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safely send messages that need to be kept secret from an adversary. Also, in some
statistical applications, the only way to practically estimate the mean of a quan-
tity over a large population is to average over a smaller, well-distributed sample.
Pseudorandomness attempts to capture the most useful aspects of randomness in
an algorithmically efficient way, but its definition is best preceded with an explicit
example.

2.1. Pseudorandom bit streams from the Discrete Logarithm Problem.
Consider the following famous construction, by Blum and Micali [BM84], of a family
of (putatively) unpredictable sequences of bits. In what follows, n is a positive
integer, p ∈ {2n−1 + 1, . . . , 2n − 1} is an odd prime (so p has exactly n bits in
its binary expansion), g is a generator for the multiplicative group F

∗
p of nonzero

integers mod p, and x0∈{0, . . . , p− 2} is called the seed for our bit stream. Letting
Mp : {1, . . . , p− 1} −→ {0, 1} denote the function satisfying Mp(a)=1 if and only
if a≥(p− 1)/2 (so Mp(a) is akin to the most significant bit of a), we then define a
sequence (x0, x1, . . . , xN ) with, say, N :=n10, via the recurrence xj+1 :=gxj mod p,
valid for all j≥0.2 Our pseudorandom sequence of bits—an instance of the Blum–

Micali pseudorandom generator (PRG)—is then

B(p, g, x0) :=(Mp(xN ),Mp(xN−1), . . . ,Mp(x1)).

Letting (b1, . . . , bN ) :=B(p, g, x0), a remarkable property of the Blum–Micali PRG
is that it can be proved that bi+1 is unpredictable from bi (and even xN−i+1),
provided a well-known number-theoretic problem is hard to solve. To properly
define unpredictability and hardness, let us first recall the following problem:

The Discrete Logarithm Problem (DLP). Given an n-bit prime p, a generator
g for the multiplicative group F

∗
p, and an integer h ∈ {1, . . . , p − 1}, find an ℓ ∈

{0, . . . , p− 2} with gℓ=h mod p. ⋄

We call the ℓ in the definition above the mod p base-g discrete logarithm of h,
and we think of n as a rough measure of the size of an instance (p, g, h) of DLP. In
what follows, we will use the usual number-theoretic/computer science notations
O(·), o(·), Ω(·), and ω(·) for asymptotic growth comparisons (see, e.g., [AB09, pp.
3–4]). For instance, if we say that that a function f : N −→ N satisfies f(n)=nω(1),
then this means that for any real c, there is an n0(c)∈N such that f(n)≥nc for all
n≥n0(c), i.e., f ultimately grows faster than any polynomial.

It is easy to compute h= gℓ mod p, given (p, g, ℓ) as above, in near-quadratic
time: n2+o(1) bit operations suffice (see, e.g., [BS96, pp. 43, 102–104]). However,
computing the discrete logarithm ℓ from (p, g, h) in time nO(1) remains an open

problem: The best general complexity bound is eO(n1/3(log n)2/3), via refinements
of the index calculus method (see, e.g., [HPS14, Sec. 3.8] and [A+19]), and the
underlying algorithm uses randomization. In particular, DLP is conjectured to be
hard in the following sense:

DLP Hardness Assumption. For any k, n∈N, let Cn,k be any boolean circuit

that solves DLP for at least 1
nk of the n-bit primes p. Then the size of Cn,k is nω(1).

⋄

2The length N=n10 is somewhat arbitrary: One can in fact use N=nk for any positive integer
k [Blu19], although this was not explicitly stated in [BM84].
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Basic complexity theory (see, e.g., [AB09, Ch. 6]) tells us that the existence of
an algorithm for solving DLP in time polynomial in n would imply that there is a
family of boolean circuits {Cn}n∈N such that Cn solves DLP for any input (p, g, h),
with p an n-bit prime, and Cn has size nO(1). So the DLP Hardness Assumption
rules out such a family of circuits, as well as polynomial-time algorithms for DLP
in the classical Turing model.3

To better understand this hardness assumption, recall that a boolean circuit C
is an acyclic directed graph with nodes (also called gates) consisting of one of five
types:

(0) input nodes (having in-degree 0 and finite out-degree);
(1) output nodes (having in-degree 1 and out-degree 0);
(2) a not gate (having in-degree and out-degree 1);

(3) an and gate (having in-degree 2 and out-degree 1; and

(4) an or gate (having in-degree 2 and out-degree 1).

