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ABSTRACT: Cells respond to environmental perturbations and insults
through modulating protein abundance and function. However, the
majority of studies have focused on changes in RNA abundance because
quantitative transcriptomics has historically been more facile than
quantitative proteomics. Modern Orbitrap mass spectrometers now
provide sensitive and deep proteome coverage, allowing direct, global
quantification of not only protein abundance but also post-translational
modifications (PTMs) that regulate protein activity. We implemented
and validated using the well-characterized heat shock response of
budding yeast, a tandem mass tagging (TMT), triple-stage mass
spectrometry (MS3) strategy to measure global changes in the proteome
during the yeast heat shock response over nine time points. We report
that basic-pH, ultra-high performance liquid chromatography (UPLC)
fractionation of tryptic peptides yields superfractions of minimal
redundancy, a crucial requirement for deep coverage and quantification by subsequent LC−MS3. We quantified 2275 proteins
across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868
differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the
relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally
modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that
the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein
abundance and regulatory PTMs under various experimental conditions.
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■ INTRODUCTION

Cells employ a diverse array of regulatory strategies to
maintain homeostasis in the face of environmental challenges.
These regulatory strategies exist on a number of physiological
timescales. For instance, rapid responses (i.e., seconds to
minutes) necessitate changing the activity of proteins that are
already present in the cell and can include changing
concentrations of regulatory metabolites (e.g., allosteric
inducers or inhibitors) or covalent post-translational mod-
ifications (PTMs) of proteins. Over longer timescales (i.e.,
minutes to hours), cells can respond to stressful environments
by remodeling gene expression. For example, the model
eukaryote Saccharomyces cerevisiae responds to stress by
globally remodeling gene expression to shift translational
capacity toward the production of stress defense proteins that
increase cellular fitness in the face of stress.1−3

Although changes in protein abundance and activites are the
ultimate mediators of biological responses, the majority of
studies have historically focused on transcriptional changes.
This was largely due to technical challenges related to

accurately quantifying protein abundance.4 Independent of
the sequence, nucleic acids are chemically homogeneous
enough to allow for the common hybridization chemistry
used for microarrays5 and subsequently for high-throughput
sequencing.6 In contrast, proteins are much more heteroge-
neous and diverse in their chemistries, limiting our ability to
design “one size fits all” approaches to proteomics.
Furthermore, it was generally assumed that although imperfect,
mRNA levels were an adequate proxy for protein-level
estimates. However, early studies comparing the transcriptome
and proteome in multiple organisms showed extremely poor
correlations between mRNA and protein levels,7−10 creating a
real doubt as to whether mRNA levels were really a good proxy
for protein levels. Some of this discrepancy may be due to
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experimental noise,11 highlighting both the challenge and
importance of being able to accurately quantitate peptide
abundance. Although the correlation between mRNA and
protein levels is not as poor as initially thought,11,12 substantial
regulation of protein levels still occurs post-transcriptionally.
For example, detailed comparisons between mRNA and
protein levels during the yeast response to hyperosmotic
shock revealed that ∼80% of the variation in induced proteins
can be explained by changes in mRNA abundance, with the
remaining variation possibly explained by translational or post-
translational regulation.3 Similarly, ribosomal profiling experi-
ments have identified widespread changes in mRNA transla-
tional efficiency under a number of conditions ranging from
meiosis to stress.13−15 Finally, it is well established that protein
stability and degradation play an important role in regulated
protein turnover during environmental shifts.16,17 Indeed,
because proteins have longer half lives than RNAs,18 the lack
of translation alone is generally insufficient to reduce protein
levels. Thus, regulated proteolysis is a key mechanism for
ridding the cell of irrevocably damaged proteins and proteins
that are maladaptive to a new environment.19,20

In addition to protein abundance changes, PTMs are well
known to regulate protein activity and/or stability during
environmental shifts. For example, stress-activated protein
kinases coordinate phospho-signal transduction cascades that
are largely conserved from yeast through humans.21−24

Acetylation and methylation of histones and transcription
factors also facilitate transcriptional reprogramming during
stress.25−29 During stress, damaged proteins are frequently
targeted for proteasomal degradation via ubiquitination.16,30

Additionally, global changes in SUMOylation play an
important role in heat stress adaptation,31,32 providing further
support for the notion that global PTM remodeling is a broad
regulatory strategy during stress adaptation. Thus, an
integrated view of stress physiology requires the ability to
sensitively and accurately measure relative protein abundance
and PTMs.
Here, we describe a workflow for using a tandem mass

tagging (TMT) strategy to measure global proteomic changes
during environmental shifts. The key advantage is that this
approach supports simultaneous analyses of multiple samples
in the same MS run. As a proof of concept, we measured
protein abundance changes in yeast before and after heat
shock. The response to elevated temperature is arguably the
best-studied environmental response across diverse organisms,
with many important evolutionary features conserved from
bacteria to humans.33,34 Heat stress affects a number of cellular
targets including increasing membrane fluidity35 (which leads
to disruption of nutrient uptake,36 pH balance,37,38 and ROS
production because of “leaking” of electrons from the
mitochondrial electron transport chain39) and protein
unfolding [leading to induction of heat shock protein (HSP)
chaperones and other protectants such as trehalose40−42].
Although many studies have characterized the global

transcriptional response to heat shock in yeast,1,2,43−46

relatively few studies have examined proteomic changes.47,48

Moreover, these previous studies used either stable isotope
labeling of amino acids in cell culture (SILAC) or label-free
proteomics, which may have disadvantages compared to the
multiplexing capacity of TMT. We used a MultiNotch triple-
stage mass spectrometry (MS3) workflow to quantify peptides,
which mitigates interference of nearly isobaric contaminant
ions that cause an underestimate of differential expression.49,50

We tested our workflow using a 10-plex design comparing the
proteome of unstressed cells to heat-shocked cells over nine
time points, with three biological replicates.
Our TMT-MS3 workflow, which included prefractionation

of peptide mixtures to reduce sample complexity and increase
coverage of identifications, identified over 3000 proteins and
quantified over 2000 proteins between a heat shock and
unstressed control sample. In addition to providing insight into
the dynamics of protein abundance changes during heat shock,
we also identified post-translationally modified peptides whose
relative abundance also changed dynamically. These data
demonstrate that the high precision of TMT-MS3 enables
peptide-level quantification of samples, which can reveal
important regulation of protein PTMs under various
experimental conditions.

