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ABSTRACT

Millimeter-wave (mmWave) communication
is a key technology of fifth generation wireless
systems to achieve the expected 1000x data rate.
With large bandwidth at the mmWave band, the
link capacity between users and base stations
(BSs) can be much higher compared to sub-6
GHz wireless systems. Meanwhile, due to the high
cost of infrastructure upgrade, it would be difficult
for operators to drastically enhance the capacity
of backhaul links between mmWave BSs and the
core network. As a result, the data rate provid-
ed by backhaul may not be sufficient to support
all mmWave links; hence, the backhaul connec-
tion becomes the new bottleneck. On the other
hand, as mmWave channels are subject to ran-
dom blockage, the data rates of mmWave users
significantly vary over time. With limited backhaul
capacity and highly dynamic data rates of users,
how to allocate backhaul resource to each user
remains a challenge for mmWave systems. In this
article, we present a deep reinforcement learn-
ing (DRL) approach to address this challenge. By
learning the blockage pattern, the system dynam-
ics can be captured and predicted, resulting in
efficient utilization of backhaul resource. We
begin with a discussion on DRL and its application
in wireless systems. We then investigate the prob-
lem of backhaul resource allocation and present
the DRL-based solution. Finally, we discuss open
problems for future research and conclude this
article.

INTRODUCTION

With the explosion of smart devices and data-in-
tensive wireless applications, the demand for
high data rate services has drastically increased
in recent years. To meet such demand, the fifth
generation (5G) cellular network is under inten-
sive research from both industry and academia.
According to a recent report, the 5G networks
are expected to support massive connections
with minimum data rate of 100 Mb/s and peak
data rate higher than 10 Gb/s [1]. To achieve
this goal, several technologies are considered
as candidates for 5G systems, including millime-
ter-wave (mmWave) communications, massive
multiple-input multiple-output (MIMO), and small
cell. By operating at mmWave band with large

bandwidth, an mmWave system can significantly
elevate the data rate performance to the multi-
gigabits-per-second level.

As the data rates of links between an mmWave
base station (BS) and users are greatly enhanced,
the capacity of backhaul link between the BS
and the core network becomes relatively limit-
ed, posting a new challenge to mmWave cellular
networks. Compared to a Long Term Evolution
(LTE) system with typical cell throughput less than
150 Mb/s [2], the cell throughput of an mmWave
system can be greater than 1.5 Gb/s [3], which is
comparable to the data rate of a current backhaul
link. As a result, the backhaul links in mmWave
cellular networks are expected to achieve much
higher data rates compared to current cellular
networks. In current LTE networks, the configu-
ration of a backhaul link is to support peak cell
throughput. However, this may not be feasible
in mmWave networks. Due to cost concerns, it
is unlikely for operators to upgrade existing infra-
structure to drastically enhance capacity of wired
backhauls. In the case of wireless backhaul (e.g.,
mmWave-based wireless backhaul or free space
optical), although the cost can be reduced, the
challenge brought by limited backhaul capacity
remains. On one hand, the capacity of wireless
backhaul link is shared by multiple BS-user links.
On the other hand, the backhaul links are likely
to experience higher propagation loss than the
BS-user links.

The tension caused by limited backhaul capac-
ity may be aggravated in the future as the data
rate of mmWave links is expected to keep increas-
ing. For example, high resolution 360° virtual real-
ity (VR) requires data rate on the order of 1 Gb/s
and latency of 1 ms. Based on a prediction in [1],
the 5G mmWave networks need to support 50
Gb/s data rate by 2024. In addition, due to the
expected dense deployment of mmWave BSs [4],
a large number of backhaul connections, which
can be wired or wireless, will coexist. As a result,
the achievable data rate of each backhaul link
will be limited, which may be caused by resource
sharing, mutual interference, potential congestion,
or increased overhead [5]. Therefore, unlike tradi-
tional cellular networks (from 1G to 4G) in which
the wireless transmission between BS and user is
the bottleneck, the backhaul becomes a potential
bottleneck in mmWave systems. Although some
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field tests have been performed to demonstrate
the potential of mmWave cellular systems such
as in [3], these tests are not based on actual cel-
lular networks. Thus, the impact of limited back-
haul capacity has not been tested and verified,
which requires further investigation. The chal-
lenge of the possible bottleneck at backhaul has
been observed in the context of ultra-dense small
cell deployment [4], in which the large number
of small cells put pressure on the backhaul links.
Compared to the case of network desification,
the bottleneck challenge in an mmWave system is
caused by the significantly increased data rate of
mmWave transmissions.

