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Abstract

Millimeter-wave (mmWave) communication 
is a key technology of fifth generation wireless 
systems to achieve the expected 1000 data rate. 
With large bandwidth at the mmWave band, the 
link capacity between users and base stations 
(BSs) can be much higher compared to sub-6 
GHz wireless systems. Meanwhile, due to the high 
cost of infrastructure upgrade, it would be difficult 
for operators to drastically enhance the capacity 
of backhaul links between mmWave BSs and the 
core network. As a result, the data rate provid-
ed by backhaul may not be sufficient to support 
all mmWave links; hence, the backhaul connec-
tion becomes the new bottleneck. On the other 
hand, as mmWave channels are subject to ran-
dom blockage, the data rates of mmWave users 
significantly vary over time. With limited backhaul 
capacity and highly dynamic data rates of users, 
how to allocate backhaul resource to each user 
remains a challenge for mmWave systems. In this 
article, we present a deep reinforcement learn-
ing (DRL) approach to address this challenge. By 
learning the blockage pattern, the system dynam-
ics can be captured and predicted, resulting in 
efficient utilization of backhaul resource. We 
begin with a discussion on DRL and its application 
in wireless systems. We then investigate the prob-
lem of backhaul resource allocation and present 
the DRL-based solution. Finally, we discuss open 
problems for future research and conclude this 
article.

Introduction
With the explosion of smart devices and data-in-
tensive wireless applications, the demand for 
high data rate services has drastically increased 
in recent years. To meet such demand, the fifth 
generation (5G) cellular network is under inten-
sive research from both industry and academia. 
According to a recent report, the 5G networks 
are expected to support massive connections 
with minimum data rate of 100 Mb/s and peak 
data rate higher than 10 Gb/s [1]. To achieve 
this goal, several technologies are considered 
as candidates for 5G systems, including millime-
ter-wave (mmWave) communications, massive 
multiple-input multiple-output (MIMO), and small 
cell. By operating at mmWave band with large 

bandwidth, an mmWave system can significantly 
elevate the data rate performance to the multi-
gigabits-per-second level.

As the data rates of links between an mmWave 
base station (BS) and users are greatly enhanced, 
the capacity of backhaul link between the BS 
and the core network becomes relatively limit-
ed, posting a new challenge to mmWave cellular 
networks. Compared to a Long Term Evolution 
(LTE) system with typical cell throughput less than 
150 Mb/s [2], the cell throughput of an mmWave 
system can be greater than 1.5 Gb/s [3], which is 
comparable to the data rate of a current backhaul 
link. As a result, the backhaul links in mmWave 
cellular networks are expected to achieve much 
higher data rates compared to current cellular 
networks. In current LTE networks, the configu-
ration of a backhaul link is to support peak cell 
throughput. However, this may not be feasible 
in mmWave networks. Due to cost concerns, it 
is unlikely for operators to upgrade existing infra-
structure to drastically enhance capacity of wired 
backhauls. In the case of wireless backhaul (e.g., 
mmWave-based wireless backhaul or free space 
optical), although the cost can be reduced, the 
challenge brought by limited backhaul capacity 
remains. On one hand, the capacity of wireless 
backhaul link is shared by multiple BS-user links. 
On the other hand, the backhaul links are likely 
to experience higher propagation loss than the 
BS-user links.

