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ABSTRACT
Suppose F := (f1, . . . , fn ) is a system of random n-variate polyno-
mials with fi having degree ≤di and the coefficient of xa1

1
· · · xann

in fi being an independent complex Gaussian of mean 0 and vari-

ance
di !

a1!· · ·an !
(︂
di−

∑︁n
j=1 aj

)︂
!

. Recent progress on Smale’s 17
th
Problem

by Lairez — building upon seminal work of Shub, Smale, Beltrán,

Pardo, Bürgisser, and Cucker — has resulted in a deterministic algo-

rithm that finds a single (complex) approximate root of F using just

NO (1)
arithmetic operations on average, where N :=

∑︁n
i=1

(n+di )!
n!di !

(= n(n +maxi di )
O (min{n,maxi di )}

) is the maximum possible total

number of monomial terms for such an F . However, can one go

faster when the number of terms is smaller, and we restrict to real

coefficient and real roots? And can one still maintain average-case

polynomial-time with more general probability measures?

We show that the answer is yes when F is instead a binomial sys-

tem — a case whose numerical solution is a key step in polyhedral

homotopy algorithms for solving arbitrary polynomial systems. We

give a deterministic algorithm that finds a real approximate root, or

correctly decides there are none, using just O(n3 log2(nmaxi di ))
arithmetic operations on average. Furthermore, our approach al-

lows Gaussians with arbitrary variance. We also discuss briefly

the obstructions to maintaining average-case time polynomial in

n logmaxi di when F has more terms.

CCS CONCEPTS
• Theory of computation → Numeric approximation algo-
rithms; •Mathematics of computing→ Probabilistic algorithms.
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1 INTRODUCTION
Polynomial system solving has occupied a good portion of research

in algebraic geometry for centuries, and inspired numerous algo-

rithms in engineering and optimization. In recent years, homotopy
continuation (see, e.g., [5, 33, 34, 38, 55]) has emerged as one of

the most practical and efficient approaches to leverage high perfor-

mance computing for the approximation of roots of large polyno-

mial systems.

A refinement particularly useful for sparse systems is polyhedral
homotopy [25, 30, 60]. To be brutally concise, polyhedral homotopy

reduces the solution of an arbitrary polynomial system to (a) solv-

ing a finite collection of binomial systems to high precision and

then (b) iterating a finite collection of rational functions. A com-

plete, average-case complexity analysis of polyhedral homotopy

thus implies an average-case complexity upper bound on solving

binomial systems. (See also [18] for a more in-depth discussion on

the importance of binomial systems.)

A geometric aspect common to both polyhedral homotopy and

older homotopy methods is the deformation of a start systemG (or a

collection of start systems {Gi }), with known roots, into the system

F one is trying to solve. Put another way, homotopy algorithms

approximate the motion of the roots of a one-parameter family of

polynomial systems (called a homotopy path), where the resulting
path has end-points G and F . As studied in [6, 7, 9, 17, 29, 47, 48],

average-case complexity analysis for classical homotopy algorithms

hinges on careful probabilistic condition number estimates for the

start systemG, followed by further probabilistic condition number

estimates for systems along the homotopy path.
1
Since binomial

systems play the role of start systems in polyhedral homotopy, it is

thus crucial to know the probability that a binomial system is easy

to solve. Our main theorem, on average-case complexity, is a step

in this direction.

1
The condition number is a measure of the sensitivity of the roots of a system to

perturbation of its coefficients. The condition number is thus another important

measure of the complexity of numerical solving.

https://doi.org/10.1145/3326229.3326267
https://doi.org/10.1145/3326229.3326267
https://doi.org/10.1145/3326229.3326267


Since solving arbitrary polynomial systems is a numerical prob-

lem involving solutions of unknown minimal spacing, we will need

to incorporate the cost of approximating well enough to distinguish

distinct solutions. A recent and elegant way to handle this is via the

notion of approximate root in the sense of Smale. In what follows,

we use | · | for the standard ℓ2-norm on Cn .