The size of C is simply the number of vertices in the underlying graph, and the
number of inputs is the number of input nodes. Identifying 1 and 0 with “true” and
“false”, respectively, and labelling the input nodes with variables, we then obtain
a natural interpretation of boolean circuits as implementations of logical formulae.
For instance, the circuit below (with two input nodes and size 8) computes the
well-known XOR function (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2).

1

2
x

x

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

Abusing notation slightly, we then say that a function

F : {0, . . . , 2n − 1} −→ {0, . . . , 2m − 1}

is computed by a boolean circuit if and only if there are boolean circuits computing
each of the m bits of F (x) from the binary expansion of x∈{0, . . . , 2n − 1}.

The (conditional) unpredictability of the Blum–Micali PRG can then be phrased
as follows:

Blum–Micali Theorem ([BM84]). Assume the DLP Hardness Assumption is

true, and let C := {Cn} be any family of boolean circuits, with n∈N and Cn having

exactly 3n inputs and size nO(1). Considering the uniform distribution over the set

of all (p, g, h) with p an n-bit prime, g a generator for F
∗
p, and h∈F

∗
p, let ρ

C
n be the

probability that Cn(p, g, h)=Mp(ℓ), where h=gℓ mod p. Then ρCn<
1
2 + 1

nω(1) .

In other words, if DLP is hard, then no (classical) polynomial-time algorithm
can do much better than coin-tossing to guess the (i+1)st bit of an instance of the
Blum–Micali PRG, even if one knows p, g, and the element of F∗

p whose discrete
logarithm yielded the ith bit. Curiously, as of June 2019, there is still no known
polynomial-time construction that attains unpredictability in the preceding sense
without unproven hypotheses.

3One motivation for stating the hardness of DLP more stringently, in terms of families of
circuits, comes from cryptography: One wants PRGs that evade prediction not just by polynomial-
time algorithms but also by special purpose hardware.



4 BOOK REVIEWS

2.2. A rigorous definition of pseudorandomness. The Blum–Micali PRG, un-
der the DLP Hardness Assumption, is actually an instance of a more general con-
struction by Blum and Micali [BM84]. Following [BM84]4 and a refinement from
[Nis92a], one can define a more general class of PRGs as follows:

Definition 2.1. A pseudorandom generator (PRG) for class Γ is a family of func-
tions G :=

{

Gn : {0, 1}n −→ {0, 1}Q(n)
}

n∈N
such that Q : N −→ N is an increasing

function and, writing (y1, . . . , yQ(n)) :=Gn(x1, . . . , xn), satisfies the following prop-
erty: For each i∈{0, . . . , Q(n)− 1} and every algorithm A in Γ, we have

∣

∣

∣

∣

Prob
(x1,...,xn)∈{0,1}n

[A(y1, . . . , yi)=yi+1]−
1

2

∣

∣

∣

∣

=
1

nω(1)
. ⋄

Remark 2.1. The function Q(n)
n (which is bounded from below by 1, thanks to our

definition) is sometimes called the stretch-factor of the PRG and is a useful measure
of how the PRG amplifies randomness, i.e., simulates a long stream of uniformly
random bits from just a small number of “truly” uniformly random bits. Turning
this around, we can also view a PRG as a means of compressing the sequence
(y1, . . . , yQ(n)) into the shorter representation (x1, . . . , xn). This leads to the notion
of Kolmogorov complexity, which is a central theme in the book under review. ⋄

