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Abstract

The topology and form finding of tensegrity structures have been studied extensively since the
introduction of the tensegrity concept. However, most of these studies address topology and form
separately, where the former represented a research focus of rigidity theory and graph theory, while the
latter attracted the attention of structural engineers. In this paper, a biomimetic approach for the combined
topology and form finding of spatial tensegrity systems is introduced. Tensegrity cells, elementary
infinitesimally rigid self-stressed structures that have been proven to compose any tensegrity, are used to
generate more complex tensegrity structures through the morphogenesis mechanisms of adhesion and
fusion. A methodology for constructing a basis to describe the self-stress space is also provided. Through
the definition of self-stress, the cellular morphogenesis method can integrate design considerations, such
as a desired shape or number of nodes and members, providing great flexibility and control over the
tensegrity structure generated.
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1. Introduction
1.1. Definitions and applications

Tensegrity structures are reticulated prestressed free-standing structures in a state of self-equilibrium
composed of members in tension and members in compression. The term was first used by Buckminster
Fuller in 1962 to describe Kenneth Snelson’s sculptures [1,2]. Nowadays, tensegrity definitions vary
according to the field. In architecture and engineering [2], tensegrity describes “a system in stable self-
equilibrated state comprising a discontinuous set of compressed components inside a continuum of
tensioned components”, while in mathematics and rigidity theory, tensegrity is defined as a self-stressed
framework. A framework 7(G,P) is a realization of a graph G(V,E) in d-space described by its set of
vertices V and edges E, and a configuration P=/p;,p;...,p.] (a collection of points described by d
coordinates) [3]. In this study, the mathematical definition is followed, with the term geometry referring
to the nodal coordinates of the structure while topology refers to the set of members £ that link the nodes
(connectivity).



Tensegrity quickly evolved from an art concept to a structural system and scientific model that enables
the design of systems with a high strength-to-mass ratio [4] and the ability to change shape and/or deploy
while maintaining equilibrium [5]. The concept has thus generated interest from mathematicians [3,6],
architects [7,8], material [9], structural [10,11], aerospace [12,13], robotics [14,15] and biomechanical
engineers [16,17,18]. However, tensegrity structures cannot be fully exploited unless the effects of
geometry and topology are properly understood and integrated in the design process.

1.2. Topology and form finding of tensegrity structures

The first step in the design process of tensegrity structures is form finding: the process of finding a stable
equilibrium configuration for a structure under specific loading and boundary conditions starting from an
arbitrary geometry [19]. In tensegrity, the resulting configuration is obtained under prestress with only
rigid body motions constrained. Force density [20,21,22] and dynamic relaxation [23,24] are two well-
known methods employed often for the form finding of tensegrity structures. However, both methods
require a predefined topology and typology of elements as input, and do not control the self-stress and
equilibrium geometry of the resulting structure. Tensegrity studies are thus typically based on systems
with known topologies and geometries, as identifying a topology that results in a stable tensegrity
structure is a challenging task of combinatorial nature. Consequently, any attempt of solving this problem
using brute force methods is computationally expensive. Geometric constraints and heuristics have thus
been used. Nishimura and Murakami [25] used symmetry considerations to analyze and find the initial
shape of cyclic frustum tensegrity modules. Zhang et al. [26] employed element directions, symmetry
properties and some nodal positions as constraints to solve the equilibrium problem and identify stable
tensegrity structures. The proposed method is however not practical for large irregular systems, as the
number of constraints required increases with the number of unknowns. Lee and Lee [27] combined the
force-density method with genetic algorithms so that the form-finding process requires no knowledge
about the topology of the structure by removing unnecessary tension elements for a selected set of
compression elements. However, the method does not provide any control or insight on the resulting
tensegrity structure.

The topology search for stable rigid tensegrities, and frameworks in general, has been studied in rigidity
theory and graph theory starting with Maxwell counting rules for the static determinacy of structures, and
later Laman who provided a full characterization of minimally generically rigid frameworks in the plane
[28]. These results were generalized by Recski [29] to apply specifically to self-stressed tensegrity
structures: “A4 simple graph G with n vertices and 2n-2 edges is generically rigid tensegrity in the plane if
and only if |E'| < 2|V'| — 3 holds for every proper subgraph G’(V',E’) of G with at least two vertices”.
However, the characterization of three-dimensional minimally rigid tensegrity structures remains an long
standing open problem in rigidity theory. de Guzman and Orden [6] characterized tensegrity topologies
through their decomposition into elementary stable topological units. Aloui et al (2018) [30] proposed a
generative method for the design of planar tensegrity structures based on the elementary stable
topological units defined by de Guzman and Orden [6]. However, the method cannot be directly extended
to three-dimensional structures, as the constitutive topological units for the planar and the spatial case
differ and the number of topological combinations to be considered increases.

Obtaining a valid tensegrity topology has been the focus of many other studies. Connelly and Back [31],
Connelly and Terrell [32], Masic et al [33] and Sultan et al. [34] used common group-theoretic symmetry
property to find structures with a predefined symmetry. The stability conditions of such tensegrities were
studied using group representation theory by Zhang and Ohsaki [35,36]. However, these methods require
the symmetry properties to be fixed in advance. Rieffel et al. [37] addressed the problem using grammar-
based representation graphs which allowed them to find asymmetric irregular structures. Ehara and Kanno
[38] tried to broaden the solution space to include irregular tensegrity topologies using mixed integer
linear programming (MILP). The method was refined by Xu et al. [39] to include mixed linear quadratic



programming (MIQP), which allowed to find class k (k>1) tensegrity structures (tensegrity systems with a
maximum of k interconnected compressive members [40]). Lee and Lee [27] combined force density
method and genetic algorithms to find these topologies; however, the method requires the nodal positions
to be known in advance. Li et al [41] studied the construction of tensegrity structures from one-bar units.
Although these methods allow for the identification of topologies for tensegrity structures, most of them
apply restrictions on the solution space and they do not provide control over the self-stress in the
structure.