■ EXPERIMENTAL PROCEDURES

Sample Preparation for TMT Labeling and LC−MS/MS

Yeast Growth Conditions. We first performed a pilot
TMT-2-plex experiment comparing unstressed cells to heat-
stressed cells at a single time point, followed by a TMT-10 heat
shock timecourse that was performed with three independent
biological replicates. For both experiments, yeast strain
BY4741 (S288c background; MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0) was grown >7 generations to mid-exponential phase
(OD600 of 0.3−0.6) at 25 °C and 125 rpm in YPD medium
(1% yeast extract, 2% peptone, and 2% dextrose). For the
TMT-2 experiment, 500 mL of the starting culture was divided
in half, collected by centrifugation at 1500g for 3 min,
resuspended in either prewarmed 25 °C medium (unstressed
sample) or 37 °C medium (heat-shocked sample), and then
incubated for 1 h at 25 °C or 37 °C, respectively. Following
incubation, samples were collected by centrifugation at 1500g
for 3 min, the media were decanted, and the pellet was flash-
frozen in liquid nitrogen and stored at −80 °C until processing.
For the TMT-10 experiment, two 1 L cultures of exponentially
growing cells were pooled, and then, the culture was split
across three flasks. Two flasks received 500 mL of the culture,
while the third flask received 250 mL of the culture and 250
mL of 25 °C YPD (to maintain exponential growth at the 90,
120, and 240 min time points). Heat shock was performed by
adding an equal amount of 55 °C preheated media to
immediately bring the final temperature to 37 °C followed by
continued incubation at 37 °C. Cells (120 mL) were collected
on cellulose nitrate filters by vacuum filtration from an
unstressed sample, and samples were exposed to heat shock for
5, 10, 15, 30, 45, 60, 90, 120, and 240 min. Cells were
immediately scraped from the filters into liquid nitrogen and
stored at −80 °C until processing.

TMT-2-Plex Sample Preparation. For the TMT-2
experiment, cell pellets were resuspended in 3 mL of lysis
buffer (20 mM HEPES, 150 mM potassium acetate, and 2 mM
magnesium acetate, pH 7.4) and EDTA-free protease inhibitor
tablets (Pierce catalog number 88266) and frozen dropwise
into liquid nitrogen. Samples were lysed by cryogrinding using
a Retsch MM 400 mixer mill (five cycles of 30 Hz for 3 min),
returning the chamber to liquid nitrogen between rounds.
Proteins were thawed in cold water, precipitated with four
volumes of ice cold acetone overnight, and resuspended in 5
mL of buffer containing 8 M urea, 5 mM dithiothreitol, and 1
M ammonium bicarbonate, pH 8.0. Ammonium bicarbonate
was included to reduce protein carbamylation that occurs in
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urea-containing buffers.51 Samples were divided into 1 mL
aliquots, flash-frozen in liquid nitrogen, and stored at −80 °C
until further processing.
Protein samples were reduced by incubating with 5 mM

tris(2-carboxyethyl)phosphine (TCEP) at 37 °C for 1 h and
alkylated with 15 mM iodoacetamide at room temperature for
30 min. Protein samples were extracted with chloroform−

methanol,52 resuspended in 100 mM triethylammonium
bicarbonate (TEAB) pH 8.0 with 1 μg trypsin per 50 μg
protein, and incubated at 37 °C for 16 h. Tryptic peptides were
desalted with Sep Pak C18 columns (Waters) according to the
manufacturer’s instructions and lyophilized. Peptides were
resuspended in 100 mM TEAB pH 8.0, quantified using a
Pierce quantitative colorimetric peptide assay kit (Thermo
Fisher Scientific), and equal amounts of peptide samples were
labeled with TMT-2-plex reagents (Thermo Fisher Scientific)
according to the manufacturer’s instructions.
TMT-10-Plex Sample Preparation. For the TMT-10

experiment, samples were processed as described.53 Briefly,
previously flash-frozen cell pellets were resuspended in fresh 6
M guanidine HCl and 100 mM Tris-HCl, pH 8.0, and cells
were lysed by incubation at 100 °C for 5 min, 25 °C for 5 min,
and 100 °C for 5 min. The rapid lysis via boiling in the
presence of strong denaturants has been previously used to
stabilize PTMs in the absence of specific inhibitors.54 Proteins
were precipitated by adding nine volumes of 100% methanol,
vortexing, and centrifuging at 9000g for 5 min. The
supernatant was carefully decanted, the protein pellets were
air-dried for 5 min, and then resuspended in 8 M urea.
Protein samples (∼5 mg total) were diluted to 2 M urea

