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ABSTRACT

Background: Radiofrequency ablation is a minimally-invasive treatment method that aims to destroy
undesired tissue by exposing it to alternating current in the 100kHz-800kHz frequency range and
heating it until it is destroyed via coagulative necrosis. Ablation treatment is gaining momentum espe-
cially in cancer research, where the undesired tissue is a malignant tumor. While ablating the tumor
with an electrode or catheter is an easy task, real-time monitoring the ablation process is a must in
order to maintain the reliability of the treatment. Common methods for this monitoring task have pro-
ven to be accurate, however, they are all time-consuming or require expensive equipment, which
makes the clinical ablation process more cumbersome and expensive due to the time-dependent
nature of the clinical procedure.

Methods: A machine learning (ML) approach is presented that aims to reduce the monitoring time
while keeping the accuracy of the conventional methods. Two different hardware setups are used to
perform the ablation and collect impedance data at the same time and different ML algorithms are
tested to predict the ablation depth in 3 dimensions, based on the collected data.

Results: Both the random forest and adaptive boosting (adaboost) models had over 98% R’ on the
data collected with the embedded system-based hardware instrumentation setup, outperforming
Neural Network-based models.

Conclusions: It is shown that an optimal pair of hardware setup and ML algorithm (Adaboost) is able
to control the ablation by estimating the lesion depth within a test average of 0.3mm while keeping
the estimation time within 10ms on a x86-64 workstation.
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excitation and motion of intracellular ions and hence, ther-
mal heating within the tissue. Above a certain temperature
for a given time of exposure, this heating results in the
coagulative necrosis of the tumor cells. RFA is applied to the
treatment of a variety of solid tumors [1,2]. In particular, RFA
has gained the most popularity in risky surgical operations
such as with Hepatocellular Carcinoma (HCC) treatment and
lung nodule removal [3-5]. More recently, RFA has started to
be offered as a solid approach to breast cancer treatment

1. Introduction

Ablation is a type of therapy in which the undesired part of
a tissue is removed by different methods. Realizing this task
with minimal invasion is the main objective in many medical
research fields. In cancer treatment, the undesired tissues are
tumors, benign or malignant, and they are surrounded by
healthy tissue, which is theoretically not supposed to be
affected by the ablation. Hence, the second (and just as

important) objective in cancer treatment is controlling/moni-
toring the ablation so that the treatment gets as close as
possible to the ideal case where all cancerous cells are
destroyed and all healthy cells remain intact. Even though
open surgery is still the golden standard for removing can-
cerous tissues from various organs, minimally invasive abla-
tion techniques with a fast and efficient monitoring method
has gained more popularity especially because of their
patient-friendly approach.

Radiofrequency ablation (RFA) is a minimally-invasive ther-
mal ablation method and widely used in tumor ablation. The
cancerous tissue is reached either by electrodes or a catheter
and an alternating current (AC) passing through them causes

that will be the main focus of this study by simulating breast
tissue and collecting data from it [6]. Even though open sur-
gery is still the golden standard for breast tumors, RFA is
becoming a solid alternative, especially when surgery is not
an option. RFA is also being used in combination with sur-
gery in some studies, in order to achieve total destruction of
the tumor and avoid recurrence [7].

RFA treatment can start to create some physiological
problems if applied without a proper monitoring mechanism
due to the uncontrollable nature of thermal ablation [8]. The
main aspect to be monitored is the extent of the ablation
zone as the AC is applied. It should be made sure that all
cancerous volume is ablated and as much healthy tissue as
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possible is left intact at the end of the ablation process. The
ablation volume is mostly related to the temperature distri-
bution in the target tissue. Above 100°C, the water inside
the tissue begins to vaporize, decreasing the thermal and
electrical conductivity of the tissue, potentially stopping the
ablation process [9]. Furthermore, even though enough RF
current is delivered, some parts of the target tissue may
sometimes stay under the necessary temperature threshold
for ablation to start, due to the ‘heat-sink’ effect of a nearby
vascular structure, which carries away some of the given
thermal energy with the local blood flow [10]. Therefore, it is
essential that RFA should be accompanied by a real-time
monitoring scheme in order to make sure that there is no
unablated volume left in the tumor that can cause recur-
rence or too much ablated healthy tissue that would lead to
deformation or even total destruction of the tissue.