Cellular morphogenesis of tensegrity structures represents a bio-inspired approach for the generative
design of tensegrity structures that combines topology and geometry finding of tensegrity structures,
allowing one to find stable structures with predefined shapes and a predefined number of self-stress states.
The method is inspired by the morphogenesis mechanisms of biological cells, providing an intuitive
approach to understand the interactions between topology and geometry in tensegrity structures. The idea
of mimicking cellular mechanisms for the analysis and design of structures echoes back to the work of
Motro [1] who referred to composing modules of complex tensegrity structures as cells, and the work of
Canyurt and Hejela [42] who proposed a cellular framework for structural analysis and optimization.
Zhang et al. [43] employed a stiffness-matrix-based form-finding method to rapidly find complex
tensegrity structures constructed using repetition of the same module. However, in this paper the cell idea
is perceived differently with cells being predefined topological entities that compose complex tensegrity
structures with the nature of their composition defining the self-equilibrium in the resulting system. The
paper starts thus by describing the foundations of cellular morphogenesis. Section 2 presents the
mathematical background necessary to understand the principles of the method, along with a description
of the tensegrity units (cells) that are employed to compose complex tensegrity structures. Section 3
describes the cellular morphogenesis mechanisms and their implications on the geometry of the structure
and its self-stress space. Section 4 focuses on the implementation of the method, while Section 5 presents
a series of examples analyzed through the cellular morphogenesis principles.

2. Theoretical foundations
2.1. Self-equilibrium in tensegrity structures

Tensegrity structures are systems in a state of self-equilibrium [2]. The self-equilibrium is defined by a set
of internal forces that depend on the topology and the geometry of the structure. For some topologies, the
self-equilibrium is independent of the nodal configuration. These topologies are referred to in rigidity
theory as generically rigid graphs. However, for non-generically rigid graphs, the nodal positions have to
satisfy specific geometrical conditions in order for the self-equilibrium to exist. This can be seen through
the sufficient conditions for the stability of tensegrity structures proposed by Connelly [44] where the
third condition states that the member directions do not lie on the same conic at infinity. Although, as will
be seen in the remainder of the paper, tensegrity structures can be designed to have underlying generically
rigid graphs, the majority of the popular tensegrity systems, such as the Triplex and the Icosahedron, fall
into the second category.

Although rigidity theory provides a combinatorial solution for the stability and the existence of a self-
equilibrium, in many studies an answer is sought through the solution of the equilibrium equations. Let £
be the set of members of the structure and |E| the total number of members. Let ¥ be the set of nodes of
the structure and | V] the total number of nodes. Let X, be the vector of Cartesian coordinates in space of
node i. Considering wy as a scalar representing the force density (force in the element over the length of
the element) or self-stress component of the element linking node i to j, the equilibrium at node i of the
structure is given by (Pellegrino 1990) [45]:
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The equilibrium at every node results in a system of 3|V equations that can be described algebraically as:
Aw=0 (2)

where w is a vector of |E| self-stress components and A4 is the equilibrium matrix. Self-stress can thus be
defined as the set of force-density values that induce a state of self-equilibrium in the structure without
considering external loads or supports, which is characterized algebraically by the null space of the
equilibrium matrix A:

W = nullspace(A) (3)
where W is a basis of the self-stress space.
2.2. Mathematical foundation

The method proposed is based on a series of statements, theorems and propositions, adapted from rigidity
theory and graph theory. The first statement is a theorem developed by de Guzman and Orden (2006) [6]

focusing on the decomposition of d-dimensional tensegrity structures into elementary units, whose three-
dimensional case is as follows:

Theorem. Let T(P) be the tensegrity structure defined by the framework (V,E,P) where G=(V,E)
is the abstract graph on the set of vertices } and the set of edges E, and P is a configuration of
points in a three-dimensional space in general position with no four points lying on the same
hyperplane. The tensegrity structure 7(P) is then a finite sum of elementary units defined by the
complete graph on five points, denoted as K.

The theorem suggests that these complete graphs which have all pairs of vertices connected by an edge,
named tensegrity cells in this paper, can be used as building blocks for any tensegrity structure regardless
of its topology and geometry.

The second statement characterizes combinatorically the dimension of the self-stress space. In rigidity
theory, the dimension of the self-stress space | W] is related to the number of degrees of freedom of the
framework G(P), denoted df by the Proposition below proposed by Graver et al. (1993) [46] and adapted
here for the three-dimensional space:

Proposition. Let G(P) be a framework in general position P in dimension 3 with G=(V,E) the
underlying abstract graph of the framework and |¥| the dimension of its self-stress space. The
number of degrees of freedom df of the framework G(P) is given by:

|W[-(6+|E[-3|V]) if|V|>3
df =11VI(VI-D

~|E| if|V|<4
2

The proposition reflects a generalization of the Maxwell counting rule for the static and kinematic
determinacy of trusses, with the second part of the difference in the first row being the Laman bound:



B=6+|E|-3|V| (4)
2.3. Three-dimensional tensegrity cells

In this study, any tensegrity structure that has only one self-stress state is referred to as a unicellular
organism. If the structure has one self-stress state and its underlying graph is a complete graph K5 on five
nodes, then it is called a cell. The two possible configurations of three-dimensional tensegrity cells are
illustrated in Figure 1. Although topologically the two cells are the same, the embedding of the abstract
graph K in the space results in two different structures according to element typology. Elements in both
cell types can be classified into two groups of the same type (bars or cables): a group of six elements and
a group of four elements. The difference between the two systems resides in the fact that the elements of
the four-element group in Type II cells are incident to the same central node, where in Type I cells the
elements form a central triangle P;P.P;3 with the fourth element linking the remaining nodes. In Figure 1,
element groups are distinguished using red and blue lines. However, it should be noted that the type of
elements is not assigned at this stage as groups can take compression or tension, resulting in four total
different structures (duality).