The existence of PRGs (for the complexity classes P/poly or P) with polynomial
stretch-factor can be proved quite easily. Technically, this is a rephrasing of the
classical containment of complexity classes BPP ⊆ P/poly (see, e.g., [Adl78,BG81]
and [AB09, Sec. 7.5]). Much how probabilistic methods yield nonconstructive proofs
in combinatorics, there are still no proven explicit construction of such PRGs, unless
one uses unproved hypotheses (like our earlier Blum–Micali example). The subtlety

of finding explicit PRGs is also revealed by how the famous P
?
= BPP question from

complexity theory [IW97, IK04] can be reformulated as the construction of a PRG
for P with exponential stretch-factor (and the complexity of Gn, say, exponential
in n) [Gol11]. One should also be aware of the fact that the existence of PRGs for
P, with stretch-factor nω(1) and Gn computable in time polynomial in n, implies
an even more famous conjecture: P 	=NP (see, e.g., [Vad11, Sec. 7.2]).

In closing our discussion of pseudorandomness, we point out that there has been
important recent progress on explicit constructions of PRGs (for complexity classes
lower than P) with exponential stretch; see, e.g., [Nis92b,MZ13,GKM18]. Further
background on pseudorandomness can be found in [Yao82,Kab04,Vad11].

3. The book of Shen, Uspensky, and Vereshchagin

3.1. Two initial definitions for randomness. Since pseudorandom bit-streams
can be defined by unpredictability against an adversary with computational power
determined by a complexity class Γ, why not try to define randomness by letting
Γ =RE?5 Alternatively, why not define randomness in terms of equidistribution
of the 0’s and 1’s within subsequences? These two approaches, which we will call

4To be more precise, the definition from [BM84] took Γ = P/poly and assumed that each
function Gn is computable in time polynomial in n. Here we make no restriction on the complexity
of computing the Gn.

5
RE is the class of decision problems where a “yes” answer can be verified by a Turing machine

in finite time. (So the machine might never halt if the answer is “no”.) In other words, a PRG for
class RE has the property that even unlimited computational time makes the next bit no more
predictable than a fair coin-toss.
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U and S for unpredictability and stochasticity, respectively, correspond to early to
mid-20th century approaches detailed in [SUV].

Stochasticity, which has roots in 1919 work of von Mises, turns out to be the
looser notion. In particular, as detailed in [SUV, Appendix 2], one can show
that approach S strictly includes the sequences defined by approach U. How-
ever, a complication with approach S is defining the kinds of subsequences one
should examine for limiting frequencies. For instance, while the 1’s in the sequence
010101010101010101010101 · · · appear to have a limiting frequency of 1

2 , the limit-
ing frequency of 1’s for the entries of even index is 1. (That this sequence also does
not “look random” to most mathematicians is more than a coincidence.) More to
the point, what kinds of increasing functions f : N −→ N should we consider when
we examine the sequence (bi)i∈N and insist that

lim
n→∞

|{i | bf(i) = 1 , i ∈ {1, . . . , n}}|

n
=

1

2
?

Church (in 1940) and Kolmogorov (in 1963) proposed formalizations that led to
separate definitions of S, with Kolmogorov’s definition strictly more general.

Approach U can be defined via a gambling metaphor, reminiscent of our de-
scription of pseudorandomness through “fooling” adversaries: Imagine a bit-stream
(bi)i∈N corresponding to a sequence of coin-flips in a casino, where a player can bet
vi dollars just before seeing the value of bi. After the ith coin-flip, a player receives
vi dollars if he/she guesses bi correctly and loses vi dollars if he/she errs. If there is
no strategy that allows one to start with 1 dollar and approach infinite winnings as
i −→ ∞, then we declare the sequence to be unpredictable. The notion of strategy
is also formalized in [SUV, Appendix 2] and, in [SUV, Chapter 9], one sees that
approach U is known as Kolmogorov–Loveland randomness (which goes back to
1963–1966).

