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ABSTRACT

In this paper, we propose XModal-ID, a novel WiFi-video
cross-modal gait-based person identification system. Given
the WiFi signal measured when an unknown person walks
in an unknown area and a video footage of a walking person
in another area, XModal-ID can determine whether it is the
same person in both cases or not. XModal-ID only uses the
Channel State Information (CSI) magnitude measurements of
a pair of off-the-shelf WiFi transceivers. It does not need any
prior wireless or video measurement of the person to be iden-
tified. Similarly, it does not need any knowledge of the op-
eration area or person’s track. Finally, it can identify people
through walls. XModal-ID utilizes the video footage to simu-
late the WiFi signal that would be generated if the person
in the video walked near a pair of WiFi transceivers. It then
uses a new processing approach to robustly extract key gait
features from both the real WiFi signal and the video-based
simulated one, and compares them to determine if the person
in the WiFi area is the same person in the video. We exten-
sively evaluate XModal-ID by building a large test set with 8
subjects, 2 video areas, and 5 WiFi areas, including 3 through-
wall areas as well as complex walking paths, all of which are
not seen during the training phase. Overall, we have a total
of 2,256 WiFi-video test pairs. XModal-ID then achieves an
85% accuracy in predicting whether a pair of WiFi and video
samples belong to the same person or not. Furthermore, in a
ranking scenario where XModal-ID compares a WiFi sample
to 8 candidate video samples, it obtains top-1, top-2, and
top-3 accuracies of 75%, 90%, and 97%. These results show
that XModal-ID can robustly identify new people walking
in new environments, in various practical scenarios.
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1 INTRODUCTION

Person identification is an important problem that has been
widely studied and implemented in various modalities, e.g.,
fingerprints, iris, and voice. Recently, there has been exten-
sive work establishing that a person’s gait can serve as a
unique signature for identification [5]. Gait-based identifica-
tion is attractive as it does not require a person to perform
any specific active task (e.g., fingerprint scanning) and can
automatically recognize a person based on his/her way of
walking. This is very useful for many applications: smart
buildings, personalized services, and security/surveillance.
Given the importance of gait-based person identification,
there has been considerable research in using either videos
or Radio Frequency (RF) signals to extract a person’s gait for
identification purposes. Vision-based approaches extract the
walking person’s silhouette and calculate various gait fea-
tures to learn people’s identities [5]. However, they require
an unobstructed view of the person in good lighting and
camera coverage everywhere, which are not always feasible.
On the other hand, RF-based approaches are more versatile
as RF signals can pass through walls/obstacles, and are not
affected by lighting conditions. Additionally, RF signals are
more ubiquitous due to the increasing presence of wireless
devices. However, all existing RF-based gait identification
approaches rely on extensive training with prior instances of
the same people walking in the same area [30, 32, 33]. This
significantly limits the practical use of this technology on
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data of new people and in new locations. In addition to these
technical limitations, RF-only approaches are not applicable
to an important class of identification applications in the se-
curity domain, where, for instance, only a crime-scene video
footage of a suspect that is being looked for is available.

In this paper, we propose a novel WiFi-video cross-modal
person identification system, which we call XModal-ID (pro-
nounced: Cross-Modal-ID). More specifically, given WiFi mea-
surements of an unknown person walking in an unknown
area, and the video footage of a walking person in another
area, XModal-ID is able to determine whether it is the same
person in both the WiFi area and the video footage. One key
characteristic of XModal-ID is that it does not require
any prior wireless or video data of either the person to
be identified or the area where the identification is to
be conducted. In other words, it does not need to be trained
on prior WiFi or video data of the person being identified,
or the identification area. It also does not need any knowl-
edge of the test area or the person’s track. Moreover, it only
uses CSI magnitude measurements of a pair of off-the-
shelf WiFi transceivers. Finally, it can identify people
through walls. To the best of our knowledge, such a cross-
modal gait-based identification system has not been studied
before. This new technology can enable a wide range of new
real-world applications that would not be possible with ex-
isting technologies. We next briefly describe two broad sets
of applications that this system can be used for.

e Security and Surveillance: Consider the scenario where
the footage of a crime is available and the police is search-
ing for the suspect. A pair of WiFi transceivers outside a
suspected hide-out building can use XModal-ID to detect
if this person is hiding inside. Moreover, the existing WiFi
infrastructure of public places can further be used to report
the presence of the suspect. To the best of our knowl-
edge, there is currently no existing technology that
can enable such applications.

e Personalized Services: Consider a smart home, where
each resident has personal preferences (e.g., lighting, mu-
sic, and temperature). The home WiFi network can use
XModal-ID and one-time video samples of the residents to
recognize the person walking in any area of the house and
activate his/her preferences, without the need to collect
wireless/video data of each resident for training pur-
poses. New residents can also be easily identified without
a need for retraining. This is in contrast to the existing
technologies that would require training with the wireless
data of every resident collected in all areas of the house.

In order to achieve such cross-modal identification capa-
bilities, XModal-ID compares the gait characteristics of a
given WiFi measurement to that of a given video footage,
and deduces their similarity. More specifically, given the
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video footage of a walking person, XModal-ID constructs a
3D mesh of the person from the video and then calculates
the corresponding WiFi signal that would have been gener-
ated by this person walking in the area where a pair of WiFi
transceivers are present (it does so without any knowledge
of the person’s track or the area). It then compares this simu-
lated WiFi signal to the real WiFi signal measured in the area
where the person-of-interest walks. Based on the similarity
between the simulated WiFi signal and the real WiFi one, the
system determines whether the person walking in the WiFi
area is the same person in the video. Once XModal-ID is
trained on a pool of data, it can be deployed in any new, un-
seen area and can perform cross-modal identification of new
people, of whom it has no prior knowledge during training.
We next explicitly discuss the contributions of this paper.

Statement of Contributions:
1. We propose a new approach to simulate the WiFi signal
that would have been measured by a pair of transceivers,
based on the video footage of a person walking. More specif-
ically, we extract a 3D mesh model of the person in the video
and apply Born approximation to simulate the correspond-
ing WiFi CSI magnitude measurements if the person in the
video was walking in a WiFi area.
2. We propose a new framework and set of features that cap-
ture the gait characteristics of a person based on WiFi CSI
magnitude signals. More specifically, we utilize a combina-
tion of Short-Time Fourier Transform and Hermite functions
to generate a spectrogram, and extract a key set of features
that are subsequently used for identification. We further pro-
pose a way to extract key parts of the spectrogram as well as
the direction of motion, which allows us to do identification,
without the need to know the track of the person.
3. We extensively evaluate our proposed framework using a
large test set, where all the test subjects and test areas are
completely unknown in the training phase, thus allowing
us to demonstrate the generalizability of XModal-ID to new,
unknown people and environments. In the test set, there
are 8 subjects, 2 video areas, and 5 WiFi areas, including 3
areas where the transceivers are placed behind a wall and
scenarios where the walking paths are complex. The walking
paths are further assumed unknown in all the experiments.
Overall, the test set contains a total of 2,256 pairs of WiFi and
video samples to be identified. Given a pair of video and WiFi
samples, XModal-ID achieves a binary classification accuracy
of 85%, in judging whether the two samples belong to the
same person. Furthermore, given a queried WiFi data sample
and 8 candidate video samples, XModal-ID achieves top-1,
top-2, and top-3 accuracies of 75%, 90%, and 97%, respectively,
in ranking the video samples.