with 100 mM Tris pH 8.0 and digested with a 1:50 ratio of
trypsin overnight at 25 °C, with gentle mixing in the presence
of 2.5 mM TCEP and 10 mM chloroacetamide. Tryptic
digestion was performed at 25 °C to prevent carbamylation of
free amines,51,55 with alkylation performed with chloroaceta-
mide to prevent artifacts that can be falsely identified as
diglycine (ubiquitination).56 Digestion was quenched with
0.6% TFA to a pH less than 2, and peptides were desalted with
Sep Pak C18 columns (Waters) according to the manufac-
turer’s instructions and lyophilized. A detailed protocol for the
peptide desalting step can be found on the protocols.io
repository under DOI dx.doi.org/10.17504/protocols.io.3-
hegj3e. Peptides were resuspended in 200 mM TEAB to a
final concentration of ∼8 μg, quantitated with Pierce
colorimetric peptide assay, and diluted to 5 μg/μL in TEAB.
We labeled 500 μg of each sample in 100 μL of total volume
and used 50 μg for fractionation (with the “excess” TMT
material being used for a separate immuno-enrichment study).
Each sample was mixed with a separate TMT label
reconstituted in 50 μL of acetonitrile. Samples were incubated
at room temperature for 1 h. Labeling was quenched with 8 μL
of 5% hydroxylamine for 15 min, and samples were combined,
desalted, and lyophilized. Labeling efficiency was monitored by
performing Mascot searches with the TMT-10 modification
mass as a variable modification instead of fixed. The labeling
efficiencies were 96.3, 97.4, and 97.5% for Reps 1, 2, and 3,
respectively. The detailed step-by-step TMT-labeling workflow
can be found on protocols.io under DOI dx.doi.org/10.17504/
protocols.io.3g9gjz6.

LC−MS/MS Data Analysis

For both TMT-2 and TMT-10, 50 μg of pooled peptides were
fractionated (with the exception of TMT-10 replicate 2, where

the sample was lost in transit and a backup sample of 10 μg
was fractionated) using a 100 mm × 1.0 mm Acquity BEH
C18 column (Waters) using an UltiMate 3000 UHPLC system
(Thermo Fisher Scientific) with a 40 min gradient from 99:1
to 60:40 buffer A/B ratio under basic (pH = 10) conditions
[buffer A = 0.05% acetonitrile, 10 mM NH4OH; buffer B =
∼100% acetonitrile, 10 mM NH4OH (22% aqueous NH4OH
diluted into 100% acetonitrile)]. The 96 individual fractions
were then consolidated into 24 superfractions using a
concatenation scheme as described57 (1 + 25 + 49 + 73, 2 +
26 + 50 + 74, etc.).
Superfractions from the TMT-2-plex experiment were

loaded on a Jupiter Proteo resin (Phenomenex) on an in-line
150 mm × 0.075 mm column using a nanoACQUITY UPLC
system (Waters). Peptides were eluted using a 45 min gradient
from 97:3 to 65:35 buffer A/B ratio (buffer A = 0.1% formic
acid; buffer B = acetonitrile, 0.1% formic acid) into an Orbitrap
Fusion Tribrid mass spectrometer (Thermo Fisher Scientific).
MS acquisition consisted of a full MS scan at 240,000
resolution in the profile mode of scan range 375−1500, a
maximum injection time of 400 ms, and an AGC target of 5 ×

105, followed by CID MS/MS scans of the N most abundant
ions of charge states +2−7 within a 3 s duty cycle. Precursor
ions were isolated with a 2 Th isolation window in the
quadrupole, fragmented with CID at 35%, and analyzed in the
ion trap with a maximum injection time of 35 ms and a scan
setting of rapid. Dynamic exclusion was set to 20 s with a 10
ppm tolerance. MS2 scans were followed by synchronous
precursor selection and HCD (65%) fragmentation of the 10
most abundant fragment ions. MS3 scans were performed at
30,000 resolution with a maximum injection time of 200 ms
and an AGC target of 100,000.
For the TMT-10-plex experiment, superfractions were

loaded on a 150 mm × 0.075 mm column packed with
Waters C18 CSH resin. Peptides were eluted using a 45 min
gradient from 96:4 to 75:25 buffer A/B ratio into an Orbitrap
Fusion Lumos mass spectrometer (Thermo Fisher Scientific).
MS acquisition consisted of a full scan at 120,000 resolution, a
maximum injection time of 50 ms, and an AGC target of 7.5 ×
105. Selection filters consisted of monoisotopic peak
determination, charge states 2−7, an intensity threshold of
2.0 × 104, and a mass range of 400−1200 m/z. The dynamic
exclusion length was set to 15 s. The data-dependent cycle
time was set for 2.5 s. Isolation widths were 0.7 Da for MS2

and 2 Da for the MS3 scans. Selected precursors were
fragmented using CID 35% with an AGC target of 5.0 × 103

and a maximum injection time of 50 ms. MS2 scans were
followed by synchronous precursor selection of the 10 most
abundant fragment ions, which were fragmented with HCD
65% and scanned in the Orbitrap at 50,000 resolution, an AGC
target of 5.0 × 104, and a maximum injection time of 86 ms.
Proteins were identified by database search using Max-

Quant58 (Max Planck Institute) using the Uniprot S. cerevisiae
database from October 2014,59 with a parent ion tolerance of 3
ppm and a fragment ion tolerance of 0.5 Da. Carbamidome-
thylation of cysteine residues was used as a fixed modification.
Acetylation of protein N-termini and oxidation of methionine
were selected as variable modifications. Mascot searches were
performed using the same parameters as mentioned above, but
with peptide N-terminal fixed modification of TMT-2-plex
(+225.16) or TMT-10-plex (+229.16), variable modifications
of diglycine [+334.20 (114.04 + TMT-10)] and TMT-2- or
10-plex on lysine residues, and phosphorylation (+79.97) of

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.9b00704
J. Proteome Res. 2020, 19, 1183−1195