As of 2018, there is a significant amount of research done
to develop a low-cost, efficient, and accurate real-time moni-
toring scheme for RFA. Since visual and noninvasive monitor-
ing is virtually impossible due to the opacity of the
cancerous tissue, many techniques utilize the changes in tis-
sue properties; more specifically electrical, optical and acous-
tic behavior under the ablation treatment. For acoustic
imaging, the acoustic waves traveling from the target tissue
are used. The acoustic waves are emitted and received by an
acoustic device that is also used as a sensor [11]. Gas bub-
bles induced during RFA due to evaporation of heated tissue
content can interfere with this kind of imaging. To solve this
problem, Nagakami imaging is applied and an enhanced
ablation zone visualization is obtained [12]. More recently, an
adaptive ultrasound imaging scheme is applied to obtain
better depth estimations with an algorithm that adjusts its
parameters with changing medium properties, like tempera-
tures higher than 50°C [13]. Yet another technique is optoa-
coustic imaging that uses an optical device that emits laser
pulses to excite the target tissue and uses sensors to collect
the acoustic emission data from these pulses [14,15]. As for
using electrical behavior, electrical complex impedance of
the targeted tissue is measured. Electrical impedance tomog-
raphy (EIT), one of the methods that utilize the measured
electrical impedance for monitoring RFA, uses electrodes sur-
rounding the targeted tissue to measure impedance paths
[16]. The data collected in EIT are then reconstructed into tis-
sue electrical conductivity and temperature to provide lesion
depth images [17-19]. The principle that allows for electrical
impedance to be utilized is the temperature dependence of
the electrical conductivity of biological tissue [20].

For all methods explained above that use tissue proper-
ties, sufficient data can be collected very fast, with speeds
higher than 10Hz because they only depend on the speed
of the setup and the equipment. However, the reconstruc-
tion of a depth map requires more time to be accurate.
Absolute EIT imaging essentially requires solving an opti-
mization problem overlaid onto an ill-posed three-dimen-
sional finite element modeling (FEM) problem, which is fairly
complex. Thus, computing a single ElT-based lesion depth
map requires time on the order of tens of seconds and
minutes (1004 seconds at 90%-+ accuracy on an x86

processor-based workstation) [21]. Space-wise, computing an
EIT lesion depth map can potentially occupy 1+ gigabyte of
memory due to the reconstruction mesh size [12,18,19]. An
optoacoustic imaging step requires 400+ seconds to reach
95% accuracy with a similar tomographic reconstruction
algorithm [18]. One novelty of this study is collecting data
with different setups that are inspired by the EIT model and
then instead of reconstructing a depth map, analyzing the
data with a Machine Learning (ML) approach that gives an
estimation very quickly once the model is trained with suffi-
cient data. Different ensemble models will be tested and it is
shown that with the combination of the proper data collec-
tion setup and the ML algorithm, the accuracy of current
monitoring methods can be beaten while drastically cutting
the time to obtain depth predictions.

