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ABSTRACT
In this paper, we propose XModal-ID, a novel WiFi-video

cross-modal gait-based person identification system. Given

the WiFi signal measured when an unknown person walks

in an unknown area and a video footage of a walking person

in another area, XModal-ID can determine whether it is the

same person in both cases or not. XModal-ID only uses the

Channel State Information (CSI) magnitude measurements of

a pair of off-the-shelf WiFi transceivers. It does not need any

prior wireless or video measurement of the person to be iden-

tified. Similarly, it does not need any knowledge of the op-

eration area or person’s track. Finally, it can identify people

through walls. XModal-ID utilizes the video footage to simu-

late the WiFi signal that would be generated if the person

in the video walked near a pair of WiFi transceivers. It then

uses a new processing approach to robustly extract key gait

features from both the real WiFi signal and the video-based

simulated one, and compares them to determine if the person

in the WiFi area is the same person in the video. We exten-

sively evaluate XModal-ID by building a large test set with 8

subjects, 2 video areas, and 5WiFi areas, including 3 through-

wall areas as well as complex walking paths, all of which are

not seen during the training phase. Overall, we have a total

of 2,256 WiFi-video test pairs. XModal-ID then achieves an

85% accuracy in predicting whether a pair of WiFi and video

samples belong to the same person or not. Furthermore, in a

ranking scenario where XModal-ID compares a WiFi sample

to 8 candidate video samples, it obtains top-1, top-2, and

top-3 accuracies of 75%, 90%, and 97%. These results show

that XModal-ID can robustly identify new people walking

in new environments, in various practical scenarios.
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1 INTRODUCTION
Person identification is an important problem that has been

widely studied and implemented in various modalities, e.g.,

fingerprints, iris, and voice. Recently, there has been exten-

sive work establishing that a person’s gait can serve as a

unique signature for identification [5]. Gait-based identifica-

tion is attractive as it does not require a person to perform

any specific active task (e.g., fingerprint scanning) and can

automatically recognize a person based on his/her way of

walking. This is very useful for many applications: smart

buildings, personalized services, and security/surveillance.

Given the importance of gait-based person identification,

there has been considerable research in using either videos

or Radio Frequency (RF) signals to extract a person’s gait for

identification purposes. Vision-based approaches extract the

walking person’s silhouette and calculate various gait fea-

tures to learn people’s identities [5]. However, they require

an unobstructed view of the person in good lighting and

camera coverage everywhere, which are not always feasible.

On the other hand, RF-based approaches are more versatile

as RF signals can pass through walls/obstacles, and are not

affected by lighting conditions. Additionally, RF signals are

more ubiquitous due to the increasing presence of wireless

devices. However, all existing RF-based gait identification

approaches rely on extensive training with prior instances of

the same people walking in the same area [30, 32, 33]. This

significantly limits the practical use of this technology on
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data of new people and in new locations. In addition to these

technical limitations, RF-only approaches are not applicable

to an important class of identification applications in the se-

curity domain, where, for instance, only a crime-scene video

footage of a suspect that is being looked for is available.

In this paper, we propose a novel WiFi-video cross-modal

person identification system, whichwe callXModal-ID (pro-

nounced: Cross-Modal-ID). More specifically, givenWiFi mea-

surements of an unknown person walking in an unknown

area, and the video footage of a walking person in another

area, XModal-ID is able to determine whether it is the same

person in both theWiFi area and the video footage.One key
characteristic of XModal-ID is that it does not require
any prior wireless or video data of either the person to
be identified or the area where the identification is to
be conducted. In other words, it does not need to be trained

on prior WiFi or video data of the person being identified,

or the identification area. It also does not need any knowl-

edge of the test area or the person’s track. Moreover, it only
uses CSImagnitudemeasurements of a pair of off-the-
shelf WiFi transceivers. Finally, it can identify people
through walls. To the best of our knowledge, such a cross-

modal gait-based identification system has not been studied

before. This new technology can enable a wide range of new

real-world applications that would not be possible with ex-

isting technologies. We next briefly describe two broad sets

of applications that this system can be used for.

• Security and Surveillance: Consider the scenario where
the footage of a crime is available and the police is search-

ing for the suspect. A pair of WiFi transceivers outside a

suspected hide-out building can use XModal-ID to detect

if this person is hiding inside. Moreover, the existing WiFi

infrastructure of public places can further be used to report

the presence of the suspect. To the best of our knowl-
edge, there is currently no existing technology that
can enable such applications.

• Personalized Services: Consider a smart home, where

each resident has personal preferences (e.g., lighting, mu-

sic, and temperature). The home WiFi network can use

XModal-ID and one-time video samples of the residents to

recognize the person walking in any area of the house and

activate his/her preferences,without the need to collect
wireless/video data of each resident for training pur-
poses. New residents can also be easily identified without

a need for retraining. This is in contrast to the existing

technologies that would require training with the wireless

data of every resident collected in all areas of the house.

In order to achieve such cross-modal identification capa-

bilities, XModal-ID compares the gait characteristics of a

given WiFi measurement to that of a given video footage,

and deduces their similarity. More specifically, given the

video footage of a walking person, XModal-ID constructs a

3D mesh of the person from the video and then calculates

the corresponding WiFi signal that would have been gener-

ated by this person walking in the area where a pair of WiFi

transceivers are present (it does so without any knowledge

of the person’s track or the area). It then compares this simu-

lated WiFi signal to the real WiFi signal measured in the area

where the person-of-interest walks. Based on the similarity

between the simulated WiFi signal and the real WiFi one, the

system determines whether the person walking in the WiFi

area is the same person in the video. Once XModal-ID is

trained on a pool of data, it can be deployed in any new, un-

seen area and can perform cross-modal identification of new

people, of whom it has no prior knowledge during training.

We next explicitly discuss the contributions of this paper.

Statement of Contributions:
1. We propose a new approach to simulate the WiFi signal

that would have been measured by a pair of transceivers,

based on the video footage of a person walking. More specif-

ically, we extract a 3D mesh model of the person in the video

and apply Born approximation to simulate the correspond-

ing WiFi CSI magnitude measurements if the person in the

video was walking in a WiFi area.

2. We propose a new framework and set of features that cap-

ture the gait characteristics of a person based on WiFi CSI

magnitude signals. More specifically, we utilize a combina-

tion of Short-Time Fourier Transform and Hermite functions

to generate a spectrogram, and extract a key set of features

that are subsequently used for identification. We further pro-

pose a way to extract key parts of the spectrogram as well as

the direction of motion, which allows us to do identification,

without the need to know the track of the person.

3. We extensively evaluate our proposed framework using a

large test set, where all the test subjects and test areas are

completely unknown in the training phase, thus allowing

us to demonstrate the generalizability of XModal-ID to new,

unknown people and environments. In the test set, there

are 8 subjects, 2 video areas, and 5 WiFi areas, including 3

areas where the transceivers are placed behind a wall and

scenarios where the walking paths are complex. The walking

paths are further assumed unknown in all the experiments.

Overall, the test set contains a total of 2,256 pairs of WiFi and

video samples to be identified. Given a pair of video andWiFi

samples, XModal-ID achieves a binary classification accuracy

of 85%, in judging whether the two samples belong to the

same person. Furthermore, given a queried WiFi data sample

and 8 candidate video samples, XModal-ID achieves top-1,

top-2, and top-3 accuracies of 75%, 90%, and 97%, respectively,

in ranking the video samples.