We discuss the current limitations and future extensions
of our system in Sec. 8.



2 RELATED WORK

Existing gait-based identification work can be broadly classi-
fied into two categories: RF-based and video-based.

2.1 RF-Based Person Identification

RF-based approaches utilize RF signals to deduce information
about the gait of a person. RF signals from the transmitter re-
flect off of different parts of the body of a walking person and
reach the receiver, thereby implicitly carrying information
about the movement of various body parts.

Radar-based: Various radar-based approaches have utilized
dedicated hardware and/or wideband signals for gait analysis.
For instance, in [19, 26], the authors utilize radar signatures
to extract stride rate and velocities of different body parts.
Orovic et al. [20] classify various body part motions using the
received radar signals and Hornsteiner et al. [12] characterize
the gait features in a time-frequency analysis using a 24 GHz
radar. In [27], the authors use a 77 GHz radar to extract micro-
Doppler signatures from a walking person for identification.
WiFi-based: Recently, there has been considerable interest
in using off-the-shelf WiFi devices for gait-based person iden-
tification. WiFiU [30] uses WiFi CSI to generate spectrogram-
based gait features, which are then used to classify the iden-
tities of a pre-defined set of people. WiWho [32] uses the
time-domain signals measured during people’s motion to
identify people. Similarly, a few other papers [18, 31, 33, 35]
identify a person from a priorly-known set of people. In
addition to walking, Wang et al. [29] show that respiration
patterns can also be used for identification. WiID [34] uses
the CSI measured while a person performs several actions
for identification, using two links in the area. Shi et al. [23]
identify a person based on his/her daily habits. All these ex-
isting approaches require the transceivers to be in the same
area as the person, with a line-of-sight view at all times,
with the only exception of Hoble [17], which uses a Software
Defined Radio to identify people in both line-of-sight and
through-wall settings in a known area.

All these existing RF-based papers identify people from a
pre-defined group and require prior wireless measurements
of these people for training. In other words, they cannot
handle new people without retraining. They also require the
training and test walking paths/actions and locations to be
the same. Thus, a model that is trained in one location and on
one type of path cannot be used in other scenarios. The radar-
based approaches further require extensive hardware setup.
Moreover, aside from [17], none of the existing methods have
through-wall identification capabilities. In this paper, on the
other hand, we propose a novel person identification system
that does not require training with prior measurements of
the subjects/areas, does not require the test areas/tracks to be
known, and can identify people through walls. Finally, our
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proposed system enables a new set of applications not
possible before, i.e., given a video footage of a person,
it can detect if this person is present in a WiFi area.

2.2 Video-Based Person Identification

Video-based person identification using gait is a well-studied
problem in the computer vision literature. There are broadly
two types of approaches: model-based, where gait features
are extracted by fitting a walking human model to the video
frames, and model-free, where features are extracted directly
from the video. Model-based methods include fitting a walk-
ing human with ellipses [16], estimating the lengths of body
parts and joint angles [28], and estimating the joint trajec-
tories [25]. Model-free approaches rely on the person’s sil-
houette in the video. Commonly-used features include the
silhouette key frames [4] and gait energy image [9]. These
features are then fed into machine learning pipelines for
training. We refer the readers to [5] for a detailed survey.
Overall, video-based methods require installing cameras ev-
erywhere and lack through-wall identification capabilities.

3 PROBLEM FORMULATION AND
SYSTEM OVERVIEW

In this paper, we propose a WiFi-video cross-modal person
identification system. More specifically, given the WiFi CSI
magnitude measurements of a pair of WiFi transceivers, ob-
tained in an area where a person is walking, and the video
footage of a person in another area, we propose a system
that determines whether this given pair of video and WiFi
measurements correspond to the same person or not. Unlike
existing RF-based person identification systems, our system
does not need prior wireless or video measurements of the
person-of-interest for training purposes. It further does not
need prior measurements in the operation environments.

The overall architecture of our proposed XModal-ID sys-
tem and the various steps involved in the pipeline are shown
in Fig. 1, and briefly described below:

e Given the video footage of a person, we construct a 3D
mesh model of the person. We then propagate this mesh
model over time and use Born approximation to simulate
the corresponding received WiFi signal if the person was
walking near a pair of WiFi transceivers. We then use
the signal magnitude to generate the spectrogram of the
signal, using Short-Time Fourier Transform (STFT). It is
noteworthy that we do not need to know the track of the
person or details of the operation area.

o In the operation area where a person is walking, a WiFi
receiver (Rx) measures the CSI magnitude of the received
signal in the transmission from a WiFi transmitter (Tx).
We then generate the corresponding spectrogram from
this CSI magnitude measurement (using a combination
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Figure 1: System architecture showing the various steps involved in the video and WiFi pipelines of XModal-ID. We refer
readers to the color pdf for optimal viewing of the sample spectrograms.
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Figure 2: (Right) Three sample HMR algorithm output
meshes for (left) different snapshots of a walking person.

of STFT and Hermite functions) and segment it to obtain
the parts most informative for identification, and further
estimate the direction of motion.

e We then show how to extract key features from the spec-
trograms generated from both the WiFi and video data,
and calculate the distance between them. The feature dis-
tances of a training set are fed into a small 1-layer neural
network, which, after training, outputs a score indicating
the similarity between any pair of real and simulated spec-
trograms, thus indicating if the person in a video is the
same person in a WiFi area.

4 PROPOSED XMODAL-ID SYSTEM

In this section, we lay out the details of our proposed sys-
tem, which is shown in Fig. 1. We first show how we can
use a video footage of a walking person to generate a sim-
ulated wireless signal, which would have been measured if
that person walked in a WiFi-covered area. Then, we show
how to process the raw WiFi magnitude data measured in
a real WiFi-covered area in which a person is walking. We
mathematically model the wireless signals reflected from the
person’s body and apply time-frequency analysis techniques
to generate a spectrogram, which captures the gait attributes
of the person. We further focus on extracting the informative
parts of the spectrogram as well as the direction of motion.
We finally show how we can utilize the simulated wireless
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signal from the video footage to generate a corresponding
spectrogram of the person based on the video. In Sec. 5, we
then introduce a set of key features and show how we can
use them to quantify the similarity between the two spec-
trograms to determine if they belong to the same person or
two different people.

4.1 Video-to-WiFi Gait Modeling

In this section, we show how we can use a video footage of
a walking person to generate a simulated WiFi signal, which
would have been measured by a pair of WiFi transceivers
if this person walked in their vicinity. Note that we do not
assume that the real WiFi transceivers are in the same area
where the video footage was taken.

Given one video frame (snapshot) of a person, we first
utilize the Human Mesh Recovery (HMR) algorithm of [13]
to produce a dense 3D mesh, which contains a large number
of 3D points describing the outer surface of the human body.
Given a video clip of a person, we then construct a set of
3D points for each frame. The sequence of such sets then
captures the gait of the person. Fig. 2 shows a few sample
video snapshots with their corresponding 3D mesh models.