Type 1

Ps Type 11

Pa Ps

Figure 1: Illustration of three-dimensional tensegrity cells. Element groups are distinguished using red and blue lines.

The cells have one stable self-stress state and are infinitesimally rigid. Cellular morphogenesis exploits

the uniqueness of the self-stress state solution in cells to construct a basis for the description of the self-
stress in any tensegrity structure composed of cells. The section below describes the development of the
analytical solution for the self-stress state in tensegrity cells.

Let Pi(pi,pi2p13), Pa(p21,p22,p23), P3(p31,p32,p33), Pa(ps1,psz,ps3) and Ps(psi,psz,ps3) be the configuration of
a tensegrity cell and O the origin. Let wp p,, Wp, p,, ..., Wp, p_ be the self-stress components given by the
force-density values assigned to each member. Writing the nodal equilibrium for both Type I and Type II
cells gives:

Equilibirum at P;. wﬂﬁﬁ+wﬂﬂ@+wﬂﬂ@+wﬂ&ﬁ:6 ©)
Equilibirum at P, W%Rﬁ+ ng@*‘ wﬁaﬁ+ WPZ,%?P5 =0 6)
Equilibirum at Pj W%Rﬁ+w%@+w%m+w%@:6 @)
Equilibirum at Py wﬂﬁﬁ+w&5ﬁ+w}mﬁ+w&%ﬁ:() ®)
Equilibirum at Ps. Wy PR+ Wy PP, + W, PP, +w,, PP, =0 ©)

The solution of the system given by Equations (5) — (9) can be expressed as a function of one of the self-
stress components. Without loss of generality, assume that self-stress component wp, p, is known.



Applying the 3D cross product of Equation (5) and vector P; P, and the dot product of (5) and P; Ps allows
self-stress component wp p, to be expressed as a function of wp, p,:

((W”'Pzﬁ+wﬂfiﬁ+wﬂaﬁ+Wagﬁ)xﬁ)‘ﬁ=0
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the component wp, p, can be written as:
L py Py P
L py pPn Py
L py pPn Py
1 P,P.P. P
W = Wpn 1 Psi Psx DPs; = Wy f(R,P,P,.F,) (12)
Pu P Pi f(R.B,F.F)
L py py Py
I py Py Py
L psy ps, Ps

Function f(P;, P2, P3,P4) reflects the volume of tetrahedron P;P,P3Py. It is thus null if and only if points
P, P, P3,P,lie on the same plane or three of them lie on the same line.

Repeating the process for Equations (6) through (9) allows all self-stress components to be expressed as a
function of component wp, p,. Assuming the force-density in element PP is equal to a, the self-stress
state w in the cell is given by:



1
f(PI’P2!P4’P5)
f(P25P39P4>P5)

_f(PI’PZ’P4’P5)

Wrp, f(Pl,P3,P4,P5)
Whp, f(Pl’P2’P3’P5)
Wpp, f®,P,,P,,P,)
Wep, _f(Pva’PsaPs)
o S (PP PP
w= W, = f(Pl,Pz,P3,P5)Xf(Pl,PZ,P4,P5) (13)
i f®,p.,P.P) f(P,,P,P,,P)
e (PP
Whp, f(@®,P,,P,.P)
Wre, Sf(P.P,,P,,P,)
_Wag_ f(PZ’P3’P4’P5)

_J(®,P,PP) SRR, P, P)
f(P1’P3’P4’P5) f(P29P3’P4’P5)
f(Pl’PZ’P37PS)>< .f(Pl’PZ’P3’P4)

L S(PLPL PP f(P,, P, PP |

Equation 13 represents the general expression of the solution for the self-stress in a cell at any
configuration in general position. The expression reveals the link between topology and geometry in the
self-equilibrium of tensegrity cells and thus the structures they compose, with topology dictating the
number of self-stress states and the geometry defining the magnitude in the self-stress components and
thus element typology.

3. Morphogenesis of tensegrity structures
3.1. Cellular analogy

Tensegrity cells can be combined to compose complex tensegrity structures by sharing one or more nodes
(and consequently edges). Similar to the interaction between biological cells, if no elements of the cells
composing a tensegrity structure are removed, the process corresponds to cellular adhesion (Figure 2a). In
cellular adhesion, all cells are stable and can function separately [47]. If elements in the cells composing a
tensegrity structure are removed after adhesion occurs, the process corresponds to cellular fusion (Figure
2b). In fusion, cells function together as one entity [48]. The amalgamation of multiple tensegrity cells
into a tensegrity structure corresponds to morphogenesis: the biological process that controls the spatial
distribution of cells during the development of an organism [49].
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Figure 2: Illustration of the cellular morphogenesis analogy and its mechanisms.