On the other hand, due to the short wave-
length of mmWave communications, the trans-
missions between BS and users are subject to
random blockage. As a result, the data rate of
each user is highly dynamic. In contrast, the data
rate of a backhaul link is much more stable since it
is implement by wired connection or line of sight
(LoS) wireless connection. Therefore, the BS-UE
link is characterized by high data rate and unsta-
ble connection, while the backhaul link is charac-
terized by relatively limited data rate and stable
connection, as shown in Fig. 1. To balance this
mismatch and enhance the system performance,
efficient backhaul resource allocation to each user
is necessary. For example, when a user switches
from LoS transmission to non-LoS (NLoS) or expe-
riences an outage, less resource shoud be allocat-
ed to this user. However, such adaptive control
cannot be implemented by traditional resource
allocation schemes due to the varying system
dynamics. To perform efficient scheduling, a BS
needs to predict possible blockage and estimate
the data rate of each user based on the current
channel state information (CSl). Then it makes a
decision on the backhaul resource allocation and
sends a request to the core network. This way, the
backhaul scheduling can be performed in a timely
manner that captures the blockage pattern.

Deep reinforcement learning (DRL) is a new
paradigm for intelligent decision making [6],
which can be implemented by TensorFlow and
Keras. Combining reinforcement learning and the
DNN, a DRL agent interacts with the environ-
ment and learns the pattern of a Markov decision
process (MDP) through training experience. Spe-
cifically, a DRL agent employs a deep neural net-
work (DNN) to approximate the Q-values, where
the Q-values are defined by discounted cumula-
tive rewards that can be obtained by taking dif-
ferent actions under certain system states. Then
the agent makes optimal decisions based on the
estimated Q-values. Compared to other machine
learning approaches, DRL is model-free and does
not require data samples from an external supervi-
sor. Due to these benefits, the application of DRL
in wireless networks has drawn growing atten-
tion recently. In this article, we apply DRL to deal
with the challenge of limited backhaul capacity
in mmWave networks. By learning the blockage
pattern based on the CSI of mmWave users, a BS
decides the resource allocation of the backhaul
link with the objective of maximizing the sum util-
ity of all users.

In the remainder of this article, we first intro-
duce the background of DRL and review its recent
applications in wireless systems. Then we present

Backhaul BS ~
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Figure 1. System model of an mmWave system with limited backhaul capacity.

a DRL-based approach for backhaul resource allo-
cation. Finally, we discuss open research prob-
lems and conclude this article.

DEEP REINFORCEMENT LEARNING FOR
WIRELESS SYSTEMS

PRELIMINARIES OF DEEP REINFORCEMENT LEARNING
A reinforcement learning (RL) agent aims to
learn from the environment and take action to
maximize the long-term cumulative reward. The
environment is modeled as an MDP with a state
space, and an RL agent can take actions from
a certain action space. The agent interacts with
the environment by taking actions, observing the
reward and system state transition, and updat-
ing its knowledge about the environment. The
objective of an RL algorithm is to find the optimal
policy, which determines the strategy of taking
actions under certain system states. Specifically,
a policy is defined by the probabilities of taking
different actions under a certain state at a current
time instant. In general, a policy is in a stochastic
form to enable exploration over different actions.
To find the optimal policy, the key component is
to determine the value of each state-action func-
tion, also known as Q-function. Q-function indi-
cates the expected long-term cumulative rewards
that can be obtained if the agent takes different
actions under different states. In particular, a
Q-function has two parts: one is the instant reward
obtained by taking an action under a certain state;
the other is the consequent future rewards, which
are impacted by the probabilistic system transi-
tions. The details of Q-function can be found in
[6]. With Q-functions, an MDP is solved when
the optimal policy that maximizes the values of
Q-functions (Q-values) is found.

A common RL technique for solving an MDP
is Q-learning, which uses an empirical iterative
approach to update Q-values. In particular, an
agent interacts with the environment by taking
actions and obtaining rewards, and then updates
the Q-values with the newly observed instant
reward.