The tension caused by limited backhaul capac-
ity may be aggravated in the future as the data 
rate of mmWave links is expected to keep increas-
ing. For example, high resolution 360° virtual real-
ity (VR) requires data rate on the order of 1 Gb/s 
and latency of 1 ms. Based on a prediction in [1], 
the 5G mmWave networks need to support 50 
Gb/s data rate by 2024. In addition, due to the 
expected dense deployment of mmWave BSs [4], 
a large number of backhaul connections, which 
can be wired or wireless, will coexist. As a result, 
the achievable data rate of each backhaul link 
will be limited, which may be caused by resource 
sharing, mutual interference, potential congestion, 
or increased overhead [5]. Therefore, unlike tradi-
tional cellular networks (from 1G to 4G) in which 
the wireless transmission between BS and user is 
the bottleneck, the backhaul becomes a potential 
bottleneck in mmWave systems. Although some 
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field tests have been performed to demonstrate 
the potential of mmWave cellular systems such 
as in [3], these tests are not based on actual cel-
lular networks. Thus, the impact of limited back-
haul capacity has not been tested and verified, 
which requires further investigation. The chal-
lenge of the possible bottleneck at backhaul has 
been observed in the context of ultra-dense small 
cell deployment [4], in which the large number 
of small cells put pressure on the backhaul links. 
Compared to the case of network desification, 
the bottleneck challenge in an mmWave system is 
caused by the significantly increased data rate of 
mmWave transmissions.

On the other hand, due to the short wave-
length of mmWave communications, the trans-
missions between BS and users are subject to 
random blockage. As a result, the data rate of 
each user is highly dynamic. In contrast, the data 
rate of a backhaul link is much more stable since it 
is implement by wired connection or line of sight 
(LoS) wireless connection. Therefore, the BS-UE 
link is characterized by high data rate and unsta-
ble connection, while the backhaul link is charac-
terized by relatively limited data rate and stable 
connection, as shown in Fig. 1. To balance this 
mismatch and enhance the system performance, 
efficient backhaul resource allocation to each user 
is necessary. For example, when a user switches 
from LoS transmission to non-LoS (NLoS) or expe-
riences an outage, less resource shoud be allocat-
ed to this user. However, such adaptive control 
cannot be implemented by traditional resource 
allocation schemes due to the varying system 
dynamics. To perform efficient scheduling, a BS 
needs to predict possible blockage and estimate 
the data rate of each user based on the current 
channel state information (CSI). Then it makes a 
decision on the backhaul resource allocation and 
sends a request to the core network. This way, the 
backhaul scheduling can be performed in a timely 
manner that captures the blockage pattern.

Deep reinforcement learning (DRL) is a new 
paradigm for intelligent decision making [6], 
which can be implemented by TensorFlow and 
Keras. Combining reinforcement learning and the 
DNN, a DRL agent interacts with the environ-
ment and learns the pattern of a Markov decision 
process (MDP) through training experience. Spe-
cifically, a DRL agent employs a deep neural net-
work (DNN) to approximate the Q-values, where 
the Q-values are defined by discounted cumula-
tive rewards that can be obtained by taking dif-
ferent actions under certain system states. Then 
the agent makes optimal decisions based on the 
estimated Q-values. Compared to other machine 
learning approaches, DRL is model-free and does 
not require data samples from an external supervi-
sor. Due to these benefits, the application of DRL 
in wireless networks has drawn growing atten-
tion recently. In this article, we apply DRL to deal 
with the challenge of limited backhaul capacity 
in mmWave networks. By learning the blockage 
pattern based on the CSI of mmWave users, a BS 
decides the resource allocation of the backhaul 
link with the objective of maximizing the sum util-
ity of all users.

In the remainder of this article, we first intro-
duce the background of DRL and review its recent 
applications in wireless systems. Then we present 

a DRL-based approach for backhaul resource allo-
cation. Finally, we discuss open research prob-
lems and conclude this article.