Denote by M(t) = {xn(t) € R®,m = 1,..., M} the set of
generated 3D mesh points of the human body at time ¢.! In
the real WiFi environment, a WiFi Tx is located at xr € R3,
and a WiFi Rx is located at xg € R3, as shown in the bottom
row of Fig. 1. In order to simulate the WiFi signal that would
have been received if the person in the video was walking
in the WiFi area, we utilize the Born approximation [3] to

INote that the HMR method outputs 3D points in the pixel space. Trans-
forming these points to real-world 3D coordinates only requires a one-time
calibration of the camera upon fixation, using the coordinates of a few
known points in the real world that are identified within the camera frame.
See [10] for more details.
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Figure 3: (a) Quasi-specular reflection model of the human
body. An incident wave on a point x;; on the body is reflected
to different directions with different amplitudes, with the
strongest reflection being in the direction r,; determined by
the normal to the body surface at x,;. (b) Walking path of
the generated human mesh to simulate the WiFi signal.

model the WiFi reflections off of the generated human mesh
surface. More specifically, the simulated received WiFi signal
at time ¢ can be written as,

so(t) = 8X7.XR) + ) AmGmg(xT. Xm)g(xm. x8). (1)
—— meM(t)

direct signal
from Tx to Rx

reflected signal from point x

where g(x, y) is the Green’s function from point x to point

exp(i & |lx=y )
4 [x—yl

the Euclidean norm of the argument, and A is the wavelength

of the wireless signal. M’(t) ¢ M(t) is then the subset of all
points in the human mesh that are visible to both the Tx and
Rx, since only these points will reflect the signal to the Rx.
We determine M’(t) by applying the Hidden Point Removal
(HPR) algorithm [15] to M(t).

The strength of the signal reflected from point x,, is deter-
mined by two factors: the surface area and the orientation of
the body part to which x,, belongs. For instance, the human
torso has a higher reflectivity than the other body parts since
it has a larger surface area. This factor is captured by the
scale A;,. The orientation of the body part then determines
the direction in which an incident signal would be reflected.
A perfect reflector would reflect the incident wave at x,,

only in the direction r, = ﬁ - %
n,, is the normal vector to the body at point x,, (see Fig.
3 (a)). However, the human body is best modeled as a quasi-
specular reflector [1], which reflects the signal into many
directions with different amplitudes, with the strongest in
the ry, direction (as shown in Fig. 3 (a)). The amplitude of the
reflection from x,, towards the Rx will then be inversely re-
lated to the angle between the vectors xg — x;; and r,,. Based

on our empirical studies, we capture this relation using a

y in R?, and is given by g(x,y) = , where ||.|| is

n,,, Where

-1 Xp—Xp) T )2/20.3. A

Gaussian mask G,;, = exp [—(cos
m = €Xp X%, |

We simulate the received wireless signal for the case where
the person in the video is walking away from the link, on
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Direction of
motion

RxY™ ’r
Figure 4: A pair of WiFi transceivers are used to identify
the person.

the line that is the perpendicular bisector of the Tx-Rx link,
as shown in Fig. 3 (b). We shall see in Sec. 4.3 why we do not
need to know the real track of the person in the WiFi area and
that simulating the receptions on only the aforementioned
path will be sufficient for our XModal-ID system.

4.2 WiFi-Based Gait Modeling

In this section, consider the WiFi-covered area where a per-
son is walking, as shown in Fig. 4. A WiFi Tx emits a wireless
signal that reflects off of different parts of the human body
and is received by a WiFi Rx. The complex baseband received
signal s;(t) can be written as follows [14],

sp(t) = ase’® + z apel (FVomOt+ S dm) @)
m

where a,e/% is the complex received signal including the
impact of both the direct path and the static paths, ap, is the
amplitude of the signal path reflected off of the m™ part of the
body, dp, is the length of that path at time t = 0, v,,(t) is the
speed of the m'™ body part at time , and / = cos ¢g + cos ¢r
where ¢p and @7 are as illustrated in Fig. 4.

Denoting by s(t) the magnitude square of the baseband sig-
nal s;(t) and assuming that |as| > |an|, s(t) can be written
as follows,

s6) =P+ Y fcos (27” Yom(®)t +dm)—0s). @)

where P = |ag|? + X, |@m|? is the DC component of s(t) and
PBm = 2|asam|. Note that ¢ can be time-varying.

4.3 Spectrogram Generation Based on
Measured Wireless Signals

It can be seen from Eq. 3 that the signal s(t) is the sum of
multiple sinusoids whose frequencies are linearly related
to the respective speeds of different body parts of the mov-
ing person. Hence, estimating the instantaneous frequency
components of the signal s(t) provides information about
how the person walks. To this end, we utilize the Short-Time
Fourier Transform (STFT), which is a commonly-used time-
frequency analysis technique in the RF-based gait analysis
literature. In STFT, a short moving window of length Tiin
is applied to s(t) and the Fourier Transform is applied to
each instance of the moving window to estimate the fre-
quency components, resulting in a signal spectrogram. More



specifically, we have,

t+Twin
stere = | [ st . @
t

Fig. 5 (a) shows a sample STFT spectrogram of a walking
person, which is generated from the received WiFi signal
when a person walks away from a WiFi link, on a path per-
pendicular to it. A strong reflection (indicated by brighter
colors) can be seen in the spectrogram at ~25 Hz, which cor-
responds to a speed of 0.72 m/s. This is caused by the motion
of the torso, the reflection of which is stronger due to its
larger surface area. Weaker reflections (indicated by darker
colors) of the faster body parts (e.g., legs) appear periodically
at higher frequencies in the spectrogram.

While the STFT provides valuable information about the
instantaneous speeds of different body parts, it has been
shown in the literature that the corresponding time-frequency
resolution trade-off can affect the quality of this informa-
tion [20]. Multi-window Hermite Spectrograms (HS) were
then proposed, in the Radar literature [20], to improve the
concentration of STFT spectrograms. In a Hermite spectro-
gram, multiple Hermite functions are used as windows for
the time-frequency analysis. More specifically,

2
. (5

K-1
HS(t, f) = é Z bi(t) fS(P)Xk(F — t)ye2nfugy
k=0

where yi () is the k'™ Hermite function, and by (t) are weight-
ing coefficients obtained by solving the system

K-1 s 2,2 n-14 =
Zbk(t)f|(t+f-‘)|xk(‘u)# F: [1,1f 1

= O
(6)
Fig. 5 (b) shows a Hermite spectrogram (with K = 3 Her-
mite functions) generated from the same data as the STFT
spectrogram in Fig. 5 (a). These two transformations, how-
ever, are utilized independently in different literature. In
order to combine the desirable concentration properties of
the HS and the ability of STFT to detect minute reflections
from different body parts, we propose to generate the final
WiFi spectrogram S(t, f) by combining the two spectrograms
as follows,

S(t. f) = STFT(t, f) + HS(, f). @)

Essentially, S(t, f) is a multi-window spectrogram that uti-
lizes the rectangular window as well as the hermite function
windows. We have observed that this combination consid-
erably improves the visibility of the gait information in the
Fourier domain. We then normalize the resulting spectro-
gram at each time instant, with respect to the sum of the
values over all the frequencies at that time instant.

