-person tracking results in the outdoor areas shown in Fig. 6 – (a) One person walking along a diamond-shaped route
in the area of Fig. 6b, (b) two persons walking back and forth on perpendicular straight lines in the area of Fig. 6a, and (c) three persons
walking on different parts of an M-shaped route in the area of Fig. 6b. The light background patches represent the actual tracks, while the ⊙

symbols represent their starting points.

Fig. 6 (a), is a relatively open area with little to no clutter, resulting in
minimal multipath. On the other hand, the second location, shown
in Fig. 6 (b), is a parking structure where the walls and ceiling beams
generate considerable multipath. In both cases, the Tx antenna and
the 3 Rx laptops are fixed to the corners on one side of the 7 m × 7 m
area of interest, as shown in Fig. 6. Overall, we ran 17 experiments
in these 2 areas of Fig. 6, with 1, 2, and 3 people on several different
days, walking in different paths. In all the experiments, we initialize
the PF with particles that are uniformly distributed in a 3 m × 3 m
square around the locations where the targets start their motion.
Fig. 7 then shows a few sample results of our tracking framework
for these two areas. It can be seen that our proposed framework
estimates the track of the people with a high accuracy in all the
cases. Overall, we achieve a mean tracking error of 38 cm (median
of 29 cm) when considering all the 17 experiments.

Indoor Tracking: In this section, we show our tracking results
for the indoor areas of conference rooms, a classroom, and a lounge
area, shown in the top row of Fig. 8. In all the locations, the walls,
ceiling, and furniture constitute clutter which makes the effect of
multipath more significant. While we can remove the effect of the
static multipath by subtracting the temporal mean of the received
signal as described in Remark 1, higher order reflections involving
both a moving target and a static object, although weaker, still affect
the received signal, and consequently the 2D spectrum. This results
in a higher number of false alarms as mentioned in Sec. 5.1.

Similar to the outdoor areas, we fix the Tx antenna and the 3
Rx laptops to the corners on one side of the area of interest. We
also initialize the PF with particles that are uniformly distributed
in a 3 m × 3 m square around the locations where the targets
start their path. Overall, we ran 23 experiments in 4 different areas
(the three areas shown in Fig. 8 and one additional conference
room) with 1, 2, and 3 people on several different days, walking in
different paths. The bottom row of Fig. 8 then shows a few sample
tracking results for these locations. It can be seen that our proposed
magnitude-based framework achieves a good accuracy of tracking
multiple people in indoor environments as well, with an overall
mean tracking error of 55 cm (median of 39 cm) across all the 23
different experiments. It should be noted that we do not utilize
any information about the clutter (e.g., the furniture) in the track

estimation framework. If the information about the locations of
the furniture was known apriori, it can be used, for example, to
prohibit any particles in the PF from appearing on their locations,
thereby improving the track estimation accuracy.

5.3 Discussion
In this section, we investigate the impact of some of the experi-
mental parameters on the performance of our proposed tracking
framework, and compare the performance of our proposed frame-
work with the state-of-the-art.

Effect of environment: As previously mentioned, indoor en-
vironments are more challenging than outdoor ones because of the
stronger multipath resulting from the clutter. The noisier spectrum
and higher false alarm probability affect the performance of the
tracking framework and increase the tracking error. To quantify this
effect, Fig. 9 (a) shows the Cumulative Distribution Function (CDF)
of the tracking error for both indoor and outdoor environments.
As can be seen, the performance in indoor environments is slightly
worse compared to outdoor ones, as expected. More specifically,
the indoor environments have an overall mean tracking error of 55
cm, in comparison to 38 cm for outdoor areas.

Effect of the number of people: We also test the performance
of our tracking framework by varying the number of people being
tracked. Fig. 9 (b) shows the CDF curves of the tracking error for
different number of people. It can be seen that the performance is
comparable in all the cases of tracking 1 to 3 people. While track-
ing multiple people, there is a higher chance that a measurement
corresponding to one of the persons disappears momentarily, if
that person is blocked by other people. However, the JPDAF (with
an appropriate PD setting) accounts for that missing detection and
keeps track of the blocked target, thereby preserving the accuracy
of the framework even in the presence of blocking effects.