Especially after the computational capacity of computers
are increasingly enhanced, ML finds itself applications in
numerous fields, including medicine and biomedical engin-
eering [22,23]. Bayesian regression with Gaussian Processes
proved to be useful for the analysis of time series data col-
lected from sensors on patients [24]. For tasks with struc-
tured data and a moderate number of variables (i.e., with a
low-dimensional dataset), classical methods like Decision
Trees and Support Vector Machines (SVMs) have been used
and performed quite well. A SVM model has been used to
classify patients with diabetes and pre-diabetes based on
their personal health information [25]. Another study shows
the use of SVMs for predicting medication adherence in
heart-failure patients [26]. A Decision Tree model has been
used to predict early rejection in kidney transplant [27]. More
recently, Artificial Neural Networks (ANNs) and models based
on their framework are preferred for applications that
include audial or/and visual data because of the high dimen-
sionality and complexity of images, videos and recordings.
With a high number of parameters and being able to utilize
non-linearities, ANNs can capture the complexity in high-
dimensional data successfully. In cancer research, ANNs with
many layers, also referred as ‘Deep networks’ are used to
classify cancers into diagnostic subgroups based on the gene
expression profiling data of the patients [28]. Networks with
a  specialized architecture for image  processing,
Convolutional Neural Networks (CNN) are gaining momen-
tum for classifying patients with or without breast cancer
based on their mammogram images [29]. Another break-
through of CNNs in cancer diagnosis was showing a detec-
tion performance of skin cancer on par with expert
dermatologists by training on lesion photographs of more
than 1 million patients [30]. All in all, applications of ML onto
medical research mostly consist of analyzing data collected
either before or after the treatment. Another novelty of this
study is using ML for data that is collected during the abla-
tion treatment and developing algorithms that once trained,
can give fast and accurate predictions during the treatment
as well, not before it starts or after it is completed.

The work most related to this study would be a pseudo-
EIT method published in Wang et al's study [31] that utilizes
electrical impedance, but rather than reconstruct the entire
model as with EIT, an ANN was used as a depth estimation



system that approximates the lesion depth map solution.
The ensemble models that will be introduced in this study
are predicted to outperform the ANN model for reasons that
are thoroughly discussed in Section 2.2. Another extension of
this study is using regression which directly predicts the
ablation depth as opposed to the classification model in
Wang et al's study [31]. Section 2.2 explains why this is a
safer approach than classification for a real-life scenario of
monitoring ablation therapy. For comparison reasons, the
ANN in Wang et al’s study [31] is retrained as a regression
model alongside with different network architectures. The
results from all the models will be presented and compared
in Section 3. Yet another contribution of this study is the
comparison of the original off-the-shelf system to a low-cost
embedded system designed specifically for the measure-
ment, computation and actuation of this system.

2. Materials and methods

2.1. Hardware configurations and data
collection methods

The ablation is performed and complex impedance data were
collected using the tissue model and the RFA hardware setup
as in Wang et al’s study [31]. The model consisted of pork loin
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and pork belly, simulating breast tissue. The complex imped-
ance data were collected by the same RFA device that per-
forms the ablation, removing the need for any additional
equipment for measurements that will add complexity to the
patient setup. The true levels of ablation depth for training
data were measured by temperature probes that were inserted
into the tissue model on all six ablation faces. The temperature
data for each direction after ablation was recorded using tem-
perature probes that used platinum 100 Q resistance tempera-
ture detectors. These detectors were placed at Omm, 5mm,
10mm and 15 mm depths from the side of the ablation device.
The temperature values for the depths in between were linearly
interpolated. After the temperature was recorded for all depth
values from 0.0mm to 15.0 mm with a step size of 0.1 mm, tis-
sue volumes at 43°C for >10min, 50°C for >5min and 57°C
for >2s were considered ablated and the lesion depth was cal-
culated. These thresholds for temperature and exposure dur-
ation were determined with a literature review on cell death in
RFA studies [15,32]. The model and the RFA device are shown
in Figure 1.

The data collection was performed with two different sets
of equipment. For the first dataset, off-the-shelf equipment
was used. The system consisted of a matrix switch module
as the electrode switching subsystem and an external LCR
(Inductance (L), Capacitance (C), and Impedance (R)) meter as
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Figure 1. (a) The RFA tissue setup is shown with temperature probes inserted into each face of the device. (b) The RFA device is shown, with electrodes grouped
by face. (c) The RFA device face partitioning on the surface of the device. (d) The new instrumentation system is shown, with the red box showing the RF generator
connection socket, the green box showing the relay-based electrode switching subsystem, the yellow box showing the impedance analyzer subsystem, the orange
box showing an auxiliary temperature measurement subsystem, and the purple box showing the RFA device connection socket.