To visualize the impact of combining the spectrograms,
consider the spectrograms shown in Fig. 5 (a) for STFT and
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Fig. 5 (b) for HS. As can be seen, the reflections of the person’s
limbs are clearly visible in the STFT, while the concentration
of the torso reflection is clearer in the Hermite spectrogram.
Consequently, the combined spectrogram in Fig. 5 (c) cap-
tures both these aspects of the gait. Additionally, Fig. 5 (d)
shows the combined spectrogram of another subject walking
on the same path, showing differentiable gait attributes.

REMARK 1. From Egq. 3, a detected reflection at a frequency
f in the specirogram is caused by a moving object with the
speedv = fA[Y. Hence, static multipath due tothe background
environment appears at f = 0 and thus does not affect the gait
motion information, which appears at non-zero frequencies.

REMARK 2. We extract the gait information from the fre-
quency of the reflected signal, and not from its power. Hence, as
long as the power of the reflected signal is above the noise floor,
the gait information can be extracted from the spectrogram.
This is particularly atiractive for through-wall settings, where
the wall attenuates the signal power, but does not affect the
gait motion information.

4.3.1 Spectrogram Segmentation: As described in Eq. 3,
two parameters determine the instantaneous frequencies of
the different sinusoidal components of s(t): the direction of
motion (represented by i) and the instantaneous speeds of
different body parts (vy,;). In this section, we describe how
we segment the spectrogram S(, f) and extract the part in
which ¢ can be considered constant. When the WiFi Tx and
Rx are close to each other, as compared to the distance of
the person to the link, a segment with an approximately con-
stant ¢ is obtained whenever the person walks on a straight
line towards or away from the midpoint of the Tx-Rx line. In
such a segmented spectrogram, the frequency information
mainly contains the gait attributes of the person, since it
depends only on the speeds of the different body parts (vy,).
As such, it can be very informative for person identifi-
cation, without requiring the knowledge of the track
of the person. We henceforth refer to such a segment as a
constant-iy segment, and utilize it for our XModal-ID system.
Note that we do not need the whole track to be on a straight
line towards/away from the midpoint of the link. The person
can take any track, and as long as there is even a small part
of the track (e.g., 3 sec or longer) that satisfies this condition,
then the proposed approach can be utilized.

In order to extract a constant-i/ segment from the spec-
trogram, we search for a segment (with a minimum width
of Tiin) that satisfies two conditions. First, the spread of
the energy distribution across frequency inside the segment,

2
V(t) = ffzS(t,f)df - (f fS(t, f)df) , should remain be-
low a certain threshold Vi, since a higher value of V() in-
dicates that the spectrogram is close to being flat at time ¢,
which implies that there is no walking detected within this
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path. It can be seen from (c) and (d) that the combined spectrograms of different people are well differentiable, e.g., the torso
speed, leg speed, and gait cycles are different. See the color pdf for optimal viewing of the spectrograms.
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Figure 6: Working example of the spectrogram segmenta-
tion algorithm. (Left) A floor plan with a 4-part path where a
person walks (experiment area of Fig. 9 (g)), with WiFi Tx-Rx
placed behind a wall. (Right) The spectrogram of the mea-
sured Wiki data, showing different parts of the walk. The
dashed lines show two extracted constant-i/ segments.

segment. Secondly, the variations of the average torso speed
within this segment should remain below a certain threshold
Uy Since the average torso speed of a walking person is con-
stant in a small time window, a varying average torso speed
in the spectrogram is due to a varying ¢. The average torso
speed can be calculated from the spectrogram, as we shall
see in Sec. 5. When a segment satisfies the aforementioned
conditions, it is declared as a constant-i/ segment.?

Next, we consider what would be a good value for T
(the minimum acceptable width of the segment). A small
Tmin would result in many false positives, in which ¢ could
be falsely considered constant simply because the segment
was too short. On the other hand, a large Tin would require
the person to walk for a long time in order to be identified.
We observe that using Tiin = 3 sec is a good trade-off, which
provides a sufficient number of gait cycles (for a casual walk)
for extracting meaningful gait features.

Fig. 6 shows an example of the spectrogram segmentation
algorithm for the walking experiment depicted on the left,

Note that there can be multiple constant-1y segments in one spectrogram,
depending on the track of the person, which we assume unknown.
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Figure 7: Plots of Z(f,7) when a person is walking (left) to-
wards the link, and (right) away from the link. Energy dis-
tribution of Z over the four quadrants indicates the motion
direction. See the color pdf for better viewing.

where the constant-{ portion corresponds to parts 2 and 3
of the track. The figure on the right shows the un-segmented
spectrogram S(t, f) of the entire walking experiment, as well
as the constant-{ segments detected by our algorithm.

4.3.2 Walking Direction Estimation: We have observed
that the segments of the spectrogram corresponding to a per-
son walking away from the link have clearer gait patterns
than those corresponding to walking towards the link (for in-
stance, compare parts 2 and 3 in Fig. 6). Similar observations
have been made in [22]. Therefore, we propose to utilize
only the spectrogram segments corresponding to when the
person is walking away from the link in our subsequent
processing pipeline. Let S, (¢, ) denote a constant-i spec-
trogram segment detected by the spectrogram segmentation
algorithm. The information about the direction of motion,
i.e., whether the person is walking towards or away from
the link, is theoretically contained in the sign of . However,
this information cannot be extracted from S, (t, f) since
both a positive and a negative ¥ would result in the same
spectrogram, given that we only use signal magnitude mea-
surements. In this section, we then propose a new method
that can estimate the walking direction.

Despite the absence of the information about the sign of
in S,,(t, f), we can still determine the walking direction by
exploiting the fact that a WiFi signal spans frequencies in the



band [f: — B/2, fc + B/2], where f; is the carrier frequency
and B is the WiFi bandwidth, as we shall see next. Based on
Eq. 3, the magnitude squared WiFi signal, s(t; p), measured
in a very short time on a frequency range f. + p, for p €
[-B/2, B/2], can be written as,

z(t;p) = s(t; p) - P

= Zﬁm cos (z?ﬂ(ﬁt +P)(Um¢'t + dm) - Gs)

Y Bmcos (2%' (fetmit + fodm + pdm) - 93], ®)

where c is the speed of light. The approximation in the last
line of Eq. 8 relies on the fact that, in a very short time
window, the product pt is negligible as compared to the
other terms in the cosine argument. By taking the Fourier
Transform of z(t; p) along the ¢ dimension and the inverse
Fourier Transform along the p dimension, we get,

Z(fi1) = | ff 2(t; p)e I P drdp

- ) o

c

where §(.,.) is the 2D Dirac Delta function, and A. = ¢/ fe.
By examining Eq. 9, we can see that for a positive ¢/ (a person
moving towards the link), the components of Z lie in the first
and third quadrants of the (f, 7) space, while, for a negative
i (a person moving away from the link), the components of
Z lie in the second and fourth quadrants of the (f, 7) space.
Therefore, we can determine the walking direction of the
person according to the following decision rule,

fo " 12 Pdfdr ownss
j{;oo j;l]m lZ(f;T)lzdfdr away

Fig. 7 shows an example of the direction estimation output
Z(f;7) when a person is walking towards the link (left),
and away from the link (right). It can be clearly seen that
the energy of Z(f; ) is concentrated in the first and third
quadrants for the former case, and in the second and fourth
quadrants for the latter case.