3.2. Cellular morphogenesis mechanisms
3.2.1.Cellular adhesion

In the morphogenesis of tensegrity cells, adhesion occurs when two cells are connected and all shared
members between the new cell and the existing structure are preserved. Since each cell has five nodes and
ten edges, a great number of combinations can occur. Figure 3 illustrates possible combinations for two
cells. However, only the cases where the two systems share three or four nodes are of interest, as the other
cases either result in finite mechanisms (when the two cells share one or two nodes) or identical structures
(when the two cells share all nodes). The adhesion of two cells results always in a rigid structure as the
cells are rigid graphs, and adhesion reflects a gluing operation along three or more nodes [50]. Moreover,
adhesion increases the number of self-stress states in the structure, as the additional cell can still function
independently from the rest of the structure. The self-stress state corresponding to the new cell can be
obtained by assigning the self-stress components of elements composing the cell with values obtained
from Equation 13 and setting all other self-stress components to zero. Thus, the new state is only a
function of the geometry of the new cell. In the case of adhesion, the construction of the self-stress space
is simplified and the members’ typology depends only on the assignment of the self-stress in the cells.

3.2.2.Cellular fusion

The fusion mechanism occurs when after the connection of two cells, edges are removed. A removed
edge can be thought of as a member with zero self-stress. Therefore, the cell being added to the structure
should be constructed such that the self-stress coefficients corresponding to the members being removed
have opposite signs and are equal in magnitude. The result of fusion mechanism depends on the number
of nodes shared between the new cell and the existing structure, as well as the number of removed edges.
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Figure 3: Illustration of two-cell combinations.

The removal of an edge is always possible as the resulting structure is always rigid (see Appendix B). The
removal can be done by adjusting the self-stress in the new cell (multiplying it with the appropriate scalar
coefficient) so that the forces in the elements between the cell and the existing structure cancel out. The
nodal coordinates of the cell being added are thus not constrained and can be freely defined.

The removal of multiple edges that belong to the same unicellular tensegrity organisms is only possible
when the nodal positions satisfy a set of geometric relations that depend on the geometry of the structure
and guarantee the existence of a proper self-stress. However, the stability of the resulting structure should
be confirmed. Without loss of generality, consider that cell ABCDE is the new cell being added to an
existing structure with shared nodes A, B, C if it shares three nodes with the existing structure or A, B, C,
D if it shares four nodes. In the analysis of the removal of two edges, two cases have to be considered: a)
if the two edges that are being removed share a node, and b) if the two edges that are being removed do

not share a node.

a) If the two edges that are being removed share a node



Let us assume that edges AB and BC are being removed. This implies that the cell ABCDE has to have
w; and w; for force densities in the member AB and BC, respectively. Thus, the nodal positions of
A,B,C,D,E have to satisfy the system:

Wip =W

1 a a, a

1 b b, b

Wipg =W 1 d d, d,
A,B,D,E =4 1 14
W =W, S(AB, )=—w2 T a4 & 4 = —w, (14)

f(B,C,D,E) 1 b] b2 b%

I ¢ ¢ c

1 d d, d,

1 ¢ e ¢

Assuming that the cell shares three nodes with the existing structure (i.e. A, B and C), the coordinates of
those nodes are already defined since they are part of the existing structure. The coordinates of nodes D
and E can be obtained by solving Equation 15. In Equation 15, coordinates (d;,d>,ds) and (e, ez, e3) were
changed to (xp,yp,zp) and (xz,y& ze) to distinguish between knowns and unknowns.
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On the other hand, if the cell shares four nodes with the existing structure (assuming that node D is also
part of the existing structure along with nodes A,B, and C the coordinates of node E can be defined by:

0 a p olx
—-a 0 7y oy
[d, d, d, 1] 5y 0 ZE =0 (16)
E
-0 —¢p - 0] 1

Equation 16 represents a planar surface with any point belonging to this plane being a valid solution for the
position of node E.

b) If the two edges that are being removed do not share a node
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When the cell being added and the existing structure share four nodes, and the two edges that are being
removed do not share a node (i.e. AB and CD), the position of node E must satisfy the system:

Wi =W
Il a a a) |l a a, a
1 b b, b| I b b, b
W =—W, 1l ¢ ¢ ¢ |l d d, d,
A,B,C.E A,B,D.E = 1 ¢ e e 1 ¢ e e 17
Wen = Was ;EA,C,D,E;XJ;EB,C,D,E; R e s ai T b bz B )
1 ¢ ¢ | 1 ¢ ¢ o
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F(4,B,C,D) denotes the matrix whose determinant is defined in Equation (11) and A;*® is the cofactor of
the matrix F(4,B,C,D) defined by:

A;BCD — (_ 1)l+/

ABCD
M |
y

M " is the minor of F'(4,B,C,D) obtained by deleting row i and column ;. Node E belongs thus to the
quadratic surface defined by:

1

1 x, vy z]T ) (18)

E

Zg

where the components of the matrix 7 are (see Appendix A for details):

w

__ AABCE ABDE _ ""2 A BCDE ACDE

T, =Ay " XAy o Ay XA (19)
1

Since the expressions for the self-stress components (Equation 13) do not depend on node labeling, any
permutation of the node labels results in expressions of the same form. Moreover, the solution space for
the added nodes can be found through the intersection of the surfaces defined by considering removing all
the combinations of two edges. Consequently, if three edges need to be removed, three subspaces can be
defined by considering every combination of two edges and the added nodes will be on the intersection of
these spaces.

