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ABSTRACT. Suppose k,p€N with p prime and f €Z[z] is a univariate polynomial with de-
gree d and all coefficients having absolute value less than p*. We give a Las Vegas randomized
algorithm that computes the number of roots of f in Z/ (pk) within time dg(klogp)2+o(1).
(We in fact prove a more intricate complexity bound that is slightly better.) The best pre-
vious general algorithm had (deterministic) complexity exponential in k. We also present
some experimental data evincing the potential practicality of our algorithm.

1. INTRODUCTION

Suppose k, pe N with p prime and f € Z[z] is a univariate polynomial with degree d >1 and
all coefficients having absolute value less than p*. Let N, .(f) denote the number of roots of
fin Z/ (pk) (see, e.g., [25, 23, 2, 19, 15, 29] for further background on prime power rings).
Computing N, x(f) is a fundamental problem occuring in polynomial factoring [22, 10, 5, 26,
16], coding theory [3], and cryptography [20]. The function N, x(f) is also a basic ingredient
in the study of Igusa zeta functions and algorithms over Q, [17, 12, 11, 5, 31, 6, 21, 30, 7, 1].

In spite of the fundamental nature of computing N, ;(f), the fastest earlier general al-
gorithms had complexity exponential in k: [9] gave a deterministic algorithm taking time

(d log(p) + 2k)0(1). While the O-constant was not stated in [9], the proof of the main the-
orem there indicates that the dependence on k in their algorithm is linear in e*. Note that
counting the roots via brute-force takes time dp*(klog p)'*°(!) so the algorithm from [9] is
preferable, at least theoretically, for p > 3. Here, we present a simpler, dramatically faster
randomized algorithm (Algorithm 2.3 of the next section) that appears practical for all p.

Theorem 1.1. Following the notation above, there is a Las Vegas randomized algorithm that
computes Ny i(f) in time kd?(klog p)to® + (dk log? p)Ho(l). In particular, the number of
random bits needed is O(dklog(dk)logp), and the space needed is O(dk*logp) bits.

We prove Theorem 1.1 in Section 3 below. In our context, Las Vegas randomized means that,
with a fixed error probability (which we can take to be, say, %), our algorithm under-estimates
the number of roots. Our algorithm otherwise gives a correct root count, and always correctly
announces whether the output count is correct or not. This type of randomization is standard
in many number-theoretic algorithms, such as the fastest current algorithms for factoring
polynomials over finite fields or primality checking (see, e.g., [2, 18, §]).

At a high level, our algorithm here and the algorithm from [9] are similar in that they
reduce the main problem to a collection of computations, mostly in the finite field Z/(p),
indexed by the nodes of a tree of size depending on f and k. Also, both algorithms count
by partitioning the roots in Z/ (pk) into clusters having the same mod p reduction. One
subtlety to be aware of is that we compute the number of roots in Z/ (pk), without listing
all of them. Indeed, the number of roots in Z/ (pk) can be as high as, say, p*~1¥/21 (when
k>d=2) or p¥/? (when d=kp): simply consider the polynomials 22 and (27 — 2)%?. So we
can’t attain a time or space bound sub-exponential in £ unless we do something more clever
than naively store every root (see Remark 1.2 below).
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In finer detail, the algorithm from [9] solves a “small” polynomial system at each node of a
recursion tree (using a specially tailored Grébner basis computation [13]), while our algorithm
performs a univariate factorization in (Z/(p))[x] at each node of a smaller recursion tree.
Our use of fast factorization (as in [18]) is why we avail to randomness, but this pays off:
Gaining access to individual roots in Z/(p) (as suggested in [9]) enables us to give a more
streamlined algorithm.

Remark 1.2. von zur Gathen and Hartlieb presented in [15] a randomized polynomial-
time algorithm to compute all factorizations of certain f € (Z/(p*))[x]. (Ezamples like
2= (z —p)(z +p) € (Z/(p?))[x] show that unique factorization fails badly for k > 2, and
the number of possible factorizations can be exponential in k.) Their algorithm is particu-
larly interesting since it uses a compact data structure to encode all the (possibly exponen-
tially many) factorizations of f. Unfortunately, their algorithm has the restriction that p*
not diwvide the discriminant of f. Their complexity bound, in our notation, is the sum of
d"klog(p)(klog(p) +log d)? and a term involving the complexity of finding the mod p* reduc-
tion of a factorization over Zy|z| (see Remarks 4.10-4.12 from [15]). The complezity of just
counting the number of possible factorizations (or just the number of possible linear factors)
of f from their data structure does not appear to be stated. ¢

Creating an efficient classification of the roots of f in Z/ (pk) (and improving the data
structure from [15] by removing all restrictions on f), within time polynomial in d + & log p,
is a problem we hope to address in future work.

