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ABSTRACT

Suppose F := (f1,. .., fn) is a system of random n-variate polyno-
mials with f; having degree <d; and the coefficient of xla Looxpn
in f; being an independent complex Gaussian of mean 0 and vari-
d;!
al!---a,,!(di—z;’zl aj)!
by Lairez — building upon seminal work of Shub, Smale, Beltran,
Pardo, Biirgisser, and Cucker — has resulted in a deterministic algo-
rithm that finds a single (complex) approximate root of F using just

)
NOW arithmetic operations on average, where N:= 31" | (r:,rj_’,)'
=1 "nld;!

ance . Recent progress on Smale’s 17 Problem

(= n(n + max; d;)Omin{r.max; di)}y js the maximum possible total
number of monomial terms for such an F. However, can one go
faster when the number of terms is smaller, and we restrict to real
coefficient and real roots? And can one still maintain average-case
polynomial-time with more general probability measures?

We show that the answer is yes when F is instead a binomial sys-
tem — a case whose numerical solution is a key step in polyhedral
homotopy algorithms for solving arbitrary polynomial systems. We
give a deterministic algorithm that finds a real approximate root, or
correctly decides there are none, using just O(n® log?(n max; d;))
arithmetic operations on average. Furthermore, our approach al-
lows Gaussians with arbitrary variance. We also discuss briefly
the obstructions to maintaining average-case time polynomial in
nlog max; d; when F has more terms.
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1 INTRODUCTION

Polynomial system solving has occupied a good portion of research
in algebraic geometry for centuries, and inspired numerous algo-
rithms in engineering and optimization. In recent years, homotopy
continuation (see, e.g., [5, 33, 34, 38, 55]) has emerged as one of
the most practical and efficient approaches to leverage high perfor-
mance computing for the approximation of roots of large polyno-
mial systems.

A refinement particularly useful for sparse systems is polyhedral
homotopy [25, 30, 60]. To be brutally concise, polyhedral homotopy
reduces the solution of an arbitrary polynomial system to (a) solv-
ing a finite collection of binomial systems to high precision and
then (b) iterating a finite collection of rational functions. A com-
plete, average-case complexity analysis of polyhedral homotopy
thus implies an average-case complexity upper bound on solving
binomial systems. (See also [18] for a more in-depth discussion on
the importance of binomial systems.)

A geometric aspect common to both polyhedral homotopy and
older homotopy methods is the deformation of a start system G (or a
collection of start systems {G; }), with known roots, into the system
F one is trying to solve. Put another way, homotopy algorithms
approximate the motion of the roots of a one-parameter family of
polynomial systems (called a homotopy path), where the resulting
path has end-points G and F. As studied in [6, 7, 9, 17, 29, 47, 48],
average-case complexity analysis for classical homotopy algorithms
hinges on careful probabilistic condition number estimates for the
start system G, followed by further probabilistic condition number
estimates for systems along the homotopy path.! Since binomial
systems play the role of start systems in polyhedral homotopy, it is
thus crucial to know the probability that a binomial system is easy
to solve. Our main theorem, on average-case complexity, is a step
in this direction.

IThe condition number is a measure of the sensitivity of the roots of a system to

perturbation of its coefficients. The condition number is thus another important
measure of the complexity of numerical solving.
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Since solving arbitrary polynomial systems is a numerical prob-
lem involving solutions of unknown minimal spacing, we will need
to incorporate the cost of approximating well enough to distinguish
distinct solutions. A recent and elegant way to handle this is via the
notion of approximate root in the sense of Smale. In what follows,
we use | - | for the standard {3-norm on C".

DEFINITION 1.1. [13, 50] Given any analytic function F : C" —
C", we define the Newton endomorphism of F to be Np(z):=z —
F'(2)"1F(z), where we think of F(z) as a column vector and we
identify the derivative F'(z) with the matrix of partial derivatives
[3—2] - We call { € C" a non-degenerate root of F if and only
if F'({) is invertible. Given zg € C", we then define its sequence of
Newton iterates (zn)penu{o} via the recurrence zp+1:=NFp(zn) (for
alln > 0). We then call zg an approximate root of F in the sense
of Smale (with associated true root {) if and only if F has a non-

n-1
|zo — (| for all

2
degenerate root { € C" satisfying |z, — {| < (%)
nx>1.¢

In essence, once one has an approximate root in the sense above,
one can easily compute coordinates within any desired £> 0 of the
coordinates of a true root, simply by iterating Newton’s method

O(log log %) many times. The special case F(z1):= zf — 2 already
shows that one needs Q(log log %) arithmetic operations to com-

pute V2 within £ [16]. So one can arguably consider an approximate
root to be the gold standard for specifying a true root. In particular,
one no longer has to worry about finding the minimal root spacing
of F (to find the right ¢ to separate distinct roots), since an approxi-
mate root in the sense of Smale is guaranteed to converge almost
optimally fast to a unique true root.