(10)

4.4 Video-Based Spectrogram Generation

In Sec. 4.1, we proposed a way of simulating the wireless
signal based on the video footage of the person, using the
HMR algorithm, HPR algorithm, and Born approximation.
Since we are only interested in the constant-{ parts of the
spectrogram of the real WiFi measurement, as discussed in
Sec. 4.3, we only need to simulate the corresponding wireless
signal of Eq. 1 when a person walks away from the link, on
the line that is the perpendicular bisector of the link (see
Fig. 3 (b)), while being far enough from the link, as compared
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Figure 8: (a) Spectrograms of real WiFi data and of the video-
based simulated one for the same person, showing similar
gait attributes. (b) Video-based simulated spectrograms of
two different people, showing their distinct gait attributes.

to the distance between the Tx and Rx (e.g., at least 2 m when
the Tx and Rx are 1.5 m apart). As such, no knowledge of
the track or operation area is needed. After the calculation
of s,(t) using Eq. 1 on the aforementioned path, a spectro-
gram of the simulated WiFi signal S, (¢, f) is generated from
|s5(£)|? via STFT, using the procedure described by Eq. 4.

To validate our framework of video-based spectrogram
generation, we conduct a preliminary experiment where a
subject walks away on a path that perpendicularly bisects the
WiFi link, while simultaneously being videotaped. Fig. 8 (a)
shows the spectrogram of the real WiFi data as well as the
video-based simulated spectrogram. The figure further shows
some gait attributes extracted from both spectrograms. It can
be seen that our video-based spectrogram closely resembles
the real WiFi data spectrogram, demonstrating the accuracy
of our proposed framework. Additionally, Fig. 8 (b) shows
two sample video-based spectrograms of two different sub-
jects. It can be seen that the gait attributes of the two subjects
are well differentiable in the two spectrograms.

Next, we show how to measure the similarity between the
video-based simulated spectrogram and the spectrogram ob-
tained from the real measured WiFi data, in order to identify
whether the video and the WiFi data correspond to the same
person or two different people.

5 FEATURE EXTRACTION AND
SIMILARITY PREDICTION
So far, we have described our approach to extract spectro-

grams from both WiFi data and video data. In order to deter-
mine whether a WiFi sample and a video sample belong to



the same person, we extract several features from the corre-
sponding spectrograms. We then compute a set of distances
between the WiFi-based and video-based features. Given
these feature distances, we train a simple 1-layer neural net-
work to properly combine the distances and determine if a
pair of WiFi and video samples belong to the same person.
After training, the network not only provides this binary
prediction, but also provides a score indicating the similarity
between the WiFi and video samples. Once the network is
trained, we use it on unseen WiFi and video data. In other
words, none of the test data and locations is used for training.

5.1 Spectrogram Features

We have identified 12 features that are key for capturing the
main characteristics of a person’s gait. We compute each
feature on both the WiFi and video spectrograms, and use a
distance metric to measure the difference between the two
spectrograms with respect to each feature. More specifically,
we look at the frequency and time dimensions of the spec-
trogram, which carry different types of gait signatures that
can be used for identification, as we describe next.

The frequency dimension carries information about the
speeds of different body parts. We use the following frequency-
related features:
¢ Frequency distribution (FD): This feature is obtained by
averaging the spectrogram over time. This feature captures
the distribution of frequency components, or equivalently,
the speeds of different body parts, during the person’s walk.
e Frequency distribution in 4 gait phases (FD4): Similar
to the previous feature, we calculate the time-average of
the spectrogram for each of the 4 phases of the gait cycle,
resulting in 4 corresponding feature vectors [30].

e Average torso speed: We calculate the average of the
torso speed curve, which can be extracted from the spectro-
gram using the method in [30].

e Average of the range of torso speed: After extracting
the torso speed curve, we calculate the range of the torso
speed variation in one gait cycle. This range is then averaged
over all the gait cycles in the spectrogram.

The time dimension carries temporal information (e.g.,
periodicity patterns) about a person’s gait. We capture the
temporal signatures using the following features:

e Autocorrelation (AC): Given a spectrogram, we compute
the autocorrelation across time (with a maximum lag of 2
sec) for each frequency bin, resulting in an autocorrelation
matrix. We then compute a weighted sum of this matrix over
the frequency dimension based on the energy distribution
over the frequencies. This feature carries information on the
gait cycle and the periodicity of the walk.

o FFT of spectrogram over time: Similar to the method
in [22], we calculate the Fast Fourier Transform (FFT) of
the spectrogram over time for each frequency bin. We then
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compute a weighted sum over the frequency dimension based
on the energy distribution over the frequencies.

e Histogram of autocorrelation gradient: This is the his-
togram of the gradient of the AC feature vector.

e Histogram of torso speed gradient: We calculate the
histogram of the torso speed gradient, which carries infor-
mation on how the torso speed changes with time.

o Stride length: This is obtained by multiplying the average
torso speed by the gait cycle length, which can be extracted
from the torso speed curve.

Given the 12 features of a WiFi spectrogram and the 12 fea-
tures of a video-based simulated spectrogram, we compute
the distance between each corresponding feature in WiFi
and video. This results in a vector of 12 feature distances.
More specifically, for the frequency distribution (FD), we use
the Kullback-Leibler Divergence (KLD) as the distance met-
ric. For the frequency distributions over 4 gait phases (FD4),
for each gait phase, we first align the WiFi-based and video-
based features by offsetting their respective average torso
speeds. We then use KLD as the distance metric between the
two aligned features. The alignment removes the effect of
area-dependent average speeds (see Sec. 8) and places more
focus on the relative speeds of body parts. For autocorre-
lation (AC), we use the cosine similarity. For all the other
features, we use the Euclidean distance.

5.2 Similarity Prediction

Given a pair of WiFi and video data samples, we compute a
set of 12 distances as described previously. We then utilize
a simple neural network to combine these distances into a
final decision on whether this WiFi-video pair belongs to
the same person. We train the network on WiFi/video data
and locations disjoint from the test subjects and areas (more
details in Sec. 6). During training, these 12 distances are fed
into the neural network, which has 1 hidden layer with 30
units, along with a binary label indicating whether these
two samples belong to the same person. After training, the
network can provide a binary decision on a given pair and a
confidence score indicating the similarity between the pair.

6 EXPERIMENTAL SETUP AND DATA
COLLECTION

In this section, we describe the experimental setup for col-
lecting data (both wireless and video) and validating our
proposed methodology. We then show how we construct the
training set for training a small neural network described in
Sec. 5.2, and the test set for evaluating our proposed system.

6.1 Experiment Subjects

In order to collect WiFi and video data, we have recruited
a total of 18 subjects. We divide them into two disjoint sets



of 10 and 8 subjects, for training and test, respectively. As
a result, the test set consists of the walking data of people
that have never been seen during training, which allows us
to evaluate the proposed system’s ability to generalize to
new people. In the training set, the 10 subjects (referred to as
the training subjects) consist of 9 males and 1 female, with
heights ranging from 163 cm to 186 cm. In the test set, the 8
subjects (referred to as the test subjects) consist of 6 males
and 2 females, with heights ranging from 160 cm to 186 cm.
The speeds of the test subjects have a mean of 1.43 m/s and
a standard deviation of 0.26 m/s, while their gait cycles have
a mean of 1.06 sec and a standard deviation of 0.17 sec.