We discuss the current limitations and future extensions

of our system in Sec. 8.



2 RELATEDWORK
Existing gait-based identification work can be broadly classi-

fied into two categories: RF-based and video-based.

2.1 RF-Based Person Identification
RF-based approaches utilize RF signals to deduce information

about the gait of a person. RF signals from the transmitter re-

flect off of different parts of the body of a walking person and

reach the receiver, thereby implicitly carrying information

about the movement of various body parts.

Radar-based: Various radar-based approaches have utilized
dedicated hardware and/or wideband signals for gait analysis.

For instance, in [19, 26], the authors utilize radar signatures

to extract stride rate and velocities of different body parts.

Orovic et al. [20] classify various body part motions using the

received radar signals andHornsteiner et al. [12] characterize

the gait features in a time-frequency analysis using a 24 GHz

radar. In [27], the authors use a 77 GHz radar to extract micro-

Doppler signatures from a walking person for identification.

WiFi-based: Recently, there has been considerable interest

in using off-the-shelfWiFi devices for gait-based person iden-

tification. WiFiU [30] uses WiFi CSI to generate spectrogram-

based gait features, which are then used to classify the iden-

tities of a pre-defined set of people. WiWho [32] uses the

time-domain signals measured during people’s motion to

identify people. Similarly, a few other papers [18, 31, 33, 35]

identify a person from a priorly-known set of people. In

addition to walking, Wang et al. [29] show that respiration

patterns can also be used for identification. WiID [34] uses

the CSI measured while a person performs several actions

for identification, using two links in the area. Shi et al. [23]

identify a person based on his/her daily habits. All these ex-

isting approaches require the transceivers to be in the same

area as the person, with a line-of-sight view at all times,

with the only exception of Hoble [17], which uses a Software

Defined Radio to identify people in both line-of-sight and

through-wall settings in a known area.

All these existing RF-based papers identify people from a

pre-defined group and require prior wireless measurements

of these people for training. In other words, they cannot

handle new people without retraining. They also require the

training and test walking paths/actions and locations to be

the same. Thus, a model that is trained in one location and on

one type of path cannot be used in other scenarios. The radar-

based approaches further require extensive hardware setup.

Moreover, aside from [17], none of the existing methods have

through-wall identification capabilities. In this paper, on the

other hand, we propose a novel person identification system

that does not require training with prior measurements of

the subjects/areas, does not require the test areas/tracks to be

known, and can identify people through walls. Finally, our

proposed system enables a new set of applications not
possible before, i.e., given a video footage of a person,
it can detect if this person is present in a WiFi area.

2.2 Video-Based Person Identification
Video-based person identification using gait is a well-studied

problem in the computer vision literature. There are broadly

two types of approaches: model-based, where gait features

are extracted by fitting a walking human model to the video

frames, and model-free, where features are extracted directly

from the video. Model-based methods include fitting a walk-

ing human with ellipses [16], estimating the lengths of body

parts and joint angles [28], and estimating the joint trajec-

tories [25]. Model-free approaches rely on the person’s sil-

houette in the video. Commonly-used features include the

silhouette key frames [4] and gait energy image [9]. These

features are then fed into machine learning pipelines for

training. We refer the readers to [5] for a detailed survey.

Overall, video-based methods require installing cameras ev-

erywhere and lack through-wall identification capabilities.

3 PROBLEM FORMULATION AND
SYSTEM OVERVIEW

In this paper, we propose a WiFi-video cross-modal person

identification system. More specifically, given the WiFi CSI

magnitude measurements of a pair of WiFi transceivers, ob-

tained in an area where a person is walking, and the video

footage of a person in another area, we propose a system

that determines whether this given pair of video and WiFi

measurements correspond to the same person or not. Unlike

existing RF-based person identification systems, our system

does not need prior wireless or video measurements of the

person-of-interest for training purposes. It further does not

need prior measurements in the operation environments.

The overall architecture of our proposed XModal-ID sys-

tem and the various steps involved in the pipeline are shown

in Fig. 1, and briefly described below:

• Given the video footage of a person, we construct a 3D

mesh model of the person. We then propagate this mesh

model over time and use Born approximation to simulate

the corresponding received WiFi signal if the person was

walking near a pair of WiFi transceivers. We then use

the signal magnitude to generate the spectrogram of the

signal, using Short-Time Fourier Transform (STFT). It is

noteworthy that we do not need to know the track of the

person or details of the operation area.

• In the operation area where a person is walking, a WiFi

receiver (Rx) measures the CSI magnitude of the received

signal in the transmission from a WiFi transmitter (Tx).

We then generate the corresponding spectrogram from

this CSI magnitude measurement (using a combination
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Figure 1: System architecture showing the various steps involved in the video and WiFi pipelines of XModal-ID. We refer
readers to the color pdf for optimal viewing of the sample spectrograms.

Figure 2: (Right) Three sample HMR algorithm output
meshes for (left) different snapshots of a walking person.

of STFT and Hermite functions) and segment it to obtain

the parts most informative for identification, and further

estimate the direction of motion.

• We then show how to extract key features from the spec-

trograms generated from both the WiFi and video data,

and calculate the distance between them. The feature dis-

tances of a training set are fed into a small 1-layer neural

network, which, after training, outputs a score indicating

the similarity between any pair of real and simulated spec-

trograms, thus indicating if the person in a video is the

same person in a WiFi area.

4 PROPOSED XMODAL-ID SYSTEM
In this section, we lay out the details of our proposed sys-

tem, which is shown in Fig. 1. We first show how we can

use a video footage of a walking person to generate a sim-

ulated wireless signal, which would have been measured if

that person walked in a WiFi-covered area. Then, we show

how to process the raw WiFi magnitude data measured in

a real WiFi-covered area in which a person is walking. We

mathematically model the wireless signals reflected from the

person’s body and apply time-frequency analysis techniques

to generate a spectrogram, which captures the gait attributes

of the person. We further focus on extracting the informative

parts of the spectrogram as well as the direction of motion.

We finally show how we can utilize the simulated wireless

signal from the video footage to generate a corresponding

spectrogram of the person based on the video. In Sec. 5, we

then introduce a set of key features and show how we can

use them to quantify the similarity between the two spec-

trograms to determine if they belong to the same person or

two different people.

4.1 Video-to-WiFi Gait Modeling
In this section, we show how we can use a video footage of

a walking person to generate a simulated WiFi signal, which

would have been measured by a pair of WiFi transceivers

if this person walked in their vicinity. Note that we do not

assume that the real WiFi transceivers are in the same area

where the video footage was taken.

Given one video frame (snapshot) of a person, we first

utilize the Human Mesh Recovery (HMR) algorithm of [13]

to produce a dense 3D mesh, which contains a large number

of 3D points describing the outer surface of the human body.

Given a video clip of a person, we then construct a set of

3D points for each frame. The sequence of such sets then

captures the gait of the person. Fig. 2 shows a few sample

video snapshots with their corresponding 3D mesh models.