Of course, this begs the question of how one can possibly find
an approximate root. This is the crux of Smale’s 17 Problem (see
[51,52] and Section 1.1 below), which was recently positively solved
by Lairez [29]. (See also the seminal work of Shub and Smale [48],
Beltran and Shub [9, 47], Beltran and Pardo [6-8], and Biirgisser
and Cucker [17].) Roughly, Lairez’s discovery was an algorithm
that, for a certain class of random polynomial systems, finds a single
(complex) approximate root in polynomial-time on average. We
now introduce some more terminology to be precise:

DEFINITION 1.2. Suppose Ay, ..., A, CZ" are finite subsets and
{ci,a | i€{1,...,n} and ac A; foralli} is a collection of indepen-
dent complex (resp. real) Gaussians with mean 0 and the variance
of ¢i,q equal to w?’a. Letting a:=(ay, . .., an), x®:=x" -- -xp", and
fi(x) =2 geam, ci,ax? we call F:=(f1,..., fu) an n X n complex
(resp. real) random polynomial system with support (Aj, ..., Ap).
o

LAIREZ’s THEOREM. [29, Thm. 23]? Following the notation above,
letdy,...,dneN,

Ai={(ar,....an)e@TU {0} | T2,

" aj<d; } for all i,

2We have paraphrased a bit: Lairez’s main theorem is stated in terms of homogeneous
polynomials, and he counts square roots as arithmetic operations as well. Via the
techniques of, say, [7], one can easily derive our affine statement.

d;!
all“‘an!(di—zj'?:l aj)!
proximate root of a complex random F using just O(nd32N(N +n3))

(dy+n)! _
i=1 “dm andd:=

and w? = . Then one can find a (complex) ap-

arithmetic operations on average, where N :=},
max; di. |

Note that restricting the support (Aj, ..., Ay) is a way to consider
sparsity for one’s polynomial system. In particular, one can think
of Lairez’s Theorem as solving Smale’s 171 Problem in the “dense”
case, since Lairez assumes that all monomial terms up to a given
degree appear (with probability 1) in each polynomial f;. Indeed,
one should note that Smale never specified what kind of probability
measure one should use in his 172 Problem [51, 52]. So Smale’s 172
Problem actually includes sparse systems if some of the random
coefficients have mean, and all higher moments, equal to 0. Smale
also observed in [51, 52] that one can pose a more difficult analogue
of his 17t problem over the real numbers.

REMARK 1.3. It is worth noting that the number of nonzero complex
roots of a complex (or even real) random polynomial system as above
attains a unique value with probability 1, once Ay, . .., Ay are fixed.
(This follows easily from a classical result of Bernstein [10, 44], relating
the mixed volume of Newton polytopes with counting complex roots.)
Counting real roots for real random systems is more subtle however:
One can easily show that, for any continuous positive probability
measure on the coefficients, having at least one d; > 2 (in the setting
of Lairez’s Theorem) implies that at least two different possible real
root counts can occur with positive probabilities (see, e.g., [20]). For
instance, if co, c1, and ca are independent real Gaussians of any
positive variance, the probability that co + c1x + cax? has exactly k
real roots is positive for each k€ {0, 2}. ¢

Observe that )7, (‘ZiiT’Z)!
number of monomial terms in an n X n polynomial system where
fi has degree d;. Note also that just evaluating a monomial of
degree d takes Q(logd) arithmetic operations: Simply consider
the straight-line program complexity of the integer 2¢ (see, e.g.,
[15, 36, 37]). One should pay attention to the evaluation complexity
of F since Lairez’s algorithm uses Newton iteration, which in turn
requires evaluating F (and its Jacobian) many times. So one can
then naturally ask, in the spirit of real fewnomial theory [26]: Can
one find a real approximate root of F (or decide whether there
are no real roots) using, say, (t logd)?!) arithmetic operations on
average, when ¢ is the total number of monomial terms of F and
d:=max; d;? (See also [45] for an earlier statement of this problem.)
This would be a significant new speed-up. For instance, the special
case t =O(n) is already quite non-trivial since there are standard
algebraic tricks (e.g., the bottom of the first page of [21]) to reduce
arbitrary polynomial systems to trinomial systems.