1185



serine and threonine. Mascot search results were imported into
Scaffold software (v4)60 and filtered for protein and peptide
false discovery rates (FDRs) of 1%. For the TMT-10
experiment, the 1% FDR was applied to the entire data set
(i.e., all three biological replicates together). Across the TMT-
10 replicates 1−3, the success rates for peptide identification
were 17.8, 17.0, and 23.3%, respectively. Data normalization
and analyses were performed using R, and all R scripts for
analysis are provided in File S1. Spectra containing missing
values in any channel were excluded from the quantitative
analysis. Spectra were further filtered to include only high-
scoring peptide-spectrum matches (Mascot ion score cutoff of
>15) for quantitation. For the TMT-10 experiments, the entire
data set for all replicates was normalized and analyzed together.
Reporter ion intensities were log2-transformed, mean-centered
for each spectrum, and then median-centered for each channel
to control for mixing. Peptide abundance for each time point
was calculated using the average abundance for all spectra
mapping to the protein. The overlap between peptides
quantified in each TMT-10 replicate experiment is shown in
Figure S1. Unstressed (time 0) cells were used as a reference
within each TMT-10 biological replicate experiment to
calculate relative log2 abundance changes during heat shock
across each stress time point, which is a strategy that has been
successfully used to identify changes in relative abundance
across multiple TMT experiments.3 All raw mass spectrometry
data and MaxQuant search results have been deposited to the
ProteomeXchange consortium via the PRIDE61 partner
repository with the data set identifiers PXD014552 and
10.6019/PXD014552.
Proteins with significant abundance differences in response

to heat at each time point relative to the unstressed control
were identified by performing an empirical Bayes moderated t-
test using the BioConductor package Limma v 3.36.2 and
Benjamini−Hochberg FDR correction.62 Unless otherwise
stated, we applied an FDR cutoff of 0.05 (see File S2 for the
Limma output). Protein or peptide clustering was performed
with Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/
cluster/software.htm) using hierarchical clustering and Eucli-
dian distance as the metric.63 Time points were weighted using
a cutoff value of 0.4 and an exponent value of 1. Functional
enrichments of gene ontology (GO) categories were
performed using GO-TermFinder (https://go.princeton.edu/
cgi-bin/GOTermFinder),64 with Bonferroni-corrected P-values
< 0.01 taken as significant. Complete lists of enriched
categories can be found in File S3. Significantly enriched
regulatory associations were identified using the YEAst Search
for Transcriptional Regulators And Consensus Tracking
(YEASTRACT) database,65 using documented DNA binding
and expression evidence. Significant associations can be found
in File S4.

Quantitative Western Blotting

Validation of LC−MS/MS was performed using the yeast
TAP-tagged ORF collection (GE Dharmacon) in biological
triplicate. Cells were collected and heat-shocked exactly as
described for the TMT-2 sample preparation, with the
duration of the 37 °C heat shock being 1 h. The OD600 for
the heat-shocked and unstressed control samples was recorded
for subsequent normalization. Each sample (15 mL) was
collected by centrifugation at 1500g for 3 min, the media was
decanted, and the pellet was flash-frozen in liquid nitrogen and
stored at −80 °C until processing. Sample processing for

western blotting was performed as described66 with the
following modifications. Samples were thawed and resus-
pended in 1 mL of sterile water, and then, an equal number of
cells (∼1 × 107) was removed and collected by centrifugation
at 10,000g for 1 min. Cells were resuspended in 200 μL of lysis
buffer [0.1 M NaOH, 50 mM EDTA, 2% SDS, and 2% β-
mercaptoethanol plus EDTA-free protease inhibitor tablets
(Pierce catalog number 88265)]. Samples were then incubated
at 90 °C for 10 min, 5 μL of 4 M acetic acid was added, and
the sample was vortexed at a maximum speed for 30 s. Samples
were then incubated at 90 °C for an additional 10 min to
complete lysis. Loading buffer (50 μL; 0.25 M Tris-HCl pH
6.8, 50% glycerol, and 0.05% bromophenol blue) was added to
each sample, and samples were centrifuged at 21,130g for 5
min to pellet the cellular debris. Each sample (20 μL) was
loaded onto a 4−20% gradient acrylamide gel (Bio-Rad),
separated by SDS-PAGE, and transferred for 1 h onto an
Amersham Protran Premium 0.45 nitrocellulose membrane
(GE Healthcare). Western blotting was performed using a
mixture of mouse anti-actin antibodies (VWR catalog number
89500-294) and rabbit anti-TAP antibodies (Thermo Fisher
catalog number CAB1001) to simultaneously detect Act1p and
the TAP-tagged protein of interest. Anti-TAP and anti-actin
antibodies were used at a dilution of 1:1000 and 1:2500,
respectively. IRDye 680RD-conjugated anti-rabbit IgG (LI-
COR Biosciences catalog number 926-68073) and IRDye
800CW-conjugated anti-mouse IgG (LI-COR Biosciences
catalog number 926-32212) were used as secondary antibodies
at a dilution of 1:10,000. Detection was performed with an LI-
COR Odyssey imaging system using Image Studio v2.0.
Densitometry was performed using ImageJ,67 and log2 fold
changes upon heat shock were calculated for each TAP-tagged
protein following normalization to actin. Raw images and pixel
densities can be found in Files S5 and S6.