Denote by M(t) = {xm(t) ∈ R3,m = 1, . . . ,M} the set of

generated 3D mesh points of the human body at time t .1 In
the real WiFi environment, a WiFi Tx is located at xT ∈ R3

,

and a WiFi Rx is located at xR ∈ R3
, as shown in the bottom

row of Fig. 1. In order to simulate the WiFi signal that would

have been received if the person in the video was walking

in the WiFi area, we utilize the Born approximation [3] to

1
Note that the HMR method outputs 3D points in the pixel space. Trans-

forming these points to real-world 3D coordinates only requires a one-time

calibration of the camera upon fixation, using the coordinates of a few

known points in the real world that are identified within the camera frame.

See [10] for more details.
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4.2 WfiFfi-BasedGafitModeflfing
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body,dmfistheflengthoffthatpathattfimet=0,vm(t)fisthe
speedoffthemthbodypartattfimet,andψ=cosϕR+cosϕT
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naflsb(t)andassumfingthat|αs|≫|αm|,s(t)canbewrfitten
asffoflflows,
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2π
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whereP=|αs|
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2fistheDCcomponentoffs(t)and
βm=2|αsαm|.Notethatψcanbetfime-varyfing.

4.3 SpectrogramGeneratfionBasedon
MeasuredWfireflessSfignafls
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specfificaflfly,wehave,

STFT(t,ff)=

∫t+Twfin

t
s(µ)e−j2πffµdµ. (4)

Ffig.5(a)showsasampfleSTFTspectrogramoffawaflkfing
person,whfichfisgeneratedffromtherecefivedWfiFfisfignafl
whenapersonwaflksawayffromaWfiFfiflfink,onapathper-
pendficuflartofit.Astrongreflectfion(findficatedbybrfighter
coflors)canbeseenfinthespectrogramat∼25Hz,whfichcor-
respondstoaspeedoff0.72m/s.Thfisfiscausedbythemotfion
offthetorso,thereflectfionoffwhfichfisstrongerduetofits
flargersurffacearea.Weakerreflectfions(findficatedbydarker
coflors)offtheffasterbodyparts(e.g.,flegs)appearperfiodficaflfly
athfigherffrequencfiesfinthespectrogram.
WhfifletheSTFTprovfidesvafluabflefinfformatfionaboutthe
finstantaneousspeedsoffdfifferentbodyparts,fithasbeen
shownfintheflfiteraturethatthecorrespondfingtfime-ffrequency
resoflutfiontrade-offcanaffectthequaflfityoffthfisfinfforma-
tfion[20].Mufltfi-wfindowHermfiteSpectrograms(HS)were
thenproposed,fintheRadarflfiterature[20],tofimprovethe
concentratfionoffSTFTspectrograms.InaHermfitespectro-
gram,mufltfipfleHermfiteffunctfionsareusedaswfindowsffor
thetfime-ffrequencyanaflysfis.Morespecfificaflfly,

HS(t,ff)=
1

2π

K−1

k=0

bk(t)

∫

s(µ)χk(µ−t)e
−j2πffµdµ

2

,(5)

whereχk(t)fisthek
thHermfiteffunctfion,andbk(t)arewefight-

fingcoeficfientsobtafinedbysoflvfingthesystem

K−1

k=0

bk(t)

∫
|s(t+µ)|2χ2

k
(µ)µn−1dµ

∫
|s(t+µ)|2χ2

k
(µ)dµ

=
1,fiffn=1
0,fiffn∈{2,...,K}

(6)
Ffig.5(b)showsaHermfitespectrogram(wfithK=3Her-
mfiteffunctfions)generatedffromthesamedataastheSTFT
spectrogramfinFfig.5(a).Thesetwotransfformatfions,how-
ever,areutfiflfizedfindependentflyfindfifferentflfiterature.In
ordertocombfinethedesfirabfleconcentratfionpropertfiesoff
theHSandtheabfiflfityoffSTFTtodetectmfinutereflectfions
ffromdfifferentbodyparts,weproposetogeneratethefinafl
WfiFfispectrogramS(t,ff)bycombfinfingthetwospectrograms
asffoflflows,

S(t,ff)=STFT(t,ff)+HS(t,ff). (7)

Essentfiaflfly,S(t,ff)fisamufltfi-wfindowspectrogramthatutfi-
flfizestherectanguflarwfindowasweflflasthehermfiteffunctfion
wfindows.Wehaveobservedthatthfiscombfinatfionconsfid-
erabflyfimprovesthevfisfibfiflfityoffthegafitfinfformatfionfinthe
Fourfierdomafin.Wethennormaflfizetheresufltfingspectro-
gramateachtfimefinstant,wfithrespecttothesumoffthe
vafluesoveraflfltheffrequencfiesatthattfimefinstant.
Tovfisuaflfizethefimpactoffcombfinfingthespectrograms,

consfiderthespectrogramsshownfinFfig.5(a)fforSTFTand

Ffig.5(b)fforHS.Ascanbeseen,thereflectfionsofftheperson’s
flfimbsarecflearflyvfisfibflefintheSTFT,whfifletheconcentratfion
offthetorsoreflectfionfiscflearerfintheHermfitespectrogram.
Consequentfly,thecombfinedspectrogramfinFfig.5(c)cap-
turesboththeseaspectsoffthegafit.Addfitfionaflfly,Ffig.5(d)
showsthecombfinedspectrogramoffanothersubjectwaflkfing
onthesamepath,showfingdfifferentfiabflegafitattrfibutes.

Remark1.FromEq.3,adetectedreflectfionataffrequency
fffinthespectrogramfiscausedbyamovfingobjectwfiththe
speedv=ffλ/ψ.Hence,statficmufltfipathduetothebackground
envfironmentappearsatff=0andthusdoesnotaffectthegafit
motfionfinfformatfion,whfichappearsatnon-zeroffrequencfies.

Remark2.Weextractthegafitfinfformatfionffromtheffre-
quencyoffthereflectedsfignafl,andnotffromfitspower.Hence,as
flongasthepoweroffthereflectedsfignaflfisabovethenofisefloor,
thegafitfinfformatfioncanbeextractedffromthespectrogram.
Thfisfispartficuflarflyattractfivefforthrough-waflflsettfings,where
thewaflflattenuatesthesfignaflpower,butdoesnotaffectthe
gafitmotfionfinfformatfion.