Our main theorem thus solves a special case of a refined version
of Smale’s 171 Problem, and serves as a starting point for a deeper
study of the randomized complexity of solving arbitrary real sparse
polynomial systems.

is exactly the maximal possible total

THEOREM 1.4. Suppose A = [a; j] € Z™" and all the entries of
A have absolute value at most d. Suppose also that c; j is an in-
dependent real Gaussian with mean 0 and variance w?j, for each

(i, )ef{1,...,n}x{0,1}. Let F:=(fi, ..., fu) with fi(x):=ci 0+ci,1-



aii
1
age, one can find a real approximate root of F (or correctly determine

Wi,0
Wi,1

Wi,1

x | wio

a
<-x,™", and set r :=max; max { } Then, on aver-

there are no real roots) using just O(n2 log?(nd)[1 + nlog log(er)])

arithmetic operations and O(n®*! log?(dn)) bit operations, where o
is any upper bound on the matrix multiplication exponent.

We prove Theorem 1.4 in Section 3. The best current upper bound
on w, as of May 2019, is Legall’s estimate 2.3728639 [31] (see also
[2, 59])).

At a high level, the algorithm underlying our main theorem has
three phases: (I) perform integer linear algebra on the exponent
vectors to find a monomial change of variables reducing the input
system F to the diagonal form (xf1 —C1,. .- ,x,‘f” — ¢n), (I1) decide
if there are real roots, (III) if there are real roots, solve each bino-
mial by a combination of bisection and Newton iteration (based
on [61]), paying close attention to how each pair (d;, ¢;) affects
the required accuracy. Phases (I) and (II) are well-known in the
computational toric geometry community (see, e.g., [18, 21, 25]).
Although [18] contains many useful algorithmic details on solving
binomial systems, including a discussion of numerical implemen-
tations, the computational complexity of binomial system solving
does not appear to have been analyzed yet from the point of view
of average-case complexity or approximate roots in the sense of
Smale. Our primary contribution is thus a new analysis of Phase
(II), particularly with respect to average-case complexity in the
Gaussian setting.

The complexity of Phase (I) accounts for the bit complexity esti-
mate in Theorem 1.4, thanks to earlier work of Storjohann on fast
linear algebra over Z (see [54, 56] and Section 2.1 below). Phase
(IT) is an elementary algebra exercise and actually has negligible
(deterministic) complexity compared to our main bound. Step (III)
is accomplished by a hybrid algorithm of Ye that allows quick
approximation of rational powers of a real number [61]. The fi-
nal key ingredient to establishing the average-case complexity of
Phase (III) is estimating the expected value of linear combinations
of logarithms of absolute values of standard real Gaussians (see
Propositions 2.8 and 2.9 in Section 2.3 below). We were unable to
find any explicit asymptotics for such expectations, so we derive
these in the latter half of Section 2.3.

We will explain some of the subtleties behind extending Theorem
1.4 to systems with arbitrary supports in Section 1.2 below. First,
however, let us briefly review the original statement of Smale’s 17
Problem.

1.1 Quick Review of Smale’s 172 Problem

Smale’s 17 Problem [51, 52] elegantly summarizes the subtleties

behind polynomial system solving:

Can a zero of n complex polynomial equations in n
unknowns be found approximately, on the aver-
age, in polynomial-time with a uniform algorithm?

[Emphases added.] We clarify the notion of “polynomial-time” be-
low. As motivation, let us first see how the emphasized terms high-
light fundamental difficulties in polynomial system solving:

“a zero”: We can not expect a fast algorithm approximating all
the roots since, for n > 2, there may be infinitely many.

In which case, for di > 3 (e.g., the case of elliptic curves
[53]), the roots will likely not admit a rational parametriza-
tion. When there are only finitely many roots, systems like
(xf —1,...,x2 — 1) show that the number of roots can be
exponential in n.