RL has been applied in decision making prob-
lems of mmWave networks such as in [7]. How-
ever, in large-scale systems with large numbers
of states and actions, the traditional Q-learn-
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sible due to the prohibitive complexity, existing
solutions typically rely on network information
exchange, which yields a trade-off between over-
head and performance. For DRL approaches,
State transition & reward the network optimization is based on trial and
Y error, which do not require explicit or instan-
taneous network information. In particular, a
DRL algorithm is model-free, which does not
require explicit knowledge on the inter-depen-
dent patterns of different nodes. In addition, with
extensive offline training, a DRL agent is able
to predict the system dynamics, which enables

Take action

Environment |

Experience memory

Generate a
random minibatch

State-action pair timely scheduling. Thus, compared to tradition-
Minibatch > DQN al approaches, DRL-based schemes have the
é\‘é“ potential to achieve better performance with

R reduced online overhead.
State transition & W W Update Due to this promising prospect, DRL algorithms
instatant reward s Q-values base weight have been recently considered in several wireless
Qeﬂ\o on DQN networks to perform intelligent decision making
[8-13]. In [8], DRL is used to estimate the availability
Target network > Loss function of cache and select a proper set of users for inter-
minimization ference alignment. In [9, 10, 13], the problem of

Q-values based on
target network

Figure 2. Framework of the DRL approach in [6].

ing approach becomes infeasible since a table
is required to store all the Q-values. In addition,
traditional Q-learning needs to visit and evaluate
every state-action pair, resulting in huge complex-
ity and slow convergence. An effective approach
to deal with such challenge is to use a neural net-
work (NN) to approximate the Q-values, where
each Q-value is a function of state, action, and the
weights of the NN. By training an NN with sampled
data, the NN can map the inputs of state-action
pairs to their corresponding Q-values. However, a
direct application of NN in Q-learning may lead
to unstable or even diverge results due to the cor-
relations between training samples and the correla-
tions between Q-values and target values [6].

To reduce such correlations, a DRL approach
was proposed in [6], in which a DNN is used to
approximate the Q-value, yielding a deep Q-net-
work (DQN). In the DRL approach presented in
[6], the agent first explores the environment by
randomly taking actions and stores the experience
in a target network. A set of experience includes
the current state, action, instant reward, and new
state. Then a mechanism called experience replay
is used, where the data are randomly sampled in
minibatches from the target network to break the
correlation in a sequence of observation. With
samples from the target network, the weights of
the DQN are updated by minimizing the mean
square error of Q-functions between the DQN
and the target network. Then a stochastic gradient
descent approach is used to obtain the weights of
the DQN. To reduce the correlation between the
DQN and the target network, the target network
is updated less frequently. After the training of the
DQN, the agent then takes action based on the
estimated Q-values. The general framework of the
DRL approach in [6] is shown in Fig. 2.

APPLICATIONS IN WIRELESS NETWORKS

In the design of wireless networks, a major
challenge is to solve the formulated combinato-
rial problems. While exhaustive search is infea-

multi-channel access is considered in which each
user observes the channel dynamics from history
and estimates the possible actions of other users,
then determines its channel access strategy. In [11],
DRL is used to predict the quality of service (QoS)
that can obtained when handing over a UE to anoth-
er BS, resulting in an efficient handover process. In
[12], continuous actions and states are considered
so that DQN-based DRL cannot be applied. The
deep deterministic policy gradient (DDPG), which
is based on an actor-critic framework, was employed
to address the continuous space control problem.
The general idea is to parameterize the Q-functions
and derive the optimal values of parameters through
a policy gradient. In [10, 11, 13], the problems are
formulated as multi-agent control with interactions
among agents. As a result, experience replay for a
single agent cannot be applied in such scenarios.
To take the inter-agent impact into account, long
shortterm memory (LSTM) is used to generate target
values. The key aspects of system models in recent
works are summarized in Table 1.

DRL-BASED
BACKHAUL RESOURCE ALLOCATION

SySTEM MODEL

We consider an mmWave BS serving multiple user
equipments (UEs). Each user has three link states:
LoS, NLoS, and outage. The link state of each user
follows a Markov process with steady state prob-
abilities given in [3]. We assume that the BS can
estimate the link state of each user through the
statistics of user signals. The BS can also measure
the achievable data rate of the mmWave link of
each user via uplink signals.

We assume the backhaul resource is divided
into multiple orthogonal blocks. The number
of resource blocks is larger than the number
of UEs. Each block can be a period of time or
a range of wavelengths. We assume that each
block has a fixed capacity, and each UE can be
allocated multiple blocks. Then the backhaul
capacity allocated to a user is proportional to
the number of allocated blocks. As a result, the
actual data rate of a user is the minimum of its
backhaul capacity and its achievable data rate
of the mmWave link.
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Application State Action Reward Learning objective
Cache-based . User selection for Channel dynamics and cache
18 interference alignment izt [pater gl interference alignment WA availability
9 Multi-channel access Channel state: Channel selection of each Number oflsu'ccessful & e el
good/bad user transmissions
[10] Resource management in Current channel usage e s szl Total throughput on selected Channel access patterns of other
LTE-Unlicensed pattern channels users
i Handover control in Signal qualities from BS selection Weighed sum of data and rate Prediction for channel qualities
ultra-dense network different BSs handover energy from different BSs
Traffic allocation in multihop ~ Throughput and delay of N Total utility (weighted sum of Learn traffic pattern from expe-
[12] . Traffic split ratio .
network each session throughput and delay) rience
. Channel access of other Number of successful Probabilities of success
[13]  Multi-channel random access Channel access strategy o - -
users transmissions transmission over multi-channel
Table 1. Applications of DRL in different wireless networks.
DRL FRAMEWORK
Hidden layers Output layer