3.3. Morphogenesis and self-stress

Cellular morphogenesis reflects the reverse process of the tensegrity decomposition proposed by de
Guzman and Orden 2006 [6]. A corollary to a Proposition by Fernandez and Orden (2011) [51], which
allows one to combinatorically calculate the number of self-stress states by decomposing tensegrity
structures into cells, was proposed by Aloui et al. (2018) [30] and is adapted here for three-dimensional
tensegrity structures:

11



Corollary. Let G; and Gi+; be the abstract underlying graphs of the tensegrity structures obtained
through cellular morphogenesis at steps 7 and i+/. Let B; and B;+; be their Laman bounds,
respectively. Let e; be the change in the number of edges between G; and Gi+;, and v; be the
change in the number of nodes. Assuming that G;+; is generically rigid, the change in the
dimension of the self-stress space W is given by:

A(dim(W)) = e —3v,

The corollary can be used to identify changes in the number of self-stress states during adhesion and
fusion. For three-dimensional tensegrity structures, the number of added or removed states can take any
integer value from 0 to 10 depending on the change in the number of edges and nodes of the structure,
with each state reflecting the contribution of a single unicellular organism. These unicellular organisms
can be tensegrity cells if they are complete graphs on five nodes or virtual cells [30]: subgraphs with one
self-stress state formed by the interactions between cells. For cells, the self-stress state can be calculated
through Equation 13. However, the self-stress state corresponding to virtual cells has to be calculated
through the nullspace of the equilibrium matrix as, contrary to the planar case, a specific pattern cannot be
identified. A cellular morphogenesis example is presented below to elucidate the construction of a basis
for the self-stress space and the effects of adhesion and fusion in the space.

Morphogenesis starts with a Type I cell, denoted as Cell 1, defined by the nodes {1,2,3,4,5}. The self-
stress in Cell 1 is described by the vector w;. In step one, a second Type I cell {2,3,4,5,6}, named Cell 2,
is added to the existing cell with the two cells sharing four nodes. The adhesion of the second cell results
in a second self-stress state w (second column of the matrix W¥). Each state (column of matrix W)
corresponds to the self-stress coefficients that stabilize the corresponding cell with zeros for edges that are
not part of the cell. In step two, the adhesion of a third Type I cell {1,2,3,7,6}, named Cell 3, results into
two additional self-stress states w3 and wa: the first state (third column of matrix W) stabilizing

Cell 3 itself, while the second (fourth column of matrix W) reflects the presence of a virtual cell
{1,2,3,4,6} (Cell 4).

12
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Figure 4: Illustration of the construction of a self-stress basis in the case of adhesion steps.

Assume that fusion occurs in the third step with the removal of edge (2,3), which is shared by all four
unicellular organisms. In order to remove edge (2,3), all combinations of Cell 3 and the other cells must
be considered, leading to three self-stress states as shown in Figure 5. The result of the fusion is a
structure composed of three unicellular organisms with each one being the result of the fusion of two
cells. The fusion of Cells 1 and 3 forms the first unicellular organism stabilized by the self-stress state

described by the linear combination (W1 + 11L2355 W3) allowing the cancelation of the self-stress component
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of element (2,3) and thus its removal. Similarly, the fusion of Cells 2 and 3, and the fusions of Cells 3 and

4 result in the self-stress states (w2 + 1—;5w3) and (w4 - 01'2%%) which allow the removal of element

2.,3).
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Figure 5: Illustration of the construction of self-stress basis in the case of a fusion step.

The example reveals that the number of unicellular organisms (cells being added and virtual cells)

combined with the number of adhesion and fusion steps define the number of self-stress states, while their

magnitudes depend on their geometry.

4. Implementation of the Cellular Morphogenesis for Tensegrity Structures

Cellular morphogenesis of tensegrity structures is implemented exclusively using graphs, as both the
tensegrity structures and the process itself are modeled as simple undirected graphs. Tensegrity structures
are modeled using a graph G(V,E) where the set of vertices V represents the nodes of the structure and the

set of edges E describe the members of the structure. The morphogenesis process is modeled as a graph
G(V., E:) where V. is the set of the cells and unicellular organisms employed during the generative

process and E. is the set of edges representing the shared boundary between cells (Figure 6).
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Figure 6: Graph Gc of the cellular morphogenesis (vertices are cells, edges are shared boundary).

Nodes in graph G, correspond to the cells composing the tensegrity structure generated. Therefore, the
nodal attributes (Table 1) include a cell type (“regular cell” if it was an added cell, “virtual cell” if it
corresponds to a unicellular organism identified during adhesion for the completion of the self-stress
basis, or “fused cell” if it is a unicellular structure created after the fusion of two cells), as well as the
nodes and connectivity for each cell. Edge attributes (Table 2) include the set of shared members between
cells i and j. Employing graph models for the implementation of the method is advantageous not only
because of the nature of the structures being modeled, but also because the construction of the self-stress
space and the identification of the virtual cells patterns depend on the history of the morphogenesis steps
(cells being formed and transformed throughout the process). The cellular morphogenesis method was
thus implemented using Python [52] and Networkx [53], a Python package for graph theory.

Table 1: Nodal attributes of the graph Ge.

Cell Graph
Cell No. Type
Nodes Edges
Cell 1 Regular {1,2,3,4,5} {(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3.4), (3,5), (4,5)}
Cell 2 Regular {2,3,4,5,6} {(2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,0), (4,5), (4,6), (5,6)}
Cell 3 Regular {1,2,3,6,7} {(1,2), (1,3), (1,6), (1,7), (2,3), (2,6), (2,7), (3,6), (3,7), (6,7)}
Cell 4 Virtual {1,2,3,4,6} {(1,2), (1,3), (1,4), (1,6), (2,3), (2,4), (2,6), (3,4), (3,6), (4,6)}

Table 2: Edges attributes of the graph G..