For the reader interested in implementations, we have a preliminary Maple implementation
of Algorithm 2.3 freely downloadable from www.math.tamu.edu/“rojas/count.map . A few
timings (all done on a Dell XPS13 Laptop with 8Gb RAM and a 256Gb ssd, running Maple
2015 within Ubuntu Linux 14.04) are listed below:

f(x) pk Brute-force! Algorithm 2.3
Random degree 15 2250 ~2 x 10% years 0.07Tsec.
Random degree 75 10009* a5 x 107 years 0.116sec.
( — 1234)3(z — 7193)*(x — 2030)'2 123456791  Omin. 18sec. 20.075sec

(z — 1234)3(z — 7193)*(z — 2030)'2 12345679123  ~10'™ years  Imin. 50.323sec.
Our Maple implementations of brute-force and Algorithm 2.3 here are 5 lines long and 16
lines long, respectively. In particular, our random f above were generated by taking uni-
formly random integer coefficients in {0, ..., p* — 1} and then multiplying 5 (or 25) random
cubic examples together: This results in longer timings for our code than directly picking
a single random polynomial of high degree. The actual numbers of roots in the last two
examples are respectively 3 and
83524650739763670783591272793501499347381420700990366689774050080031654011699848668 752654
473531540039924209209663876325122031629580404523246324540823308088725469492593973.

1.1. A Recurrence from Partial Factorizations. Throughout this paper, we will use
the integers {0, ...,p" — 1} to represent elements of Z/ (pk), unless otherwise specified. With
this understanding, we will use the following notation:

Definition 1.3. For any fE€Z[x] we let f denote the mod p reduction of f and, for any root
Ce{0,....,p—1} of f, we call {, degenerate if and only if f'((y)=0 mod p. Letting ord, :

IThe timings in years were based on extrapolating (without counting the necessary expansion of laptop
memory beyond 8Gb) from examples with much smaller k already taking over an hour.
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Z — NU {0} denote the usual p-adic valuation with ord,(p) =1, we then define s(f,e):=
m>i(1)1{j + ord, 1Y (5)} for anye€{0,...,p—1}. Finally, fixzing k€N, let us inductively define
i>

3
a set T,k (f) of pairs (fic, kic) € Zlz] x N as follows: We set (foo,koo):=(f, k). Then, for
any i >1 with (fi—1,, ki-1,,) € Tpx(f) and any degenerate root (;_1€40,...,p— 1} of fi_1,
with $;—1:=5(fi—1,4,Ci—1) €{2, ..., ki—1,, — 1}, we define C:=pu~+p" G, kic:=ki—1,, — Si—1
and fic(x):= Lﬁfi—m(@q —l-pzv)} mod pFic. o

The “perturbations” f; of f will help us keep track of how the roots of f in Z/ (pk) cluster
(in a p-adic metric sense) about the roots of f. Since % is merely the coefficient of 27

in the Taylor expansion of f(x 4 €) about =0, it is clear that % is always an integer

(under the assumptions above) provided ¢ € Z.

We will see in the next section how T}, x(f) can be identified with a finite rooted directed
tree. In particular, it is easy to see that the set T, (f) is always finite since, by construction,
only fi with i <|[(k—1)/2| and ( € Z/(p) are possible (see also Lemma 3.6 of Section 3
below).

Example 1.4. Let us take p=3, k=7, and f(z):=x'°—102+738. A simple calculation then
shows that foo(x)=x(x —1)°, which has roots {0,1} in Z/(3). The root 0 is non-degenerate
so the only possible f1 . would be an f11= f1o+1.

In particular, s(foo,1)=4 and thus k;1 =3 and f11(x)=212* + 1323 + 52> + 9 mod 3>.
Since fm(x):xQ(x — 1) and 1 is a non-degenerate root of fm, we see that the only possible
f27< would be an f2’1:f2,1+0.