4.3.1 SpectrogramSegmentatfion:AsdescrfibedfinEq.3,
twoparametersdetermfinethefinstantaneousffrequencfiesoff
thedfifferentsfinusofidaflcomponentsoffs(t):thedfirectfionoff
motfion(representedbyψ)andthefinstantaneousspeedsoff
dfifferentbodyparts(vm).Inthfissectfion,wedescrfibehow
wesegmentthespectrogramS(t,ff)andextractthepartfin
whfichψcanbeconsfideredconstant.WhentheWfiFfiTxand
Rxarecflosetoeachother,ascomparedtothedfistanceoff
thepersontotheflfink,asegmentwfithanapproxfimateflycon-
stantψfisobtafinedwheneverthepersonwaflksonastrafight
flfinetowardsorawayffromthemfidpofintofftheTx-Rxflfine.In
suchasegmentedspectrogram,theffrequencyfinfformatfion
mafinflycontafinsthegafitattrfibutesofftheperson,sfincefit
dependsonflyonthespeedsoffthedfifferentbodyparts(vm).
Assuch,fitcanbeveryfinfformatfivefforpersonfidentfifi-
catfion,wfithoutrequfirfingtheknowfledgeoffthetrack
offtheperson.Wehencefforthreffertosuchasegmentasa
constant-ψsegment,andutfiflfizefitfforourXModafl-IDsystem.
Notethatwedonotneedthewhofletracktobeonastrafight
flfinetowards/awayffromthemfidpofintofftheflfink.Theperson
cantakeanytrack,andasflongastherefisevenasmaflflpart
offthetrack(e.g.,3secorflonger)thatsatfisfiesthfiscondfitfion,
thentheproposedapproachcanbeutfiflfized.
Inordertoextractaconstant-ψsegmentffromthespec-
trogram,wesearchfforasegment(wfithamfinfimumwfidth
offTmfin)thatsatfisfiestwocondfitfions.Ffirst,thespreadoff
theenergydfistrfibutfionacrossffrequencyfinsfidethesegment,

V(t)=
∫
ff2S(t,ff)dff−

∫
ffS(t,ff)dff

2
,shoufldremafinbe-

flowacertafinthreshofldVth,sfinceahfighervaflueoffV(t)fin-
dficatesthatthespectrogramfiscflosetobefingflatattfimet,
whfichfimpflfiesthattherefisnowaflkfingdetectedwfithfinthfis
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Ffigure5:(a)SpectrogrambasedonShort-TfimeFourfierTransfform(STFT)fforapersonwaflkfingawayffromtheflfink,ona
strafightflfineperpendficuflartotheTx-Rxflfine.(b)SpectrogramoffthesamedatabasedontheHermfitemethod.(c)Combfined
SpectrogramS(t,ff)offSTFTandtheHermfitemethod.(d)CombfinedspectrogramS(t,ff)
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offanotherpersonwaflkfingonthesame
path.Itcanbeseenffrom(c)and(d)thatthecombfinedspectrogramsoffdfifferentpeopfleareweflfldfifferentfiabfle,e.g.,thetorso
speed,flegspeed,andgafitcycflesaredfifferent.Seethecoflorpdfffforoptfimaflvfiewfingoffthespectrograms.

Ffigure6:Workfingexampfleoffthespectrogramsegmenta-
tfionaflgorfithm.(Lefft)Afloorpflanwfitha4-partpathwherea
personwaflks(experfimentareaoffFfig.9(g)),wfithWfiFfiTx-Rx
pflacedbehfindawaflfl.(Rfight)Thespectrogramoffthemea-
sured WfiFfidata,showfingdfifferentpartsoffthewaflk.The
dashedflfinesshowtwoextractedconstant-ψsegments.

segment.Secondfly,thevarfiatfionsofftheaveragetorsospeed
wfithfinthfissegmentshoufldremafinbeflowacertafinthreshofld
vth.Sfincetheaveragetorsospeedoffawaflkfingpersonfiscon-
stantfinasmaflfltfimewfindow,avaryfingaveragetorsospeed
finthespectrogramfisduetoavaryfingψ.Theaveragetorso
speedcanbecaflcuflatedffromthespectrogram,asweshaflfl
seefinSec.5.Whenasegmentsatfisfiestheafforementfioned
condfitfions,fitfisdecflaredasaconstant-ψsegment.2

Next,weconsfiderwhatwoufldbeagoodvafluefforTmfin
(themfinfimumacceptabflewfidthoffthesegment).Asmaflfl
Tmfinwoufldresufltfinmanyffaflseposfitfives,finwhfichψcoufld
beffaflseflyconsfideredconstantsfimpflybecausethesegment
wastooshort.Ontheotherhand,aflargeTmfinwoufldrequfire
thepersontowaflkfforaflongtfimefinordertobefidentfified.
WeobservethatusfingTmfin=3secfisagoodtrade-off,whfich
provfidesasuficfientnumberoffgafitcycfles(fforacasuaflwaflk)
fforextractfingmeanfingffuflgafitffeatures.
Ffig.6showsanexampfleoffthespectrogramsegmentatfion
aflgorfithmfforthewaflkfingexperfimentdepfictedontheflefft,

2Notethattherecanbemufltfipfleconstant-ψsegmentsfinonespectrogram,
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dependfingonthetrackofftheperson,whfichweassumeunknown.

Ffigure7:PflotsoffZ(ff,τ)whenapersonfiswaflkfing(flefft)to-
wardstheflfink,and(rfight)awayffromtheflfink.Energydfis-
trfibutfionoffZovertheffourquadrantsfindficatesthemotfion
dfirectfion.Seethecoflorpdfffforbettervfiewfing.

wheretheconstant-ψportfioncorrespondstoparts2and3
offthetrack.Thefigureontherfightshowstheun-segmented
spectrogramS(t,ff)offtheentfirewaflkfingexperfiment,asweflfl
astheconstant-ψsegmentsdetectedbyouraflgorfithm.

4.3.2 WaflkfingDfirectfionEstfimatfion: Wehaveobserved
thatthesegmentsoffthespectrogramcorrespondfingtoaper-
sonwaflkfingawayffromtheflfinkhavecflearergafitpatterns
thanthosecorrespondfingtowaflkfingtowardstheflfink(fforfin-
stance,compareparts2and3finFfig.6).Sfimfiflarobservatfions
havebeenmadefin[22].Thereffore,weproposetoutfiflfize
onflythespectrogramsegmentscorrespondfingtowhenthe
personfiswaflkfingawayffromtheflfinkfinoursubsequent
processfingpfipeflfine.LetSw(t,ff)denoteaconstant-ψspec-
trogramsegmentdetectedbythespectrogramsegmentatfion
aflgorfithm.Thefinfformatfionaboutthedfirectfionoffmotfion,
fi.e.,whetherthepersonfiswaflkfingtowardsorawayffrom
theflfink,fistheoretficaflflycontafinedfinthesfignoffψ.However,
thfisfinfformatfioncannotbeextractedffromSw(t,ff)sfince
bothaposfitfiveandanegatfiveψwoufldresufltfinthesame
spectrogram,gfiventhatweonflyusesfignaflmagnfitudemea-
surements.Inthfissectfion,wethenproposeanewmethod
thatcanestfimatethewaflkfingdfirectfion.
Despfitetheabsenceoffthefinfformatfionaboutthesfignoffψ
finSw(t,ff),wecanstfiflfldetermfinethewaflkfingdfirectfionby
expflofitfingtheffactthataWfiFfisfignaflspansffrequencfiesfinthe



band[ffc−B/2,ffc+B/2],whereffcfisthecarrfierffrequency
andBfistheWfiFfibandwfidth,asweshaflflseenext.Basedon
Eq.3,themagnfitudesquaredWfiFfisfignafl,s(t;ρ),measured
finaveryshorttfimeonaffrequencyrangeffc+ρ,fforρ∈
[−B/2,B/2],canbewrfittenas,

z(t;ρ)=s(t;ρ)−P

=
m

βmcos
2π

c
(ffc+ρ)(vmψt+dm)−θs

≈
m

βmcos
2π

c
(ffcvmψt+ffcdm+ρdm)−θs ,(8)

wherecfisthespeedoffflfight.Theapproxfimatfionfintheflast
flfineoffEq.8reflfiesontheffactthat,finaveryshorttfime
wfindow,theproductρtfisnegflfigfibfleascomparedtothe
othertermsfinthecosfineargument.BytakfingtheFourfier
Transfformoffz(t;ρ)aflongthetdfimensfionandthefinverse
FourfierTransfformaflongtheρdfimensfion,weget,