■ RESULTS AND DISCUSSION

Precision of MultiNotch MS3

We first sought to measure the precision of our TMT-MS3

workflow by characterizing the yeast response to elevated
temperatures. One of the great advantages of TMT is the
ability to multiplex, although there are mixed reports
concerning whether increased multiplexing comes at the
expense of protein identification and/or accuracy.68,69 Thus,
we first compared the accuracy and total protein identification
of TMT-2-plex versus TMT-10-plex. For our pilot TMT-2
experiment, we measured changes in protein abundance before
and after 60 min of a 25−37 °C heat shock. We then
performed a TMT-10-plex experiment designed to capture
proteome dynamics of cells responding to heat shock over nine
time points using biological triplicates (Figure 1).
For both sets of experiments, cells were harvested and lysed,

and then, protein samples were prepared using a standard
bottom-up proteomics workflow with in-solution trypsin
digestion, TMT-2-plex or 10-plex labeling, peptide fractiona-
tion, and analysis via MultiNotch MS3 on an Orbitrap Fusion
(TMT-2) or Orbitrap Fusion Lumos (TMT-10).
One of the major challenges in quantitative proteomics is

that peptides exist across a broad dynamic range of
abundances, with high-abundance peptides dominating the
signal of complex samples.70 Reducing sample complexity
through fractionation improves the ability to detect and
quantify low-abundance peptides.71 In an ideally resolved
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sample, peptides are found within a single fraction. One widely
used workflow for offline sample fractionation is the separation
of proteins by SDS-PAGE prior to trypsin digestion. However,
this workflow is incompatible with TMT labeling as proteins

must be digested and labeled prior to fractionation. An
alternative fractionation procedure is to separate peptide
species by high-performance liquid chromatography (HPLC),
with fractionation via basic-pH reversed-phase HPLC showing
the best peptide coverage for complex human proteomes.57,72

Thus, we fractionated our samples using basic-pH ultra-high
performance liquid chromatography (UPLC) into 96 fractions,
which were pooled into 24 superfractions. To measure the
resolving power of basic-pH UPLC, we used the TMT-2-plex
experiment to analyze the number of superfraction(s) in which
each unique peptide was found (Figure 2A). By this analysis,
84% of peptides were found within a single superfraction and
97% of peptides were found in two or fewer fractions.
Additionally, peptides were evenly distributed across super-
fractions, with each superfraction yielding approximately 900
unique peptides (Figure 2B). Thus, basic-pH UPLC
fractionation suitably reduces the amount of redundant MS2

and MS3 scans and increases the depth of unique peptide and
protein identifications, which is important because the
MultiNotch MS3 method has a slightly slower duty cycle
than MS2-based reporter ion quantitation.
We next tested the precision of the MultiNotch MS3

method. As a first measure of the precision of TMT
proteomics, we used the TMT-2-plex experiment to analyze
the coefficient of variation (CV) of log2 fold changes in
response to heat stress for each unique peptide (7129 total)
identified by MaxQuant (Figure 3A). The CV values for 85%
of quantified peptides were below 30% (6070/7129). The
distribution of both standard deviations and CV % was lowest
for peptides with two spectral counts, which represented the
largest class of peptides (4759/7129), and this trend was also
observed across all biological replicates for the TMT-10
experiment (Figure S2). We hypothesized that peptides with
lower numbers of spectral counts were more likely to be lowly
expressed in cells. Indeed, we found a strong correlation
between the estimated protein copy number per cell (from Ho
et al.19) and the number of peptide spectral counts (Figure
S3). Thus, we have a somewhat counterintuitive result that
peptides with lower numbers of spectral counts tend to have
lower CVs, whereas the CV is often inversely proportional to
the sample size. This result had little to do with ion intensity as
we found poor correlation between the CV and MS1 (r =

Figure 1. Schematic of the proteomic workflow. Yeast cells were
grown to mid-exponential phase at 25 °C, an unstressed control
sample was collected, and then cells were subjected to a 37 °C heat
shock, with samples collected at the indicated time points. Protein
samples were digested with trypsin, labeled with one of the 10-plex
tandem mass tags (TMT-10), pooled and fractionated by high-pH
UPLC, and analyzed by MultiNotch LC−MS3. The Venn diagram
depicts the overlap for quantified proteins in each biological replicate.

Figure 2. High-pH UPLC fractionation efficiently separates TMT-labeled peptides. Protein samples were digested with trypsin, labeled with TMT-
2-plex, and then fractionated by UPLC under basic conditions, and the fractions were concatenated into 24 superfractions. Each superfraction was
then analyzed by LC−MS3. (A) Resolution of high pH fractionation. The X-axis shows the number of superfractions in which a given peptide was
detected (bins); the histogram (Y-axis) shows the number and frequency of peptides in each bin. Note that the vast majority of peptides partition
within only one or two of the 24 superfractions, greatly reducing the sample complexity and increasing the depth of coverage by LC−MS3. (B)
Sampling depth for each fractionation. The bar graph shows the number of peptides identified (Y-axis) in each superfraction (X-axis).
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−0.06) or MS3 (r = −0.15) ion intensities (Figure S4). Overall,
the data suggest that our TMT proteomic workflow yields
reliable measurements for low-abundance proteins, which we
sought to examine in more detail.
To further examine the precision of low-abundance peptides

in the TMT-2-plex data set, we filtered the data for peptides
with two spectral counts and analyzed the precision of the two
peptide measurements. The data followed a right-skewed
distribution, with the majority (95%) of peptides showing
good agreement between measurements (r2 = 0.87, Figure 3B).
Including the values from the remaining 5% of peptides
markedly decreases the goodness-of-fit for all data points (r2 =
0.55), indicating that a small frequency of outlier measure-
ments pose a challenge in this workflow. Thus, our
interpretation for the counterintuitive result that peptides
with lower numbers of spectral counts have lower CVs is that
the majority of reporter ion scans yield reproducible
quantitative measurements, but a small portion of scans are
distorted by low-quality reporter ion measurements. These
could be caused by a number of factors such as poor signal-to-
noise ratio or by co-isolation of contaminant peptides. It is
possible that peptides with a larger number of spectral counts
are more likely to encounter this problem and thus have higher
CVs on average. Ultimately, we conclude that the MultiNotch
method yields high-quality data for the vast majority (95%) of
peptide-level measurements, while there remains a need to
predict the quality of a measurement in the absence of

technical replicates, possibly through measuring the proportion
of the SPS ion intensity which did not map to the matched
peptide. Finally, we should note that when compared to the
TMT-2 experiment, we identified a larger number of unique
peptides (29,467, 18,118, and 39,993 for replicates 1−3) and a
similar number of total proteins (3312, 3018, and 3351 for
replicates 1−3) in the TMT-10 experiment, suggesting that
both high accuracy and multiplexing are achievable without a
large tradeoff in peptide identification. We also note that the
inclusion of LysC in the protein digestion and longer on-line
gradients (e.g., 3 h) could improve peptide identification.