Since s(f1.1,0)=2 we then obtain ko1 =1, and fo1(x)=2(x — 1)(z — 2) mod 3, which has
only non-degenerate roots. So by Definition 1.3 there can be no fs3 and thus our collection
of pairs T, ;(f) consists of just 3 pairs. o

Using base-p expansion, there is an obvious bijection between the ring Z, of p-adic integers
and the set of root-based paths in an infinite p-ary tree T),. It is then natural to use the leafs
of a finite subtree of T, to store the roots of f in Z/ (pk) This type of tree structure was
studied earlier by Schmidt and Stewart in [27, 28|, from the point of view of classification
and (in our notation) upper bounds on N, (f). However, it will be more algorithmically
efficient to instead endow our set T, (f) with a tree structure. The following fundamental
lemma relates N, (f) to a recursion tree structure on 7, x(f).

Lemma 1.5. Following the notation above, let n,(foo) denote the number of non-degenerate

roots of foo in Z)(p). Then, provided k>2 and foq is not identically 0 in (Z/(p))[z], we
have

Npi(foo) = np(foo) + o+ D) PV IN oo (Fra)-

Co€Z/(p) Co€Z/(p)
5(f0,0,¢0)>k 5(£0,0,$0)€{2,....k—1}

We prove Lemma 1.5 in the next section, where it will immediately follow that Lemma 1.5
applies recursively, i.e., our root counting formula still holds if one replaces (fo.0,k, f1.c,» Co)
with (fiz1,us Fic1,us fiptpi-1¢,_1> Gi—1). There we also show how Lemma 1.5 leads to our recur-
sive algorithm (Algorithm 2.3) for computing N, x(f). In essence, the third sum term above
is what creates children for a node corresponding to fi_i ..
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Note that by construction, s(f, (y) >2 implies that (, is a degenerate root of f. So the last
two sum terms in the formula (from Lemma 1.5 above) range over certain degenerate roots
of f. Note also that N,x(f) depends only on the residue class of f mod p*, so we will often
abuse the notations N, x(f) and s(f, (o) by allowing f € (Z/(p*)) [z] as well. The following
example illustrates how N, ;(f) can be computed recursively.

Example 1.6. (fo,0,7)
Revisiting Example 1.4, let us count the roots in Z/(3") of
f(z) :== 2% — 10z + 738. Lemma 1.5 and our earlier compu- 33

tation of T,x(f) then tell us that N3-(f) =1+ 3*N33(f11) and
N3s(fin) =1+ 3'N3i(fo1) where for(x)=2(z — 1)(z —2). So

we obtain N37(f) =1+ 3*(1+3'-2)=190. (Our Maple im- @5
plementation confirmed this count in under 4 milliseconds.) We

illustrate the corresponding tree structure (defined in Section 3 31
below) on the right. Note that the powers of 3 in the expression
1+ 33(1 + 3% - 2) appear as edge labels in our tree, but the con-
tribution of non-degenerate roots to our count is not notated on (for, 1)
our tree. ©

While the tree from our example above has just 3 nodes, the earlier tree structure from
[27, 28] would have resulted in over 190 nodes. We will now fully detail how to efficiently
reduce root counting over Z/(p*) to computing p-adic valuations and factoring in (Z/(p))|x].

2. ALGEBRAIC PRELIMINARIES AND OUR ALGORITHM

Let us first recall the following version of Hensel’s Lemma:

Lemma 2.1. (See, e.g., [24, Thm. 2.3, Pg. 87, Sec. 2.6].) Suppose k €N, f € Z[z] is not
identically 0 in (Z/(p))[z], and (o € Z/(p) is a non-degenerate root of f. Then there is a
unique ¢ €Z/(p*) with (= mod p and f(¢)=0 mod p*. M

The following lemma enables us to understand the lifts of degenerate roots of f.

Ler~nma 2.2. Following the notation of Lemma 2.1, suppose instead that (o €Z/(p) is a root
of [ of (finite) multiplicity m>2. Suppose also that k>2 and that there is a ¢ €Z/(p*) with
C=Co mod p and f({)=0 mod p*. Then s(f,o)€{2,...,m}.