Edge Id

Shared members

(Cell 1, Cell 2)
(Cell 1, Cell 3)
(Cell 1, Cell 4)
(Cell 2, Cell 3)
(Cell 2, Cell 4)
(Cell 3, Cell 4)

(2.3),(3.4), 4,5), (2,5), (2,4), (3,5)
(1,2), (1,3), (2,3)
(1,2),(2,3), (3,4), (1,4), (2,4), (1,3)
(2,3), (3,6), (2,6)
(2.,3),(3,4), (4,6), (2,6), (2,4), (3,6)
(1,2), (1,3), (2,3)
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The flow chart in Figure 7 describes the cellular morphogenesis process of tensegrity structures. Starting
from a cell, the input for the cell to be added is provided: the set of shared nodes with the existing
structure and the coordinates of the new nodes. An adhesion routine is then called. In the adhesion
routine, using the corollary, the existence of virtual cell(s) is determined: if the change in the dimension
of the self-stress space is larger than one, then one or multiple virtual cells may be present. The graph G
corresponding to the tensegrity structure being generated and the graph G. corresponding to the cells
formed during the process are then updated along with the self-stress. If edges are to be removed from the
structure, a fusion routine is called. The fusion routine takes as input the structure and the edges to be
removed. In the case of removing more than one edge, the fusion routine determines the geometric
relations that the new nodes should satisfy and updates their positions accordingly. Similarly to the
adhesion routine, the graph G corresponding to the tensegrity structure being generated and the graph G.
corresponding to the cells formed during the process are updated along with the self-stress. The process is
repeated until the desired tensegrity structure is obtained.

Tensegrity cell

Cellular adhesion

Cellular adhesion

Existing structure i .
Updating graphs H Updating self-stress

Edge No
removal?

Identifying unicellul
organism(s)

Structure and i ] )
Updating graphs }—-{ Updating self-stress

Updating positions of
new nodes

Tensegrity structure

Figure 7: Flow chart of the cellular morphogenesis process.

The update of the self-stress is based on the number of cells and virtual cells formed at each step. For
cells, the self-stress state is calculated through Equation 13, while for virtual cells the self-stress state is
calculated through the nullspace of their equilibrium. Therefore, a routine that extracts subgraphs from the
total graph capable of underlying a structure with one self-stress state is proposed. The idea behind the
routine is that the self-stress corresponding to the substructure must complete the basis describing the
self-stress space in the structure (it must be linearly independent with the set of existing self-stress
vectors). The search routine for virtual cells in three-dimensional structures is presented below.

Let s be the number of self-stress states at a step i and p the number of regular cells employed in the
generation of a structure until step i.

i.  Remove an edge belonging to one cell only from each regular or fused cell composing the
structure. If the edge removed is attached to a node of degree four (with four elements connected
to it), the removal of the edge can result in the removal of the node and thus the removal of the
other three edges attached to it. The removal of an edge, or four edges and a node, always results
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in decreasing the dimension of the self-stress space by one. The number of self-stress states
remaining in the structure is s-p.

ii.  From the remaining structure, select s-p-1 edges to remove. Preferably, start with edges that
have both end nodes with a degree equal or larger than five. The remaining structure will be a
unicellular organism with exactly one self-stress state.

iii.  Calculate the self-stress state in the unicellular organism by finding the nullspace of its
equilibrium matrix. Check if the state is linearly independent with the existing states, if not
discard the structure. If it is linearly independent, update the self-stress space of the structure.

iv.  Go back to step (ii) and repeat the process by considering a different set of edges until the
required number of virtual cells dictated by the corollary has been identified.

5. Examples of tensegrity structures generated with cellular morphogenesis
5.1. Triplex

The Triplex (also known as Simplex or Tensegrity prism) is an elementary three-dimensional tensegrity
structure with six nodes, nine elements in tension, and three elements in compression. The Triplex can be
obtained through form finding of a straight triangular prism with its stable equilibrium configuration
being when the base triangles belong to parallel planes and they have an angle of twist of /6 (Figure 8).

Figure 8: The Triplex structure in its equilibrium configuration.

The Triplex has one self-stress state given by:
w=w[—/3,—V3,—V3,4/3,4/3,4/3,1. L1111 (20)

where wy is the self-stress in a base element (members are ordered such that the first three elements are
struts, followed by the three lateral cables and the six horizontal cables).

In this study, the Triplex is obtained through cellular morphogenesis. The structure can be obtained
through the adhesion of two cells that share four nodes and their fusion with the removal of two edges.
Figure 9 illustrates the composition of a Triplex starting from two Type I cells ABCDE and BCDEF. The
two cells are combined together by sharing nodes BCDE and then elements BD and CE are removed.
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Figure 9: Cellular morphogenesis of the Triplex.

The construction of a basis for the self-stress state of a Triplex is presented in Table 3.

AC
X

Remove BD, CE
(Cellular fusion)
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Table 3: Construction of the self-stress state of a Triplex.