Using Increased Multiplexing to Characterize the Dynamic
Heat Shock Proteome

To determine whether our TMT workflow was able to
recapitulate known biology while providing new insights, we
examined the dynamic response to heat stress across nine time
points (from 5 to 240 min post heat shock) using TMT-10-
plex reagents and three independent biological replicates. Out
of 2276 proteins with at least duplicate data using a stringent
quality cutoff (see Experimental Procedures), 1148 proteins
were differentially expressed (FDR < 0.05) in at least one time
point. We used quantitative western blotting on seven
significantly induced proteins at the 60 min time point, and
all 7 proteins independently validated the proteomic data
(Figure S5). We also compared our data to two yeast heat
shock proteomic studies. First, we compared our data set to a
SILAC study from Nagaraj et al. that looked at a 30 min heat
shock.47 Compared to the SILAC experiment, we identified
fewer differentially expressed proteins at 30 min post heat
shock (150 vs 234, Figure S6). This is likely due to a larger
number of proteins quantified by Nararaj et al. (3152 vs 2276)
combined with a more statistical power due to an additional
biological replicate. Notably, the proportion of proteins
identified as significantly differentially expressed was similar
across both studies (7.4% in Nagaraj et al. vs 6.6% in this
study). We next compared our data to a recent label-free study
from Jarnuczak et al. that measured the heat shock response
over five time points,48 specifically their time point with the
highest number of differentially expressed proteins (240 min).
Although their study had more statistical power because of an
additional biological replicate, we still identified more proteins
as differentially expressed (Figure S6) and at a higher
proportion (20.1% in Jarnuczak et al. vs 27.0% in this
study). Some of these differences in the ability to identify
differentially expressed proteins are likely because of differ-
ences in experimental design (e.g., choice of heat shock
temperature). However, some of the differences are likely
because of the increased precision and lower variance of TMT-
MS3 as smaller fold changes were more likely to be called
significant in our data set.
Examining the most up- and downregulated processes (>1.5-

fold) during heat shock revealed processes likely important for
acclimation to elevated temperatures. Proteins with signifi-
cantly higher expression (>1.5-fold) following heat shock were
enriched for functions known to be important for tolerating
elevated temperatures. These included processes related to
protein refolding (p = 3 × 10−14), oxidative stress response (p
= 3 × 10−5), and metabolism of the known stress-protectant
molecule trehalose (p = 3 × 10−3). Other metabolic processes
were also induced, including those related to redox chemistry
(p = 3 × 10−21), amino acid metabolism (p = 2 × 10−6), and
nucleotide metabolism (p = 5 × 10−6). In contrast, proteins

Figure 3. TMT-MS3 measurements of peptides are highly precise,
even for species with few PSMs. An underlying principle of
quantitative proteomics is that high-abundance proteins yield more
peptide spectral counts or measurements (PSMs) than low-
abundance proteins. The differential abundance of peptides (fold
change) following 60 min heat shock was used to determine the
precision of PSM measurements for TMT-2. (A) Precision of
measurements as a function of the PSM number. Violin plots showing
the CV of fold change measurements for peptides with different
numbers of PSMs. The number mentioned above each plot shows the
number of data points in each plot. (B) Precision of measurements for
low-abundance peptides. The scatter plot shows log2 fold changes for
4759 peptides with two spectral counts.
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repressed during heat shock were enriched for functions
related to ribosomal biogenesis (p = 1 × 10−22), RNA
processing (p = 8 × 10−14), and gene expression (p = 2 ×

10−7).
We next sought to take advantage of our time series data to

analyze the dynamics of the heat shock response in more
detail. The maximal response occurred between 60 and 90 min
post heat shock based on both the number of differentially
expressed genes and the magnitude of the changes (Figures 4

and 5C). We identified 10 proteins with significantly higher
abundance within 10 min post heat shock that likely reflect
increased stabilization of key proteins. Of these 10 proteins
with extremely early “induction,” four are HSP chaperones
(Hsp26p, Hsp42p, Hsp78p, and Hsp104p), two are ribosomal
proteins (Rps29bp and Rpl35ap), two are metabolic enzymes
(Ura1p and Gre3p), and two are involved in protein targeting
(Btn2p and Vac8). Intriguingly, the protein sorting protein
Btn2pthe only protein with significantly increased abun-
dance at the 5 min time pointworks with the chaperone