Effect of the closeness to Tx or Rx: Fig. 9 (c) shows the box-
plot distribution of the point-wise tracking error of our framework
over all the tracks in all the 40 experiments, as a function of the
logarithm of the ratio between the distance of the target to the Tx
and its distance to the Rx. Negative values to the left side of the
figure correspond to targets that are closer to the Tx than the Rx,
while positive values to the right correspond to targets that are
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Figure 8: (Bottom) Sample multi-person tracking results in (top) corresponding indoor areas with various degrees of clutter – (a) One person
walking along a U-shaped route in an area including tables, chairs, and futons, (b) two persons walking along two V-shaped routes in the
same area, (c) two persons walking along two checkmark-shaped routes in a classroom, and (d) three persons walking on different lines in an
area containing multiple chairs, sofas, and light fixtures, where the targets 1 and 3 walk in a back-and-forth fashion along the marked route.
The yellow lines in the area pictures represent the tracking area boundary. The light background patches on the figures represent the actual
tracks, while the ⊙ symbols represent their starting points.

closer to the Rx. It can be seen that the error tends to be lower when
the target is closer to the Rx, since the reflections off of the target’s
body are more likely to reach the Rx array. On the other hand,
targets farther away from the Rx would be scattering in different
directions and the reflections are less likely to reach the Rx array.
Hence, if the antenna dimensions of the Rx permit placing them
λ/4 apart, it is recommended to place the Rx array in the midpoint
of the link side of the tracking area (see Sec. 5.1).

Effect of the distance between targets: Fig. 9 (d) shows the
box-plot distribution of the point-wise tracking error of our frame-
work as a function the distance between the targets in all the multi-
target tracking experiments. It can be seen that such a distance has
little to no effect on the tracking performance of our framework.
This is primarily because a small distance between two targets
does not imply that they are indistinguishable in the measurement
domain (ψM ,ψA), since two close targets with different moving
directions have differentψM s.

Comparison to the state-of-the-art: Table 1 shows the track-
ing accuracy of the state-of-the-art as well as our framework. It
can be seen that our framework achieves a decimeter-level tracking
accuracy that is comparable to the state-of-the-art, for both sin-
gle and multiple target tracking, but without requiring any extra
bandwidth or several transceivers that were previously required
for multiple target tracking, or phase measurements that were pre-
viously required for single target tracking.

6 LIMITATIONS AND FUTURE EXTENSIONS
In this paper, we have proposed a new framework for multi-person
tracking using only WiFi magnitude measurements from a WiFi

link on only one side of the tracking area. We next discuss some of
the limitations and possible future extensions of this work:

Assuming knowledge of the number of people: As is com-
mon in the multi-person tracking literature, our framework as-
sumes the knowledge of the number of people in the area, in order
to initialize the same number of PFs. In practical scenarios, such an
assumption can be realized by monitoring the entrance of the area
of interest (such as the door(s) in the room), and initializing a new
particle filter with particles around the entrance area whenever an
entry is detected. However, for scenarios where such an initializa-
tion is not possible, we plan to further incorporate an occupancy
estimation algorithm to estimate the number of people in the area.

Tracking through walls: Our proposed tracking framework
assumes that the Tx and Rx are in the same room/area as the people.
Tracking through walls or other static obstacles is challenging, since
the signal undergoes various transformations as it passes through
objects. Furthermore, we do not collect any prior measurements
in the same area in the absence of targets, which considerably in-
creases the complexity of the through-wall tracking problem. As
part of future work, we plan to model these through-wall propaga-
tion artifacts and account for them in the tracking pipeline.

7 CONCLUSIONS
In this paper, we have considered the problem of passively tracking
multiple persons using only WiFi magnitude measurements on a
small number of WiFi receivers, located on one side of the tracking
area. We have proposed a framework based on the joint estimation
of multi-dimensional parameters of the received WiFi signal. More
specifically, our framework jointly estimates the angles-of-arrival
from the targets to the receiver array, as well as the parameters of
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Figure 9: Tracking error analysis over 40 different experiments in 6 different areas (five area pictures shown in this paper and one additional
indoor area not shown) and various tracking routes. (a) CDF of tracking errors in outdoor vs indoor environments from tracking 1, 2, and 3
people walking on different tracks, on different days. Performance is better in outdoor environments due to less multipath, as expected. (b)
CDF of tracking errors for different number of people. Comparable performance is seen for all cases of 1, 2, or 3 people. (c) Box plot of the
distribution of point-wise tracking error over all the experiments as a function of the logarithm of the ratio between the distance of the target
to the Tx and its distance to Rx. Targets closer to Rx tend to have lower errors. (d) Box plot of the distribution of point-wise tracking error as
a function of the inter-target distance showing little to no effect.

the arrays induced by the targets’ motion. Furthermore, we have
utilized Particle Filters and Joint Probabilistic Data Association
Filter (JPDAF) in order to associate the estimated parameters to the
targets in the area, and consequently reconstruct the tracks of these
targets. We have experimentally validated our framework through
extensive experiments (total of 40) in six different environments
(indoor and outdoor). Our experimental results show high tracking
accuracy with a mean tracking error of only 38 cm in outdoor
areas/closed parking lots, and 55 cm in indoor areas.
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