Proof of Lemma 2.2: We may assume, by base-p expansion that { =(y+pl+-- - +p 1y
for some (p,...,(k—1 €40,...,p — 1}. Note that f'(¢y) =0 mod p since (, is a degenerate

root. Note also that j + ordp% >2 for all j>2. Letting 0:= +pl + -+ -+ p* 21 we

then see by Taylor expansion that f(¢)=f(¢o) + f/(Co)po + -+ - + {;i}l))!pk_lak_l mod p*. So
f(¢)=0 mod p* implies that f(¢y)=0 mod p? and thus s(f, (y)>2.
To conclude, by Taylor expansion about (y, our multlph(:lty assumption implies that

m>(<°) is an integer not divisible by p. So m + ord, I CO) =m and thus s(f, ) <m. B

We are now ready to state our main algorithm.
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Algorithm 2.3 (RandomizedPrimePowerRootCounting(f,p,k)).

Input. (f,p,k)€Z[z] x N x N with p prime and f(x)=co + - - - + cqz®.

Output. An integer M <N, (f) that, with probability at least %, is exactly N, (f).
Description.

1: Let v:= i d,c; and =f.
et v ie{&lﬂrid}or »Ci and foo:=f

2: Ifv>k

3 Let M :=p*. Return.
4: Elseif ve{l,... k- 1}

5 Let M::p”RandomizedPrimePowerRootCounting(fo’;(w) Dk — v). Return.
6: End(If).

7: Let M :=deg ged(foo, 2" — ).
8: For (oeZ/(p) a degenerate root of foo do?
9 Let 51:8(‘]0070,(:0).

10 If s>k

11: Let M:=M + p*1.
12: Elseif se {2,...,k—1}
13

14

15

16

17

Let M :=M + p* 'RandomizedPrimePowerRootCounting(fi ¢, p, k — ).

: End(If).

: End(For).

: If the preceding For loop did not access all the degenerate roots of fo,o

Print < ‘Sorry, your Las Vegas factoring method failed.
You have an under-count so you should try re-running.’’

18: End(If).
19: Print ¢ ‘If you’ve seen no under-count messages then your count is correct!’’
20: Return.

Before proving the correctness of Algorithm 2.3, it will be important to prove our earlier
key lemma.

Proof of Lemma 1.5: Proving our formula clearly reduces to determining how many lifts
each possible root {y € Z/(p) of f(),o has to a root of fyo in Z/ (pk). Toward this end, note
that Lemma 2.1 implies that each non-degenerate (y lifts to a unique root of fy in Z/ (pk)
In particular, this accounts for the summand n,(fo) in our formula. So now we merely need
to count the lifts of the degenerate roots.

Assume () €Z/(p) is a degenerate root of fyo, write (=Co + pCi + -+ + p* 1 Go1 €Z/ (pF)
via base-p expansion as before, set 0:=(+pla+- - -+p"2(_1, and let s:=5(fo,, (o). Clearly
then, fo0(C)=p°f1¢(0) mod p* and, by construction, f ¢, €Z[z] and is not identically 0 in
@/ ()]

If s >k then fy0(¢) =0 mod p* independent of o. So there are exactly p*~! values of
CeZ/ (pk) with (=(y mod p. This accounts for the second summand in our formula.

If s<k —1 then ( is a root of foo with (=¢s mod p if and only if fi ¢ (c)=0 mod p*~*.
Also, s> 2 (thanks to Lemma 2.2) because (, is a degenerate root. Since the base-p digits
Cro—si1,---,Ck—1 do not appear in the last equality, the number of possible lifts ¢ of (j is thus

2Here we use the fastest available Las Vegas factoring algorithm over (Z/(p))[z] (currently [18]) to isolate
the degenerate roots of f. Such factoring algorithms enable us to correctly announce failure to find all the
degenerate roots, should this occur. We describe in the next section how to efficiently control the error
probability.
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exactly p*~! times the number of roots ¢; +plo+ - +p* "1 €Z/ (pk_s) of fi¢- So this
accounts for the third summand in our formula and we are done. W

We are at last ready to prove the correctness of Algorithm 2.3.

Proof of Correctness of Algorithm 2.3: Assume temporarily that Algorithm 2.3 is
correct when fy o is not identically 0 in (Z/(p))[z]. Since (for any integers a, z,y with a <k)
pr = py mod p¥ <= =y mod p*~?, Steps 1-6 of our algorithm then clearly correctly
dispose of the case where f is identically 0 in (Z/(p))[z]. So let us now prove correctness
when f is not identically 0 in (Z/(p))[x]. Applying Lemma 1.5, we then see that it is enough
to prove that the value of M is the value of our formula for N, ;(f) when the For loops of
Algorithm 2.3 runs correctly.