6.2 WiFi Data Collection

In this part, we describe the experiments where we use a pair
of WiFi transceivers to collect the WiFi data of the subjects.

6.2.1 Experiment Platform and Data Processing: For
the WiFi data collection process, we use two laptops equipped
with Intel 5300 WLAN Network Interface Cards (NICs). We
mount Ny = 2 omni-directional antennas to a tripod of
height 85 cm, and connect them to two antenna ports on
the Tx laptop, which transmits WiFi packets on WiFi chan-
nel 36 with a carrier frequency of 5.18 GHz. Similarly, we
mount Npy = 2 receiving antennas to a tripod of the same
height, located 1.5 m away from the Tx antennas, and con-
nect them to two antenna ports on the Rx laptop, which logs
the CSI information on 30 subcarriers with a rate of 2,000
packets/sec. The data is then processed offline to extract the
CSI information using Csitool [8]. The setup results in a total
of N1y X Npx X 30 = 120 streams of data which we process
using the method in [30]. More specifically, we denoise the
data using Principal Component Analysis (PCA). We first
generate spectrograms of the first 15 PCA components of
the measured signal, using time windows of Ty, = 0.4 sec,
with a shift of 4 ms. We then average these 15 spectrograms
to obtain the final spectrogram. The frequency axis ranges
from 15 Hz to 125 Hz (which translates to speeds of 0.4 m/s
to 3.6 m/s). For the spectrogram segmentation algorithm, we
set Vi, = 0.8 for indoor areas and 0.88 for outdoor areas.
These values were determined by using the experimental
data of 3 training subjects. We also set the allowable change
in average speed to vy, = 0.3 m/s.

6.2.2 Experiment Scenarios: In the WiFi experiments,
we use three different settings for collecting the WiFi CSI
data, as described below and shown in Fig. 9:

o Line-of-Sight Straight-Path (LOS-SP): In this setting, a
WiFi link is deployed in the environment where the person is
walking, with a direct view of the person. In each experiment,
the subject walks from a starting point that is at least 8 m
from the link and towards the link. The subject turns around
when he/she is ~1 m away from the link and then walks
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back to the starting point. This setting captures how people
typically walk in a hallway or a pathway environment. The
corresponding areas are shown in Fig. 9 (a) - (d). Areas of
Fig. 9 (a) and (b) are only used for training while areas of
Fig. 9 (c) and (d) are only used for testing.

o Through-Wall Straight-Path (TW-SP): In this setting,
the subjects walk on a path similar to the LOS-SP setting.
However, in this case, the WiFi Tx and Rx are placed be-
hind a wall, without any view of the walking subject. We
use plywood and drywall for the through-wall experiments,
which are used for the walls of ~90% of residential and small
commercial buildings in the U.S. [24], hence, showing the
applicability of our proposed system to typical through-wall
environments. Our two TW-SP areas are shown in Fig. 9 (e)
and Fig. 9 (f). TW-SP areas are only used for testing.

e Through-Wall Complex-Path (TW-CP): In this setting,
the WiFi Tx and Rx are placed behind a wall. Unlike the
previous straight-path settings, the subjects walk on more
general and complex paths. As shown in Fig. 9 (g), in the
TW-CP experiments, the subjects are asked to walk on two
different complex paths that are representative of how people
would typically walk in a lounge environment. TW-CP area
and complex paths of Fig. 9 (g) are only used for testing.

6.2.3 Experiment Areas (see Fig. 9): We use the walking
data of the 10 training subjects in 2 LOS-SP areas (Fig. 9 (a)
and (b)) for training the neural network. The walking data
of the remaining 8 test subjects in the remaining 5 areas, 3
through-wall (2 TW-SP and 1 TW-CP) and 2 line-of-sight, is
then used for testing. The training and test areas all vary in
size and geometry. In order to create more statistics and avoid
biasing the results to a particularly favorable or unfavorable
data point, each test subject walks back and forth in each
area twice. Each such data instance (one back-and-forth) is
then treated independently in the data pool.

6.3 Video Data Collection

In order to train and test XModal-ID, we collect the video
data of the 18 subjects walking in an area. For training, we
have collected videos of the 10 training subjects walking in
one area, shown in Fig. 10 (a). For testing, we have collected
videos of the 8 test subjects walking in two different areas
shown in Fig. 10 (b). The video data collection areas are
completely disjoint from the WiFi experiment locations. In
each video area, a subject walks back and forth on a 7-m
straight path and a side-view video (with a frame rate of
60 fps) is recorded. The videos are then manually clipped
such that each resulting video clip contains a subject walking
on a straight path in one direction. Overall, each video clip
has an average duration of 4.7 sec. Each video clip is then
treated independently in the data pool. We collected a total
of 100 such video clips of the training subjects and 96 clips of



(¢) Test area
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Figure 9: (a) - (b) WiFi training areas, Line-of-Sight Straight-Path (LOS-SP) setting: we collect WiFi CSI data of the train-
ing subjects in these two areas. (c) — (d) WiFi test areas, Line-of-Sight Straight-Path (LOS-SP) setting. (e) — (f) WiFi test areas,
Through-Wall Straight-Path (TW-SP) setting. (g) WiFi test area, Through-Wall Complex-Path (TW-CP) setting, with two com-
plex routes indicative of how people generally walk in this lounge area.

the test subjects (by having them repeat the back and forth
path a number of times).

We process the frames of each video clip using the algo-
rithm described in Sec. 4.1. The HMR algorithm outputs a
total of 2,300 mesh points on the human body for each frame.
The number of mesh point sets (frames) is then upsampled
to have a frame rate of 250 fps. Based on the surface area
values mentioned in [7], we approximate the reflectivity of
the torso points to be 3 times the reflectivity of other body
parts (which are all taken to have the same reflectivity). For
the quasi-specular reflection beam, we set o2 = 40 based on
the data of 3 training subjects.

To obtain the final video-based features of a walking per-
son, we average the 12 features (described in Sec. 5) over 4
randomly-selected video-based spectrograms of that person
(i.e., over 4 video clips of that person). Such averaging is
feasible in practice as these 4 spectrograms can be generated
from chunks of a longer video or from a few short video
clips of the same person. In this paper, the 4 spectrograms
amount to a total video duration of 18.8 sec on average.

6.4 Training and Test Sets

Given the collected WiFi and video data, we construct a
training set and a test set. For both sets, we first generate the
spectrograms for the WiFi data samples and the video clips
as described in Sec. 4. After the spectrogram generation, each
training or test instance consists of a WiFi data sample and
a video data sample (drawn from the corresponding training
or test pools), a distance vector between their corresponding
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features, and a label indicating whether they belong to the
same subject. A positive label indicates that the pair belongs
to the same person and a negative label denotes otherwise.

The training set is based on the 10 training subjects walk-
ing in the 2 WiFi training areas in the LOS-SP setting (Fig. 9
(a) and (b)) and in the 1 video training area (Fig. 10 (a)). The
training set consists of a total of 7,280 pairs of WiFi-video in-
stances. As we have a different number of pairs with positive
and negative labels, we utilize oversampling [2] to obtain
a balanced training set. The neural network discussed in
Sec. 5.2 is then implemented in PyTorch [21].