Definition 1.1. [13, 50] Given any analytic function F : Cn −→

Cn , we define the Newton endomorphism of F to be NF (z) := z −
F ′(z)−1F (z), where we think of F (z) as a column vector and we
identify the derivative F ′(z) with the matrix of partial derivatives[︂

∂fi
∂x j

]︂ |︁|︁|︁
x=z

. We call ζ ∈Cn a non-degenerate root of F if and only

if F ′(ζ ) is invertible. Given z0 ∈C
n , we then define its sequence of

Newton iterates (zn )n∈N∪{0} via the recurrence zn+1 :=NF (zn ) (for
all n ≥ 0). We then call z0 an approximate root of F in the sense

of Smale (with associated true root ζ ) if and only if F has a non-

degenerate root ζ ∈Cn satisfying |zn − ζ | ≤
(︂
1

2

)︂
2
n−1

|z0 − ζ | for all
n≥ 1. ⋄

In essence, once one has an approximate root in the sense above,

one can easily compute coordinates within any desired ε >0 of the
coordinates of a true root, simply by iterating Newton’s method

O
(︂
log log

1

ε

)︂
many times. The special case F (z1) :=z

2

1
− 2 already

shows that one needs Ω
(︂
log log

1

ε

)︂
arithmetic operations to com-

pute

√
2 within ε [16]. So one can arguably consider an approximate

root to be the gold standard for specifying a true root. In particular,

one no longer has to worry about finding the minimal root spacing

of F (to find the right ε to separate distinct roots), since an approxi-

mate root in the sense of Smale is guaranteed to converge almost

optimally fast to a unique true root.

Of course, this begs the question of how one can possibly find

an approximate root. This is the crux of Smale’s 17
th

Problem (see

[51, 52] and Section 1.1 below), which was recently positively solved

by Lairez [29]. (See also the seminal work of Shub and Smale [48],

Beltrán and Shub [9, 47], Beltrán and Pardo [6–8], and Bürgisser

and Cucker [17].) Roughly, Lairez’s discovery was an algorithm

that, for a certain class of random polynomial systems, finds a single

(complex) approximate root in polynomial-time on average. We

now introduce some more terminology to be precise:

Definition 1.2. Suppose A1, . . . ,An ⊂Z
n are finite subsets and

{ci ,a | i ∈ {1, . . . ,n} and a ∈Ai for all i} is a collection of indepen-
dent complex (resp. real) Gaussians with mean 0 and the variance
of ci ,a equal tow2

i ,a . Letting a := (a1, . . . ,an ), x
a
:=xa1

1
· · · xann , and

fi (x) :=
∑︁
a∈Ai ci ,ax

a , we call F := (f1, . . . , fn ) an n × n complex

(resp. real) random polynomial system with support (A1, . . . ,An ).
⋄

Lairez’s Theorem. [29, Thm. 23]2 Following the notation above,
let d1, . . . ,dn ∈N,
Ai :=

{︂
(a1, . . . ,an ) ∈ (N ∪ {0})n

|︁|︁|︁ ∑︁n
j=1 aj ≤di

}︂
for all i ,

2
We have paraphrased a bit: Lairez’s main theorem is stated in terms of homogeneous

polynomials, and he counts square roots as arithmetic operations as well. Via the

techniques of, say, [7], one can easily derive our affine statement.

andw2

i ,a :=
di !

a1!· · ·an !
(︂
di−

∑︁n
j=1 aj

)︂
!

. Then one can find a (complex) ap-

proximate root of a complex random F using justO(nd3/2N (N +n3))

arithmetic operations on average, where N :=
∑︁n
i=1

(di+n)!
di !n!

and d :=
maxi di . ■

Note that restricting the support (A1, . . . ,An ) is a way to consider

sparsity for one’s polynomial system. In particular, one can think

of Lairez’s Theorem as solving Smale’s 17
th

Problem in the “dense”

case, since Lairez assumes that all monomial terms up to a given

degree appear (with probability 1) in each polynomial fi . Indeed,
one should note that Smale never specified what kind of probability

measure one should use in his 17
th
Problem [51, 52]. So Smale’s 17

th

Problem actually includes sparse systems if some of the random

coefficients have mean, and all higher moments, equal to 0. Smale

also observed in [51, 52] that one can pose a more difficult analogue

of his 17
th
problem over the real numbers.