The proposed DRL-based approach employs a
DQN to find the resource allocation strategy
under different system states. The key component
of system state is the achievable data rate of each
UE. We also include the link states of all UEs as
part of the system states, since they affect the
future data rates. Then the system state is used as
input to the DQN. The action taken by the agent
indicates the backhaul capacity allocation (i.e.,
the number of blocks allocated to each user).
The action space consists of all feasible resource
allocation, which includes multiple combinations
of integers. For each combination, the sum of all
integers equals the number of blocks. To achieve
good system performance as well as guarantee
fairness, we define the utility of each user to be a
concave function of its data rate. Then the system
reward is set as the sum of utilities of all users.
The architecture of the DQN is shown in Fig. 3.
The input includes the link state and achievable
data rate information of each user. The output
presents the approximated Q-values, and there
are several hidden layers between the input and
output layers.

The training procedure of the DQN is the
same as the one in [6], which uses experience
replay to reduce the correlation between training
samples, as shown in Fig. 2. With the DQN, the
agent at the BS observes the current data rates
and link states of all users and obtains the Q-val-
ues of taking different actions (i.e., selecting dif-
ferent resource allocation strategies). Then the
agent takes an action according to a probabilistic
greedy approach to achieve an exploitation-explo-
ration trade-off. Specifically, the agent selects the
action with the maximum Q-value with a certain
probability and randomly selects an action oth-
erwise.

ILLUSTRATIVE EXAMPLE

We evaluate the performance of the DRL-based
approach with simulations. We consider an
mmWave cell with a coverage radius of 100 m;
users are randomly distributed in the cell. The
probabilities of a user in different link states are
functions of the distance between the user and
the BS. The probabilities under outage, LoS, and
NLoS are given in [3], which are the steady state
probabilities of the Markov process of link state.

System state:
| :
Datarates & | .

link states
of all users

Q-values of all

state-action pairs

Figure 3. Architecture of the DQN for backhaul resource allocation.

We employ the channel model of 73 GHz band
in [3], where NLoS links experience higher path
loss than LoS links. The system bandwidth is 1
GHz, and the transmit powers of BS and UEs are
30 dBm and 20 dBm, respectively. The backhaul
capacity is 10 Gb/s; the backhaul resource is
divided into 20 resource blocks. There are two
hidden layers in the DQN, and we use Relu as
the activation function. We consider two DRL-
based schemes, namely DRL-1 and DRL-2, with
reward functions given as the sum of logarithmic
data rate and the sum of square root of data rate,
respectively. With the logarithmic utility function,
DRL-T achieves proportional fairness. Compared
to DRL-1, DRL-2 is more efficiency-prone with a
worse fairness. Two benchmark schemes are con-
sidered for comparison: a myopic scheme and the
equal allocation scheme. For the myopic scheme,
the backhaul resource allocation is based on the
current data rates of mmWave links, without con-
sidering the future change of link states.

Figure 4 shows the sum rate performance
under different numbers of users. As the number
of users increases, the sum rates of all schemes
grow at reduced rates, showing that the system
performance is limited by the backhaul capac-
ity. The proposed DRL-based schemes outper-
form the other ones, and the performance gap
gets larger when the number of users increas-
es. This is because the BS is able to predict the
variation of link state and allocate the resource
based on long-term consideration. Then the back-
haul resource can be efficiently utilized, and this
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Figure 4. Sum rate performance of different schemes vs. the number of users.

advantage becomes more significant when the
number of users is large. Compared to DRL-T,
DRL-2 achieves higher data rate since its utility
and reward functions are set to prioritize efficien-
cy over fairness.

The performance under different values of the
blockage coefficient is shown in Fig. 5. The block-
age coefficient is defined in [3], which indicates
the likelihood that a user will experience blockage.
From Fig. 5, we can see that when the blockage
coefficient is small, the performance of the myo-
pic scheme is close to the proposed DRL-based
schemes, since the ratio of users under blockage
is small and the data rates of mmWave links are
relatively stable. However, when the number of
users increases, the performance gap between
the proposed schemes and the myopic scheme
is increased, showing that DRL-based scheduling
is effective in capturing the system dynamics and
making intelligent decisions from the perspective
of long-term benefit.