Z(ff;τ)=

∬

z(t;ρ)e−j2πfftej2πτρdtdρ

=
m

βm
2
δff−

vmψ

λc
,τ−
dm
c
+δff+

vmψ

λc
,τ+
dm
c
,(9)

whereδ(.,.)fisthe2DDfiracDefltaffunctfion,andλc=c/ffc.
ByexamfinfingEq.9,wecanseethatfforaposfitfiveψ(aperson
movfingtowardstheflfink),thecomponentsoffZflfiefinthefirst
andthfirdquadrantsoffthe(ff,τ)space,whfifle,fforanegatfive
ψ(apersonmovfingawayffromtheflfink),thecomponentsoff
Zflfiefinthesecondandffourthquadrantsoffthe(ff,τ)space.
Thereffore,wecandetermfinethewaflkfingdfirectfionoffthe
personaccordfingtotheffoflflowfingdecfisfionrufle,

∫∞
0

∫∞
0
|Z(ff;τ)|2dffdτ

∫∞
0

∫0
−∞
|Z(ff;τ)|2dffdτ

towards
≷ 1
away

. (10)

Ffig.7showsanexampfleoffthedfirectfionestfimatfionoutput
Z(ff;τ)whenapersonfiswaflkfingtowardstheflfink(flefft),
andawayffromtheflfink(rfight).Itcanbecflearflyseenthat
theenergyoffZ(ff;τ)fisconcentratedfinthefirstandthfird
quadrantsfforthefformercase,andfinthesecondandffourth
quadrantsffortheflattercase.

4.4 Vfideo-BasedSpectrogramGeneratfion

InSec.4.1,weproposedawayoffsfimuflatfingthewfirefless
sfignaflbasedonthevfideoffootageofftheperson,usfingthe
HMRaflgorfithm,HPRaflgorfithm,andBornapproxfimatfion.
Sfinceweareonflyfinterestedfintheconstant-ψpartsoffthe
spectrogramoffthereaflWfiFfimeasurement,asdfiscussedfin
Sec.4.3,weonflyneedtosfimuflatethecorrespondfingwfirefless
sfignafloffEq.1whenapersonwaflksawayffromtheflfink,on
theflfinethatfistheperpendficuflarbfisectorofftheflfink(see

Torso speed 
 range (m/s)

Gafit Cycfle (s)

Average torso
 speed (m/s)

1.511.58

0.95

0.20

0.96

0.18

Wfi
Ffi

Vfi
de
o

Gafit Attrfibutes

Fr
e
q
ue
nc
y 
(
Hz
)

0 1 2 3 4

Tfime (sec)

Leg reffflectfion

Torso reffflectfion

Tfime (sec)

20

40

60

80

100

Fr
e
q
ue
nc
y 
(
Hz
)

Leg reffflectfion

Torso reffflectfion

0 1 2 3 4

Gafit Cycfle (s)

Average torso
 speed (m/s)

0.851.18

1.29

0.24

1.21

0.29

Subject S
1

Subject S
2

S
1
S
2

Gafit Attrfibutes

40

80

120

0

Tfime (sec)
0 1 2 3 40 1 2 3 4

Tfime (sec)

(a)

(b)

True WfiFfi spectrogram

Sfimuflated vfideo-based 
        spectrogram

Torso speed 
 range (m/s)

Ffig.3(b)),whfiflebefingffarenoughffromtheflfink,ascompared

Ffigure8:(a)SpectrogramsoffreaflWfiFfidataandoffthevfideo-
basedsfimuflatedonefforthesameperson,showfingsfimfiflar
gafitattrfibutes.(b)Vfideo-basedsfimuflatedspectrogramsoff
twodfifferentpeopfle,showfingthefirdfistfinctgafitattrfibutes.

tothedfistancebetweentheTxandRx(e.g.,atfleast2mwhen
theTxandRxare1.5mapart).Assuch,noknowfledgeoff
thetrackoroperatfionareafisneeded.Affterthecaflcuflatfion
offsv(t)usfingEq.1ontheafforementfionedpath,aspectro-
gramoffthesfimuflatedWfiFfisfignaflSv(t,ff)fisgeneratedffrom
|sv(t)|

2vfiaSTFT,usfingtheproceduredescrfibedbyEq.4.
Tovaflfidateourfframeworkoffvfideo-basedspectrogram
generatfion,weconductapreflfimfinaryexperfimentwherea
subjectwaflksawayonapaththatperpendficuflarflybfisectsthe
WfiFfiflfink,whfiflesfimufltaneousflybefingvfideotaped.Ffig.8(a)
showsthespectrogramoffthereaflWfiFfidataasweflflasthe
vfideo-basedsfimuflatedspectrogram.Thefigureffurthershows
somegafitattrfibutesextractedffrombothspectrograms.Itcan
beseenthatourvfideo-basedspectrogramcfloseflyresembfles
thereaflWfiFfidataspectrogram,demonstratfingtheaccuracy
offourproposedfframework.Addfitfionaflfly,Ffig.8(b)shows
twosampflevfideo-basedspectrogramsofftwodfifferentsub-
jects.Itcanbeseenthatthegafitattrfibutesoffthetwosubjects
areweflfldfifferentfiabflefinthetwospectrograms.
Next,weshowhowtomeasurethesfimfiflarfitybetweenthe

vfideo-basedsfimuflatedspectrogramandthespectrogramob-
tafinedffromthereaflmeasuredWfiFfidata,finordertofidentfiffy
whetherthevfideoandtheWfiFfidatacorrespondtothesame
personortwodfifferentpeopfle.

5 FEATUREEXTRACTIONAND
SIMILARITYPREDICTION

Soffar,wehavedescrfibedourapproachtoextractspectro-
gramsffrombothWfiFfidataandvfideodata.Inordertodeter-
mfinewhetheraWfiFfisampfleandavfideosampflebeflongto



the same person, we extract several features from the corre-

sponding spectrograms. We then compute a set of distances

between the WiFi-based and video-based features. Given

these feature distances, we train a simple 1-layer neural net-

work to properly combine the distances and determine if a

pair of WiFi and video samples belong to the same person.

After training, the network not only provides this binary

prediction, but also provides a score indicating the similarity

between the WiFi and video samples. Once the network is

trained, we use it on unseen WiFi and video data. In other

words, none of the test data and locations is used for training.

5.1 Spectrogram Features
We have identified 12 features that are key for capturing the

main characteristics of a person’s gait. We compute each

feature on both the WiFi and video spectrograms, and use a

distance metric to measure the difference between the two

spectrograms with respect to each feature. More specifically,

we look at the frequency and time dimensions of the spec-

trogram, which carry different types of gait signatures that

can be used for identification, as we describe next.

The frequency dimension carries information about the

speeds of different body parts.We use the following frequency-

related features:

• Frequency distribution (FD): This feature is obtained by
averaging the spectrogram over time. This feature captures

the distribution of frequency components, or equivalently,

the speeds of different body parts, during the person’s walk.