Remark 1.3. It is worth noting that the number of nonzero complex
roots of a complex (or even real) random polynomial system as above
attains a unique value with probability 1, onceA1, . . . ,An are fixed.
(This follows easily from a classical result of Bernstein [10, 44], relating
the mixed volume of Newton polytopes with counting complex roots.)
Counting real roots for real random systems is more subtle however:
One can easily show that, for any continuous positive probability
measure on the coefficients, having at least one di ≥ 2 (in the setting
of Lairez’s Theorem) implies that at least two different possible real
root counts can occur with positive probabilities (see, e.g., [20]). For
instance, if c0, c1, and c2 are independent real Gaussians of any
positive variance, the probability that c0 + c1x + c2x2 has exactly k
real roots is positive for each k ∈ {0, 2}. ⋄

Observe that

∑︁n
i=1

(di+n)!
di !n!

is exactly the maximal possible total

number of monomial terms in an n × n polynomial system where

fi has degree di . Note also that just evaluating a monomial of

degree d takes Ω(logd) arithmetic operations: Simply consider

the straight-line program complexity of the integer 2
d
(see, e.g.,

[15, 36, 37]). One should pay attention to the evaluation complexity

of F since Lairez’s algorithm uses Newton iteration, which in turn

requires evaluating F (and its Jacobian) many times. So one can

then naturally ask, in the spirit of real fewnomial theory [26]: Can

one find a real approximate root of F (or decide whether there

are no real roots) using, say, (t logd)O (1)
arithmetic operations on

average, when t is the total number of monomial terms of F and

d :=maxi di ? (See also [45] for an earlier statement of this problem.)

This would be a significant new speed-up. For instance, the special

case t =O(n) is already quite non-trivial since there are standard

algebraic tricks (e.g., the bottom of the first page of [21]) to reduce

arbitrary polynomial systems to trinomial systems.

Our main theorem thus solves a special case of a refined version

of Smale’s 17
th

Problem, and serves as a starting point for a deeper

study of the randomized complexity of solving arbitrary real sparse

polynomial systems.

Theorem 1.4. Suppose A = [ai , j ] ∈ Z
n×n and all the entries of

A have absolute value at most d . Suppose also that ci , j is an in-
dependent real Gaussian with mean 0 and variance w2

i , j , for each
(i, j) ∈ {1, . . . ,n}×{0, 1}. Let F := (f1, . . . , fn )with fi (x) :=ci ,0+ci ,1 ·



x
a1,i
1

· · · x
an,i
n , and set r :=maxi max

{︂|︁|︁|︁wi ,0
wi ,1

|︁|︁|︁ , |︁|︁|︁wi ,1
wi ,0

|︁|︁|︁}︂. Then, on aver-
age, one can find a real approximate root of F (or correctly determine

there are no real roots) using just O
(︂
n2 log2(nd)[1 + n log log(er )]

)︂
arithmetic operations and O(nω+1 log2(dn)) bit operations, where ω
is any upper bound on the matrix multiplication exponent.

We prove Theorem 1.4 in Section 3. The best current upper bound

on ω, as of May 2019, is Legall’s estimate 2.3728639 [31] (see also

[2, 59]).

At a high level, the algorithm underlying our main theorem has

three phases: (I) perform integer linear algebra on the exponent

vectors to find a monomial change of variables reducing the input

system F to the diagonal form (xd1
1

− c1, . . . , x
dn
n − cn ), (II) decide

if there are real roots, (III) if there are real roots, solve each bino-

mial by a combination of bisection and Newton iteration (based

on [61]), paying close attention to how each pair (di , ci ) affects
the required accuracy. Phases (I) and (II) are well-known in the

computational toric geometry community (see, e.g., [18, 21, 25]).

Although [18] contains many useful algorithmic details on solving

binomial systems, including a discussion of numerical implemen-

tations, the computational complexity of binomial system solving

does not appear to have been analyzed yet from the point of view

of average-case complexity or approximate roots in the sense of

Smale. Our primary contribution is thus a new analysis of Phase

(III), particularly with respect to average-case complexity in the

Gaussian setting.

The complexity of Phase (I) accounts for the bit complexity esti-

mate in Theorem 1.4, thanks to earlier work of Storjohann on fast

linear algebra over Z (see [54, 56] and Section 2.1 below). Phase

(II) is an elementary algebra exercise and actually has negligible

(deterministic) complexity compared to our main bound. Step (III)

is accomplished by a hybrid algorithm of Ye that allows quick

approximation of rational powers of a real number [61]. The fi-

nal key ingredient to establishing the average-case complexity of

Phase (III) is estimating the expected value of linear combinations

of logarithms of absolute values of standard real Gaussians (see

Propositions 2.8 and 2.9 in Section 2.3 below). We were unable to

find any explicit asymptotics for such expectations, so we derive

these in the latter half of Section 2.3.