Step 7 ensures that the value of M is initialized as n,(f). Steps 8-15 (once the For loop
is completed) then simply add the second and third summands of our formula to M thus
ensuring that M = N, x(f), provided the For loop has run correctly, along with all the For
loops in the recursive calls to RandomizedPrimePowerRootCounting. Should any of these
For loops run incorrectly, Steps 16-20 ensure that our algorithm correctly announces an
under-count.? So we are done. B

3. Our COMPLEXITY BOUND: PROVING THEOREM 1.1
Let us now introduce a tree structure on 7, ;(f) that will enable our complexity analysis.

Definition 3.1. Let us identify the elements of T, (f) with nodes of a labelled rooted directed
tree T, (f) defined inductively as follows:

(1) We set foo:=f, koo:=k, and let (fo0,ko0) be the label of the root node of Tpr(f).

(2) The non-root nodes of T,i(f) are uniquely labelled by each (fic, kic) € Tpr(f) with
1>1.

(3) There is an edge from node (fir¢r, kir ) to node (fic, ki) if and only if i/ =i —1 and
there is a degenerate root (;_1 € Z/(p) of figg with s(fier,Go1) €{2, ... kpe — 1}
and C:C/—Fpi_lci_lGZ/(pi). /

(4) The label of a directed edge from node (fir ¢/, ki ) to node (fic, kic) is ps(fi/"’(cfc/)/pl )71.

In particular, the edges are labelled by powers of p in {p',...,p""2}, and the labels of the
nodes lie in Z[x] x N. o

Example 3.2.

Letting g(x) := 2% —8x14-252% — 38224281 —8, the tree Tiz100(g) is
drawn to the right: Note that Ti7100(g) has depth | (100 — 1)/2| =
49 and exactly 1+ | (100 — 1)/2] + | (100 — 1)/3] =83 nodes. To
count the roots of g in Z/(17'%°) one can then easily calculate that
goo(x)=(z —1)*(x —2)3, g11(x)=22(49132% — 8672* 4+ 5lx — 1)
and g1 2(z)=x3(28922 + 34z +1). The last two polynomials have .
no nonzero roots mod 17. : .
A bit more computation then yields g;1(x) = —x? for all -
i€ {1,...,49} and g;2(x) = a® for all j € {1,...,33}. Also, 7

Ni72(9a9.1) =17 by Lemma 1.5 and Ni71(gss2)=1 trivially. So by @
Lemma 1.5 once more, goo has exactly 17-17%-1+17%-(17%)32.1= @

1750 + 175 yoots in Z/(17'°). Expanded in base-10, this count is
1620424537653706124196923258781575759359875675913436470380245486276378993995166018. ©

3Note that checking for an under-count can be reduced to an irreducibility check in F,[z], which can be
done in deterministic polynomial-time: See, e.g., [15, Cor. 14.35, Algor. 14.36, & Thm. 14.37, pp. 406-408].
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Remark 3.3. Our trees T, ;(-) thus encode algebraic expressions for our desired root counts
N, i(+). In particular, the children of a node labelled (f;, k;) yield terms (corresponding to the
child nodes) that one sums to get the root count Ny, (fi), and the edge labels yield weights
multiplying the corresponding terms. (The contribution from non-degenerate roots is not
visible from the tree but does influence each Ny, (f;), as detailed by Lemma 1.5.) ©

Example 3.4. Suppose we set p=31, k=17, and we define h(x) to be

212 — 602 — 442020 4 27504027 + 82877282% — 50262624027 — 8802489280° — 100692917272°
—6168330858x* — 109826346162 + 665004570222 — 4862117081z — 6450915579.

Then the tree T317(h) has the following structure:

In particular, the polynomials corresponding to the depth 1 nodes are exactly
hi1=96102°% + 136402° + 25563z* + 251123 + 94172% + 136402 + 14992,
hi15=221032° + 16742 + 11825x* + 2644323 4 2920522 + 1674z + 26240, and
hy30=249862° + 2852025 + 22228z + 254223 + 2954122 + 28520x + 12618.

Also, the polynomials corresponding to the depth 2 nodes are exactly hoi11.31 = ha1430.31 =

14.1‘2 and h2715+1.31 = h2715+30.31 = h2730+1.31 = h2’30+30.31 = 4.732. So Lemma 1.5 tells us that h
has ezactly 6 - 31* - 1=5541126 roots in Z/(317).