4 @ E. BESLER ET AL.

the impedance measurement subsystem. The LCR meter
(Rohde & Schwartz HM8118) costs $2500 by itself. These
measurement peripherals were controlled by a x86-64
microprocessor-based workstation (Supermicro, San Jose, CA)
with 16 GB of memory. This first dataset that was collected
with this equipment and on which the results of Wang et
al's study [31] are based, is named as ‘first instrumenta-
tion data’.

For the second dataset, instead of the off-the-shelf equip-
ment, a new low-cost embedded system was designed. The
system includes an accessory board for a Beaglebone Black
(Texas Instruments, Dallas, TX) and costs <$250 for the parts,
including the integrated circuits, accessory board printed cir-
cuit board and microcontroller board. This accessory board
combines a relay-based electrode switching subsystem and
impedance analyzer subsystem. The complex electrical
impedance measurement subsystem based on the AD5933
(Analog Devices, Norwood, MA) impedance analyzer inte-
grated circuit instead of an external LCR meter. This appar-
atus design has a few advantages over the first design that
is composed of off-the-shelf elements. First of all, the noise
profile of the data is no longer dependent on signal chains
through multiple external pieces of hardware. The data sig-
nals are collected in a consistent manner, not affected by
any noise introduced by the wiring or interference of equip-
ment not designed specifically for this purpose. This was
clear with especially the LCR meter, which produced noisy
results likely due to signal chains running through a matrix
switch module in a chassis that also contained other mod-
ules. A visualization of the noise profile will be shown in
Section 4 alongside how it is related to the results in this
study. The embedded impedance measurement subsystem
on the accessory board was designed to measure the imped-
ance magnitude and phase within 2% error range for a fre-
quency range from 10kHz to 100kHz, following the low-
impedance-ranged CN-0217 reference design from Analog
Devices. All complex impedance data presented in this study
were measured at 100 kHz. The dataset collected with this
new embedded system is the main contribution of this study
in terms of ablation hardware, and is named as ‘second
instrumentation data’. This second dataset will be compared
with the first instrumentation dataset in terms of how much
noise it contains. The accessory board design is shown in
Figure 1.

As shown in Table 1, the first instrumentation collected
12,480 data points and the second instrumentation collected
10,344 data points from identical tissue models. Each sample
ablation is comprised of 20-50 ablate/measure cycles. Each
data measurement generates 6 samples per cycle (a pair of
thermal and electrical impedance measurements per side).

The features were the same for both datasets. The four
numerical features were the initial magnitude, the initial
phase, the final magnitude and the final phase of the com-
plex tissue impedance. Lastly, the activated face of the RFA
device was added as a categorical feature. Since the integers
that represent each category have a natural ordered relation-
ship between each other unlike the categories in this data-
set, this feature was one-hot-encoded into six binary
features, adding up to ten dimensions in total. The target
value to predict was the lesion depth in millimeters.

After both datasets were obtained, the prediction of the
lesion depth was posed as a regression task. Although a
comparison is beyond the scope of this study, we believe
that approaching the ablation monitoring problem as a
regression task is more of a direct approach to the problem,
as this allows for the creation of a model that can directly
produce a depth estimation without a linear or binary search.
Additionally, as the classification task requires a linear or bin-
ary search to find the estimated depth, a single invalid out-
put during the search can potentially produce a large error.
The regression task allows for the direct fit and validation of
the model to the training datasets.

2.2. The machine learning models

The ML models for lesion depth estimation are the ANN
from Wang et al’s study [31] and two ensemble models that
are introduced in this study: a Random Forest [33] and
Adaptive Boosting [34]. There are few reasons for using tree-
based ensemble learning models to make depth predictions
from the complex impedance data. First of all, tree-based
models have much fewer hyperparameters than ANNs, mak-
ing them easier to tune and interpret after training.
Secondly, they need less preprocessing to learn the data and
they are able to process numerical and categorical features
together successfully, which is not the case for many ML
models [35]. Another reason that is more specific to this
study is the format of the target values. Since there is a finite
amount of leaf nodes, using a tree for a regression task
returns predictions only at certain discrete values. The target
values in this study are already such discrete depth values
between 0 and 15mm, with a step size of 0.1 mm, allowing
a tree-based model to make accurate predictions. Moreover,
using a number of trees as an ensemble takes away the
instability problem of a single Decision Tree [36].