Wewill explain some of the subtleties behind extending Theorem

1.4 to systems with arbitrary supports in Section 1.2 below. First,

however, let us briefly review the original statement of Smale’s 17
th

Problem.

1.1 Quick Review of Smale’s 17th Problem
Smale’s 17

th
Problem [51, 52] elegantly summarizes the subtleties

behind polynomial system solving:

Can a zero of n complex polynomial equations in n
unknowns be found approximately, on the aver-
age, in polynomial-time with a uniform algorithm?

[Emphases added.] We clarify the notion of “polynomial-time” be-

low. As motivation, let us first see how the emphasized terms high-

light fundamental difficulties in polynomial system solving:

“a zero”: We can not expect a fast algorithm approximating all
the roots since, for n ≥ 2, there may be infinitely many.

In which case, for d1 ≥ 3 (e.g., the case of elliptic curves

[53]), the roots will likely not admit a rational parametriza-

tion. When there are only finitely many roots, systems like

(x2
1
− 1, . . . , x2n − 1) show that the number of roots can be

exponential in n.
“found approximately”: Even restricting to integer coefficients,

the number of digits of accuracy needed to separate distinct

roots can be exponential in n, e.g.,
((2x1 − 1)(3x1 − 1), x2 − x2

1
, . . . , xn − x2n−1)

has roots with nth coordinates 1

2
2
n−1 and

1

3
2
n−1 . So, especially

for irrational coefficients, we need a more robust notion

of approximation than digits of accuracy. (Hence’s Smale’s

definition of approximate root from [50].)

“on the average”: Restricting to integer coefficients, distinguishing

between a system having finitely many or infinitely many

roots is NP-hard (see, e.g., [27, 41]). Furthermore, as already

long known in the numerical linear algebra community (e.g.,

results on the distribution of eigenvalues of randommatrices

[19, 57]), even if the number of roots is finite, the accuracy

needed to separate distinct roots can vary wildly as a func-

tion of the coefficients. So averaging over all inputs allows

us to amortize the complexity of potentially intractable in-

stances.

The original statement of Smale’s 17
th
Problem measures time

(or complexity) as the total number of (a) (exact) field operations

over C, (b) comparisons over R, and (c) bit operations [51]. (The

underlying computational model is a BSSmachine overR [13], which
is essentially a classical Turing machine [3, 39, 49], augmented so

that it can perform any field operation or comparison over R in one

time step.) Polynomial-time was then meant as polynomial in the

number of (nonzero) coefficients of F . Smale thus interpreted the

number of coefficients (which can be as high as

∑︁n
i=1

(︁di+n
n

)︁
for F

as specified above) as the input size.

Remark 1.5. The precise probability distribution over which one
averages was never specified in Smale’s original statement [51, 52]. In
all the literature so far on the problem (see, e.g., [6–9, 17, 29, 47, 48]),
the Bombieri-Weyl measure was used: This is the choice of variances
involving multinomial coefficients written earlier. ⋄

While the Bombieri-Weyl measure satisfies some very nice group

invariance properties (see, e.g., [12, 23, 28, 48]), there is currently

no widely-accepted notion of a “natural” probability distribution

for a random polynomial. For instance, there are several different

distributions of interest already for the matrix eigenvalue problem

(see, e.g., [1, 19, 43]). More to the point, much work has gone into

finding useful properties of the roots of random polynomials that

are distribution independent (see, e.g., [11, 22, 58]).

The meaning of uniform algorithm is more technical and is for-

malized in [13] (see also [3, 39, 49] for the classical Turing case).

Roughly, uniformity refers to having a single implementation that

can handle all input sizes, as opposed to having different implemen-

tations for each input size.



1.2 Current Obstructions to Fully
Incorporating Sparsity

As we’ll see from the proof of our main theorem, solving an n × n
system of Gaussian random binomials of degree d can be reduced

to solving n univariate binomials of degree (nd)O (n)
, where the

underlying coefficients are no longer Gaussian but have reasonably

estimable means. Algebraically, this will imply that the underlying

field extension (where one adjoins the coordinates of the solutions

to the field generated by the coefficients) is always a radical exten-

sion.