Hsp42p to regulate compartmentalization of protein aggregates
for later repair or removal.73 Btn2p is known to be rapidly
degraded by the proteasome during unstressed conditions,74

suggesting that changes in protein stability may play an
important role in the early stages of the heat shock response.
To better identify temporal patterns in our data, we

hierarchically clustered the 1148 proteins with differential
expression (Figure 4B). Induced proteins could be roughly
categorized into three clusters: rapid and strong responders
(41 proteins with a peak response of 60 min and an average
log2 fold change of 2.33), moderately induced responders (81
proteins with a peak response of 90 min an average log2 fold
change of 1.18), and a broad cluster of mildly induced
responders (469 proteins with a 90 min peak response and an
average log2 fold change of 0.50). The 41 rapid responders
included several proteins known to be involved in the first line
of heat stress defense including several key chaperones
(Hsp26p, Hsp42p, Hsp78p, and Hsp104p), glycogen and
trehalose metabolic enzymes (Glc3p, Gsy2p, Tsl1p, and
Gph1p), and aromatic amino acid catabolic enzymes (Aro9p
and Aro10p). Additionally, there were several induced
aldehyde dehydrogenases (Ald2p, Ald3p, and Ald4p) and
proteins involved in carbohydrate metabolism (Glk1p, Hxk2p,
Gre3p, Sol3p, Yjr096wp, and Pgm2p). The second wave of
moderate responders also included additional chaperones or
cochaperones (Aha1p, Cpr1p, Cpr3p, Cpr6p, Hsp60p,
Hsp82p, Sis1p, Ssa3p, Ssa4p, and Sti1p) and trehalose
metabolic enzymes (Nth1p and Tps2p). The broad mildly
induced responders included heat shock chaperones (Hsc82p,
Ssa1p, Ecm10p, Ssc1p, Ssa2p, Kar2p, Sse2p, and Mdj1p) but
was also enriched for diverse metabolic functions including
nitrogen metabolism (p = 3 × 10−14), nucleotide metabolism
(p = 5 × 10−14), phosphorus metabolism (p = 1 × 10−9), and
glucose metabolism (p = 4 × 10−5).
We hypothesized that the rapid responders may largely

represent proteins that directly respond to heat shock, while
the mildly induced responders may reflect indirect responses.
To test this, we used the YEASTRACT database to identify
transcription factors that may be regulating the gene expression
for each cluster. The two major transcription factors that
regulate the heat shock response in yeast include the heat
shock transcription factor Hsf1p75 and the paralogous general
stress-responsive transcription factors Msn2p and Msn4p.76

Genes encoding rapid responders were more likely to be
regulated by Hsf1p (83%) than either the moderately (59%) or
mildly induced (36%) genes (File S4). Similarly, the rapid
response genes were also more likely to be regulated by
Msn2p/4p (95%) than the moderately (84%) and mildly
(60%) induced genes. Additionally, we identified several
transcription factors that regulate the mildly induced genes
that are themselves either Msnp2/4p targets (Rdr1p, Xbp1p,
and Oaf1p) or both Msn2/4 and Hsf1 targets (Rap1p, Tup1p,
Pho4p, Ino2p, Tye7p, Reb1p, Mth1p, and Prs1p). These
transcription factors regulate diverse processes that are likely
indirectly impacted by heat shock, including cell cycle
progression and lipid, glucose, and phosphate metabolism.
Lastly, we examined the relationship between mRNA

induction during heat shock and the proteomic response.
Jarnuczak et al. also measured the correlation of mRNA and
protein-level changes and found a modest correlation (r = 0.49
for the pairwise comparision with the highest correlation). We
performed a similar analysis using a heat shock microarray
timecourse (5, 15, 30, 45, 60, and 120 min) from Eng et al.,43

Figure 4. Temporal dynamics of the heat shock proteome. (A)
Number of differentially expressed proteins (FDR < 0.05) for each
time point. (B) Heat map depicts hierarchical clustering of 1148
proteins whose change in abundance was statistically significant (FDR
< 0.05) at any time point. Each row represents a unique protein, and
each column represents the average expression change of heat-
stressed vs unstressed cells at each time point. Red indicates induced
and blue indicates repressed expression in response to heat. Enriched
functional groups (Bonferroni-corrected P < 0.01, see Experimental
Procedures) are annotated to the right. Complete GO enrichments
for each cluster can be found in File S3.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.9b00704
J. Proteome Res. 2020, 19, 1183−1195

1189



and we found a stronger correlation between changes in the
heat shock transcriptome and proteome (r = 0.71). We
explored the relationship between mRNA and protein further,
which revealed some fundamental differences between how
mRNAs and proteins are regulated during heat shock. First, in
contrast with mRNA expressionwhere more mRNAs are
repressed than induced during heat shockwe found that
more proteins had increasing rather than decreasing abundance
changes. This likely reflects the fact that proteins are more
stable than mRNAs and that targeted protein degradation may
be necessary to rapidly decrease protein levels.18,77 Similar to
Lee and colleagues,3 we found that changes in mRNA
abundance for induced transcripts correlated rather well with
protein induction, while protein abundance changes showed
poor correlation with repressed mRNAs. This is consistent
with the proposed models, suggesting that the function of
transcript repression is not to reduce protein abundance for
those transcripts, but instead frees ribosomes and increases
translation of the induced transcripts.3,78 Intriguingly, despite
the apparent lack of correlation for repressed mRNAs and their
corresponding proteins, we did find that the functional
enrichments for repressed mRNAs and repressed proteins
were similar (i.e., ribosome biogenesis and translation). The
poor correlation of repressed mRNAs and proteins occurs
largely because repressed mRNAs show a wide range of
repression values, while repressed proteins largely cluster
around 1.5-fold repression (Figure S7). This “buffering” of
repressed protein-level changes could be because of the
increased stability of proteins versus mRNAs.18 The repressed
proteins are strongly enriched for the pre-ribosome complex (p
= 3 × 10−37), and thus, the buffering of repressed proteins
toward similar relative levels may help maintain proper subunit
stoichiometry during stress.