2.2.1. Artificial neural network
The ANN from Wang et al’s study [31] is used as a regressor
instead of a classifier to enable a direct comparison between

Table 1. Number of data points and their distribution to different sets for regression data from both instrumentations.

Number of data points

Dataset Total Training (at each fold) Validation (at each fold) Test
First Instrumentation 12480 7862 874 3744
Second Instrumentation 10344 6517 724 3103




the tree-based ensemble models in this study. Different
architectures were tried as the number of layers and nodes
at each layer are tuned with the validation data. After a uni-
form grid search between 2 and 10 layers and 20-500 nodes
per layer, it was verified that the architecture in Wang et al’s
study [31] is the architecture that generalizes best to test
data and should be kept as the first ML model.

2.2.2. Random Forest

A Random Forest has a Decision Tree as its base estimator,
which is trained with the Classification and Regression Trees
(CART) algorithm [33]. The algorithm is based on dividing
the dataset into two subsets by setting the optimum thresh-
old t, along a randomly picked feature k. This is done by
minimizing the following cost function:

m .
"9 \ASE ight (1)

m
J(k, t) = %MSEM +—2

where Myer, MSEjer, Myighe and MSE,igpe are the number and
the mean squared error (MSE) of all the instances on the left
and the right of the threshold point along the feature
dimension k, respectively.

In the Random Forest, all decision trees work in parallel,
trained only with a subset of the training data. This introdu-
ces predictor diversity and randomness so that the final
model, which is called an ensemble, will not be affected by
the data size or any change in the dataset. The predictions
for the new instances are obtained by averaging all decisions
of the trees in the forest. The training for a Random Forest is
summarized in Algorithm 1.

Algorithm 1: Random Forest Algorithm
REQUIRE The feature matrix, the target values, the number of trees in
the forest, maximum number of leaf nodes (chosen regularization cri-
terion for this study)
n=1;
REPEAT
Pick a random subset of features;
Among the chosen features, pick a feature k and a threshold t;
and start from the first node
REPEAT
Minimize J(k, ,t) in Eqg. 1
Separate the data into two child nodes
Pass onto the child nodes
UNTIL Pure leaf nodes or regularization criterion met
n=n+1
UNTIL n = number of trees

2.2.3. Adaptive Boosting
Adaptive Boosting also has a Decision Tree as its base model,
however, each tree is trained one by one and the algorithm
makes each tree pay more attention to the data points the
previous one missed. This is done by assigning a weight
value to each instance in the dataset and changing these
weights for each tree in the training sequence.

Initially, all instances start with the weights:

w =1/m 2

where m is the size of the dataset and w) is the weight of the

i" instance. These weights are updated as a tree makes its
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predictions and the next tree is trained with the data and the
updated weights. Each predictor in the model in this study is
still a tree, so CART algorithm is used for each base predictor.
The slight derivation to include the instance weights to the
algorithm is made on the MSE calculation at a node, which is:

. ~ . 2
MSEpode = Z W(’) (ynode_y(’)) 3)

i€enode

After training the /7 tree, its error rate is calculated as follows:

7\ Ay

m
> wl)
i=1
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=
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where )7}’) is the prediction of the ji tree for the i data point.
Using the error rate, the predictor weight of the j™ tree is
calculated as follows:

o; = nlog <¥> (5)
j

where 7 is the learning rate, an ensemble hyperparameter
that should be manually tuned. Based on the weight of the
j predictor, the data point weights are updated for G+ 1)”’
the predictor to use as follows:

W(”exp(oz,-), if 9j(‘> £y

Wl

wl) = 6)

The weight updating and predictor training processes are
repeated until all the predictors are trained. An important
point for Adaptive Boosting is that the condition )7}’) £yl
can be too strict for a regression task that predicts continuous
target values with very small granularity. Since the target val-
ues are more discrete and within a small range for the regres-
sion task of this study, this is not regarded as a problem.