A natural next step then is to consider n × n unmixed (n + 1)-
nomial systems:

(c1,0 + c1,1x
a1 + · · · + c1,nx

an , . . . , cn,0 + cn,1x
a1 + · · · + cn,nx

an ),

where ai := (a1,i , . . . ,an,i ) for all i . Via Gauss-Jordan Elimination,

one can reduce such a system to a binomial system without af-

fecting the roots. Unfortunately, if one starts with a system of the

form above, with Gaussian ci , j , the resulting binomial system no

longer has Gaussian coefficients. So one needs to consider binomial

systems with coefficient distributions more general than Gaussian,

and we do this in a sequel to this paper.

Going a bit farther, n × n unmixed (n + 2)-nomial systems yield

an interesting complication: The underlying field extensions need

no longer be radical, even if n=1. A simple example is x5
1
−2x1+10,

which has Galois group S5 over Q. However, earlier results from
[45] indicate that it should be possible to find real approximate

roots quickly on average, at least for univariate trinomials. (One

should also observe Sagraloff’s recent dramatic speed-ups for the

worst-case arithmetic complexity of ε-approximating real roots

of univariate sparse polynomials [46].) We conjecture that find-

ing a real approximate root (or determining that there are no real

roots) for a real Gaussian n × n unmixed (n + 2)-nomial system is

still possible in time (n logd)O (1)
on average, and hope to address

this problem in the future. An interesting intermediate complica-

tion is that just counting the real roots within average-case time

(n logd)O (1)
is already an open question for t ≥n + 3 (see, e.g., [4]).

2 BACKGROUND
In what follows, for any n × n matrix A∈Zn×n , we define xA to be

the vector of monomials(︂
x
a1,1
1

· · · x
an,1
n , . . . , x

a1,n
1

· · · x
an,n
n

)︂
.

We call the substitution x =zA a monomial change of variables. The
following proposition is elementary.

Proposition 2.1. We have that xAB = (xA)B for any A,B ∈Zn×n .
Also, for any field K , the map defined bym(x)=xU , for any unimod-
ular matrix U ∈ Zn×n , is an automorphism of (K∗)n := (K \ {0})n .
■

Ourmain approach to solving binomial systems is to reduce them

to systems of the form (xd1
1
−c1, . . . , x

dn
n −cn ) via amonomial change

of variables, and then prove that the distortion of the ci resulting
from perturbing the original coefficients is controllable. Later on,

we will also detail how a Gaussian distribution on the original

coefficients implies that the ci still have well-behaved distributions.

But now we will focus on quantifying our monomial changes of

variables.

2.1 Linear Algebra Over Z
Definition 2.2. LetGLn (Z) denote the set of all matrices in Zn×n

with determinant ±1 (the set of unimodularmatrices). Given anyM ∈

Zn×n , we call any identity of the formUMV =S withU ,V ∈GLn (Z)
and S diagonal a Smith factorization. In particular, if S = [si , j ] and we
require additionally that si ,i ≥ 0 and si ,i |si+1,i+1 for all i ∈ {1, . . . ,n}
(setting sn+1,n+1 := 0), then S is uniquely determined and is called
the Smith normal form ofM . ⋄

Remark 2.3. Although the Smith normal form is unique, the Smith

factorization certainly need not be unique. For instance,
[︃
0 0

0 0

]︃
=[︃

1 u
0 1

]︃ [︃
0 0

0 0

]︃ [︃
1 v
0 1

]︃
for all u,v ∈Z. Note, however, that this need

not contradict there being some factorization with small entries. ⋄

Theorem 2.4. [56, Ch. 6 & 8, pg. 128] For any A= [ai , j ] ∈Zn×n , a
Smith factorization of A yielding the Smith normal form of A can be
computed within

O
(︂
nω+1 log2(nmaxi , j |ai , j |)

)︂
bit operations. Furthermore, the entries of all matrices in this factor-
ization have bit size O(n log(nmaxi , j |ai , j |)). ■

2.2 From Approximate Roots of Univariate
Binomials to Systems

We begin with an important observation from the middle author’s

doctoral dissertation, building upon earlier work of Smale [50] and

Ye [61].