Cell ABCDE Cell BCDEF Adhesion step Fusion step
Member  Self-stress Member  Self-stress Member  Self-stress I~ Self-stress 11 Member  Self-stress
AB 1.155 BC 1.732 AB 1.155 0.000 AB 1.155
BC -0.577 CD -1.000 BC -0.577 1.732 BC 1.155
AC 1.155 BD 1.000 AC 1.155 0.000 AC 1.155
AD 2.000 BE 1.000 AD 2.000 0.000 AD 2.000
BD -1.000 CE -1.000 BD -1.000 1.000 BD 0.000
CD -1.000 DE 0.577 CD -1.000 -1.000 CD 2,000
AE -2.000 BF -2.000 AE -2.000 0.000 AE -2.000
BE 1.000 CF 2.000 BE 1.000 1.000 BE 2.000
CE 1.000 DF 1155 CE 1.000 -1.000 CE 0.000
DE 1732 EF 1.155 DE 1732 0577 DE 1.155
BF 0.000 -2.000 BF -2.000
CF 0.000 2.000 CF 2.000
DF 0.000 1.155 DF 1.155
EF 0.000 1.155 EF 1.155

Following the principles of cellular morphogenesis, the structure ABCDEF resulting from the adhesion of
the two cells results into two self-stress states (Table 3, adhesion step). The removal of edges BD and CE
(fusion) decreases the number of self-stress states to one. The resulting self-stress state (Table 3, fusion
step) is collinear to the vector described in Equation 20 (after setting the same order of elements). In the
triplex case, the two removed edges do not share a node. This falls into the case where the position of the
added node lies on a quadratic surface defined by Equation 18. When the nodal positions of the Triplex
are used, the resulting curve is given by:

22 —2xp+xz+yz—z—y=0 21)

Figure 10 illustrates the equilibrium surface with the Triplex and all its nodes lying on the meshed surface
given by Equation 21.
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View 1 View 2

Figure 10: lllustration of the nodal equilibrium geometric conditions of a regular Triplex.

5.2. Icosahedron

The Icosahedron (also known as the expanded octahedron) is another well-known tensegrity structure.
The icosahedron possesses a spherical symmetry which makes it convenient for robotic applications such
as NASA’s SuperBall developed for planetary landing and exploration [12,54]. The Icosahedron is
composed of six struts and twenty-four cables that connect twelve nodes. It has a five-regular graph
topology where four cables and one strut are incident to each node. Figure 11 illustrates the cells that
compose the Icosahedron along with the related morphogenesis mechanisms and the edges being removed
(dashed lines in the central figure). In total, sixteen cells are combined using fifteen adhesion and nine
fusion steps, resulting in a structure with one self-stress state (Table 4).
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Figure 11: Illustration of the cellular morphogenesis of the Icosahedron. The dashed elements of the cells are already present in
the structure at that step.

Table 4: Self-stress state of the Icosahedron.

Member Self-stress Member Self-stress Member Self-stress

coefficient coefficient coefficient
AB -1.5 BE 1 DK 1
CD -1.5 BG 1 DL 1
EF -1.5 BK 1 El 1
GH -1.5 BL 1 EK 1
1J -1.5 CF 1 FI 1
KL -1.5 CH 1 FK 1
AE 1 Cl 1 GJ 1
AG 1 ClJ 1 GL 1
Al 1 DF 1 HJ 1
AJ 1 DH 1 HL 1
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5.3. Stanford bunny

The Stanford bunny (Figure 12) was developed by Greg Turk and Mark Levoy as a benchmark computer
graphics 3D model [55]. In this study, the Stanford bunny was chosen to elucidate the capability of the
cellular morphogenesis method in generating complex tensegrity structures with irregular forms.

Figure 12: Illustration of the Stanford bunny structure (left) and the low polygonal surface mesh (right).

A low cell-resolution bunny was created using a polygonization algorithm. Cells were then created using
the 34 nodes of the mesh. The process resulted in 20 Type I cells with 34 nodes and 134 elements (80
elements in tension and 54 elements in compression). The resulting tensegrity structure (Figure 13) has 41

self-stress states with 21 corresponding to virtual cells. A high cell-resolution bunny generated using 528
nodes is presented in Appendix C.
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Figure 13: Illustration of the low-resolution Stanford bunny tensegrity structure.

A Class 1 bunny with no connection between compression elements (Figure 14) was also constructed
using cellular morphogenesis. Although the number of elements in the Class 1 bunny structure is lower
than the number of elements in the low cell-resolution bunny, the number of cells employed in the
construction of the tensegrity systems is considerably larger as a large number of cells is accounted for
the fusion steps required to isolate the compressive elements. The total number of cells used in the
morphogenesis process was thus 82 with 61 fusion steps being performed. The resulting bunny structure
has 34 nodes and 112 elements (20 in compression and 92 in tension). The resulting structure has 3 self-
stress states and 11 infinitesimal mechanisms.
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Figure 14: Illustration of the Class-1 Stanford bunny tensegrity structure.

6. Discussion

Cellular morphogenesis reflects a generative design scheme for complex tensegrity structures based on
stable tensegrity cells. Through the cell definition, the method decodes the relation between the topology
and geometry in tensegrity structures, allowing for the control of the self-stress states. This can lead to an
enhanced design of tensegrity structures with predefined self-stress features. Furthermore, the form of the
self-stress states obtained through the cellular morphogenesis conveys a more profound message to the
designer than the simple rank analysis of the equilibrium matrix, as each state corresponds to a specific
stable unicellular sub-structure. Moreover, through the large number of possible combinations between
cells, the proposed method allows for a better exploration of the design space, while also providing a
sequence for the assembly and disassembly of the structure. Finally, although cellular morphogenesis of
tensegrity structures shows great potential in finding irregular large tensegrity structures with predefined
shapes and self-stress states, a deeper understanding of the effects of degeneracy is needed.
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7. Conclusions