To make predictions for new instances, a weighted aver-
age of all the trees is taken, which can be formulated as:

N
y(x) = arg max Z % (7)

j=
y/ (x)=k

where y(x) is the ensemble prediction for the new data
point x, k is a target value and y;(x) is the prediction of the
j predictor. The summary of the Adaptive Boosting algo-
rithm is shown in Algorithm 2.

Algorithm 2: Adaptive Boosting Algorithm
REQUIRE: The feature matrix, total number of data points (m), the tar-
get values, total number of trees, maximum number of leaf nodes
(chosen regularization criterion for this study), learning rate (fixed)
n=1;
WORE
m
REPEAT
Pick a feature k and a threshold t, and start from the first node
REPEAT
Minimize J(k, ,t) in Eq. 1
Separate the data into two child nodes
Pass onto the child nodes
UNTIL Pure leaf nodes or regularization criterion met
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Calculate r; using Eq. 4
Calculate o using Eq. 5
Update w® using Eq. 6
n=n-+1

UNTIL n =number of trees

The main shortcoming of tree-based models is that they
are very susceptible to overfitting, where the prediction per-
formance for previously unseen data gets much worse than
the training data. This is avoided by regularization, which lim-
its the complexity of the models so they do not overfit to the
training data and are able to generalize well to new data.
Regularization is done by limiting a hyperparameter of the
model. For the models in this study, the number of maximum
leaf nodes in each tree is picked as the regularization hyper-
parameter. Constraining this value for a tree makes it stop
branching out as its number of leaf nodes reaches the limit,
even if not all the leaf nodes are pure. The number of trees in
the ensemble is another hyperparameter to be tuned and the
complexity of the model depends on it as well.

Both tree-based models were created on the Scikit-learn
Python library (INRIA, Rocquencourt, France). They were run on a
x 86-64 microprocessor-based workstation (Supermicro, San Jose,
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CA) with 16 GB of memory. Both tree-based models were tested
on both the first and second instrumentation data. Furthermore,
their results are compared with those of the ANN in Wang et al's
study [31] that is retrained as a regression model.

3. Results

For both datasets and ML models, 70% of the data was used
to train the model and tune the hyperparameters with a
10-fold cross-validation (CV). The other 30% was held out to
test how well the trained models generalize to new data.
The size of the training, validation and test sets for each
dataset was shown in Table 1. Since the prediction task in
this study is regression, root mean squared error (RMSE) and
R* were used as evaluation metrics to compare the models,
along with the residual plots of the ensemble models to
visualize their prediction performance.

The hyperparameters to tune in both the Random Forest
and the Adaptive Boosting model were the number of trees
and the maximum number of leaf nodes in each tree. While
the model parameters were tuned by the training data, these
hyperparameters were optimized by a grid search. Since it is
computationally very expensive to do a grid search for
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Figure 2. The grid search for the hyperparameters of both ensemble models with a comparison between the datasets. The criterion for the best hyperparameter
value is the test R% a) Tuning the maximum number of leaf nodes for Random Forest. (Number of trees fixed at 80 for both models). b) Tuning the number of trees
for Random Forest. (Max. number of leaf nodes fixed at 250 and 900 for the first and second instrumentation, respectively). ¢) Tuning the maximum number of leaf
nodes for Adaptive Boosting. (Number of trees fixed at 30 for both models). d) Tuning the number of trees for Adaptive Boosting. (Max. number of leaf nodes fixed

at 250 and 700 for the first and second instrumentation, respectively).
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Table 2. Output performances of all the ML models when cross-validated and tested on the first instrumentation data.

Prediction metrics for regression

ML Model Test RMSE (mm) Test R? CV-average RMSE (mm) CV-average R?
ANN? 245 68.1% 245 67.6%
Random Forest 2.16 77.2% 2.20 76.3%
Adaptive Boosting 2.08 79.3% 2.12 75.2%

Note: *The same model and hyperparameters from [31].

Table 3. Output performances of all the ML models when cross-validated and tested on the second instrumentation data.