Lemma 2.5. [40, Thm. 4.10] Let d ∈ N satisfy d ≥ 2, c > 0, and
f (x1) := x

d
1
− c . Then we can find an approximate root of f using

O
(︁
(logd)(log log

(︁
demax

{︁
c, c−1

}︁)︁ )︁
field operations over R. ■

Since a monomial change of variables enables us to replace an

arbitrary binomial system by a simpler, diagonal system of univari-

ate binomials, it’s enough to bound how the roots are distorted

under such a change of variables. The following lemma gives us

the bounds we need.

Lemma 2.6. Suppose c1, . . . , cn ∈C∗ and A ∈ Zn×n has columns
a1, . . . ,an and entries of absolute value at most d . Also let σ :=

maxi {| log |ci | |}, letUAV =S be the Smith Factorization ofA, and let
(γ1, . . . ,γn ) := (c1, . . . , cn )

V . Then the following bounds hold:
1. maxi | log |γi | | ≤n

4+3n/2d3nσ .
2. If ζ = (ζ1, . . . , ζn ) ∈ (C∗)n is a root of F then
maxi | log |ζi | | ≤n

O (n)dO (n)σ . ■

Lemma 2.6 follows easily from the second bound of Theorem 2.4,

upon observing that xA = c implies that zS = (γ1, . . . ,γn ) where
x =zU . By combining Lemma 2.6 with Theorem 2.4 andmultivariate

Taylor’s Theorem with Remainder (see, e.g., [24]), we then easily

obtain the following estimate:

Proposition 2.7. Following the notation above, let Rn+ denote the
positive orthant and let |(y1, . . . ,yn )|∞ denote the ℓ∞-normmaxi |yi |
of the vector y= (y1, . . . ,yn ). Suppose also that ζ , µ, x, z ∈Rn+ satisfy
µS = γ , ζ = µU , and x = zU . Then log |x − ζ |∞ = e

O (n log(dn))σ +
log |z − µ |∞. ■



2.3 A Key Probabilistic Estimate
Let Z be a standard real Gaussian random variable and let Y :=

log |Z |. It is not difficult to check that Y has density ρY (t) :=√︂
2

π e
−v(t ),−∞ < t < ∞, where v(t) := e2t

2
− t . Indeed, this follows

by differentiating the distribution function of Y , FY (t) := P(−e
t ≤

|Z | ≤ et ) = 1 − 2Φ(−et ). Note that v is a convex function. Let α :=

E[Y ] and let τ be the standard deviation of Y . (α ≈−0.635181... and
τ ≈1.110720..., according to the 2018 version of Maple.) Consider

the centered random variableW := Y −α . Let a := (a1, . . . ,ak ) ∈R
k
,

and letWa :=a1W1 + · · · + akWk whereWi are independent copies

ofW . Let Xa := max{eWa , e−Wa }. We then have the following:

Proposition 2.8. Let a = (a1, . . . ,ak ) ∈ R
k and assume that∑︁k

i=1 ai = 0. ThenWa is a loд-concave random variable with expec-
tation 0 and standard deviation γ := |a |τ . We also have

P(log log(eXa ) ≥ t) ≤ e
− et −1

2γ for t ≥ log(1 + γ ). (1)

Moreover,
E[log log(eXa )] ≤ 2 + log(1 + γ ). (2)

Proof: Since v is a convex function the density ρY is log-concave

and, by a theorem of Borell [14], the law of the random variable Y
is log-concave, i.e., for all compact sets A,B and λ ∈ (0, 1) one has

µ(λA + (1 − λ)B) ≥ µ(A)λµ(B)1−λ, (3)

where µ is the measure on R induced by the density ρY . Also,W
is a log-concave random variable and, by the Prékopa-Leindler

inequality [32, 42],Wa is also log-concave. We have that E[Wa ] =∑︁k
i=1 aiE[Yi ] = α

∑︁k
i=1 ai = 0 and, since theWi are independent,

var(Wa ) =

k∑︂
i=1

a2i var(Yi ) = τ
2

k∑︂
i=1

a2i = τ
2a2.