• Frequency distribution in 4 gait phases (FD4): Similar

to the previous feature, we calculate the time-average of

the spectrogram for each of the 4 phases of the gait cycle,

resulting in 4 corresponding feature vectors [30].

• Average torso speed: We calculate the average of the

torso speed curve, which can be extracted from the spectro-

gram using the method in [30].

• Average of the range of torso speed: After extracting
the torso speed curve, we calculate the range of the torso

speed variation in one gait cycle. This range is then averaged

over all the gait cycles in the spectrogram.

The time dimension carries temporal information (e.g.,

periodicity patterns) about a person’s gait. We capture the

temporal signatures using the following features:

•Autocorrelation (AC): Given a spectrogram, we compute

the autocorrelation across time (with a maximum lag of 2

sec) for each frequency bin, resulting in an autocorrelation

matrix. We then compute a weighted sum of this matrix over

the frequency dimension based on the energy distribution

over the frequencies. This feature carries information on the

gait cycle and the periodicity of the walk.

• FFT of spectrogram over time: Similar to the method

in [22], we calculate the Fast Fourier Transform (FFT) of

the spectrogram over time for each frequency bin. We then

compute aweighted sum over the frequency dimension based

on the energy distribution over the frequencies.

•Histogram of autocorrelation gradient: This is the his-
togram of the gradient of the AC feature vector.

• Histogram of torso speed gradient: We calculate the

histogram of the torso speed gradient, which carries infor-

mation on how the torso speed changes with time.

• Stride length: This is obtained bymultiplying the average

torso speed by the gait cycle length, which can be extracted

from the torso speed curve.

Given the 12 features of aWiFi spectrogram and the 12 fea-

tures of a video-based simulated spectrogram, we compute

the distance between each corresponding feature in WiFi

and video. This results in a vector of 12 feature distances.

More specifically, for the frequency distribution (FD), we use

the Kullback-Leibler Divergence (KLD) as the distance met-

ric. For the frequency distributions over 4 gait phases (FD4),

for each gait phase, we first align the WiFi-based and video-

based features by offsetting their respective average torso

speeds. We then use KLD as the distance metric between the

two aligned features. The alignment removes the effect of

area-dependent average speeds (see Sec. 8) and places more

focus on the relative speeds of body parts. For autocorre-

lation (AC), we use the cosine similarity. For all the other

features, we use the Euclidean distance.

5.2 Similarity Prediction
Given a pair of WiFi and video data samples, we compute a

set of 12 distances as described previously. We then utilize

a simple neural network to combine these distances into a

final decision on whether this WiFi-video pair belongs to

the same person. We train the network on WiFi/video data

and locations disjoint from the test subjects and areas (more

details in Sec. 6). During training, these 12 distances are fed

into the neural network, which has 1 hidden layer with 30

units, along with a binary label indicating whether these

two samples belong to the same person. After training, the

network can provide a binary decision on a given pair and a

confidence score indicating the similarity between the pair.

6 EXPERIMENTAL SETUP AND DATA
COLLECTION

In this section, we describe the experimental setup for col-

lecting data (both wireless and video) and validating our

proposed methodology. We then show how we construct the

training set for training a small neural network described in

Sec. 5.2, and the test set for evaluating our proposed system.

6.1 Experiment Subjects
In order to collect WiFi and video data, we have recruited

a total of 18 subjects. We divide them into two disjoint sets



of 10 and 8 subjects, for training and test, respectively. As

a result, the test set consists of the walking data of people

that have never been seen during training, which allows us

to evaluate the proposed system’s ability to generalize to

new people. In the training set, the 10 subjects (referred to as

the training subjects) consist of 9 males and 1 female, with

heights ranging from 163 cm to 186 cm. In the test set, the 8

subjects (referred to as the test subjects) consist of 6 males

and 2 females, with heights ranging from 160 cm to 186 cm.

The speeds of the test subjects have a mean of 1.43 m/s and

a standard deviation of 0.26 m/s, while their gait cycles have

a mean of 1.06 sec and a standard deviation of 0.17 sec.

6.2 WiFi Data Collection
In this part, we describe the experiments where we use a pair

of WiFi transceivers to collect the WiFi data of the subjects.

6.2.1 Experiment Platform and Data Processing: For
theWiFi data collection process, we use two laptops equipped

with Intel 5300 WLAN Network Interface Cards (NICs). We

mount NTx = 2 omni-directional antennas to a tripod of

height 85 cm, and connect them to two antenna ports on

the Tx laptop, which transmits WiFi packets on WiFi chan-

nel 36 with a carrier frequency of 5.18 GHz. Similarly, we

mount NRx = 2 receiving antennas to a tripod of the same

height, located 1.5 m away from the Tx antennas, and con-

nect them to two antenna ports on the Rx laptop, which logs

the CSI information on 30 subcarriers with a rate of 2,000

packets/sec. The data is then processed offline to extract the

CSI information using Csitool [8]. The setup results in a total

of NTx × NRx × 30 = 120 streams of data which we process

using the method in [30]. More specifically, we denoise the

data using Principal Component Analysis (PCA). We first

generate spectrograms of the first 15 PCA components of

the measured signal, using time windows of Twin = 0.4 sec,
with a shift of 4 ms. We then average these 15 spectrograms

to obtain the final spectrogram. The frequency axis ranges

from 15 Hz to 125 Hz (which translates to speeds of 0.4 m/s

to 3.6 m/s). For the spectrogram segmentation algorithm, we

set Vth = 0.8 for indoor areas and 0.88 for outdoor areas.

These values were determined by using the experimental

data of 3 training subjects. We also set the allowable change

in average speed to vth = 0.3 m/s.

6.2.2 Experiment Scenarios: In the WiFi experiments,

we use three different settings for collecting the WiFi CSI

data, as described below and shown in Fig. 9:

• Line-of-Sight Straight-Path (LOS-SP): In this setting, a

WiFi link is deployed in the environment where the person is

walking, with a direct view of the person. In each experiment,

the subject walks from a starting point that is at least 8 m

from the link and towards the link. The subject turns around

when he/she is ∼1 m away from the link and then walks

back to the starting point. This setting captures how people

typically walk in a hallway or a pathway environment. The

corresponding areas are shown in Fig. 9 (a) - (d). Areas of

Fig. 9 (a) and (b) are only used for training while areas of

Fig. 9 (c) and (d) are only used for testing.

• Through-Wall Straight-Path (TW-SP): In this setting,

the subjects walk on a path similar to the LOS-SP setting.

However, in this case, the WiFi Tx and Rx are placed be-

hind a wall, without any view of the walking subject. We

use plywood and drywall for the through-wall experiments,

which are used for the walls of ∼90% of residential and small

commercial buildings in the U.S. [24], hence, showing the

applicability of our proposed system to typical through-wall

environments. Our two TW-SP areas are shown in Fig. 9 (e)

and Fig. 9 (f). TW-SP areas are only used for testing.

• Through-Wall Complex-Path (TW-CP): In this setting,

the WiFi Tx and Rx are placed behind a wall. Unlike the

previous straight-path settings, the subjects walk on more

general and complex paths. As shown in Fig. 9 (g), in the

TW-CP experiments, the subjects are asked to walk on two

different complex paths that are representative of how people

would typically walk in a lounge environment. TW-CP area

and complex paths of Fig. 9 (g) are only used for testing.