Deep Reinforcement Learning for 
Wireless Systems

Preliminaries of Deep Reinforcement Learning
A reinforcement learning (RL) agent aims to 
learn from the environment and take action to 
maximize the long-term cumulative reward. The 
environment is modeled as an MDP with a state 
space, and an RL agent can take actions from 
a certain action space. The agent interacts with 
the environment by taking actions, observing the 
reward and system state transition, and updat-
ing its knowledge about the environment. The 
objective of an RL algorithm is to find the optimal 
policy, which determines the strategy of taking 
actions under certain system states. Specifically, 
a policy is defined by the probabilities of taking 
different actions under a certain state at a current 
time instant. In general, a policy is in a stochastic 
form to enable exploration over different actions. 
To find the optimal policy, the key component is 
to determine the value of each state-action func-
tion, also known as Q-function. Q-function indi-
cates the expected long-term cumulative rewards 
that can be obtained if the agent takes different 
actions under different states. In particular, a 
Q-function has two parts: one is the instant reward 
obtained by taking an action under a certain state; 
the other is the consequent future rewards, which 
are impacted by the probabilistic system transi-
tions. The details of Q-function can be found in 
[6]. With Q-functions, an MDP is solved when 
the optimal policy that maximizes the values of 
Q-functions (Q-values) is found.

A common RL technique for solving an MDP 
is Q-learning, which uses an empirical iterative 
approach to update Q-values. In particular, an 
agent interacts with the environment by taking 
actions and obtaining rewards, and then updates 
the Q-values with the newly observed instant 
reward.

RL has been applied in decision making prob-
lems of mmWave networks such as in [7]. How-
ever, in large-scale systems with large numbers 
of states and actions, the traditional Q-learn-

Figure 1. System model of an mmWave system with limited backhaul capacity.
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ing approach becomes infeasible since a table 
is required to store all the Q-values. In addition, 
traditional Q-learning needs to visit and evaluate 
every state-action pair, resulting in huge complex-
ity and slow convergence. An effective approach 
to deal with such challenge is to use a neural net-
work (NN) to approximate the Q-values, where 
each Q-value is a function of state, action, and the 
weights of the NN. By training an NN with sampled 
data, the NN can map the inputs of state-action 
pairs to their corresponding Q-values. However, a 
direct application of NN in Q-learning may lead 
to unstable or even diverge results due to the cor-
relations between training samples and the correla-
tions between Q-values and target values [6].

To reduce such correlations, a DRL approach 
was proposed in [6], in which a DNN is used to 
approximate the Q-value, yielding a deep Q-net-
work (DQN). In the DRL approach presented in 
[6], the agent first explores the environment by 
randomly taking actions and stores the experience 
in a target network. A set of experience includes 
the current state, action, instant reward, and new 
state. Then a mechanism called experience replay 
is used, where the data are randomly sampled in 
minibatches from the target network to break the 
correlation in a sequence of observation. With 
samples from the target network, the weights of 
the DQN are updated by minimizing the mean 
square error of Q-functions between the DQN 
and the target network. Then a stochastic gradient 
descent approach is used to obtain the weights of 
the DQN. To reduce the correlation between the 
DQN and the target network, the target network 
is updated less frequently. After the training of the 
DQN, the agent then takes action based on the 
estimated Q-values. The general framework of the 
DRL approach in [6] is shown in Fig. 2.

Applications in Wireless Networks

In the design of wireless networks, a major 
challenge is to solve the formulated combinato-
rial problems. While exhaustive search is infea-

sible due to the prohibitive complexity, existing 
solutions typically rely on network information 
exchange, which yields a trade-off between over-
head and performance. For DRL approaches, 
the network optimization is based on trial and 
error, which do not require explicit or instan-
taneous network information. In particular, a 
DRL algorithm is model-free, which does not 
require explicit knowledge on the inter-depen-
dent patterns of different nodes. In addition, with 
extensive offline training, a DRL agent is able 
to predict the system dynamics, which enables 
timely scheduling. Thus, compared to tradition-
al approaches, DRL-based schemes have the 
potential to achieve better performance with 
reduced online overhead.