“found approximately”: Even restricting to integer coefficients,
the number of digits of accuracy needed to separate distinct
roots can be exponential in n, e.g.,

2x1 —1)(3x1 — 1), x2 —xz,...,xn —xz_
1 n-1
has roots with nf coordinates 22,,;,1 and 32,,% So, especially

for irrational coefficients, we need a more robust notion
of approximation than digits of accuracy. (Hence’s Smale’s
definition of approximate root from [50].)

“on the average”: Restricting to integer coefficients, distinguishing
between a system having finitely many or infinitely many
roots is NP-hard (see, e.g., [27, 41]). Furthermore, as already
long known in the numerical linear algebra community (e.g.,
results on the distribution of eigenvalues of random matrices
[19, 57]), even if the number of roots is finite, the accuracy
needed to separate distinct roots can vary wildly as a func-
tion of the coefficients. So averaging over all inputs allows
us to amortize the complexity of potentially intractable in-
stances.

The original statement of Smale’s 172 Problem measures time
(or complexity) as the total number of (a) (exact) field operations
over C, (b) comparisons over R, and (c) bit operations [51]. (The
underlying computational model is a BSS machine over R [13], which
is essentially a classical Turing machine [3, 39, 49], augmented so
that it can perform any field operation or comparison over R in one
time step.) Polynomial-time was then meant as polynomial in the
number of (nonzero) coefficients of F. Smale thus interpreted the
number of coefficients (which can be as high as 2.1, (di:") for F
as specified above) as the input size.

REMARK 1.5. The precise probability distribution over which one
averages was never specified in Smale’s original statement [51, 52]. In
all the literature so far on the problem (see, e.g., [6-9, 17, 29, 47, 48]),
the Bombieri-Weyl measure was used: This is the choice of variances
involving multinomial coefficients written earlier. o

While the Bombieri-Weyl measure satisfies some very nice group
invariance properties (see, e.g., [12, 23, 28, 48]), there is currently
no widely-accepted notion of a “natural” probability distribution
for a random polynomial. For instance, there are several different
distributions of interest already for the matrix eigenvalue problem
(see, e.g., [1, 19, 43]). More to the point, much work has gone into
finding useful properties of the roots of random polynomials that
are distribution independent (see, e.g., [11, 22, 58]).

The meaning of uniform algorithm is more technical and is for-
malized in [13] (see also [3, 39, 49] for the classical Turing case).
Roughly, uniformity refers to having a single implementation that
can handle all input sizes, as opposed to having different implemen-
tations for each input size.



1.2 Current Obstructions to Fully
Incorporating Sparsity

As we’'ll see from the proof of our main theorem, solving an n X n
system of Gaussian random binomials of degree d can be reduced
to solving n univariate binomials of degree (nd)®™), where the
underlying coefficients are no longer Gaussian but have reasonably
estimable means. Algebraically, this will imply that the underlying
field extension (where one adjoins the coordinates of the solutions
to the field generated by the coefficients) is always a radical exten-
sion.

A natural next step then is to consider n X n unmixed (n + 1)-
nomial systems:

(c1,0 +c1,1x® + - 41, px, o0+ Cn 1 XM 4+ op px®n),

where a;:=(a1,j, ..., an,;) for all i. Via Gauss-Jordan Elimination,
one can reduce such a system to a binomial system without af-
fecting the roots. Unfortunately, if one starts with a system of the
form above, with Gaussian c; j, the resulting binomial system no
longer has Gaussian coefficients. So one needs to consider binomial
systems with coefficient distributions more general than Gaussian,
and we do this in a sequel to this paper.

Going a bit farther, n X n unmixed (n + 2)-nomial systems yield
an interesting complication: The underlying field extensions need
no longer be radical, even if n=1. A simple example is xf —2x1 + 10,
which has Galois group Ss over Q. However, earlier results from
[45] indicate that it should be possible to find real approximate
roots quickly on average, at least for univariate trinomials. (One
should also observe Sagraloff’s recent dramatic speed-ups for the
worst-case arithmetic complexity of e-approximating real roots
of univariate sparse polynomials [46].) We conjecture that find-
ing a real approximate root (or determining that there are no real
roots) for a real Gaussian n X n unmixed (n + 2)-nomial system is
still possible in time (nlog d)°® on average, and hope to address
this problem in the future. An interesting intermediate complica-
tion is that just counting the real roots within average-case time
(nlog d)°W is already an open question for t >n + 3 (see, e.g., [4]).

2 BACKGROUND

In what follows, for any n X n matrix A€ Z"™*", we define x4 to be
the vector of monomials
api an,1 ai, An,
xp ey x0T ~-xn"").