3.2. Kolmogorov complexity. Approaches S and U have their appeal, but the
most influential approach to randomness—independently discovered by Solomonoff,
Kolmogorov, and Chaitin in the 1960s—is based on optimal compression. More pre-
cisely, just as pseudorandomness stretches short sequences of truly random bits into
long sequences that look random to observers (and algorithms) with low compu-
tational power, randomness for a finite bit-stream can be measured by its lack of

compressibility.6 For instance, the trait common to the following three examples of
bit-streams of length 41, 943, 042,

0000000000000000000000 · · · 00,

1010101010101010101010 · · · 10,

0110111001011101111000 · · · 11,

is that each can be easily generated by a very short C++ program.7 (We will soon
see that the underlying language will not matter.)

Now suppose we encode programs into bit-streams (assuming one fixes the un-
derlying encoding of programs and the underlying programming language), and we

6One must be careful: Strictly speaking, randomness for a sequence of bits only makes sense
for infinite sequences. What one can do with finite sequences is define quantities that lead to
suitable definitions of randomness as the sequence length tends to infinity.

7The last sequence is simply the concatenation of the binary expansions of 0, 1, 2, 3, . . . , 221−1.
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try to compress our sequence (bi)i∈{1,...,n} by replacing it with a program of mini-

mal length that generates (bi)i∈{1,...,n}. One can then consider the finite sequence
(bi)i∈N to be far from random if and only if it is not compressible in the preced-
ing sense. The Linux command gzip is an example of this kind of compression:
One can check on any recent version of Linux that the first two examples can be
compressed by a factor of around one million, thus suggesting that our first two
examples are far from random.8

Needless to say, our preceding description is far from rigorous. However, the key
insight derived independently by Solomonoff, Kolmogorov, and Chaitin is that one
can formalize the notion of compressibility and can do so in an invariant way. More
precisely, consider any partial computable function D : {0, 1}∗ −→ {0, 1}∗, where
{0, 1}∗ denotes the set of all finite binary strings, and partial computable means that
D is computable by a Turing machine that may not terminate on certain inputs.
The Kolmogorov complexity of an x∈{0, 1}∗, with respect to the decompressor D,
is then defined to be

CD(x) :=min{L(y) | D(y)=x , y∈{0, 1}∗},

where L(y) denotes the length of the string y ∈ {0, 1}∗. In particular, Solmonoff
and Kolmogorov proved independently that there are optimal decompressors D
in the sense that for all x ∈ {0, 1}∗ and all decompressors D′, we have CD(x) ≤
CD′(x) +O(1). In other words, we can fix some optimal decompressor D once and
for all and write Kolmogorov complexity without mentioning any decompressor by
setting C(x) :=CD(x).

A surprising aspect of Kolmogorov complexity is that it is simultaneously hard
to compute but possesses numerous natural functorial properties. For example,
while it is easy to show that C(x) ≤ n + O(1) for all x ∈ {0, 1}n, the length of
the shortest bit-stream x with C(x) = n is a Turing-uncomputable function of n
(see [SUV, Theorem 15]). On the other hand, one can naturally conjecture that
Kolmogorov complexity is subadditive with respect to concatenation of strings.
And, indeed, writing xy for the concatenation of two bit-streams x and y, one has
a property close to subadditivity: C(xy)≤C(x) + C(y) + 2 log2(C(x)) +O(1) (see
[SUV, Theorem 4]).

More importantly, Kolmogorov complexity leads us to new perspectives not just
on randomness but also on information theory, algorithmic complexity, and prob-
ability theory. Indeed, Chapter 8 is a tasty dessert in the middle of [SUV] high-
lighting important applications of Kolmogorov complexity in several other areas of
mathematics.

3.3. Final comments. The account of Kolmogorov complexity and randomness
in [SUV] is masterful. Perhaps the first question that comes to mind, if deciding
whether to purchase [SUV], is how it compares to the classic text by Li and Vitányi
[LV08]. My answer would be to buy both books: While [LV08] has the advantage
of additional polishing (having gone through three editions in 14 years), [SUV]
maintains amazing clarity while geting quickly to the heart of almost everything
one needs from Kolmogorov complexity and its variants. The exercises in [SUV] are
also elegantly designed, well accented by hints, and nicely amplify the development.

8The same can be said for our third example, and we leave the precise compression factor as
an exercise.
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