The following lemma will be central in our complexity analysis.

Lemma 3.5. Suppose k,p € N with p prime, f € Z[x] has degree d, and (fi—1,, ki—1,) is

any node of T,r(f). Then > deg fi’g < deg fi_lw where the sum ranges over all child nodes
(fic: kic) of (firp kiz1,).

Lemma 3.5 follows immediately from the last sentence of Assertion (3) of the more refined
lemma below:

Lemma 3.6. Following the notation of Lemma 3.5, we have that:

(1) The depth of T,x(f) is at most | (k—1)/2].

(2) The degree of the root node of T,x(f) is at most |d/2].

(3) The degree of any non-root node of T, i (f) labelled (f; ¢, ki), with parent (fi—1 ., ki—1,,.)
and (i1 = (¢ — w)/pt, ds at most |s(ficiu, Gio1)/2]. In particular,
deg fic <s(fic1s Gim1) <ki1,—1<k—1and > s(fic1u G-1) <deg fi_1,-

(fi,c+kic) a child
Of (fi_lvﬂvki—l,u)
(4) Tox(f) }[zs at most |4] nodes at depth i > 1, and thus a total of no more than

1+ L%J %J nodes.
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Proof of Lemma 3.6:

Assertion (1): By Definitions 1.3 and 3.1, the labels (fi¢,ki¢) satisfy
2 < ki—l,u — ki,( S ki—l,u — 1 for any child (fi,c, k‘@() of (fi—l,,ua ]{Z’_LM), and 1 < ki,( § k — 2 for
all >1. So considering any root to leaf path in 7, (f), it is clear that the depth of T, x(f)
can be no greater than 1+ [(k—2—1)/2]=[(k—1)/2|. &

Assertion (2): Since f070 = f has degree <d, and the multiplicity of any degenerate root of
foo is at least 2, we see that fy has no more than |d/2] degenerate roots in Z/(p). Every
edge emanating from the root node of 7,x(f) corresponds to a unique degenerate root of

fo,o (and not every degenerate root of f need yield a valid edge emanating from the root of
Toi(f)), so we are done. B

Assertion (3): The degree bound for non-root nodes follows similarly to the degree bound
for the root node: Letting s:=s(f;_1,,,(i—1), it suffices to prove that deg fi,g <s forall i>1.
Note that we must have "
$s=  min { + ord, fz“‘—(gzl) },
7€{0,...,k; c—1} !

since f;¢ € (Z/ (ka)) [z] for i > 1. So then, the coefficient of z* in f;_1,((;—1 + pxr) must
be divisible by p*™ for all £>s + 1. In other words, the coefficient of z* in f; (z) must be
divisible by p for all /> s + 1, and thus deg fi,( <s. That s <k;_;, — 1 follows from the
definition of s(f, (), and k;_1 , <k since koo:=Fk and (thanks to Definition 1.3) k;_1 , >k .

To prove the final bound, note that Lemma 2.2 implies that each term s(f;j_1 ,, (;—1) in the
sum is at most the multiplicity of the root (;_; of fi—l,u- Since the sum of the multiplicities
of the degenerate roots of fi—l,u is no greater than deg fi_w, we are done. W

Assertion (4): By Assertion (3), the sum of the degrees of the f ¢, (as (fi.c, k1.¢,) ranges
over all depth 1 node labels of 7, ,(f)) is no greater than deg fo 0, which is at most d.

By applying Assertion (3) to all nodes of depth i > 2, the sum of the degrees of the fi,§
(as (fic, ki) ranges over all depth i node labels of 7, (f)) is no greater than the sum of the
degrees of the f;_; (a8 (fiz1,, ki—1,,) ranges over all depth @ — 1 node labels of 7, (f)).

Since deg fo 0 <d we thus obtain that, for every depth i, the sum of the degrees of the fz
(as (fic, kic) ranges over all depth ¢ node labels of Tk(f)) is no greater than d. So by the
final part of Assertion (3), our tree 7, x(f) has no more than |d/2| nodes at any fixed depth
>1. So by Assertion (1) we are done. B

We are at last ready to prove our main theorem.