Another well-known result of Borell (see e.g., [35]) then states that

if µ is a loд-concave probability measure, K is a symmetric closed

convex set in Rn , and δ := µ(K) ≥ 1

2
, then for all t > 1 we have the

following:

1 − µ(tA) ≤ δ

(︃
1 − δ

δ

)︃ t+1
2

. (4)

In particular, if X is a loд-concave random variable with mean 0

and variance γ 2, then we have the following:

P(|X | ≥ s) ≤ e
− s

2γ , for s ≥ γ . (5)

Indeed, let A := {|x | ≤ 2γ }. Then, by Chebychev’s Inequality, we

have that P(A) = δ ≥ 3

4
. Using (4), we obtain:

P(|X | ≥ tγ ) = 1 − P(tA) ≤ δ

(︃
1 − δ

δ

)︃ t+1
2

≤

(︃
1

3

)︃ t+1
2

≤ e−
t
2 , (6)

for t ≥ 1. So we can estimate as follows:

P(log log(eXa ) ≥ t) = P
(︂
Xa ≥ ee

t−1
)︂

= P
(︂{︂
Va ≥ ee

t−1
}︂
∪

{︂
Va ≤ e−(e

t−1)
}︂)︂

= P
(︂
Va ≥ ee

t−1
)︂
+ P

(︂
Va ≤ e−(e

t−1)
)︂

= P
(︁
Wa ≥ et − 1

)︁
+ P

(︁
Wa ≤ −(et − 1)

)︁
= P

(︁
|Wa | ≥ et − 1

)︁
≤ e

− et −1
2γ ,

provided et − 1 ≥ γ , where we have also used (6). Finally, since

eXa ≥ e , we have log log(eXa ) ≥ 0 and thus

E[log log(eXa )] ≤

∫ ∞

0

P(log log(eXa ) ≥ t)dt

≤

∫
log(1+γ )

0

dt +

∫ ∞

log(1+γ )
e
− et −1

2γ dt

≤ log(1 + γ ) +

∫ ∞

γ

1

1 + s
e
− s

2γ ds

= log(1 + γ ) +

∫ ∞

1

2

2γ

1 + 2γx
e−xdx

≤ log(1 + γ ) +
2γ

1 + γ

∫ ∞

0

e−xdx ≤ 2 + log(1 + γ ). ■

Proposition 2.9. Let a ∈ Rk satisfy
∑︁k
i=1 ai = 0 and assume

t ≥e2≈7.3890.... Then

log log t ≤ E log log{tXa }

≤ log log(t/e) + 2 + log 2 + log(1 + τ |a |),

where τ ≈1.110720... is the standard deviation of a random variable
of the form log |Z |, where Z is a standard real Gaussian random
variable.

Proof: Note that a + b ≤ 2ab for all a,b ≥ 1. Since eXa ≥ e and

t/e ≥ e , using (2) we get

E log log(tXa ) = E log(log(t/e) + log(eXa ))

≤ E log(2(log(t/e)) log(eXa ))

= log(2) + log log(t/e) + E log log(eXa )

≤ log(2) + log log(t/e) + 2 + log(1 + τ |a |).

Finally, since Xa ≥ 1 and t ≥ e2, we have log log(tXa ) ≥ log log t .
■

3 THE PROOF OF THEOREM 1.4
First note that the ci , j are all nonzero with probability 1, so we may

assume (since we are considering average-case complexity) that all

the ci , j are nonzero. In which case, we can focus solely on roots in

(R∗)n .
Now note that by Proposition 2.1, we can easily decide whether

our input binomial system F has a real root: If F is diagonal, i.e.,

if F = (c1,0 + c1,1x
d1
1
, . . . , cn,0 + cn,1x

dn
n ) for some d1, . . . ,dn ∈ N,

then F has a real root if and only if the following condition holds:

ci ,0ci ,1 < 0 for all i with di even and nonzero, and ci ,0 = −ci ,1 for
all i with di =0. Should this condition be true, each orthant of Rn

contains at most 1 root of F (if all the di are nonzero), or F has

infinitely many roots in any orthant where F vanishes (if some di is
zero). (See [21] or [18, Sec. 3] for a more precise description of the

case where F has infinitely many roots in (R∗)n .) In the latter case,

F has free variables that we may set to 1, yielding a j × j binomial

system with j <n and real roots that are coordinate projections of

the roots of F .
If F is not diagonal, then after computing a Smith factorization

UAV = S (which accounts for our stated bit complexity bound,

thanks to Theorem 2.4), we can reduce to the diagonal case and

simply check n inequalities and equalities. If there are no real roots,

no further work needs to be done.