Analysis of Protein PTMs

The proteomics community uses several different peptide
search engines for peptide-spectrum matching, with each
search engine having various strengths and weaknesses.
Software with high-performance PTM identification may not

be compatible with TMT-MS3 quantitation, and software with
TMT-MS3 quantitation may fail to identify modified peptides
in a sample. For example, we have previously used Mascot
Distiller to search for PTMs,79 which does not currently offer
MS3 quantitation. Likewise, MaxQuant is also unable to naively
handle SPS-MS3 data when searching for variable modifica-
tions on lysine residues. To circumvent this, phosphorylation
and ubiquitination PTMs were searched using the Mascot
database, and this information was used to manually extract
MS3 intensities from raw files using the R package mzR.80 We
manually validated to ensure quality spectral matches, which
yielded 22 ubiquitinated lysines and 67 phosphorylated serines
or threonineseach with high-confidence spectra across the
entire timecourse. Using the scan number and m/z values of
MS2 from the Mascot results, we extracted intensity values
from the matched MS3 scans. The Mascot and MaxQuant data
sets were joined, and we normalized changes in peptide-level
PTMs to underlying changes in total protein abundance.
We saw striking evidence of PTM changes following heat

shock. Consistent with the findings of Kanshin et al.,81 we saw
evidence for dynamic changes in protein phosphorylation
levels (Figure 6A). Proteins with at least 1.5-fold increased
phosphorylation were enriched for endocytosis (p < 3 × 10−3),
cellular import (p < 8 × 10−3), and notably, response to stress
(p < 8 × 10−3). These latter proteins included an enzyme
(Tps2p) and regulatory subunit (Tps3p) of the trehalose
biosynthetic complex, both of which are known to be regulated
by phosphorylation during stress.82 We also observed several
proteins with increased or decreased lysine ubiquitination
(Figure 6B). Although we cannot distinguish between mono-
and polyubiquitination with tryptic digestion, both can target
proteins for proteasomal degradation,20,83 with polyubiquiti-
nation being the canonical signal.84 Intriguinglyand
consistent with ubiquitination playing a role as a regulator of
protein degradation during heat stresswe observed an
inverse relationship (r2 = 0.42) between total protein
abundance at 90 min postheat shock and fold change in lysine
ubiquitination at 15 min postheat shock (Figure 6D). Notably,

Figure 5. Heat shock-responsive mRNAs correlate with protein induction but not repression. (A) Tables compare changes in protein abundance at
each time point following heat shock to mRNAs that significantly increased (top) or decreased (bottom) in expression reported by Eng et al.43 (at
FDR < 0.05). Shading indicates Pearson correlation coefficients (r) between the two data sets, with values of maximal concordance reported. (B)
Plot of the correlation between induced (red) and repressed (blue) mRNAs at 15 min vs their corresponding proteins at 60 min. (C) Temporal
dynamics for all significantly induced or repressed mRNAs and their corresponding proteins.
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there was no correlation between protein abundance changes
and protein phosphorylation changes (R2 = 0.03; Figure 6C),
suggesting that the ubiquitination trend is likely biologically
meaningful. Overall, our TMT-MS3 workflow is precise
enough to delineate protein-level and PTM-level changes in
biological samples.

■ CONCLUSIONS

In this study, we present a TMT-MS3 proteomics workflow
that yields precise and accurate measurements of peptide and
protein abundance, using the well-studied yeast heat shock
response as a test case. At the protein abundance level, our
MultiNotch MS3 analysis method for TMT proteomics was
robust to detect differential expression, although we note that
an experimental design with a common reference across TMT
batches may decrease technical variance across replicates.85

Proteins with significant induction or repression largely
recapitulated expectations, with HSP chaperones among the
most strongly induced proteins and proteins related to cell
growth and protein synthesis among the most strongly
repressed. Notably, our experiment was performed using

batch cultures, and although we were careful to maintain cells
at low densities to maintain pseudo steady-state growth, we
cannot rule out that some of the later proteome changes occur
because of changes to the culture media (e.g., nutrient
concentrations and/or pH). True steady-state comparisons
could be performed using a chemostat, with the major caveat
that chemostats may present a mild stress by requiring
limitation of a single nutrient.86 Notably, heat shock induces a
transient G1 arrest of ∼60 min,87 suggesting that the major
changes in protein abundance at 60−90 min are likely due to
the heat shock perturbation and not changes in the culture due
to growth.
Our method also performed well in the quantification of

low-abundance peptides. Compared to SILAC and label-free
methods, the TMT MultiNotch MS3 workflow affords a
significant increase in multiplexing capacity and technical
precision for peptide-level quantitative measurements, which is
necessary for designing high-power experiments to study
temporal dynamics of changing PTMs in a variety of biological
contexts. In fact, our analysis of PTMs suggests an additional
layer of regulation that has been largely understudied in the

Figure 6. TMT-MS3 reveals dynamic changes in the abundance of protein PTMs during heat shock. Modified peptides were identified by searches
of MS data using Mascot Distiller and were manually validated as described in the Experimental Procedures. PTM abundance was normalized to
overall abundance changes of the corresponding protein. The heat maps depict heat shock-dependent increases (red) or decreases (blue) in (A)
phosphorylation or (B) ubiquitination. The plot of the correlation between fold changes in total protein levels and fold changes in (C)
phosphorylation or (D) ubiquitination.
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context of the yeast heat shock response. Although PTMs are
known to play key regulatory roles during the adaptation to
stress, to date, there has been only a single study examining
PTM changes during the yeast heat shock response (in this
case, phosphorylation).81 In this study, we identified both
phospho- and ubiquitin-modified peptides whose abundance
changed during heat shock even following normalization to
abundance changes of unmodified peptides for the same
protein. We hypothesize that several of the other dynamic
PTMs may be important and understudied components of
heat shock adaptation. Notably, the numbers of PTMs
identified were much lower than studies performing specific
enrichments,88,89 suggesting that enrichment is still necessary
for more comprehensive coverage. Nonetheless, we were able
to identify dozens without specific enrichment steps,
suggesting that MultiNotch MS3 data sets can be mined for
PTMs that change in abundance during environmental
perturbation.
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