Prediction metrics for regression

ML Model Test RMSE (mm) Test R? CV-average RMSE (mm) CV-average R?
ANN? 2.19 57.0% 223 56.0%
Random Forest 0.54 98.0% 0.62 96.2%
Adaptive Boosting 0.30 99.1% 0.51 97.5%

Note: *The same model and hyperparameters from [31].
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Figure 3. Residual plots of the predictions of the ensemble models on the test data from both instrumentations. The 0.0 mm depth is the tissue directly abutting
the surface of the RFA device face. a) Random Forest on the first instrumentation data. b) Random Forest on the second instrumentation data. ¢) Adaptive
Boosting on the first instrumentation data. d) Adaptive Boosting on the second instrumentation data.

three hyperparameters at the same time, the learning rate
of Adaptive Boosting was fixed to 0.1, a reasonable value
found after trial and error, and the other two hyperpara-
meters were put to the grid search. This also helped with a
comparison between two ensemble models. Figure 2 has the
grid search for the hyperparameters. For both models, the
number of trees was fixed first to find the optimum number
of leaf nodes and then this value is kept to tune the number
of trees, which did not affect the prediction performance as
much as the former. Figure 2 also enables a direct

comparison between the datasets under the same hyper-
parameter values.

Table 2 has the results of all the models trained with the
first instrumentation data. The Random Forest was trained
with 80 trees and a maximum of 250 leaf nodes each. The
Adaptive Boosting model had 30 trees and a maximum of
250 leaf nodes each.

Table 3 has the results of all the models trained with the
second instrumentation data. The Random Forest was trained
with 50 trees and a maximum of 900 leaf nodes each. The
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Figure 4. Magnitude and phase plots of datasets from both instrumentation setups. Face ablated lesion depth is the depth of the ablation lesion relative to a face
of the RFA device. The 0.0 mm depth is the tissue directly abutting the surface of the RFA device face. a) Magnitude vs. depth for the first instrumentation. b)
Magnitude vs. depth for the second instrumentation. c) Phase vs. depth for the first instrumentation. d) Phase vs. depth for the second instrumentation.

Adaptive Boosting model had 30 trees and a maximum of
700 leaf nodes each. For both datasets, the Random Forest
finished training in 0.37s and predicted the depths for test
data in 0.01s. With Adaptive Boosting, training took 3.3s and
prediction took 0.01 s again.

Lastly, the residual plots of both ensemble models
introduced in this study are shown in Figure 3. The residual
plots were obtained from the results of both instrumenta-
tions setups.

4, Discussion

The first comparison is made between the two instrumenta-
tion setups. All metrics show that the second instrumenta-
tion data can be predicted more accurately, indicating the
lack of noise, which is clearly not the case for the first instru-
mentation. The noise from the off-the-shelf equipment of the
first instrumentation manifests itself through the inaccuracy
of all the ML models. Both ensemble models have a test
RMSE higher than 2 mm, which drops to around 0.5 mm with
the new instrumentation. The reason for this sudden increase
of the model performance is that the data size from both
instrumentations are moderate for training ML models as
complex as the ones in this study, so the effect of the noise
could not be compensated by a large dataset.

Another indication of the noise in the first instrumenta-
tion from a ML perspective is the regularization

hyperparameters of the ensemble models. It is especially not-
able that the number of maximum leaf nodes in both mod-
els has to be kept smaller while training them with the first
instrumentation data. A tree-based ensemble model with a
lower limit on its maximum leaf nodes is more strictly regu-
lated and limited in complexity to avoid overfitting, which
noisy training data are usually prone to causing. Therefore,
both models are regulated to avoid overfitting and to keep
the test results from dropping significantly. The overfitting
for the first instrumentation data can be seen in Figure 2, as
the R? for test data start to decrease as the number of max-
imum leaf nodes pass the optimum value, whereas the
second instrumentation data maintains its peak R? as the
number of leaf nodes increase. In other words, with the
second instrumentation, both the Random Forest and the
Adaptive Boosting models are allowed to have more leaf
nodes and less regulation, which leads to better training and
test performance because the noise is eliminated and the
complexity the models are capturing belongs to the clean
data itself, not the noise.