The test set is based on the 8 test subjects’ data in the 5
WiFi test areas (Fig. 9 (c) - (g)) and the 2 video test areas
(Fig. 10 (b)). The test set includes all the 3 scenarios: LOS-SP
(Fig. 9 (c) and (d)), TW-SP (Fig. 9 (e) and (f)), and TW-CP
(Fig. 9 (g)) in the WiFi experiments. In the test set, each
WiFi sample is paired with several randomly-selected video
samples. Overall, we have a total of 2,256 instances (i.e.,
pairs of WiFi and video data samples) in the test set, with 768
pairs in the LOS-SP setting, 744 pairs in the TW-SP setting,
and 744 pairs in the TW-CP setting. In addition to binary
classification (i.e., does a WiFi-video pair belong to the same
person or not?), we also test the ranking accuracy of our
proposed system (see Sec. 7.1). In each ranking test, a WiFi
sample serves as a query and 8 video samples serve as the
candidates, with one of them containing the same subject
as in the WiFi sample. We have a total of 282 such ranking
tests in the test set, with 96 in the LOS-SP setting, 93 in the
TW-SP setting, and 93 in the TW-CP setting.



7 SYSTEM EVALUATION

In this section, we present extensive experimental evalua-
tions of our proposed system in various practical settings
using a large test set. Unlike existing studies on WiFi-based
person identification, our test set only contains subjects and
areas that have never been seen during the training process.

7.1 Evaluation Criteria

We use the following two evaluation criteria, which are both
relevant in different applications:

1. Binary classification accuracy: In this setting, we eval-
uate our proposed system by using pairs of WiFi and video
samples. Given a pair of WiFi and video data samples, the
system predicts whether they belong to the same person or
not. The resulting binary classification accuracy is used as
the evaluation metric. As we have different numbers of test
instances with positive (same-person) labels and negative
(different-people) labels, we report the balanced classifica-
tion accuracy, i.e., the average of the respective accuracies
over the same-person and different-people pairs.

2. Ranking Accuracy: In each ranking test, the system is
given a WiFi sample of a test subject and the video samples
of several subjects from the test set. Among these candidate
video samples, only one of them belongs to the person cor-
responding to the queried WiFi sample, to which we refer as
the correct video sample. The system then ranks the video
samples based on their similarity to the WiFi sample. We
report the top-1, top-2, and top-3 ranking accuracies in this
setting, where the top-k accuracy is defined as the percent-
age of cases where the correct video sample is ranked among
the top k positions of all the video samples in a test.

REMARK 3. Note that if the number of subjects in the ranking
test is 2, the system determines which one of the two video
samples belongs to the person in the queried WiFi sample.
This is different from the binary classification task, which
determines whether a video sample and a WiFi sample belong
to the same person or not.

7.2 Performance Evaluation

In this section, we evaluate our proposed system on our
extensive test set, which only has experimental areas and
subjects that are not seen during the training phase. We
further extensively test our system in through-wall scenarios
and with complex paths. See Sec. 6.4 for the details of the
test set. It is noteworthy to re-emphasize that our system
does not need to know the track of the subject, or the details
of the test area, as we discussed in Sec. 4.3. Furthermore, all
the test videos are from areas of Fig. 10 (b) (disjoint from the
WiFi areas), as discussed earlier. Table. 1 summarizes all the
results that we shall discuss in this section.
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(b) Video test areas
Figure 10: Sample snapshots for videos in (a) the training
video location, and (b) the two test video locations.

Area Binary class. | Ranking accuracy
accuracy Top-1 [ Top-2 ‘ Top-3
Line-of-Sight Straight-Path setting
Area of Fig. 9 (c) 90% 87% 96% 98%
Area of Fig. 9 (d) 86% 70% 83% 95%
Average 88% 78% 90% 96%
Through-Wall Straight-Path setting
Area of Fig. 9 (e) 83% 74% 90% 97%
Area of Fig. 9 (f) 89% 82% 96% 100%
Average 86% 78% 93% 98%
Through-Wall Complex-Path setting
Area of Fig. 9 (g) 82% 69% 86% 96%
Overall average 85% 75% 90% 97%

Table 1: The binary classification accuracy and top-1 to top-
3 ranking accuracies of XModal-ID on the test set, in three
different settings. The last row shows the average perfor-
mance over all the areas/settings.

7.2.1 Evaluation of Line-of-Sight Scenarios: We first
evaluate XModal-ID in the Line-of-Sight Straight-Path (LOS-
SP) setting, consisting of 2 WiFi areas (Fig. 9 (c) and (d)). In
this case, XModal-ID achieves a binary classification accu-
racy of 90% in the area of Fig. 9 (c) and 86% in the area of
Fig. 9 (d), resulting in an overall average binary classifica-
tion accuracy of 88%. In other words, given a pair of WiFi
and video samples, both generated from subjects and envi-
ronments not seen during training, our system has an 88%
chance of correctly predicting whether these two samples
correspond to the same person or not, in these two areas.

Next, we look at the ranking performance. In the LOS-SP
setting, given a queried WiFi sample and 8 candidate video
samples of the 8 test subjects, XModal-ID has a success rate
of 78% of assigning the highest rank to the correct video
sample, in these two areas. Note that a random selection
would only result in a success rate of 12.5%. Moreover, in
this setting, XModal-ID has top-2 and top-3 accuracies of
90% and 96%, respectively. The ranking accuracy per area is
shown in Table 1.
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Figure 11: Top-1 to top-3 ranking accuracies when group size varies from 2 to 8, in (a) Line-of-Sight Straight-Path (LOS-SP)
areas, (b) Through-Wall Straight-Path (TW-SP) areas, and (c) Through-Wall Complex-Path (TW-CP) area.

7.2.2 Evaluation of Through-Wall Scenarios: Next, we
consider the Through-Wall Straight-Path (TW-SP) WiFi areas
(Fig. 9 (e) and (f)), where the WiFi link is placed behind a
wall and does not have any view of the subjects. XModal-
ID achieves a binary classification accuracy of 83% in the
area of Fig. 9 (e) and 89% in the area of Fig. 9 (f), amounting
to an overall average accuracy of 86%. In terms of ranking,
XModal-ID achieves top-1, top-2, and top-3 accuracies of 78%,
93%, and 98%, over both areas. In particular, when XModal-
ID is deployed in the area of Fig. 9 (f), it includes the correct
video sample among the top 3 all the time.

In the Through-Wall Complex-Path (TW-CP) area, shown
in Fig. 9 (g), the WiFi link is placed behind a wall and each
test subject walks on two sample complex paths (each path
treated as a separate experiment). These two paths represent
how people would typically walk in this lounge area. In this
setting, XModal-ID achieves a binary classification accuracy
of 82%. For the case of ranking, our system obtains top-1, top-
2, and top-3 accuracies of 69%, 86%, and 96%, respectively, in
this area. It is noteworthy that in this TW-CP setting, which
showcases challenging real-world application scenarios, the
system has a very high probability (0.96) of including the
correct video sample within the top 3 ranks.