Due to this promising prospect, DRL algorithms 
have been recently considered in several wireless 
networks to perform intelligent decision making 
[8–13]. In [8], DRL is used to estimate the availability 
of cache and select a proper set of users for inter-
ference alignment. In [9, 10, 13], the problem of 
multi-channel access is considered in which each 
user observes the channel dynamics from history 
and estimates the possible actions of other users, 
then determines its channel access strategy. In [11], 
DRL is used to predict the quality of service (QoS) 
that can obtained when handing over a UE to anoth-
er BS, resulting in an efficient handover process. In 
[12], continuous actions and states are considered 
so that DQN-based DRL cannot be applied. The 
deep deterministic policy gradient (DDPG), which 
is based on an actor-critic framework, was employed 
to address the continuous space control problem. 
The general idea is to parameterize the Q-functions 
and derive the optimal values of parameters through 
a policy gradient. In [10, 11, 13], the problems are 
formulated as multi-agent control with interactions 
among agents. As a result, experience replay for a 
single agent cannot be applied in such scenarios. 
To take the inter-agent impact into account, long 
short-term memory (LSTM) is used to generate target 
values. The key aspects of system models in recent 
works are summarized in Table 1.

DRL-Based  
Backhaul Resource Allocation 

System Model
We consider an mmWave BS serving multiple user 
equipments (UEs). Each user has three link states: 
LoS, NLoS, and outage. The link state of each user 
follows a Markov process with steady state prob-
abilities given in [3]. We assume that the BS can 
estimate the link state of each user through the 
statistics of user signals. The BS can also measure 
the achievable data rate of the mmWave link of 
each user via uplink signals.

We assume the backhaul resource is divided 
into multiple orthogonal blocks. The number 
of resource blocks is larger than the number 
of UEs. Each block can be a period of time or 
a range of wavelengths. We assume that each 
block has a fixed capacity, and each UE can be 
allocated multiple blocks. Then the backhaul 
capacity allocated to a user is proportional to 
the number of allocated blocks. As a result, the 
actual data rate of a user is the minimum of its 
backhaul capacity and its achievable data rate 
of the mmWave link. 

Figure 2. Framework of the DRL approach in [6].
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DRL Framework

The proposed DRL-based approach employs a 
DQN to find the resource allocation strategy 
under different system states. The key component 
of system state is the achievable data rate of each 
UE. We also include the link states of all UEs as 
part of the system states, since they affect the 
future data rates. Then the system state is used as 
input to the DQN. The action taken by the agent 
indicates the backhaul capacity allocation (i.e., 
the number of blocks allocated to each user). 
The action space consists of all feasible resource 
allocation, which includes multiple combinations 
of integers. For each combination, the sum of all 
integers equals the number of blocks. To achieve 
good system performance as well as guarantee 
fairness, we define the utility of each user to be a 
concave function of its data rate. Then the system 
reward is set as the sum of utilities of all users. 
The architecture of the DQN is shown in Fig. 3. 
The input includes the link state and achievable 
data rate information of each user. The output 
presents the approximated Q-values, and there 
are several hidden layers between the input and 
output layers. 

The training procedure of the DQN is the 
same as the one in [6], which uses experience 
replay to reduce the correlation between training 
samples, as shown in Fig. 2. With the DQN, the 
agent at the BS observes the current data rates 
and link states of all users and obtains the Q-val-
ues of taking different actions (i.e., selecting dif-
ferent resource allocation strategies). Then the 
agent takes an action according to a probabilistic 
greedy approach to achieve an exploitation-explo-
ration trade-off. Specifically, the agent selects the 
action with the maximum Q-value with a certain 
probability and randomly selects an action oth-
erwise. 

Illustrative Example

We evaluate the performance of the DRL-based 
approach with simulations. We consider an 
mmWave cell with a coverage radius of 100 m; 
users are randomly distributed in the cell. The 
probabilities of a user in different link states are 
functions of the distance between the user and 
the BS. The probabilities under outage, LoS, and 
NLoS are given in [3], which are the steady state 
probabilities of the Markov process of link state.  