The noise difference between two datasets can also be
seen from a biological perspective. As the lesion depth
increases with more heat in the tissue model, the increasing
temperature decreases the complex impedance. So, the
impedance magnitude of the instances should follow a
decreasing pattern when they are plotted against their



corresponding lesion depth. These plots for both the imped-
ance magnitude and phase are shown in Figure 4.

As the lesion depth increases, the magnitude follows
two patterns around 40 and 20 Q which is expected, as
one pattern is for pork belly and the other is for pork loin.
The magnitudes of different measurements that corres-
pond to the same depth are expected to be within a tight
margin. However, the impedance magnitudes for the first
instrumentation are scattered and noisy, the patterns of
two different materials merging at some depths, indicat-
ing the presence of noise introduced by the off-the-shelf
LCR meter. The phase plot for the first dataset has the
same issues, having the phase values more scattered than
that of the second dataset, except for a few outliers that
are caused by incorrect measurements by the acces-
sory board.

The second comparison is made between the two tree-
based ML models. Both tree-based ensemble models that
are introduced in this study outperformed the ANN in
Wang et al’s study [31]. The discrete nature of the target
depth values certainly helped with the higher performance
of the tree-based models. This shows that tree-based models
can prove useful for various medical applications when there
is a depth estimation involved as long as sufficient training
data including all discrete depth levels is given. Furthermore,
the tree-based ensemble models have less parameters to
tune and faster to train, so for this study, it is safe to say
they are more advantageous than an ANN. As for the com-
parison between the Random Forest and the Adaptive
Boosting models, there are a few tradeoffs. First, the overall
prediction performance of the Adaptive Boosting model is
better than the Random Forest, with lower MSE, higher R?
and a tighter residual plot for both datasets. This better pre-
diction performance comes with a computational cost. Again
for both datasets, the Adaptive Boosting model takes more
than ten times as much time as the Random Forest model to
train. This is expected because all the trees in the Adaptive
Boosting model are trained sequentially on the entire data-
set, whereas data is processed in parallel in the Random
Forest. Therefore, the difference in training time between the
models increases with more data. Another possible factor
that would increase the computational cost of the Adaptive
Boosting model is the additional learning rate hyperpara-
meter to tune, which was fixed to 0.1 in this study.

Lastly, there are some visible patterns on the 4 residual
plots in Figure 3. Both residual plots of the first instrumenta-
tion data have vertical patterns on 0 and 15mm depth
which correspond to a non-zero ablation depth prediction
whereas the real depth is zero and a prediction of 15mm
depth when the thermal lesion is not there yet, respectively.
There are also diagonal patterns stemming from Omm in
depth. These correspond to the model predicting zero depth
when there is some ablated volume. These inaccuracies
would cause serious medical issues in real-life tumor ablation
such as a recurrent cancer from unablated tumor volume or
ablated healthy tissue volume that can lead to the collapse
of an organ or body deformation. With the second instru-
mentation, the noise that causes these patterns of inaccuracy
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is gone. The diagonal pattern and the vertical pattern at
15mm depth disappear but the one at 0 mm depth persists
for the Random Forest model. This is likely due to a bigger
proportion of the instances having 0 mm as the target depth
and the Random Forest model missing some of them even
when the noise is gone. The Adaptive Boosting model pre-
dicts the instances with 0 mm depth much better, returning
a tighter residual plot with only random outliers. This is the
last and probably the most important advantage the
Adaptive Boosting model has for this study.

5. Conclusion

The results of this study show that a real-time monitoring for
tumor ablation can be accurately done with an ML approach
that is much faster than other monitoring techniques. Both
the Random Forest and the Adaptive Boosting model proved
useful and accurate, the latter having the most accurate
depth predictions on average. An essential part of this pro-
cess is a noise-free and reliable data collection setup, as
demonstrated with the difference in prediction performance
between the datasets of two different instrumentation hard-
ware setups. Future studies will explore utilizing complex
impedance data collected at multiple frequencies which
will allow collecting a much bigger dataset and more useful
new features. Also, it will enable the development of a
more complex ML model that can predict the lesion depth
more precisely.
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