6.2.3 Experiment Areas (see Fig. 9): We use the walking

data of the 10 training subjects in 2 LOS-SP areas (Fig. 9 (a)

and (b)) for training the neural network. The walking data

of the remaining 8 test subjects in the remaining 5 areas, 3

through-wall (2 TW-SP and 1 TW-CP) and 2 line-of-sight, is

then used for testing. The training and test areas all vary in

size and geometry. In order to createmore statistics and avoid

biasing the results to a particularly favorable or unfavorable

data point, each test subject walks back and forth in each

area twice. Each such data instance (one back-and-forth) is

then treated independently in the data pool.

6.3 Video Data Collection
In order to train and test XModal-ID, we collect the video

data of the 18 subjects walking in an area. For training, we

have collected videos of the 10 training subjects walking in

one area, shown in Fig. 10 (a). For testing, we have collected

videos of the 8 test subjects walking in two different areas

shown in Fig. 10 (b). The video data collection areas are

completely disjoint from the WiFi experiment locations. In

each video area, a subject walks back and forth on a 7-m

straight path and a side-view video (with a frame rate of

60 fps) is recorded. The videos are then manually clipped

such that each resulting video clip contains a subject walking

on a straight path in one direction. Overall, each video clip

has an average duration of 4.7 sec. Each video clip is then

treated independently in the data pool. We collected a total

of 100 such video clips of the training subjects and 96 clips of
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7 SYSTEM EVALUATION
In this section, we present extensive experimental evalua-

tions of our proposed system in various practical settings

using a large test set. Unlike existing studies on WiFi-based

person identification, our test set only contains subjects and

areas that have never been seen during the training process.

7.1 Evaluation Criteria
We use the following two evaluation criteria, which are both

relevant in different applications:

1. Binary classification accuracy: In this setting, we eval-

uate our proposed system by using pairs of WiFi and video

samples. Given a pair of WiFi and video data samples, the

system predicts whether they belong to the same person or

not. The resulting binary classification accuracy is used as

the evaluation metric. As we have different numbers of test

instances with positive (same-person) labels and negative

(different-people) labels, we report the balanced classifica-

tion accuracy, i.e., the average of the respective accuracies

over the same-person and different-people pairs.

2. Ranking Accuracy: In each ranking test, the system is

given a WiFi sample of a test subject and the video samples

of several subjects from the test set. Among these candidate

video samples, only one of them belongs to the person cor-

responding to the queried WiFi sample, to which we refer as

the correct video sample. The system then ranks the video

samples based on their similarity to the WiFi sample. We

report the top-1, top-2, and top-3 ranking accuracies in this

setting, where the top-k accuracy is defined as the percent-

age of cases where the correct video sample is ranked among

the top k positions of all the video samples in a test.

Remark 3. Note that if the number of subjects in the ranking
test is 2, the system determines which one of the two video
samples belongs to the person in the queried WiFi sample.
This is different from the binary classification task, which
determines whether a video sample and a WiFi sample belong
to the same person or not.

7.2 Performance Evaluation
In this section, we evaluate our proposed system on our

extensive test set, which only has experimental areas and

subjects that are not seen during the training phase. We

further extensively test our system in through-wall scenarios

and with complex paths. See Sec. 6.4 for the details of the

test set. It is noteworthy to re-emphasize that our system

does not need to know the track of the subject, or the details

of the test area, as we discussed in Sec. 4.3. Furthermore, all

the test videos are from areas of Fig. 10 (b) (disjoint from the

WiFi areas), as discussed earlier. Table. 1 summarizes all the

results that we shall discuss in this section.

(a)

(b)

Video training area

Video test areas

Figure 10: Sample snapshots for videos in (a) the training
video location, and (b) the two test video locations.

Binary class. Ranking accuracyArea accuracy Top-1 Top-2 Top-3

Line-of-Sight Straight-Path setting
Area of Fig. 9 (c) 90% 87% 96% 98%

Area of Fig. 9 (d) 86% 70% 83% 95%

Average 88% 78% 90% 96%

Through-Wall Straight-Path setting
Area of Fig. 9 (e) 83% 74% 90% 97%

Area of Fig. 9 (f) 89% 82% 96% 100%

Average 86% 78% 93% 98%

Through-Wall Complex-Path setting
Area of Fig. 9 (g) 82% 69% 86% 96%

Overall average 85% 75% 90% 97%

Table 1: The binary classification accuracy and top-1 to top-
3 ranking accuracies of XModal-ID on the test set, in three
different settings. The last row shows the average perfor-
mance over all the areas/settings.

7.2.1 Evaluation of Line-of-Sight Scenarios: We first

evaluate XModal-ID in the Line-of-Sight Straight-Path (LOS-

SP) setting, consisting of 2 WiFi areas (Fig. 9 (c) and (d)). In

this case, XModal-ID achieves a binary classification accu-

racy of 90% in the area of Fig. 9 (c) and 86% in the area of

Fig. 9 (d), resulting in an overall average binary classifica-

tion accuracy of 88%. In other words, given a pair of WiFi

and video samples, both generated from subjects and envi-

ronments not seen during training, our system has an 88%

chance of correctly predicting whether these two samples

correspond to the same person or not, in these two areas.

Next, we look at the ranking performance. In the LOS-SP

setting, given a queried WiFi sample and 8 candidate video

samples of the 8 test subjects, XModal-ID has a success rate

of 78% of assigning the highest rank to the correct video

sample, in these two areas. Note that a random selection

would only result in a success rate of 12.5%. Moreover, in

this setting, XModal-ID has top-2 and top-3 accuracies of

90% and 96%, respectively. The ranking accuracy per area is

shown in Table 1.
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Figure 11: Top-1 to top-3 ranking accuracies when group size varies from 2 to 8, in (a) Line-of-Sight Straight-Path (LOS-SP)
areas, (b) Through-Wall Straight-Path (TW-SP) areas, and (c) Through-Wall Complex-Path (TW-CP) area.

7.2.2 Evaluation of Through-Wall Scenarios: Next, we

consider the Through-Wall Straight-Path (TW-SP)WiFi areas

(Fig. 9 (e) and (f)), where the WiFi link is placed behind a

wall and does not have any view of the subjects. XModal-

ID achieves a binary classification accuracy of 83% in the

area of Fig. 9 (e) and 89% in the area of Fig. 9 (f), amounting

to an overall average accuracy of 86%. In terms of ranking,

XModal-ID achieves top-1, top-2, and top-3 accuracies of 78%,

93%, and 98%, over both areas. In particular, when XModal-

ID is deployed in the area of Fig. 9 (f), it includes the correct

video sample among the top 3 all the time.

In the Through-Wall Complex-Path (TW-CP) area, shown

in Fig. 9 (g), the WiFi link is placed behind a wall and each

test subject walks on two sample complex paths (each path

treated as a separate experiment). These two paths represent

how people would typically walk in this lounge area. In this

setting, XModal-ID achieves a binary classification accuracy

of 82%. For the case of ranking, our system obtains top-1, top-

2, and top-3 accuracies of 69%, 86%, and 96%, respectively, in

this area. It is noteworthy that in this TW-CP setting, which

showcases challenging real-world application scenarios, the

system has a very high probability (0.96) of including the

correct video sample within the top 3 ranks.