We employ the channel model of 73 GHz band 
in [3], where NLoS links experience higher path 
loss than LoS links. The system bandwidth is 1 
GHz, and the transmit powers of BS and UEs are 
30 dBm and 20 dBm, respectively. The backhaul 
capacity is 10 Gb/s; the backhaul resource is 
divided into 20 resource blocks. There are two 
hidden layers in the DQN, and we use ReLu as 
the activation function. We consider two DRL-
based schemes, namely DRL-1 and DRL-2, with 
reward functions given as the sum of logarithmic 
data rate and the sum of square root of data rate, 
respectively. With the logarithmic utility function, 
DRL-1 achieves proportional fairness. Compared 
to DRL-1, DRL-2 is more efficiency-prone with a 
worse fairness. Two benchmark schemes are con-
sidered for comparison: a myopic scheme and the 
equal allocation scheme. For the myopic scheme, 
the backhaul resource allocation is based on the 
current data rates of mmWave links, without con-
sidering the future change of link states.

Figure 4 shows the sum rate performance 
under different numbers of users. As the number 
of users increases, the sum rates of all schemes 
grow at reduced rates, showing that the system 
performance is limited by the backhaul capac-
ity. The proposed DRL-based schemes outper-
form the other ones, and the performance gap 
gets larger when the number of users increas-
es. This is because the BS is able to predict the 
variation of link state and allocate the resource 
based on long-term consideration. Then the back-
haul resource can be efficiently utilized, and this 

Table 1. Applications of DRL in different wireless networks.

Application State Action Reward Learning objective

[8]
Cache-based 

interference alignment
Channel power gain

User selection for 
interference alignment

Network throughput
Channel dynamics and cache 

availability

[9] Multi-channel access
Channel state: 

good/bad
Channel selection of each 

user
Number of successful 

transmissions
Channel availability

[10]
Resource management in 

LTE-Unlicensed
Current channel usage 

pattern
Channel access probability

Total throughput on selected 
channels

Channel access patterns of other 
users

[11]
Handover control in 
ultra-dense network

Signal qualities from 
different BSs

BS selection
Weighed sum of data and rate 

handover energy
Prediction for channel qualities 

from different BSs

[12]
Traffic allocation in multihop 

network
Throughput and delay of 

each session
Traffic split ratio

Total utility (weighted sum of 
throughput and delay)

Learn traffic pattern from expe-
rience

[13] Multi-channel random access
Channel access of other 

users
Channel access strategy

Number of successful 
transmissions

Probabilities of success 
transmission over multi-channel

Figure 3. Architecture of the DQN for backhaul resource allocation.
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advantage becomes more significant when the 
number of users is large. Compared to DRL-1, 
DRL-2 achieves higher data rate since its utility 
and reward functions are set to prioritize efficien-
cy over fairness.

The performance under different values of the 
blockage coefficient is shown in Fig. 5. The block-
age coefficient is defined in [3], which indicates 
the likelihood that a user will experience blockage. 
From Fig. 5, we can see that when the blockage 
coefficient is small, the performance of the myo-
pic scheme is close to the proposed DRL-based 
schemes, since the ratio of users under blockage 
is small and the data rates of mmWave links are 
relatively stable. However, when the number of 
users increases, the performance gap between 
the proposed schemes and the myopic scheme 
is increased, showing that DRL-based scheduling 
is effective in capturing the system dynamics and 
making intelligent decisions from the perspective 
of long-term benefit.

Open Problems and Future Research

Joint Optimization of Backhaul and MmWave Links

The DRL based backhaul resource allocation 
presented earlier is based on the given achiev-
able rate of each user. To mitigate the pres-
sure caused by limited backhaul capacity, the 
design of BS-UE links can also be considered. 
The design of resource allocation in LTE systems 
with limited backhaul capacity was studied in 
[14]. In mmWave systems, the data rate of each 
mmWave link can be adjusted through precoding 
design. Considering the channel characteristics of 
different users, a joint consideration of backhaul 
resource allocation and precoding can provide a 
better solution to balance the tension between 
limited backhaul and increased mmWave data 
rate demand.