We call the substitution x =z* a monomial change of variables. The

following proposition is elementary.

PROPOSITION 2.1. We have that x“B = (x*)B for any A, BeZ™™.
Also, for any field K, the map defined by m(x)=xY, for any unimod-
ular matrix U € Z™", is an automorphism of (K*)" := (K \ {0})".
|

Our main approach to solving binomial systems is to reduce them
to systems of the form (xf'1 —Clyee s x,’f" —cp) viaa monomial change
of variables, and then prove that the distortion of the ¢; resulting
from perturbing the original coefficients is controllable. Later on,
we will also detail how a Gaussian distribution on the original
coefficients implies that the c; still have well-behaved distributions.
But now we will focus on quantifying our monomial changes of
variables.

2.1 Linear Algebra Over Z

DEFINITION 2.2. Let GLy,(Z) denote the set of all matrices in Z"*"
with determinant +1 (the set of unimodular matrices). Given any M €
Z™" e call any identity of the form UMV =S with U,V € GLy,(Z)
and S diagonal a Smith factorization. In particular, if S=[s; j] and we
require additionally that s; ; >0 and s; ;|si+1,i+1 forallie{1,...,n}
(setting sp+1,n+1:=0), then S is uniquely determined and is called
the Smith normal form of M. o

REMARK 2.3. Although the Smith normal form is unique, the Smith

0 0
factorization certainly need not be unique. For instance, [0 0] =

1 u
0 1

not contradict there being some factorization with small entries. ¢

1
8 8] [O zlz] for allu, v € Z. Note, however, that this need

THEOREM 2.4. [56, Ch. 6 & 8, pg. 128] For any A=[a; ;1€ Z™", a
Smith factorization of A yielding the Smith normal form of A can be
computed within

O(n‘“+1 logz(n max; |a,~,j|))
bit operations. Furthermore, the entries of all matrices in this factor-
ization have bit size O(nlog(n max; ; |a; ;). B

2.2 From Approximate Roots of Univariate
Binomials to Systems

We begin with an important observation from the middle author’s
doctoral dissertation, building upon earlier work of Smale [50] and
Ye [61].

LEMMA 2.5. [40, Thm. 4.10] Let d € N satisfy d > 2, ¢ > 0, and
f(x1):= xf — ¢. Then we can find an approximate root of f using
O((log d)(loglog(de max {c,c™'})) field operations over R.

Since a monomial change of variables enables us to replace an
arbitrary binomial system by a simpler, diagonal system of univari-
ate binomials, it’s enough to bound how the roots are distorted
under such a change of variables. The following lemma gives us
the bounds we need.

LEMMA 2.6. Suppose ci,...,cn € C* and A€ Z™" has columns
ai,...,ap and entries of absolute value at most d. Also let o :=
max;{|log |c;||}, let UAV =S be the Smith Factorization of A, and let
(1> »yn):=(c1, ..., cn)V. Then the following bounds hold:

1. max; | log |yi|| < pit3n/2gn g
2.If{=({1, - .-, $n) €(CH™ is a root of F then
max; |log ||| < nOmgom g, [ ]

Lemma 2.6 follows easily from the second bound of Theorem 2.4,
upon observing that x# = ¢ implies that 25 = (y, . . ., yn) where
x=2z". By combining Lemma 2.6 with Theorem 2.4 and multivariate
Taylor’s Theorem with Remainder (see, e.g., [24]), we then easily
obtain the following estimate:

ProrosITION 2.7. Following the notation above, let R denote the
positive orthant and let |(y1, . . ., Yn)|oo denote the {oo-norm max; |y;|
of the vector y=(y1, . . ., yn). Suppose also that {, i, x,z€RY} satisfy
=y, =pY, and x = 2V Then log|x — {|o = eOnlogldm) 5 4
log |z — pifoo. B



2.3 A Key Probabilistic Estimate

Let Z be a standard real Gaussian random variable and let Y :=
log|Z|. It is not difficult to check that Y has density py(t) :=

\/ge_v(t), —0o < t < oo, where v(t) := ezﬁ —t. Indeed, this follows
by differentiating the distribution function of Y, Fy(t) := P(—e’ <
|Z| < e?) =1 - 2d(—e’). Note that v is a convex function. Let o :=
E[Y] and let 7 be the standard deviation of Y. (@ ~—0.635181... and
7~1.110720..., according to the 2018 version of Maple.) Consider
the centered random variable W := Y —a. Let a:=(ay, . . ., ai) eRk,
and let W, :=a1 Wi + - - - + a; Wy, where W; are independent copies
of W. Let X, := max{e"a, e=Wa}. We then have the following:

PROPOSITION 2.8. Let a = (aj,...,a) € R* and assume that
Z{;l a; = 0. Then Wy is a log-concave random variable with expec-
tation 0 and standard deviation y := |a|r. We also have

el-
P(loglog(eXy) > t) < e_Tl fort >log(1+y). 1)

Moreover,
E[loglog(eX,)] < 2 + log(1 +y). (2)

Proof: Since v is a convex function the density py is log-concave
and, by a theorem of Borell [14], the law of the random variable Y
is log-concave, i.e., for all compact sets A, B and A € (0, 1) one has

p(AA + (1= 1)B) = p(AY u(B)' 4, 3)

where p is the measure on R induced by the density py. Also, W
is a log-concave random variable and, by the Prékopa-Leindler
inequality [32, 42], W, is also log-concave. We have that E[W,] =
Zle a;iElYi] =« Zi.‘:l a; = 0 and, since the W; are independent,
k k
var(W,) = Z a%var(Yi) =72 alg = r2d%.
i=1 i=1
Another well-known result of Borell (see e.g., [35]) then states that
if 1 is a log-concave probability measure, K is a symmetric closed
convex set in R”, and § := p(K) > % then for all ¢t > 1 we have the

following:
t+1
1-6\ 72
1-p(tA) <6 (T) . 4)

In particular, if X is a log-concave random variable with mean 0
and variance y2, then we have the following:

P(X| >s)<e &, fors > y. )

Indeed, let A := {|x| < 2y}. Then, by Chebychev’s Inequality, we
have that P(A) = § > %. Using (4), we obtain:

t+1

P(IX| = ty) = 1—1%A)s5(%)T < (%)T <e'z, (6)

rols

for t > 1. So we can estimate as follows:

P(loglog(eXy) = t) = P(Xa > eet,l)
= P({Va > eet‘l} U {Va < e—(d—n})

- P(Va > ee"l) + P(Va < e‘<e"1))
=P(W 2 el —1) + P(W, < —(ef - 1))

el

=P(|Wal 2 €' —1) <& 7,

provided e’ — 1 > y, where we have also used (6). Finally, since
eXq > e, we have loglog(eX,) > 0 and thus

E[loglog(eX,)] < / P(loglog(eXgy) = t)dt
0

log(1+y) ) et
s/ dt+/ e 2 dt
0 log(1+y)

< log(1
< log( +y)+/}; Tos

00 2)/ B
=log(1 *d
og( +y)+/% l+2yxe x

R
e rds

2 (o]
< log(1+y) + L/ edx <2+log(1+y). A
1+}/ 0

PROPOSITION 2.9. Let a € RF satisfy Zif:l a; =0 and assume
t>e*~7.3890.... Then

loglogt < Eloglog{tX,}
loglog(t/e) + 2 + log 2 + log(1 + 7]al),

IN

where T ~1.110720... is the standard deviation of a random variable
of the form log|Z|, where Z is a standard real Gaussian random
variable.

Proof: Note that a + b < 2ab for all a,b > 1. Since eX,; > e and
t/e > e, using (2) we get
Eloglog(tX,) = Elog(log(t/e) + log(eXy))
< Blog(2(log(t/e)) log(eX,))
= log(2) + loglog(t/e) + Eloglog(eXg)
< log(2) + loglog(t/e) + 2 + log(1 + 7lal).

Finally, since X, > 1 and ¢ > ¢2, we have loglog(tX,) > loglogt.
]

3 THE PROOF OF THEOREM 1.4

First note that the c; ; are all nonzero with probability 1, so we may
assume (since we are considering average-case complexity) that all
the c; j are nonzero. In which case, we can focus solely on roots in
(R7)".