Overall, XModal-ID achieves a binary classification accu-
racy of 85%, and top-1, top-2, and top-3 ranking accuracies of
75%, 90%, and 97%, over all 5 areas/scenarios. These results
demonstrate that XModal-ID has a robust performance, even
when the transceivers are placed behind a wall, without any
prior knowledge or view of the person/area, and when the
subjects walk on unknown and complex paths.

7.3 Evaluation with Different Group Sizes

In the previous part, we showed the performance of our
proposed system on the full test set consisting of 8 subjects.
While the binary classification accuracy is independent of
the number of subjects, ranking accuracy is a function of the
number of subjects. In this section, we then study the per-
formance of XModal-ID by varying the number of subjects
in the test set, to which we refer as the group size.
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Fig. 11 (a) shows the top-1, top-2, and top-3 ranking ac-
curacies when the group size is varied from 2 to 8, in the
LOS-SP setting. For each group size that is smaller than 8,
the accuracies are averaged over all the possible subsets of
subjects for that group size. As can be seen, as we reduce
the group size, the ranking accuracies increase, since, with a
smaller group size, it is less likely to have two subjects with
similar gaits. When the group size is less than 8, the top-1
ranking accuracy is always greater than 80%.

Fig. 11 (b) and (c) further show the ranking accuracies in
the through-wall straight-path and complex-path settings,
respectively, as a function of the group size. As can be seen,
the accuracies increase as the group size decreases. Notably,
when the group size is less than 8, the top-3 accuracy in these
two through-wall settings is very close to 100%.

Overall, these evaluation results show that XModal-ID
can successfully perform cross-modal person identification
even when the test subjects and areas have never been seen
before. The test set areas represent a wide variety of real-life
scenarios, including through-wall scenarios and cases where
the person walks on a complex path (rather than a straight
one). Our system does not even need to know the track of
the subjects. Overall, our results demonstrate the efficacy of
XModal-ID in various real-world scenarios.

8 DISCUSSION

In this section, we discuss a few key aspects of XModal-ID,
as well as its limitations and future extensions.

Environment-Dependent Average Speeds: Environmen-
tal factors can sometimes affect people’s average walking
speed [6]. For instance, we noticed that people tend to walk
slightly faster in outdoor/open areas, as compared to in-
door/closed areas. All existing works on WiFi-based gait
identification train and test in the same area, where the sub-
jects mostly maintain the same walking speeds. On the other
hand, in XModal-ID, in addition to the overall average speed,
we also utilize spectrogram features that are independent of
the average speed and only depend on the distribution of



the relative speeds of body parts (see Sec. 5). Hence, XModal-
ID can tolerate small changes in the average speeds of the
subjects.

Tracks with Varying ¢y: XModal-ID does not assume any
knowledge of the track of the person. Instead, it uses the
spectrogram segmentation algorithm in Sec. 4.3 to extract the
part of the person’s track where i is approximately constant.
The constant-i parts correspond to parts of track where
the subject walks on a straight path towards/away from the
midpoint of the Tx-Rx line, for the case where Tx and Rx are
close enough to each other (see Sec. 4.3). Since this is a very
general condition, most natural tracks will at least have small
parts that would satisfy this condition. In fact, XModal-ID
only needs a very small part of the track, e.g., 3 sec, to satisfy
this condition, as discussed earlier. In the rare case that no
part of the track satisfies this condition, the varying ¢ can be
estimated by existing WiFi-based tracking approaches and
XModal-ID can be extended to accommodate the varying .

Applicability to Intruder Detection: XModal-ID can also
determine whether a WiFi sample belongs to a new user
whose video is not available. It can compare this WiFi sample
with each of the available video samples, using the binary
classification criterion, and declare an unseen user if the
WiFi sample does not match any of the videos. This setting
can be relevant in applications such as intruder detection.

Processing Time: A typical duration of a WiFi data sample
in our experiments is 25 sec. On a 3.40 GHz Intel Core i7 PC,
XModal-ID takes an average of ~19.8 sec to fully process
such WiFi data. For videos, XModal-ID takes ~132.5 sec to
fully process a video clip of 4.7 sec (average duration) in order
to generate a final feature vector. In particular, ~112.8 sec are
dedicated to generating the human mesh model, using the
publicly available codes of [11, 13] on an NVidia GTX 1070
GPU, while the remaining steps (e.g., WiFi signal simulation)
take ~19.7 sec on a 3.40 GHz Intel Core i7 PC.

Limitations and Future Extensions: 1) Number of People:
Currently, XModal-ID can determine if a pair of WiFi and
video samples belong to the same person or not. In addition,
it can reliably identify a person from 8 video footage candi-
dates, which enables several real-world applications, such as
suspect search and smart-home personalized services, where
the number of subjects is typically less than 8. As part of
future work, one can scale up XModal-ID to a larger number
of people, which can enable other useful applications.

2) Multi-Person Identification: XModal-ID assumes that
there is only one person walking in the WiFi area. As dis-
cussed in Sec. 1, the current system can support several
applications (e.g., personalized service provisioning), where
there is typically a single user in the WiFi area. When there
are multiple users, the spectrogram would contain the impact
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of all users’ motions, thus making it challenging to identify
each individual. As part of future work, one can isolate the
impact of each person for the purpose of identification.

3) Stationary People: XModal-ID identifies people based
on their gait. Thus, it requires that the person walks (even
briefly) to be identified. If a person remains completely sta-
tionary, XModal-ID would not be able to identify him/her.
Extensions to include other features more relevant to sta-
tionary people/actions is a possible future direction.

4) Reflection-Based Video-to-Wifi Modeling: We utilize Born
approximation and quasi-specular reflections to model the
wireless signals in video-to-WiFi modeling, as discussed in
Sec. 4.1. This model is not valid when the person is crossing
the link. However, XModal-ID can still robustly work if a
person crosses the link occasionally, since the segmentation
algorithm will not choose such segments of the spectrogram.
However, if a person is mainly blocking the link, or generally,
has a motion pattern that does not have any constant-y
segment, then XModal-ID needs to be extended, as discussed.

9 CONCLUSIONS

In this paper, we proposed XModal-ID, a WiFi-video cross-
modal person identification system, which can determine
if an unknown person walking in a WiFi-covered area is
the same as the person in a video footage. To achieve this,
XModal-ID utilizes WiFi CSI magnitude measurements of a
pair of WiFi transceivers to identify a person, by matching
the gait features captured by the WiFi measurements to
those from a video of a walking person. XModal-ID does
not need any prior wireless or video data of the person to be
identified, or the identification area. It can further identify
people through walls and does not need the knowledge of
the track of the person. In order to evaluate our proposed
system, we constructed a large test set with 8 subjects, 5
WiFi areas, and 2 video areas, all of which were unseen in
the training phase. Furthermore, the test set includes 3 areas
where the transceivers were placed behind a wall, as well
as scenarios with complex paths. XModal-ID achieves an
overall binary classification accuracy of 85% in predicting
whether a WiFi-video pair belong to the same person or not,
and top-1, top-2, and top-3 ranking accuracy of 75%, 90%,
and 97%, respectively. This demonstrates that our proposed
XModal-ID system can robustly identify unknown people in
new environments and through walls.
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