Proof of Theorem 1.1: Since we already proved at the end of the last section that Al-
gorithm 2.3 is correct, it suffices to prove the stated complexity bound for Algorithm 2.3.
Proving that Algorithm 2.3 runs as fast as stated will follow easily from (a) the fast ran-
domized Kedlaya-Umans factoring algorithm from [18] and (b) applying Lemmata 3.5 and
3.6 to show that the number of necessary factorizations and p-adic valuation calculations is
well-bounded.

More precisely, the For loops and recursive calls of Algorithm 2.3 can be interpreted as
a depth-first search of 7, (f), with 7,x(f) being built along the way. In particular, we
begin at the root node by factoring foo = f in (Z/(p))[z] via [18], in order to find the
degenerate roots of f. (Factoring in fact dominates the complexity of the ged computation
that gives us n,(fo0), if we use a deterministic near linear-time ged algorithm such as that of
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Knuth and Schonhage (see, e.g., [4, Ch. 3]).) This factorization takes time (d'-° logp)Ho(l)

(dlog2 p) o) ond requires O(dlog p) random bits.

Now, in order to continue the recursion, we need to compute p-adic valuations of poly-
nomial coefficients in order to find the s(foo,¢y) and determine the edges emanating from
our root. Expanding each fq (o + pr) can clearly be done mod p*, so each such expansion
takes time no worse than d?(klog p)'*°™) via Horner’s method and fast finite ring arithmetic
(see, e.g., [2, 14]). Computing s(fy0, (o) then takes time no worse than d(klog p)**°™) using,
say, the standard binary method for evaluating powers of p. There are no more than |d/2]
possible {y (thanks to Lemma 3.6), so the total work so far is

dB(k, logp)lJro(l) + (dlog2p)l+o(l) .

(To simplify our bound, we are rolling multiplicative constants into the exponent, at the price
of a negligible increase in the little-o() terms in the exponent.) Note that now, computing
the expansion fo((o + px) dominates the factorization of f(),o.

The remaining work can then be bounded similarly, but with one small twist: By Assertion
(4) of Lemma 3.6, the number of nodes at depth ¢ of our tree is never more than [d/2| and,
by Lemma 3.5, the sum of the degrees of the fi’g at level 7 is no greater than d.

Now observe that (for ¢ > 2) the amount of work needed to compute the s(f;_1,,i—1)
at level ¢+ — 1 (which are used to define the polynomials at level 7) is no greater than
d-d(klogp)*°M and this will be dominated by the subsequent computations of the expan-
sions of the f; . In particular, by the basic calculus inequality 74 + -+ i <(ri 4+ -+ +1,)"
(valid for any r,¢>1), the total amount of work for the factorizations for each subsequent
level of 7, x(f) will be

+

d1.5(10gp>1+o(1) 4 (dlog2 p)1+o(1) :
with O(dlogp) random bits needed. The expansions of the f; . at level ¢ will take time no
greater than d®(klog p)'*t°™ to compute. So our total work at each subsequent level is then

dB(k 10gp)1+0(1) + (d10g2 p) 1+o(1) .
So then, the total amount of work for our entire tree will be
k?d3(k? 1ng)1+o(1) +k (d10g2 p) 14o0(1) )

and the number of random bits needed is O(dklogp).

We are nearly done, but we must still ensure that our algorithm has the correct Las
Vegas properties. In particular, while finite field factoring can be assumed to succeed with
probability >2/3, we use multiple calls to finite field factoring, each of which could fail. The
simplest solution is to simply run our finite field factoring algorithm sufficiently many times
to reduce the over-all error probability. In particular, thanks to Lemma 3.6, and the basic
union bound for probabilities, it is enough to enforce a success probability of O(ﬁ) for each
application of finite field factoring. This implies that we should run the algorithm from [18§]
O(log(dk)) many times each time we need a factorization over (Z/(p))[z]. So, multiplying
our last total by log(dk), this yields a final complexity bound of

kd®(klog p) ") + (dklog? p) ™%

(since computing the expansions of the f;,((;-1 + ) dominates our complexity) and a total

number of O(dk log(dk)logp) random bits needed.
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To conclude, note that as our algorithm proceeds with depth first search, we need only
keep track of collections of f; . occuring along a root-to-leaf path in 7, x(f). A polynomial of
degree d with integer coefficients all of absolute value less than p* requires O(dklogp) bits
to store, and Lemma 3.6 tells us that the depth of 7, x(f) is O(k). So we never need more
than O(dk?logp) bits of memory. B
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