OPEN PROBLEMS AND FUTURE RESEARCH

JOINT OPTIMIZATION OF BACKHAUL AND MMWAVE LINKS

The DRL based backhaul resource allocation
presented earlier is based on the given achiev-
able rate of each user. To mitigate the pres-
sure caused by limited backhaul capacity, the
design of BS-UE links can also be considered.
The design of resource allocation in LTE systems
with limited backhaul capacity was studied in
[14]. In mmWave systems, the data rate of each
mmWave link can be adjusted through precoding
design. Considering the channel characteristics of
different users, a joint consideration of backhaul
resource allocation and precoding can provide a
better solution to balance the tension between
limited backhaul and increased mmWave data
rate demand.

DYNAMIC BACKHAUL CAPACITY

In our model, we assume fixed capacity for back-
haul, which corresponds to the case of wired
backhaul or LoS mmWave backhaul with highly
stable data rate. However, in a practical system

with wireless backhaul, the data rate of backhaul
would vary over time. Thus, it is necessary for the
agent to learn such dynamics as well, and more
sophisticated design is required based on the pro-
posed framework.

MuLTI-CELL SCENARIO

Capacity Allocation Among Different Back-
hauls: The design described earlier is based on
a single-cell scenario. From the perspective of
multi-cell, the capacity allocated to each back-
haul can be optimized to further enhance the
system performance. For example, an mmWave
BS with heavy traffic and high aggregated data
rate requirement can share more capacity from
the core network. However, load balancing and
capacity allocation require coordination between
different BSs, and efficient design is required. In
addition, how to address the scalability issue is
another challenge. Capacity allocation among
different backhauls for load balancing has been
investigated in other wireless networks, such as in
heterogeneous cloud radio access networks [15].
Due to the dynamic nature of mmWave com-
munications, the varying capacity requirement
of each backhaul needs to be learned to enable
effective scheduling.

Adaptive User Association: To mitigate
the pressure of limited backhaul, an effective
approach is to perform load balancing. For a BS
with large deficit in backhaul capacity, some of
the users served by the BS can be handed over
to neighboring BSs to reduce the traffic demand
on this BS. Thus, traffic-aware user association is
another design factor that can be considered for
better system performance.

HETEROGENEOUS NETWORK

In a heterogeneous network, the traffic of small
cells is transmitted to a macrocell via backhaul
connections and then forwarded to the core net-
work via the backhaul of the macrocell. Then the
backhaul resource allocation becomes a two-tier
problem, which requires more complicated design.
In addition, similar to the multi-cell case, the capac-
ity allocation for different small cell backhaul links
and adaptive user association are important design
issues that should be jointly considered with back-
haul resource allocation.

CACHING ASSISTED SYSTEM

BS caching (e.g., femtocaching) was recently
proposed as an effective approach to enhance
the data rate of users. By downloading popular
contents in advance and storing them at local
BSs, the files requested by users are directly
transmitted from local BSs. While the primary
goal of caching is to increase the capacity of
BS-user links and reduce delay, it is also a good
solution to the limited backhaul capacity chal-
lenge. When the traffic load of an mmWave BS
is low, it can request popular files from the core
network. When the traffic load is increased, the
popular files at the BS can be used to satisfy the
demand of some users. As a result, the backhaul
capacitiy is mainly used to satisfy the instanta-
neous demands from users, thus mitigating the
traffic burden at the backhaul. Under the cach-
ing architecture, the key design issue is the selec-
tion of popular contents. With limited storage, it
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is necessary to learn the patterns of users’ pref-
erence and blockage. For example, when a user
is under frequent blockage, caching and storing
the content of this user would lead to underutili-
zation. However, if the content requested by the
user is also frequently requested by other users,
the utilization would be improved. Thus, the
agent needs to learn multiple patterns to derive
an efficient caching strategy.

PERFORMANCE-COMPLEXITY TRADE-OFF

In the system model discussed above, we assume
the backhaul resource is divided into M blocks. To
improve resource utilization and enhance the sys-
tem performance, a larger value of M is desirable.
However, this results in increased dimensions of
both action and state spaces. Thus, an adaptive
selection of M that achieves a good trade-off
between complexity and performance is another
design issue.

CONCLUSION

In this article, we address the challenge of limited
backhaul capacity in mmWave networks with a
DRL-based approach. We first overview the back-
ground of DRL and its applications in wireless net-
works. Then we present a DRL-based approach
to enable efficient backhaul resource allocation,
and show the effectiveness through an illustra-
tive example. We then discuss the future research
problems and conclude this article.
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