Cellular morphogenesis is novel biomimetic method for the generative design of tensegrity structures that
combines topology search and form finding. The method is inspired by the adhesion and fusion of
biological cells. The mechanisms of adhesion and fusion are applied to tensegrity cells: infinitesimally
rigid tensegrity units of one self-stress state that can compose any tensegrity structure. Through the
analytical description of the self-stress in the cells and the study of the impacts of adhesion and fusion on
the self-equilibrium of a tensegrity structures, it is shown that topology reflected by the number of
unicellular organisms (regular and virtual cells) dictates the number of self-stress states, while the
geometry given by their nodal positions defines the magnitude of the forces in those states and thus also
element typology. Consequently, cellular morphogenesis offers a new paradigm in the topology search
and form finding of tensegrity structures, allowing for the control of the equilibrium geometry and the
self-equilibrium through the variation of the adhesion and fusion steps. The method also provides a
description of the self-stress space through the construction of a base with vectors in a form that conveys
a broader message than a simple rank analysis of the equilibrium matrix. These features of the method can
enhance the applications of tensegrity structures in science and engineering.
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Appendix A:

When the cell being added and the existing structure share four nodes and the two edges that are being
removed do not share a node (i.e. AB and CD), the position of node E must satisfy the system:

Wip =W
1 a a a| |l g a, a
1 b b, b |l b b b
W =W, 1 ¢ ¢ ¢ I d d, d
" f(AB,C,E) f(ABDE) I " 1 ¢ e e ><1 e e el (A.1)
T f(ACDE) f(B,C,D,E) g LTSN e a, al U B b, by :
Il ¢ ¢ | |l ¢ ¢ c
1 d d, d| |l d d, d
1 ¢ e e| [l ¢ e e

F(4,B,C,D) denotes the matrix whose determinant is defined in Equation (11) and A;*” is the cofactor of
the matrix F(4,B,C,D) defined by:

AABCD =(- 1)1+ j

MABCD| (A2a)

M *<" is the minor of F(4,B,C,D) obtained by deleting row i and column ;. Let (x;,x2,x3) be the
coordinates of the node E:

1 a a, a
1 b b, b
1 2 3 ZAABCE- (A2b)
I ¢ ¢ ¢
I x x, x
System (A.1) becomes:

1 a a, a| |l a a, a, 1 a a a| [l b b, b
L b b, b\ |l by b b wil ¢ ¢ | [l ¢ ¢ ¢
X =21 x
1l ¢ ¢ ||l d d, d| w[l d d, d| |l d d, d,
I x x x| |1 x x x I x, x x| 1 x x5 x

C>(Z AABCE )(Z AABDE ) 2 (z AACDE )(Z ABCDE

4 4
W,
ABCE A ABDE ADE BCDE
o IS A AN, =5 A
: W,

i=l j=1 1 =1 j=1

4
wW.
ABCE A ABDE _ ACDE 5 BCDE
@Z (A A ZAM A,. )x,xj:()
i=l j= |

4
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(A.2¢)

w.
T, = A4 X AL 22 AL AL (A2d)

g
1
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Appendix B:

To prove that the fusion process with the removal of an edge preserves the rigidity of a given tensegrity
structure, two results of rigidity theory and graph theory must be considered. The first result is a theorem
by Roth and Whiteley (1981) relating the rigidity of tensegrity frameworks to the rigidity of the
underlying bar framework and its self-stress:

Theorem (Roth and Whiteley 1981). Suppose that T(G,P) is a tensegrity framework in &',
Then, the tensegrity 7 is infinitesimally rigid in &’ if and only if the underlying bar framework
B(G,P) is infinitesimally rigid and 7(G, P) admits a proper self-stress that respects the typology of
the elements.

The second result is that fusion (as well as adhesion) can be decomposed in a series of Type 1 and 2
Henneberg constructions (Figure B.1) which preserve the rigidity of a graph. In the case of a structure
composed of two cells connected on three nodes, fusion and the removal of an edge can be seen as the
addition of two nodes on a rigid bar framework and one edge removal. The resulting structure can be
obtained by first adding a node through Type 1 Henneberg construction and then adding a second one
through Type 2 Henneberg construction (which allows the removal of an edge). In the case of a structure
composed of two cells connected on four nodes, fusion and the removal of an edge can be seen as the
addition of a node on a rigid bar framework through a Type 2 Henneberg construction. In both cases, the
resulting bar frameworks are thus rigid.

Type 1
P Type 2
Figure B.1: Type 1 and 2 Henneberg constructions in 3D.

Since self-stress components dictate the element typology in cellular morphogenesis, the existence of a
proper self-stress in the resulting bar frameworks is guaranteed which concludes the proof.

e Roth, B. and Whiteley, W., 1981. Tensegrity frameworks. Transactions of the American
Mathematical Society, 265(2), 419-446.

e Tay T.S. and Whiteley W., 1985. Generating isostatic frameworks. Structural Topology 1985
Nuam 11.
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Appendix C:

A high cell-resolution bunny was generated using a tetrahedral mesh with a fifth node being added at the
center of each tetrahedron to obtain Type II cell patterns (Figure C.1).

Figure C.1: lllustration of the Stanford bunny structure (left) and the low polygonal surface mesh (right).

The process resulted in 330 Type II cells with 528 nodes and 2126 members (806 elements in tension and
1320 elements in compression). The resulting structure (Figure C.2) has 548 self-stress states with 218
corresponding to virtual cells.

Figure C.2: Illustration of the Stanford bunny tensegrity structure.
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