Now note that by Proposition 2.1, we can easily decide whether
our input binomial system F has a real root: If F is diagonal, i.e.,

if F=(c1,0 + cl,lxdl, ceesCno + cn,lxg”) for some dy,...,dp €N,
then F has a real root if and only if the following condition holds:
cioci,1 <0 for all i with d; even and nonzero, and ¢; o = —c; 1 for

all i with d; =0. Should this condition be true, each orthant of R"
contains at most 1 root of F (if all the d; are nonzero), or F has
infinitely many roots in any orthant where F vanishes (if some d; is
zero). (See [21] or [18, Sec. 3] for a more precise description of the
case where F has infinitely many roots in (R*)".) In the latter case,
F has free variables that we may set to 1, yielding a j X j binomial
system with j <n and real roots that are coordinate projections of
the roots of F.

If F is not diagonal, then after computing a Smith factorization
UAV = S (which accounts for our stated bit complexity bound,
thanks to Theorem 2.4), we can reduce to the diagonal case and
simply check n inequalities and equalities. If there are no real roots,
no further work needs to be done.



So let us now assume that there are real roots. Without loss of
generality (flipping signs of certain c; ; as needed), we may assume
there is a root in the positive orthant R, and try to approximate a
root there. So we may now assume that we are trying to approxi-
mate the roots of

G::(zfl‘1 Ve =)
where
(Y1, s yn)=(=cr0/c1,1s - ... —cn0/cn,1)”
lies in R¥, and the s; ; are the diagonal entries of the Smith normal
form S of A. In particular, we need to approximate a root y of G in
R closely enough so that :=pY is an approximate root of F.

A slight complication arises: Some of the s; ; may be 0, thus mak-
ing the Jacobian of G have rank too low for Newton iteration to be
well-defined. However, this is easily dispensed with by setting z; =1
for all i with s; ; =0. This has the effect of reducing our problem to

solving the j X j system G’::(zil‘1 -7 .. .,zjs.j’j —yj), where j<n

and m(x):= (xfl’l, ey x]s.j‘j) is a surjective endomorphism on (C*)/.
So we can ultimately obtain approximate roots, simply by applying
Newton iteration to G’ instead of G. Thus, let us assume without
loss of generality that all the s; ; are non-zero (and thus det A+0).

Proposition 2.7 then tells us that to find an approximate root
of F, it suffices to find an approximate root of G, but with tighter
precision. In particular, the necessary number of additional Newton
iterations is O(nlog(dn)), and each Newton iteration for G requires
O(nlog d) arithmetic operations. So the additional work is bounded
from above by our main arithmetic complexity bound. Lemma 2.5
applied to G then implies that to derive our average-case complexity
bound, it suffices to compute an upper bound on the expectation of
the following quantity:

B:=37, [(IOgSi,i)IOglog(Si,ie max{|yil, |Yi_1|})]-

We are almost ready to apply our probabilistic estimate Proposi-
tion 2.9, save for the fact that the y; are monomials in real Gaussians
that need not have variance 1. However, from the definition of y,

: — [ W10 Wn,o
we see that we in fact have (y1,...,yn) == (—WM,..., _Wn,l) )
—c! —c’ v
e c,—"o) , where © denotes the natural coordinate-wise

‘11 n,1
multiplication in (R*)", and the clf’ j are real Gaussians with mean
0 and variance 1. Using the inequality a + b < 2ab for a,b>1, we
then see that it is enough to estimate the expectation of B in the
special case where all the ¢; j have variance 1, provided we also add
the quantity

T:=3"  (logsi,i)log log(e max {w/, w{_l})

\%4
W10 Wn,0
w1’ W

We now conclude via Proposition 2.9 and Theorem 2.4: Proposi-
tion 2.9 tells us that the expectation of B is no greater than

to our estimate, where (wy, ..., wy):= (

T (logs; i) [loglog (max{s; i, e}) + 2 +log(2) +log (1 + ;)]
where v; is the ith column of V. Theorem 2.4, and the fact that
> loglsi,i| = log|det A| = O(nlog(dn)) (thanks to Hadamard’s
classical inequality on the determinant), imply that the last quantity
is no greater than

O(nlog(dn) p (log(n log(dn)) + log(l + r\/ﬁeo(”l"g(d")))))

= O(nlog(dn)nlog(nlog(dn))). So we obtain that the expectation
of Bis O(n2 logz(dn))).
Similarly, by Theorem 2.4 and Lemma 2.6, T is no greater than

Z,’-':l(log |Si,i ) log log (e (reO(nlog(dn)))n).

So T=0(nlog(dn))n log(neo(” log(dn)) log(er))
= O(nlog(dn))n[O(nlog(dn)) + loglog(er)]
- o(n3 log?(dn) log log(er)),

and we are done. B
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