So let us now assume that there are real roots. Without loss of

generality (flipping signs of certain ci , j as needed), we may assume

there is a root in the positive orthant Rn+, and try to approximate a

root there. So we may now assume that we are trying to approxi-

mate the roots of

G := (z
s1,1
1

− γ1, . . . , z
sn,n
n − γn )

where

(γ1, . . . ,γn ) := (−c1,0/c1,1, . . . ,−cn,0/cn,1)
V

lies in Rn+, and the si ,i are the diagonal entries of the Smith normal

form S of A. In particular, we need to approximate a root µ of G in

Rn+ closely enough so that ζ :=µU is an approximate root of F .
A slight complication arises: Some of the si ,i may be 0, thus mak-

ing the Jacobian of G have rank too low for Newton iteration to be

well-defined. However, this is easily dispensed with by setting zi =1
for all i with si ,i =0. This has the effect of reducing our problem to

solving the j × j systemG ′
:= (z

s1,1
1

− γ1, . . . , z
sj , j
j − γj ), where j ≤n

andm(x) := (x
s1,1
1
, . . . , x

sj , j
j ) is a surjective endomorphism on (C∗)j .

So we can ultimately obtain approximate roots, simply by applying

Newton iteration to G ′
instead of G. Thus, let us assume without

loss of generality that all the si ,i are non-zero (and thus detA≠0).
Proposition 2.7 then tells us that to find an approximate root

of F , it suffices to find an approximate root of G, but with tighter

precision. In particular, the necessary number of additional Newton

iterations isO(n log(dn)), and each Newton iteration forG requires

O(n logd) arithmetic operations. So the additional work is bounded

from above by our main arithmetic complexity bound. Lemma 2.5

applied toG then implies that to derive our average-case complexity

bound, it suffices to compute an upper bound on the expectation of

the following quantity:

B :=
∑︁n
i=1

[︂
(log si ,i ) log log

(︂
si ,iemax

{︁
|γi |,

|︁|︁γ−1i |︁|︁}︁)︂]︂
.

We are almost ready to apply our probabilistic estimate Proposi-

tion 2.9, save for the fact that theγi are monomials in real Gaussians

that need not have variance 1. However, from the definition of γ ,

we see that we in fact have (γ1, . . . ,γn ) :=
(︂
w1,0

w1,1
, . . . ,

wn,0
wn,1

)︂V
⊙(︃

−c ′
1,0

c ′
1,1
, . . . ,

−c ′n,0
c ′n,1

)︃V
, where ⊙ denotes the natural coordinate-wise

multiplication in (R∗)n , and the c ′i , j are real Gaussians with mean

0 and variance 1. Using the inequality a + b ≤ 2ab for a,b ≥ 1, we

then see that it is enough to estimate the expectation of B in the

special case where all the ci , j have variance 1, provided we also add
the quantity

T :=
∑︁n
i=1(log si ,i ) log log

(︂
emax

{︁
w ′
i ,w

′−1
i

}︁)︂
to our estimate, where (w ′

1
, . . . ,w ′

n ) :=
(︂
w1,0

w1,1
, . . . ,

wn,0
wn,1

)︂V
.

We now conclude via Proposition 2.9 and Theorem 2.4: Proposi-

tion 2.9 tells us that the expectation of B is no greater than∑︁n
i=1(log si ,i )

[︁
log log

(︁
max{si ,i , e}

)︁
+ 2 + log(2) + log (1 + τ |vi |)

]︁
,

where vi is the i
th

column of V . Theorem 2.4, and the fact that∑︁n
i=1 log |si ,i | = log | detA| =O(n log(dn)) (thanks to Hadamard’s

classical inequality on the determinant), imply that the last quantity

is no greater than

O
(︂
n log(dn)

∑︁n
i=1

(︂
log(n log(dn)) + log

(︂
1 + τ

√
neO (n log(dn))

)︂)︂)︂

= O(n log(dn)n log(n log(dn))). So we obtain that the expectation

of B is O
(︂
n2 log2(dn))

)︂
.

Similarly, by Theorem 2.4 and Lemma 2.6, T is no greater than∑︁n
i=1(log |si ,i |) log log

(︂
e
(︂
re

O (n log(dn))
)︂n )︂

.

So T =O(n log(dn))n log
(︂
neO (n log(dn))

log(er )
)︂

= O(n log(dn))n [O(n log(dn)) + log log(er )]

= O
(︂
n3 log2(dn) log log(er )

)︂
,

and we are done. ■
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