Dynamic Backhaul Capacity

In our model, we assume fixed capacity for back-
haul, which corresponds to the case of wired 
backhaul or LoS mmWave backhaul with highly 
stable data rate. However, in a practical system 

with wireless backhaul, the data rate of backhaul 
would vary over time. Thus, it is necessary for the 
agent to learn such dynamics as well, and more 
sophisticated design is required based on the pro-
posed framework.

Multi-Cell Scenario

Capacity Allocation Among Different Back-
hauls: The design described earlier is based on 
a single-cell scenario. From the perspective of 
multi-cell, the capacity allocated to each back-
haul can be optimized to further enhance the 
system performance. For example, an mmWave 
BS with heavy traffic and high aggregated data 
rate requirement can share more capacity from 
the core network. However, load balancing and 
capacity allocation require coordination between 
different BSs, and efficient design is required. In 
addition, how to address the scalability issue is 
another challenge. Capacity allocation among 
different backhauls for load balancing has been 
investigated in other wireless networks, such as in 
heterogeneous cloud radio access networks [15]. 
Due to the dynamic nature of mmWave com-
munications, the varying capacity requirement 
of each backhaul needs to be learned to enable 
effective scheduling.

Adaptive User Association: To mitigate 
the pressure of limited backhaul, an effective 
approach is to perform load balancing. For a BS 
with large deficit in backhaul capacity, some of 
the users served by the BS can be handed over 
to neighboring BSs to reduce the traffic demand 
on this BS. Thus, traffic-aware user association is 
another design factor that can be considered for 
better system performance.

Heterogeneous Network

In a heterogeneous network, the traffic of small 
cells is transmitted to a macrocell via backhaul 
connections and then forwarded to the core net-
work via the backhaul of the macrocell. Then the 
backhaul resource allocation becomes a two-tier 
problem, which requires more complicated design. 
In addition, similar to the multi-cell case, the capac-
ity allocation for different small cell backhaul links 
and adaptive user association are important design 
issues that should be jointly considered with back-
haul resource allocation.

Caching Assisted System

BS caching (e.g., femtocaching) was recently 
proposed as an effective approach to enhance 
the data rate of users. By downloading popular 
contents in advance and storing them at local 
BSs, the files requested by users are directly 
transmitted from local BSs. While the primary 
goal of caching is to increase the capacity of 
BS-user links and reduce delay, it is also a good 
solution to the limited backhaul capacity chal-
lenge. When the traffic load of an mmWave BS 
is low, it can request popular files from the core 
network. When the traffic load is increased, the 
popular files at the BS can be used to satisfy the 
demand of some users. As a result, the backhaul 
capacitiy is mainly used to satisfy the instanta-
neous demands from users, thus mitigating the 
traffic burden at the backhaul. Under the cach-
ing architecture, the key design issue is the selec-
tion of popular contents. With limited storage, it 

Figure 4. Sum rate performance of different schemes vs. the number of users.
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is necessary to learn the patterns of users’ pref-
erence and blockage. For example, when a user 
is under frequent blockage, caching and storing 
the content of this user would lead to underutili-
zation. However, if the content requested by the 
user is also frequently requested by other users, 
the utilization would be improved. Thus, the 
agent needs to learn multiple patterns to derive 
an efficient caching strategy.

Performance-Complexity Trade-off

In the system model discussed above, we assume 
the backhaul resource is divided into M blocks. To 
improve resource utilization and enhance the sys-
tem performance, a larger value of M is desirable. 
However, this results in increased dimensions of 
both action and state spaces. Thus, an adaptive 
selection of M that achieves a good trade-off 
between complexity and performance is another 
design issue.

Conclusion
In this article, we address the challenge of limited 
backhaul capacity in mmWave networks with a 
DRL-based approach. We first overview the back-
ground of DRL and its applications in wireless net-
works. Then we present a DRL-based approach 
to enable efficient backhaul resource allocation, 
and show the effectiveness through an illustra-
tive example. We then discuss the future research 
problems and conclude this article.
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Figure 5. Performance of different schemes vs. blockage coefficient aout.
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