Overall, XModal-ID achieves a binary classification accu-

racy of 85%, and top-1, top-2, and top-3 ranking accuracies of

75%, 90%, and 97%, over all 5 areas/scenarios. These results

demonstrate that XModal-ID has a robust performance, even

when the transceivers are placed behind a wall, without any

prior knowledge or view of the person/area, and when the

subjects walk on unknown and complex paths.

7.3 Evaluation with Different Group Sizes
In the previous part, we showed the performance of our

proposed system on the full test set consisting of 8 subjects.

While the binary classification accuracy is independent of

the number of subjects, ranking accuracy is a function of the

number of subjects. In this section, we then study the per-

formance of XModal-ID by varying the number of subjects

in the test set, to which we refer as the group size.

Fig. 11 (a) shows the top-1, top-2, and top-3 ranking ac-

curacies when the group size is varied from 2 to 8, in the

LOS-SP setting. For each group size that is smaller than 8,

the accuracies are averaged over all the possible subsets of

subjects for that group size. As can be seen, as we reduce

the group size, the ranking accuracies increase, since, with a

smaller group size, it is less likely to have two subjects with

similar gaits. When the group size is less than 8, the top-1

ranking accuracy is always greater than 80%.

Fig. 11 (b) and (c) further show the ranking accuracies in

the through-wall straight-path and complex-path settings,

respectively, as a function of the group size. As can be seen,

the accuracies increase as the group size decreases. Notably,

when the group size is less than 8, the top-3 accuracy in these

two through-wall settings is very close to 100%.

Overall, these evaluation results show that XModal-ID

can successfully perform cross-modal person identification

even when the test subjects and areas have never been seen

before. The test set areas represent a wide variety of real-life

scenarios, including through-wall scenarios and cases where

the person walks on a complex path (rather than a straight

one). Our system does not even need to know the track of

the subjects. Overall, our results demonstrate the efficacy of

XModal-ID in various real-world scenarios.

8 DISCUSSION
In this section, we discuss a few key aspects of XModal-ID,

as well as its limitations and future extensions.

Environment-DependentAverage Speeds: Environmen-

tal factors can sometimes affect people’s average walking

speed [6]. For instance, we noticed that people tend to walk

slightly faster in outdoor/open areas, as compared to in-

door/closed areas. All existing works on WiFi-based gait

identification train and test in the same area, where the sub-

jects mostly maintain the same walking speeds. On the other

hand, in XModal-ID, in addition to the overall average speed,

we also utilize spectrogram features that are independent of

the average speed and only depend on the distribution of



the relative speeds of body parts (see Sec. 5). Hence, XModal-

ID can tolerate small changes in the average speeds of the

subjects.

Tracks with Varyingψ : XModal-ID does not assume any

knowledge of the track of the person. Instead, it uses the

spectrogram segmentation algorithm in Sec. 4.3 to extract the

part of the person’s track whereψ is approximately constant.

The constant-ψ parts correspond to parts of track where

the subject walks on a straight path towards/away from the

midpoint of the Tx-Rx line, for the case where Tx and Rx are

close enough to each other (see Sec. 4.3). Since this is a very

general condition, most natural tracks will at least have small

parts that would satisfy this condition. In fact, XModal-ID

only needs a very small part of the track, e.g., 3 sec, to satisfy

this condition, as discussed earlier. In the rare case that no

part of the track satisfies this condition, the varyingψ can be

estimated by existing WiFi-based tracking approaches and

XModal-ID can be extended to accommodate the varyingψ .

Applicability to Intruder Detection: XModal-ID can also

determine whether a WiFi sample belongs to a new user

whose video is not available. It can compare this WiFi sample

with each of the available video samples, using the binary

classification criterion, and declare an unseen user if the

WiFi sample does not match any of the videos. This setting

can be relevant in applications such as intruder detection.

Processing Time: A typical duration of a WiFi data sample

in our experiments is 25 sec. On a 3.40 GHz Intel Core i7 PC,
XModal-ID takes an average of ∼19.8 sec to fully process

such WiFi data. For videos, XModal-ID takes ∼132.5 sec to
fully process a video clip of 4.7 sec (average duration) in order
to generate a final feature vector. In particular, ∼112.8 sec are
dedicated to generating the human mesh model, using the

publicly available codes of [11, 13] on an NVidia GTX 1070

GPU, while the remaining steps (e.g., WiFi signal simulation)

take ∼19.7 sec on a 3.40 GHz Intel Core i7 PC.

Limitations and Future Extensions: 1) Number of People:
Currently, XModal-ID can determine if a pair of WiFi and

video samples belong to the same person or not. In addition,

it can reliably identify a person from 8 video footage candi-

dates, which enables several real-world applications, such as

suspect search and smart-home personalized services, where

the number of subjects is typically less than 8. As part of

future work, one can scale up XModal-ID to a larger number

of people, which can enable other useful applications.

2) Multi-Person Identification: XModal-ID assumes that

there is only one person walking in the WiFi area. As dis-

cussed in Sec. 1, the current system can support several

applications (e.g., personalized service provisioning), where

there is typically a single user in the WiFi area. When there

are multiple users, the spectrogramwould contain the impact

of all users’ motions, thus making it challenging to identify

each individual. As part of future work, one can isolate the

impact of each person for the purpose of identification.

3) Stationary People: XModal-ID identifies people based

on their gait. Thus, it requires that the person walks (even

briefly) to be identified. If a person remains completely sta-

tionary, XModal-ID would not be able to identify him/her.

Extensions to include other features more relevant to sta-

tionary people/actions is a possible future direction.

4) Reflection-Based Video-to-Wifi Modeling:We utilize Born

approximation and quasi-specular reflections to model the

wireless signals in video-to-WiFi modeling, as discussed in

Sec. 4.1. This model is not valid when the person is crossing

the link. However, XModal-ID can still robustly work if a

person crosses the link occasionally, since the segmentation

algorithm will not choose such segments of the spectrogram.

However, if a person is mainly blocking the link, or generally,

has a motion pattern that does not have any constant-ψ
segment, then XModal-ID needs to be extended, as discussed.

9 CONCLUSIONS
In this paper, we proposed XModal-ID, a WiFi-video cross-

modal person identification system, which can determine

if an unknown person walking in a WiFi-covered area is

the same as the person in a video footage. To achieve this,

XModal-ID utilizes WiFi CSI magnitude measurements of a

pair of WiFi transceivers to identify a person, by matching

the gait features captured by the WiFi measurements to

those from a video of a walking person. XModal-ID does

not need any prior wireless or video data of the person to be

identified, or the identification area. It can further identify

people through walls and does not need the knowledge of

the track of the person. In order to evaluate our proposed

system, we constructed a large test set with 8 subjects, 5

WiFi areas, and 2 video areas, all of which were unseen in

the training phase. Furthermore, the test set includes 3 areas

where the transceivers were placed behind a wall, as well

as scenarios with complex paths. XModal-ID achieves an

overall binary classification accuracy of 85% in predicting

whether a WiFi-video pair belong to the same person or not,

and top-1, top-2, and top-3 ranking accuracy of 75%, 90%,

and 97%, respectively. This demonstrates that our proposed

XModal-ID system can robustly identify unknown people in

new environments and through walls.
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